Home | History | Annotate | Line # | Download | only in kern
uipc_socket2.c revision 1.7
      1 /*
      2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
      3  *	The Regents of the University of California.  All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  * 2. Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in the
     12  *    documentation and/or other materials provided with the distribution.
     13  * 3. All advertising materials mentioning features or use of this software
     14  *    must display the following acknowledgement:
     15  *	This product includes software developed by the University of
     16  *	California, Berkeley and its contributors.
     17  * 4. Neither the name of the University nor the names of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written permission.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31  * SUCH DAMAGE.
     32  *
     33  *	from: @(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
     34  *	$Id: uipc_socket2.c,v 1.7 1994/05/04 11:04:58 mycroft Exp $
     35  */
     36 
     37 #include <sys/param.h>
     38 #include <sys/systm.h>
     39 #include <sys/proc.h>
     40 #include <sys/file.h>
     41 #include <sys/buf.h>
     42 #include <sys/malloc.h>
     43 #include <sys/select.h>
     44 #include <sys/mbuf.h>
     45 #include <sys/protosw.h>
     46 #include <sys/socket.h>
     47 #include <sys/socketvar.h>
     48 
     49 /*
     50  * Primitive routines for operating on sockets and socket buffers
     51  */
     52 
     53 /* strings for sleep message: */
     54 char	netio[] = "netio";
     55 char	netcon[] = "netcon";
     56 char	netcls[] = "netcls";
     57 
     58 u_long	sb_max = SB_MAX;		/* patchable */
     59 
     60 /*
     61  * Procedures to manipulate state flags of socket
     62  * and do appropriate wakeups.  Normal sequence from the
     63  * active (originating) side is that soisconnecting() is
     64  * called during processing of connect() call,
     65  * resulting in an eventual call to soisconnected() if/when the
     66  * connection is established.  When the connection is torn down
     67  * soisdisconnecting() is called during processing of disconnect() call,
     68  * and soisdisconnected() is called when the connection to the peer
     69  * is totally severed.  The semantics of these routines are such that
     70  * connectionless protocols can call soisconnected() and soisdisconnected()
     71  * only, bypassing the in-progress calls when setting up a ``connection''
     72  * takes no time.
     73  *
     74  * From the passive side, a socket is created with
     75  * two queues of sockets: so_q0 for connections in progress
     76  * and so_q for connections already made and awaiting user acceptance.
     77  * As a protocol is preparing incoming connections, it creates a socket
     78  * structure queued on so_q0 by calling sonewconn().  When the connection
     79  * is established, soisconnected() is called, and transfers the
     80  * socket structure to so_q, making it available to accept().
     81  *
     82  * If a socket is closed with sockets on either
     83  * so_q0 or so_q, these sockets are dropped.
     84  *
     85  * If higher level protocols are implemented in
     86  * the kernel, the wakeups done here will sometimes
     87  * cause software-interrupt process scheduling.
     88  */
     89 
     90 void
     91 soisconnecting(so)
     92 	register struct socket *so;
     93 {
     94 
     95 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
     96 	so->so_state |= SS_ISCONNECTING;
     97 }
     98 
     99 void
    100 soisconnected(so)
    101 	register struct socket *so;
    102 {
    103 	register struct socket *head = so->so_head;
    104 
    105 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
    106 	so->so_state |= SS_ISCONNECTED;
    107 	if (head && soqremque(so, 0)) {
    108 		soqinsque(head, so, 1);
    109 		sorwakeup(head);
    110 		wakeup((caddr_t)&head->so_timeo);
    111 	} else {
    112 		wakeup((caddr_t)&so->so_timeo);
    113 		sorwakeup(so);
    114 		sowwakeup(so);
    115 	}
    116 }
    117 
    118 void
    119 soisdisconnecting(so)
    120 	register struct socket *so;
    121 {
    122 
    123 	so->so_state &= ~SS_ISCONNECTING;
    124 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
    125 	wakeup((caddr_t)&so->so_timeo);
    126 	sowwakeup(so);
    127 	sorwakeup(so);
    128 }
    129 
    130 void
    131 soisdisconnected(so)
    132 	register struct socket *so;
    133 {
    134 
    135 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
    136 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
    137 	wakeup((caddr_t)&so->so_timeo);
    138 	sowwakeup(so);
    139 	sorwakeup(so);
    140 }
    141 
    142 /*
    143  * When an attempt at a new connection is noted on a socket
    144  * which accepts connections, sonewconn is called.  If the
    145  * connection is possible (subject to space constraints, etc.)
