Home | History | Annotate | Line # | Download | only in kern
uipc_socket2.c revision 1.68.2.3
      1 /*	$NetBSD: uipc_socket2.c,v 1.68.2.3 2007/09/03 14:41:19 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.68.2.3 2007/09/03 14:41:19 yamt Exp $");
     36 
     37 #include "opt_mbuftrace.h"
     38 #include "opt_sb_max.h"
     39 
     40 #include <sys/param.h>
     41 #include <sys/systm.h>
     42 #include <sys/proc.h>
     43 #include <sys/file.h>
     44 #include <sys/buf.h>
     45 #include <sys/malloc.h>
     46 #include <sys/mbuf.h>
     47 #include <sys/protosw.h>
     48 #include <sys/poll.h>
     49 #include <sys/socket.h>
     50 #include <sys/socketvar.h>
     51 #include <sys/signalvar.h>
     52 #include <sys/kauth.h>
     53 
     54 /*
     55  * Primitive routines for operating on sockets and socket buffers
     56  */
     57 
     58 /* strings for sleep message: */
     59 const char	netcon[] = "netcon";
     60 const char	netcls[] = "netcls";
     61 const char	netio[] = "netio";
     62 const char	netlck[] = "netlck";
     63 
     64 u_long	sb_max = SB_MAX;	/* maximum socket buffer size */
     65 static u_long sb_max_adj;	/* adjusted sb_max */
     66 
     67 /*
     68  * Procedures to manipulate state flags of socket
     69  * and do appropriate wakeups.  Normal sequence from the
     70  * active (originating) side is that soisconnecting() is
     71  * called during processing of connect() call,
     72  * resulting in an eventual call to soisconnected() if/when the
     73  * connection is established.  When the connection is torn down
     74  * soisdisconnecting() is called during processing of disconnect() call,
     75  * and soisdisconnected() is called when the connection to the peer
     76  * is totally severed.  The semantics of these routines are such that
     77  * connectionless protocols can call soisconnected() and soisdisconnected()
     78  * only, bypassing the in-progress calls when setting up a ``connection''
     79  * takes no time.
     80  *
     81  * From the passive side, a socket is created with
     82  * two queues of sockets: so_q0 for connections in progress
     83  * and so_q for connections already made and awaiting user acceptance.
     84  * As a protocol is preparing incoming connections, it creates a socket
     85  * structure queued on so_q0 by calling sonewconn().  When the connection
     86  * is established, soisconnected() is called, and transfers the
     87  * socket structure to so_q, making it available to accept().
     88  *
     89  * If a socket is closed with sockets on either
     90  * so_q0 or so_q, these sockets are dropped.
     91  *
     92  * If higher level protocols are implemented in
     93  * the kernel, the wakeups done here will sometimes
     94  * cause software-interrupt process scheduling.
     95  */
     96 
     97 void
     98 soisconnecting(struct socket *so)
     99 {
    100 
    101 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
    102 	so->so_state |= SS_ISCONNECTING;
    103 }
    104 
    105 void
    106 soisconnected(struct socket *so)
    107 {
    108 	struct socket	*head;
    109 
    110 	head = so->so_head;
    111 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
    112 	so->so_state |= SS_ISCONNECTED;
    113 	if (head && soqremque(so, 0)) {
    114 		soqinsque(head, so, 1);
    115 		sorwakeup(head);
    116 		wakeup((void *)&head->so_timeo);
    117 	} else {
    118 		wakeup((void *)&so->so_timeo);
    119 		sorwakeup(so);
    120 		sowwakeup(so);
    121 	}
    122 }
    123 
    124 void
    125 soisdisconnecting(struct socket *so)
    126 {
    127 
    128 	so->so_state &= ~SS_ISCONNECTING;
    129 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
    130 	wakeup((void *)&so->so_timeo);
    131 	sowwakeup(so);
    132 	sorwakeup(so);
    133 }
    134 
    135 void
    136 soisdisconnected(struct socket *so)
    137 {
    138 
    139 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
    140 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
    141 	wakeup((void *)&so->so_timeo);
    142 	sowwakeup(so);
    143 	sorwakeup(so);
    144 }
    145 
    146 /*
    147  * When an attempt at a new connection is noted on a socket
    148  * which accepts connections, sonewconn is called.  If the
    149  * connection is possible (subject to space constraints, etc.)
    150  * then we allocate a new structure, propoerly linked into the
    151  * data structure of the original socket, and return this.
    152  * Connstatus may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
    153  */
    154 struct socket *
    155 sonewconn(struct socket *head, int connstatus)
    156 {
    157 	struct socket	*so;
    158 	int		soqueue;
    159 
    160 	soqueue = connstatus ? 1 : 0;
    161 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
    162 		return ((struct socket *)0);
    163 	so = pool_get(&socket_pool, PR_NOWAIT);
    164 	if (so == NULL)
    165 		return (NULL);
    166 	memset((void *)so, 0, sizeof(*so));
    167 	so->so_type = head->so_type;
    168 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
    169 	so->so_linger = head->so_linger;
    170 	so->so_state = head->so_state | SS_NOFDREF;
    171 	so->so_proto = head->so_proto;
    172 	so->so_timeo = head->so_timeo;
    173 	so->so_pgid = head->so_pgid;
    174 	so->so_send = head->so_send;
    175 	so->so_receive = head->so_receive;
    176 	so->so_uidinfo = head->so_uidinfo;
    177 #ifdef MBUFTRACE
    178 	so->so_mowner = head->so_mowner;
    179 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
    180 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
    181 #endif
    182 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
    183 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
    184 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
    185 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
    186 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
    187 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
    188 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
    189 	soqinsque(head, so, soqueue);
    190 	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
    191 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
    192 	    (struct lwp *)0)) {
    193 		(void) soqremque(so, soqueue);
    194 		pool_put(&socket_pool, so);
    195 		return (NULL);
    196 	}
    197 	if (connstatus) {
    198 		sorwakeup(head);
    199 		wakeup((void *)&head->so_timeo);
    200 		so->so_state |= connstatus;
    201 	}
    202 	return (so);
    203 }
    204 
    205 void
    206 soqinsque(struct socket *head, struct socket *so, int q)
    207 {
    208 
    209 #ifdef DIAGNOSTIC
    210 	if (so->so_onq != NULL)
    211 		panic("soqinsque");
    212 #endif
    213 
    214 	so->so_head = head;
    215 	if (q == 0) {
    216 		head->so_q0len++;
    217 		so->so_onq = &head->so_q0;
    218 	} else {
    219 		head->so_qlen++;
    220 		so->so_onq = &head->so_q;
    221 	}
    222 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
    223 }
    224 
    225 int
    226 soqremque(struct socket *so, int q)
    227 {
    228 	struct socket	*head;
    229 
    230 	head = so->so_head;
    231 	if (q == 0) {
    232 		if (so->so_onq != &head->so_q0)
    233 			return (0);
    234 		head->so_q0len--;
    235 	} else {
    236 		if (so->so_onq != &head->so_q)
    237 			return (0);
    238 		head->so_qlen--;
    239 	}
    240 	TAILQ_REMOVE(so->so_onq, so, so_qe);
    241 	so->so_onq = NULL;
    242 	so->so_head = NULL;
    243 	return (1);
    244 }
    245 
    246 /*
    247  * Socantsendmore indicates that no more data will be sent on the
    248  * socket; it would normally be applied to a socket when the user
    249  * informs the system that no more data is to be sent, by the protocol
    250  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
    251  * will be received, and will normally be applied to the socket by a
    252  * protocol when it detects that the peer will send no more data.
    253  * Data queued for reading in the socket may yet be read.
    254  */
    255 
    256 void
    257 socantsendmore(struct socket *so)
    258 {
    259 
    260 	so->so_state |= SS_CANTSENDMORE;
    261 	sowwakeup(so);
    262 }
    263 
    264 void
    265 socantrcvmore(struct socket *so)
    266 {
    267 
    268 	so->so_state |= SS_CANTRCVMORE;
    269 	sorwakeup(so);
    270 }
    271 
    272 /*
    273  * Wait for data to arrive at/drain from a socket buffer.
    274  */
    275 int
    276 sbwait(struct sockbuf *sb)
    277 {
    278 
    279 	sb->sb_flags |= SB_WAIT;
    280 	return (tsleep((void *)&sb->sb_cc,
    281 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
    282 	    sb->sb_timeo));
    283 }
    284 
    285 /*
    286  * Lock a sockbuf already known to be locked;
    287  * return any error returned from sleep (EINTR).
    288  */
    289 int
    290 sb_lock(struct sockbuf *sb)
    291 {
    292 	int	error;
    293 
    294 	while (sb->sb_flags & SB_LOCK) {
    295 		sb->sb_flags |= SB_WANT;
    296 		error = tsleep((void *)&sb->sb_flags,
    297 		    (sb->sb_flags & SB_NOINTR) ?  PSOCK : PSOCK|PCATCH,
    298 		    netlck, 0);
    299 		if (error)
    300 			return (error);
    301 	}
    302 	sb->sb_flags |= SB_LOCK;
    303 	return (0);
    304 }
    305 
    306 /*
    307  * Wakeup processes waiting on a socket buffer.
    308  * Do asynchronous notification via SIGIO
    309  * if the socket buffer has the SB_ASYNC flag set.