    146  * then we allocate a new structure, propoerly linked into the
    147  * data structure of the original socket, and return this.
    148  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
    149  *
    150  * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
    151  * to catch calls that are missing the (new) second parameter.
    152  */
    153 struct socket *
    154 sonewconn1(head, connstatus)
    155 	register struct socket *head;
    156 	int connstatus;
    157 {
    158 	register struct socket *so;
    159 	int soqueue = connstatus ? 1 : 0;
    160 
    161 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
    162 		return ((struct socket *)0);
    163 	MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT);
    164 	if (so == NULL)
    165 		return ((struct socket *)0);
    166 	bzero((caddr_t)so, sizeof(*so));
    167 	so->so_type = head->so_type;
    168 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
    169 	so->so_linger = head->so_linger;
    170 	so->so_state = head->so_state | SS_NOFDREF;
    171 	so->so_proto = head->so_proto;
    172 	so->so_timeo = head->so_timeo;
    173 	so->so_pgid = head->so_pgid;
    174 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
    175 	soqinsque(head, so, soqueue);
    176 	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
    177 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0)) {
    178 		(void) soqremque(so, soqueue);
    179 		(void) free((caddr_t)so, M_SOCKET);
    180 		return ((struct socket *)0);
    181 	}
    182 	if (connstatus) {
    183 		sorwakeup(head);
    184 		wakeup((caddr_t)&head->so_timeo);
    185 		so->so_state |= connstatus;
    186 	}
    187 	return (so);
    188 }
    189 
    190 void
    191 soqinsque(head, so, q)
    192 	register struct socket *head, *so;
    193 	int q;
    194 {
    195 
    196 	register struct socket **prev;
    197 	so->so_head = head;
    198 	if (q == 0) {
    199 		head->so_q0len++;
    200 		so->so_q0 = 0;
    201 		for (prev = &(head->so_q0); *prev; )
    202 			prev = &((*prev)->so_q0);
    203 	} else {
    204 		head->so_qlen++;
    205 		so->so_q = 0;
    206 		for (prev = &(head->so_q); *prev; )
    207 			prev = &((*prev)->so_q);
    208 	}
    209 	*prev = so;
    210 }
    211 
    212 int
    213 soqremque(so, q)
    214 	register struct socket *so;
    215 	int q;
    216 {
    217 	register struct socket *head, *prev, *next;
    218 
    219 	head = so->so_head;
    220 	prev = head;
    221 	for (;;) {
    222 		next = q ? prev->so_q : prev->so_q0;
    223 		if (next == so)
    224 			break;
    225 		if (next == 0)
    226 			return (0);
    227 		prev = next;
    228 	}
    229 	if (q == 0) {
    230 		prev->so_q0 = next->so_q0;
    231 		head->so_q0len--;
    232 	} else {
    233 		prev->so_q = next->so_q;
    234 		head->so_qlen--;
    235 	}
    236 	next->so_q0 = next->so_q = 0;
    237 	next->so_head = 0;
    238 	return (1);
    239 }
    240 
    241 /*
    242  * Socantsendmore indicates that no more data will be sent on the
    243  * socket; it would normally be applied to a socket when the user
    244  * informs the system that no more data is to be sent, by the protocol
    245  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
    246  * will be received, and will normally be applied to the socket by a
    247  * protocol when it detects that the peer will send no more data.
    248  * Data queued for reading in the socket may yet be read.
    249  */
    250 
    251 void
    252 socantsendmore(so)
    253 	struct socket *so;
    254 {
    255 
    256 	so->so_state |= SS_CANTSENDMORE;
    257 	sowwakeup(so);
    258 }
    259 
    260 void
    261 socantrcvmore(so)
    262 	struct socket *so;
    263 {
    264 
    265 	so->so_state |= SS_CANTRCVMORE;
    266 	sorwakeup(so);
    267 }
    268 
    269 /*
    270  * Wait for data to arrive at/drain from a socket buffer.
    271  */
    272 int
    273 sbwait(sb)
    274 	struct sockbuf *sb;
    275 {
    276 
    277 	sb->sb_flags |= SB_WAIT;
    278 	return (tsleep((caddr_t)&sb->sb_cc,
    279 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
    280 	    sb->sb_timeo));
    281 }
    282 
    283 /*
    284  * Lock a sockbuf already known to be locked;
    285  * return any error returned from sleep (EINTR).