    310  */
    311 void
    312 sowakeup(struct socket *so, struct sockbuf *sb, int code)
    313 {
    314 	selnotify(&sb->sb_sel, 0);
    315 	sb->sb_flags &= ~SB_SEL;
    316 	if (sb->sb_flags & SB_WAIT) {
    317 		sb->sb_flags &= ~SB_WAIT;
    318 		wakeup((void *)&sb->sb_cc);
    319 	}
    320 	if (sb->sb_flags & SB_ASYNC) {
    321 		int band;
    322 		if (code == POLL_IN)
    323 			band = POLLIN|POLLRDNORM;
    324 		else
    325 			band = POLLOUT|POLLWRNORM;
    326 		fownsignal(so->so_pgid, SIGIO, code, band, so);
    327 	}
    328 	if (sb->sb_flags & SB_UPCALL)
    329 		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
    330 }
    331 
    332 /*
    333  * Socket buffer (struct sockbuf) utility routines.
    334  *
    335  * Each socket contains two socket buffers: one for sending data and
    336  * one for receiving data.  Each buffer contains a queue of mbufs,
    337  * information about the number of mbufs and amount of data in the
    338  * queue, and other fields allowing poll() statements and notification
    339  * on data availability to be implemented.
    340  *
    341  * Data stored in a socket buffer is maintained as a list of records.
    342  * Each record is a list of mbufs chained together with the m_next
    343  * field.  Records are chained together with the m_nextpkt field. The upper
    344  * level routine soreceive() expects the following conventions to be
    345  * observed when placing information in the receive buffer:
    346  *
    347  * 1. If the protocol requires each message be preceded by the sender's
    348  *    name, then a record containing that name must be present before
    349  *    any associated data (mbuf's must be of type MT_SONAME).
    350  * 2. If the protocol supports the exchange of ``access rights'' (really
    351  *    just additional data associated with the message), and there are
    352  *    ``rights'' to be received, then a record containing this data
    353  *    should be present (mbuf's must be of type MT_CONTROL).
    354  * 3. If a name or rights record exists, then it must be followed by
    355  *    a data record, perhaps of zero length.
    356  *
    357  * Before using a new socket structure it is first necessary to reserve
    358  * buffer space to the socket, by calling sbreserve().  This should commit
    359  * some of the available buffer space in the system buffer pool for the
    360  * socket (currently, it does nothing but enforce limits).  The space
    361  * should be released by calling sbrelease() when the socket is destroyed.
    362  */
    363 
    364 int
    365 sb_max_set(u_long new_sbmax)
    366 {
    367 	int s;
    368 
    369 	if (new_sbmax < (16 * 1024))
    370 		return (EINVAL);
    371 
    372 	s = splsoftnet();
    373 	sb_max = new_sbmax;
    374 	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
    375 	splx(s);
    376 
    377 	return (0);
    378 }
    379 
    380 int
    381 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
    382 {
    383 	/*
    384 	 * there's at least one application (a configure script of screen)
    385 	 * which expects a fifo is writable even if it has "some" bytes
    386 	 * in its buffer.
    387 	 * so we want to make sure (hiwat - lowat) >= (some bytes).
    388 	 *
    389 	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
    390 	 * we expect it's large enough for such applications.
    391 	 */
    392 	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
    393 	u_long  hiwat = lowat + PIPE_BUF;
    394 
    395 	if (sndcc < hiwat)
    396 		sndcc = hiwat;
    397 	if (sbreserve(&so->so_snd, sndcc, so) == 0)
    398 		goto bad;
    399 	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
    400 		goto bad2;
    401 	if (so->so_rcv.sb_lowat == 0)
    402 		so->so_rcv.sb_lowat = 1;
    403 	if (so->so_snd.sb_lowat == 0)
    404 		so->so_snd.sb_lowat = lowat;
    405 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
    406 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
    407 	return (0);
    408  bad2:
    409 	sbrelease(&so->so_snd, so);
    410  bad:
    411 	return (ENOBUFS);
    412 }
    413 
    414 /*
    415  * Allot mbufs to a sockbuf.
    416  * Attempt to scale mbmax so that mbcnt doesn't become limiting
    417  * if buffering efficiency is near the normal case.
    418  */
    419 int
    420 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
    421 {
    422 	struct lwp *l = curlwp; /* XXX */
    423 	rlim_t maxcc;
    424 	struct uidinfo *uidinfo;
    425 
    426 	KDASSERT(sb_max_adj != 0);
    427 	if (cc == 0 || cc > sb_max_adj)
    428 		return (0);
    429 	if (so) {
    430 		if (l && kauth_cred_geteuid(l->l_cred) == so->so_uidinfo->ui_uid)
    431 			maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
    432 		else
    433 			maxcc = RLIM_INFINITY;
    434 		uidinfo = so->so_uidinfo;
    435 	} else {
    436 		uidinfo = uid_find(0);	/* XXX: nothing better */
    437 		maxcc = RLIM_INFINITY;
    438 	}
    439 	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
    440 		return 0;
    441 	sb->sb_mbmax = min(cc * 2, sb_max);
    442 	if (sb->sb_lowat > sb->sb_hiwat)
    443 		sb->sb_lowat = sb->sb_hiwat;
    444 	return (1);
    445 }
    446 
    447 /*
    448  * Free mbufs held by a socket, and reserved mbuf space.
    449  */
    450 void
    451 sbrelease(struct sockbuf *sb, struct socket *so)
    452 {
    453 
    454 	sbflush(sb);
    455 	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0,
    456 	    RLIM_INFINITY);
    457 	sb->sb_mbmax = 0;
    458 }
    459 
    460 /*
    461  * Routines to add and remove
    462  * data from an mbuf queue.
    463  *
    464  * The routines sbappend() or sbappendrecord() are normally called to
    465  * append new mbufs to a socket buffer, after checking that adequate
    466  * space is available, comparing the function sbspace() with the amount
    467  * of data to be added.  sbappendrecord() differs from sbappend() in
    468  * that data supplied is treated as the beginning of a new record.
    469  * To place a sender's address, optional access rights, and data in a
    470  * socket receive buffer, sbappendaddr() should be used.  To place
    471  * access rights and data in a socket receive buffer, sbappendrights()
    472  * should be used.  In either case, the new data begins a new record.
    473  * Note that unlike sbappend() and sbappendrecord(), these routines check
    474  * for the caller that there will be enough space to store the data.
    475  * Each fails if there is not enough space, or if it cannot find mbufs
    476  * to store additional information in.
    477  *
    478  * Reliable protocols may use the socket send buffer to hold data
    479  * awaiting acknowledgement.  Data is normally copied from a socket
    480  * send buffer in a protocol with m_copy for output to a peer,
    481  * and then removing the data from the socket buffer with sbdrop()
    482  * or sbdroprecord() when the data is acknowledged by the peer.
    483  */
    484 
    485 #ifdef SOCKBUF_DEBUG
    486 void
    487 sblastrecordchk(struct sockbuf *sb, const char *where)
    488 {
    489 	struct mbuf *m = sb->sb_mb;
    490 
    491 	while (m && m->m_nextpkt)
    492 		m = m->m_nextpkt;
    493 
    494 	if (m != sb->sb_lastrecord) {
    495 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
    496 		    sb->sb_mb, sb->sb_lastrecord, m);
    497 		printf("packet chain:\n");
    498 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
    499 			printf("\t%p\n", m);
    500 		panic("sblastrecordchk from %s", where);
    501 	}
    502 }
    503 
    504 void
    505 sblastmbufchk(struct sockbuf *sb, const char *where)
    506 {
    507 	struct mbuf *m = sb->sb_mb;
    508 	struct mbuf *n;
    509 
    510 	while (m && m->m_nextpkt)
    511 		m = m->m_nextpkt;
    512 
    513 	while (m && m->m_next)
    514 		m = m->m_next;
    515 
    516 	if (m != sb->sb_mbtail) {
    517 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
    518 		    sb->sb_mb, sb->sb_mbtail, m);
    519 		printf("packet tree:\n");
    520 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
    521 			printf("\t");
    522 			for (n = m; n != NULL; n = n->m_next)
    523 				printf("%p ", n);
    524 			printf("\n");
    525 		}
    526 		panic("sblastmbufchk from %s", where);
    527 	}
    528 }
    529 #endif /* SOCKBUF_DEBUG */
    530 
    531 /*
    532  * Link a chain of records onto a socket buffer
    533  */
    534 #define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
    535 do {									\
    536 	if ((sb)->sb_lastrecord != NULL)				\
    537 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
    538 	else								\
    539 		(sb)->sb_mb = (m0);					\
    540 	(sb)->sb_lastrecord = (mlast);					\
    541 } while (/*CONSTCOND*/0)
    542 
    543 
    544 #define	SBLINKRECORD(sb, m0)						\
    545     SBLINKRECORDCHAIN(sb, m0, m0)
    546 
    547 /*
    548  * Append mbuf chain m to the last record in the
    549  * socket buffer sb.  The additional space associated
    550  * the mbuf chain is recorded in sb.  Empty mbufs are
    551  * discarded and mbufs are compacted where possible.
    552  */
    553 void
    554 sbappend(struct sockbuf *sb, struct mbuf *m)
    555 {
    556 	struct mbuf	*n;
    557 
    558 	if (m == 0)
    559 		return;
    560 
    561 #ifdef MBUFTRACE
    562 	m_claimm(m, sb->sb_mowner);
    563 #endif
    564 
    565 	SBLASTRECORDCHK(sb, "sbappend 1");
    566 
    567 	if ((n = sb->sb_lastrecord) != NULL) {
    568 		/*
    569 		 * XXX Would like to simply use sb_mbtail here, but
    570 		 * XXX I need to verify that I won't miss an EOR that
    571 		 * XXX way.