    286  */
    287 int
    288 sb_lock(sb)
    289 	register struct sockbuf *sb;
    290 {
    291 	int error;
    292 
    293 	while (sb->sb_flags & SB_LOCK) {
    294 		sb->sb_flags |= SB_WANT;
    295 		if (error = tsleep((caddr_t)&sb->sb_flags,
    296 		    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
    297 		    netio, 0))
    298 			return (error);
    299 	}
    300 	sb->sb_flags |= SB_LOCK;
    301 	return (0);
    302 }
    303 
    304 /*
    305  * Wakeup processes waiting on a socket buffer.
    306  * Do asynchronous notification via SIGIO
    307  * if the socket has the SS_ASYNC flag set.
    308  */
    309 void
    310 sowakeup(so, sb)
    311 	register struct socket *so;
    312 	register struct sockbuf *sb;
    313 {
    314 	struct proc *p;
    315 
    316 	selwakeup(&sb->sb_sel);
    317 	sb->sb_flags &= ~SB_SEL;
    318 	if (sb->sb_flags & SB_WAIT) {
    319 		sb->sb_flags &= ~SB_WAIT;
    320 		wakeup((caddr_t)&sb->sb_cc);
    321 	}
    322 	if (so->so_state & SS_ASYNC) {
    323 		if (so->so_pgid < 0)
    324 			gsignal(-so->so_pgid, SIGIO);
    325 		else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
    326 			psignal(p, SIGIO);
    327 	}
    328 }
    329 
    330 /*
    331  * Socket buffer (struct sockbuf) utility routines.
    332  *
    333  * Each socket contains two socket buffers: one for sending data and
    334  * one for receiving data.  Each buffer contains a queue of mbufs,
    335  * information about the number of mbufs and amount of data in the
    336  * queue, and other fields allowing select() statements and notification
    337  * on data availability to be implemented.
    338  *
    339  * Data stored in a socket buffer is maintained as a list of records.
    340  * Each record is a list of mbufs chained together with the m_next
    341  * field.  Records are chained together with the m_nextpkt field. The upper
    342  * level routine soreceive() expects the following conventions to be
    343  * observed when placing information in the receive buffer:
    344  *
    345  * 1. If the protocol requires each message be preceded by the sender's
    346  *    name, then a record containing that name must be present before
    347  *    any associated data (mbuf's must be of type MT_SONAME).
    348  * 2. If the protocol supports the exchange of ``access rights'' (really
    349  *    just additional data associated with the message), and there are
    350  *    ``rights'' to be received, then a record containing this data
    351  *    should be present (mbuf's must be of type MT_RIGHTS).
    352  * 3. If a name or rights record exists, then it must be followed by
    353  *    a data record, perhaps of zero length.
    354  *
    355  * Before using a new socket structure it is first necessary to reserve
    356  * buffer space to the socket, by calling sbreserve().  This should commit
    357  * some of the available buffer space in the system buffer pool for the
    358  * socket (currently, it does nothing but enforce limits).  The space
    359  * should be released by calling sbrelease() when the socket is destroyed.
    360  */
    361 
    362 int
    363 soreserve(so, sndcc, rcvcc)
    364 	register struct socket *so;
    365 	u_long sndcc, rcvcc;
    366 {
    367 
    368 	if (sbreserve(&so->so_snd, sndcc) == 0)
    369 		goto bad;
    370 	if (sbreserve(&so->so_rcv, rcvcc) == 0)
    371 		goto bad2;
    372 	if (so->so_rcv.sb_lowat == 0)
    373 		so->so_rcv.sb_lowat = 1;
    374 	if (so->so_snd.sb_lowat == 0)
    375 		so->so_snd.sb_lowat = MCLBYTES;
    376 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
    377 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
    378 	return (0);
    379 bad2:
    380 	sbrelease(&so->so_snd);
    381 bad:
    382 	return (ENOBUFS);
    383 }
    384 
    385 /*
    386  * Allot mbufs to a sockbuf.
    387  * Attempt to scale mbmax so that mbcnt doesn't become limiting
    388  * if buffering efficiency is near the normal case.
    389  */
    390 int
    391 sbreserve(sb, cc)
    392 	struct sockbuf *sb;
    393 	u_long cc;
    394 {
    395 
    396 	if (cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES))
    397 		return (0);
    398 	sb->sb_hiwat = cc;
    399 	sb->sb_mbmax = min(cc * 2, sb_max);
    400 	if (sb->sb_lowat > sb->sb_hiwat)
    401 		sb->sb_lowat = sb->sb_hiwat;
    402 	return (1);
    403 }
    404 
    405 /*
    406  * Free mbufs held by a socket, and reserved mbuf space.