    572 		 */
    573 		do {
    574 			if (n->m_flags & M_EOR) {
    575 				sbappendrecord(sb, m); /* XXXXXX!!!! */
    576 				return;
    577 			}
    578 		} while (n->m_next && (n = n->m_next));
    579 	} else {
    580 		/*
    581 		 * If this is the first record in the socket buffer, it's
    582 		 * also the last record.
    583 		 */
    584 		sb->sb_lastrecord = m;
    585 	}
    586 	sbcompress(sb, m, n);
    587 	SBLASTRECORDCHK(sb, "sbappend 2");
    588 }
    589 
    590 /*
    591  * This version of sbappend() should only be used when the caller
    592  * absolutely knows that there will never be more than one record
    593  * in the socket buffer, that is, a stream protocol (such as TCP).
    594  */
    595 void
    596 sbappendstream(struct sockbuf *sb, struct mbuf *m)
    597 {
    598 
    599 	KDASSERT(m->m_nextpkt == NULL);
    600 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
    601 
    602 	SBLASTMBUFCHK(sb, __func__);
    603 
    604 #ifdef MBUFTRACE
    605 	m_claimm(m, sb->sb_mowner);
    606 #endif
    607 
    608 	sbcompress(sb, m, sb->sb_mbtail);
    609 
    610 	sb->sb_lastrecord = sb->sb_mb;
    611 	SBLASTRECORDCHK(sb, __func__);
    612 }
    613 
    614 #ifdef SOCKBUF_DEBUG
    615 void
    616 sbcheck(struct sockbuf *sb)
    617 {
    618 	struct mbuf	*m;
    619 	u_long		len, mbcnt;
    620 
    621 	len = 0;
    622 	mbcnt = 0;
    623 	for (m = sb->sb_mb; m; m = m->m_next) {
    624 		len += m->m_len;
    625 		mbcnt += MSIZE;
    626 		if (m->m_flags & M_EXT)
    627 			mbcnt += m->m_ext.ext_size;
    628 		if (m->m_nextpkt)
    629 			panic("sbcheck nextpkt");
    630 	}
    631 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
    632 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
    633 		    mbcnt, sb->sb_mbcnt);
    634 		panic("sbcheck");
    635 	}
    636 }
    637 #endif
    638 
    639 /*
    640  * As above, except the mbuf chain
    641  * begins a new record.
    642  */
    643 void
    644 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
    645 {
    646 	struct mbuf	*m;
    647 
    648 	if (m0 == 0)
    649 		return;
    650 
    651 #ifdef MBUFTRACE
    652 	m_claimm(m0, sb->sb_mowner);
    653 #endif
    654 	/*
    655 	 * Put the first mbuf on the queue.
    656 	 * Note this permits zero length records.
    657 	 */
    658 	sballoc(sb, m0);
    659 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
    660 	SBLINKRECORD(sb, m0);
    661 	m = m0->m_next;
    662 	m0->m_next = 0;
    663 	if (m && (m0->m_flags & M_EOR)) {
    664 		m0->m_flags &= ~M_EOR;
    665 		m->m_flags |= M_EOR;
    666 	}
    667 	sbcompress(sb, m, m0);
    668 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
    669 }
    670 
    671 /*
    672  * As above except that OOB data
    673  * is inserted at the beginning of the sockbuf,
    674  * but after any other OOB data.
    675  */
    676 void
    677 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
    678 {
    679 	struct mbuf	*m, **mp;
    680 
    681 	if (m0 == 0)
    682 		return;
    683 
    684 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
    685 
    686 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
    687 	    again:
    688 		switch (m->m_type) {
    689 
    690 		case MT_OOBDATA:
    691 			continue;		/* WANT next train */
    692 
    693 		case MT_CONTROL:
    694 			if ((m = m->m_next) != NULL)
    695 				goto again;	/* inspect THIS train further */
    696 		}
    697 		break;
    698 	}
    699 	/*
    700 	 * Put the first mbuf on the queue.
    701 	 * Note this permits zero length records.
    702 	 */
    703 	sballoc(sb, m0);
    704 	m0->m_nextpkt = *mp;
    705 	if (*mp == NULL) {
    706 		/* m0 is actually the new tail */
    707 		sb->sb_lastrecord = m0;
    708 	}
    709 	*mp = m0;
    710 	m = m0->m_next;
    711 	m0->m_next = 0;
    712 	if (m && (m0->m_flags & M_EOR)) {
    713 		m0->m_flags &= ~M_EOR;
    714 		m->m_flags |= M_EOR;
    715 	}
    716 	sbcompress(sb, m, m0);
    717 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
    718 }
    719 
    720 /*
    721  * Append address and data, and optionally, control (ancillary) data
    722  * to the receive queue of a socket.  If present,
    723  * m0 must include a packet header with total length.
    724  * Returns 0 if no space in sockbuf or insufficient mbufs.
    725  */
    726 int
    727 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
    728 	struct mbuf *control)
    729 {
    730 	struct mbuf	*m, *n, *nlast;
    731 	int		space, len;
    732 
    733 	space = asa->sa_len;
    734 
    735 	if (m0 != NULL) {
    736 		if ((m0->m_flags & M_PKTHDR) == 0)
    737 			panic("sbappendaddr");
    738 		space += m0->m_pkthdr.len;
    739 #ifdef MBUFTRACE
    740 		m_claimm(m0, sb->sb_mowner);
    741 #endif
    742 	}
    743 	for (n = control; n; n = n->m_next) {
    744 		space += n->m_len;
    745 		MCLAIM(n, sb->sb_mowner);
    746 		if (n->m_next == 0)	/* keep pointer to last control buf */
    747 			break;
    748 	}
    749 	if (space > sbspace(sb))
    750 		return (0);
    751 	MGET(m, M_DONTWAIT, MT_SONAME);
    752 	if (m == 0)
    753 		return (0);
    754 	MCLAIM(m, sb->sb_mowner);
    755 	/*
    756 	 * XXX avoid 'comparison always true' warning which isn't easily
    757 	 * avoided.
    758 	 */
    759 	len = asa->sa_len;
    760 	if (len > MLEN) {
    761 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
    762 		if ((m->m_flags & M_EXT) == 0) {
    763 			m_free(m);
    764 			return (0);
    765 		}
    766 	}
    767 	m->m_len = asa->sa_len;
    768 	memcpy(mtod(m, void *), asa, asa->sa_len);
    769 	if (n)
    770 		n->m_next = m0;		/* concatenate data to control */
    771 	else
    772 		control = m0;
    773 	m->m_next = control;
    774 
    775 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
    776 
    777 	for (n = m; n->m_next != NULL; n = n->m_next)
    778 		sballoc(sb, n);
    779 	sballoc(sb, n);
    780 	nlast = n;
    781 	SBLINKRECORD(sb, m);
    782 
    783 	sb->sb_mbtail = nlast;
    784 	SBLASTMBUFCHK(sb, "sbappendaddr");
    785 
    786 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
    787 
    788 	return (1);
    789 }
    790 
    791 /*
    792  * Helper for sbappendchainaddr: prepend a struct sockaddr* to
    793  * an mbuf chain.
    794  */
    795 static inline struct mbuf *
    796 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
    797 		   const struct sockaddr *asa)
    798 {
    799 	struct mbuf *m;
    800 	const int salen = asa->sa_len;
    801 
    802 	/* only the first in each chain need be a pkthdr */
    803 	MGETHDR(m, M_DONTWAIT, MT_SONAME);
    804 	if (m == 0)
    805 		return (0);
    806 	MCLAIM(m, sb->sb_mowner);
    807 #ifdef notyet
    808 	if (salen > MHLEN) {
    809 		MEXTMALLOC(m, salen, M_NOWAIT);
    810 		if ((m->m_flags & M_EXT) == 0) {
    811 			m_free(m);
    812 			return (0);
    813 		}
    814 	}
    815 #else
    816 	KASSERT(salen <= MHLEN);
    817 #endif
    818 	m->m_len = salen;
    819 	memcpy(mtod(m, void *), asa, salen);
    820 	m->m_next = m0;
    821 	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
    822 
    823 	return m;
    824 }
    825 
    826 int
    827 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
    828 		  struct mbuf *m0, int sbprio)
    829 {
    830 	int space;
    831 	struct mbuf *m, *n, *n0, *nlast;
    832 	int error;
    833 
    834 	/*
    835 	 * XXX sbprio reserved for encoding priority of this* request:
    836 	 *  SB_PRIO_NONE --> honour normal sb limits
    837 	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
    838 	 *	take whole chain. Intended for large requests
    839 	 *      that should be delivered atomically (all, or none).
    840 	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
    841 	 *       over normal socket limits, for messages indicating
    842 	 *       buffer overflow in earlier normal/lower-priority messages
    843 	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
    844 	 *       Intended for  kernel-generated messages only.
    845 	 *        Up to generator to avoid total mbuf resource exhaustion.
    846 	 */
    847 	(void)sbprio;
    848 
    849 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
    850 		panic("sbappendaddrchain");
    851 
    852 	space = sbspace(sb);
    853 
    854 #ifdef notyet
    855 	/*
    856 	 * Enforce SB_PRIO_* limits as described above.
    857 	 */
    858 #endif
    859 
    860 	n0 = NULL;
    861 	nlast = NULL;
    862 	for (m = m0; m; m = m->m_nextpkt) {
    863 		struct mbuf *np;
    864 
    865 #ifdef MBUFTRACE
    866 		m_claimm(m, sb->sb_mowner);
    867 #endif
    868 
    869 		/* Prepend sockaddr to this record (m) of input chain m0 */
    870 	  	n = m_prepend_sockaddr(sb, m, asa);
    871 		if (n == NULL) {
    872 			error = ENOBUFS;
    873 			goto bad;
    874 		}
    875 
    876 		/* Append record (asa+m) to end of new chain n0 */
    877 		if (n0 == NULL) {
    878 			n0 = n;
    879 		} else {
    880 			nlast->m_nextpkt = n;
    881 		}
    882 		/* Keep track of last record on new chain */
    883 		nlast = n;
    884 
    885 		for (np = n; np; np = np->m_next)
    886 			sballoc(sb, np);
    887 	}
    888 
    889 	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
    890 
    891 	/* Drop the entire chain of (asa+m) records onto the socket */
    892 	SBLINKRECORDCHAIN(sb, n0, nlast);
    893 
    894 	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
    895 
    896 	for (m = nlast; m->m_next; m = m->m_next)
    897 		;
    898 	sb->sb_mbtail = m;
    899 	SBLASTMBUFCHK(sb, "sbappendaddrchain");
    900 
    901 	return (1);
    902 
    903 bad:
    904 	/*
    905 	 * On error, free the prepended addreseses. For consistency
    906 	 * with sbappendaddr(), leave it to our caller to free
    907 	 * the input record chain passed to us as m0.
    908 	 */
    909 	while ((n = n0) != NULL) {
    910 	  	struct mbuf *np;
    911 
    912 		/* Undo the sballoc() of this record */
    913 		for (np = n; np; np = np->m_next)
    914 			sbfree(sb, np);
    915 
    916 		n0 = n->m_nextpkt;	/* iterate at next prepended address */
    917 		MFREE(n, np);		/* free prepended address (not data) */
    918 	}
    919 	return 0;
    920 }
    921 
    922 
    923 int
    924 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
    925 {
    926 	struct mbuf	*m, *mlast, *n;
    927 	int		space;
    928 
    929 	space = 0;
    930 	if (control == 0)
    931 		panic("sbappendcontrol");
    932 	for (m = control; ; m = m->m_next) {
    933 		space += m->m_len;
    934 		MCLAIM(m, sb->sb_mowner);
    935 		if (m->m_next == 0)
    936 			break;
    937 	}
    938 	n = m;			/* save pointer to last control buffer */
    939 	for (m = m0; m; m = m->m_next) {
    940 		MCLAIM(m, sb->sb_mowner);
    941 		space += m->m_len;
    942 	}
    943 	if (space > sbspace(sb))
    944 		return (0);
    945 	n->m_next = m0;			/* concatenate data to control */
    946 
    947 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
    948 
    949 	for (m = control; m->m_next != NULL; m = m->m_next)
    950 		sballoc(sb, m);
    951 	sballoc(sb, m);
    952 	mlast = m;
    953 	SBLINKRECORD(sb, control);
    954 
    955 	sb->sb_mbtail = mlast;
    956 	SBLASTMBUFCHK(sb, "sbappendcontrol");
    957 
    958 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
    959 
    960 	return (1);
    961 }
    962 
    963 /*
    964  * Compress mbuf chain m into the socket
    965  * buffer sb following mbuf n.  If n
    966  * is null, the buffer is presumed empty.
    967  */
    968 void
    969 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
    970 {
    971 	int		eor;
    972 	struct mbuf	*o;
    973 
    974 	eor = 0;
    975 	while (m) {
    976 		eor |= m->m_flags & M_EOR;
    977 		if (m->m_len == 0 &&
    978 		    (eor == 0 ||
    979 		     (((o = m->m_next) || (o = n)) &&
    980 		      o->m_type == m->m_type))) {
    981 			if (sb->sb_lastrecord == m)
    982 				sb->sb_lastrecord = m->m_next;
    983 			m = m_free(m);
    984 			continue;
    985 		}
    986 		if (n && (n->m_flags & M_EOR) == 0 &&
    987 		    /* M_TRAILINGSPACE() checks buffer writeability */
    988 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
    989 		    m->m_len <= M_TRAILINGSPACE(n) &&
    990 		    n->m_type == m->m_type) {
    991 			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
    992 			    (unsigned)m->m_len);
    993 			n->m_len += m->m_len;
    994 			sb->sb_cc += m->m_len;
    995 			m = m_free(m);
    996 			continue;
    997 		}
    998 		if (n)
    999 			n->m_next = m;
   1000 		else
   1001 			sb->sb_mb = m;
   1002 		sb->sb_mbtail = m;
   1003 		sballoc(sb, m);
   1004 		n = m;
   1005 		m->m_flags &= ~M_EOR;
   1006 		m = m->m_next;
   1007 		n->m_next = 0;
   1008 	}
   1009 	if (eor) {
   1010 		if (n)
   1011 			n->m_flags |= eor;
   1012 		else
   1013 			printf("semi-panic: sbcompress\n");
   1014 	}
   1015 	SBLASTMBUFCHK(sb, __func__);
   1016 }
   1017 
   1018 /*
   1019  * Free all mbufs in a sockbuf.
   1020  * Check that all resources are reclaimed.
   1021  */
   1022 void
   1023 sbflush(struct sockbuf *sb)
   1024 {
   1025 
   1026 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
   1027 
   1028 	while (sb->sb_mbcnt)
   1029 		sbdrop(sb, (int)sb->sb_cc);
   1030 
   1031 	KASSERT(sb->sb_cc == 0);
   1032 	KASSERT(sb->sb_mb == NULL);
   1033 	KASSERT(sb->sb_mbtail == NULL);
   1034 	KASSERT(sb->sb_lastrecord == NULL);
   1035 }
   1036 
   1037 /*
   1038  * Drop data from (the front of) a sockbuf.
   1039  */
   1040 void
   1041 sbdrop(struct sockbuf *sb, int len)
   1042 {
   1043 	struct mbuf	*m, *mn, *next;
   1044 
   1045 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
   1046 	while (len > 0) {
   1047 		if (m == 0) {
   1048 			if (next == 0)
   1049 				panic("sbdrop");
   1050 			m = next;
   1051 			next = m->m_nextpkt;
   1052 			continue;
   1053 		}
   1054 		if (m->m_len > len) {
   1055 			m->m_len -= len;
   1056 			m->m_data += len;
   1057 			sb->sb_cc -= len;
   1058 			break;
   1059 		}
   1060 		len -= m->m_len;
   1061 		sbfree(sb, m);
   1062 		MFREE(m, mn);
   1063 		m = mn;
   1064 	}
   1065 	while (m && m->m_len == 0) {
   1066 		sbfree(sb, m);
   1067 		MFREE(m, mn);
   1068 		m = mn;
   1069 	}
   1070 	if (m) {
   1071 		sb->sb_mb = m;
   1072 		m->m_nextpkt = next;
   1073 	} else
   1074 		sb->sb_mb = next;
   1075 	/*
   1076 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
   1077 	 * makes sure sb_lastrecord is up-to-date if we dropped
   1078 	 * part of the last record.
   1079 	 */
   1080 	m = sb->sb_mb;
   1081 	if (m == NULL) {
   1082 		sb->sb_mbtail = NULL;
   1083 		sb->sb_lastrecord = NULL;
   1084 	} else if (m->m_nextpkt == NULL)
   1085 		sb->sb_lastrecord = m;
   1086 }
   1087 
   1088 /*
   1089  * Drop a record off the front of a sockbuf
   1090  * and move the next record to the front.
   1091  */
   1092 void
   1093 sbdroprecord(struct sockbuf *sb)
   1094 {
   1095 	struct mbuf	*m, *mn;
   1096 
   1097 	m = sb->sb_mb;
   1098 	if (m) {
   1099 		sb->sb_mb = m->m_nextpkt;
   1100 		do {
   1101 			sbfree(sb, m);
   1102 			MFREE(m, mn);
   1103 		} while ((m = mn) != NULL);
   1104 	}
   1105 	SB_EMPTY_FIXUP(sb);
   1106 }
   1107 
   1108 /*
   1109  * Create a "control" mbuf containing the specified data
   1110  * with the specified type for presentation on a socket buffer.
   1111  */
   1112 struct mbuf *
   1113 sbcreatecontrol(void *p, int size, int type, int level)
   1114 {
   1115 	struct cmsghdr	*cp;
   1116 	struct mbuf	*m;
   1117 
   1118 	if (CMSG_SPACE(size) > MCLBYTES) {
   1119 		printf("sbcreatecontrol: message too large %d\n", size);
   1120 		return NULL;
   1121 	}
   1122 
   1123 	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
   1124 		return ((struct mbuf *) NULL);
   1125 	if (CMSG_SPACE(size) > MLEN) {
   1126 		MCLGET(m, M_DONTWAIT);
   1127 		if ((m->m_flags & M_EXT) == 0) {
   1128 			m_free(m);
   1129 			return NULL;
   1130 		}
   1131 	}
   1132 	cp = mtod(m, struct cmsghdr *);
   1133 	memcpy(CMSG_DATA(cp), p, size);
   1134 	m->m_len = CMSG_SPACE(size);
   1135 	cp->cmsg_len = CMSG_LEN(size);
   1136 	cp->cmsg_level = level;
   1137 	cp->cmsg_type = type;
   1138 	return (m);
   1139 }
   1140