    407  */
    408 void
    409 sbrelease(sb)
    410 	struct sockbuf *sb;
    411 {
    412 
    413 	sbflush(sb);
    414 	sb->sb_hiwat = sb->sb_mbmax = 0;
    415 }
    416 
    417 /*
    418  * Routines to add and remove
    419  * data from an mbuf queue.
    420  *
    421  * The routines sbappend() or sbappendrecord() are normally called to
    422  * append new mbufs to a socket buffer, after checking that adequate
    423  * space is available, comparing the function sbspace() with the amount
    424  * of data to be added.  sbappendrecord() differs from sbappend() in
    425  * that data supplied is treated as the beginning of a new record.
    426  * To place a sender's address, optional access rights, and data in a
    427  * socket receive buffer, sbappendaddr() should be used.  To place
    428  * access rights and data in a socket receive buffer, sbappendrights()
    429  * should be used.  In either case, the new data begins a new record.
    430  * Note that unlike sbappend() and sbappendrecord(), these routines check
    431  * for the caller that there will be enough space to store the data.
    432  * Each fails if there is not enough space, or if it cannot find mbufs
    433  * to store additional information in.
    434  *
    435  * Reliable protocols may use the socket send buffer to hold data
    436  * awaiting acknowledgement.  Data is normally copied from a socket
    437  * send buffer in a protocol with m_copy for output to a peer,
    438  * and then removing the data from the socket buffer with sbdrop()
    439  * or sbdroprecord() when the data is acknowledged by the peer.
    440  */
    441 
    442 /*
    443  * Append mbuf chain m to the last record in the
    444  * socket buffer sb.  The additional space associated
    445  * the mbuf chain is recorded in sb.  Empty mbufs are
    446  * discarded and mbufs are compacted where possible.
    447  */
    448 void
    449 sbappend(sb, m)
    450 	struct sockbuf *sb;
    451 	struct mbuf *m;
    452 {
    453 	register struct mbuf *n;
    454 
    455 	if (m == 0)
    456 		return;
    457 	if (n = sb->sb_mb) {
    458 		while (n->m_nextpkt)
    459 			n = n->m_nextpkt;
    460 		do {
    461 			if (n->m_flags & M_EOR) {
    462 				sbappendrecord(sb, m); /* XXXXXX!!!! */
    463 				return;
    464 			}
    465 		} while (n->m_next && (n = n->m_next));
    466 	}
    467 	sbcompress(sb, m, n);
    468 }
    469 
    470 #ifdef SOCKBUF_DEBUG
    471 void
    472 sbcheck(sb)
    473 	register struct sockbuf *sb;
    474 {
    475 	register struct mbuf *m;
    476 	register int len = 0, mbcnt = 0;
    477 
    478 	for (m = sb->sb_mb; m; m = m->m_next) {
    479 		len += m->m_len;
    480 		mbcnt += MSIZE;
    481 		if (m->m_flags & M_EXT)
    482 			mbcnt += m->m_ext.ext_size;
    483 		if (m->m_nextpkt)
    484 			panic("sbcheck nextpkt");
    485 	}
    486 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
    487 		printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
    488 		    mbcnt, sb->sb_mbcnt);
    489 		panic("sbcheck");
    490 	}
    491 }
    492 #endif
    493 
    494 /*
    495  * As above, except the mbuf chain
    496  * begins a new record.
    497  */
    498 void
    499 sbappendrecord(sb, m0)
    500 	register struct sockbuf *sb;
    501 	register struct mbuf *m0;
    502 {
    503 	register struct mbuf *m;
    504 
    505 	if (m0 == 0)
    506 		return;
    507 	if (m = sb->sb_mb)
    508 		while (m->m_nextpkt)
    509 			m = m->m_nextpkt;
    510 	/*
    511 	 * Put the first mbuf on the queue.
    512 	 * Note this permits zero length records.
    513 	 */
    514 	sballoc(sb, m0);
    515 	if (m)
    516 		m->m_nextpkt = m0;
    517 	else
    518 		sb->sb_mb = m0;
    519 	m = m0->m_next;
    520 	m0->m_next = 0;
    521 	if (m && (m0->m_flags & M_EOR)) {
    522 		m0->m_flags &= ~M_EOR;
    523 		m->m_flags |= M_EOR;
    524 	}
    525 	sbcompress(sb, m, m0);
    526 }
    527 
    528 /*
    529  * As above except that OOB data
    530  * is inserted at the beginning of the sockbuf,
    531  * but after any other OOB data.
    532  */
    533 void
    534 sbinsertoob(sb, m0)
    535 	register struct sockbuf *sb;
    536 	register struct mbuf *m0;
    537 {
    538 	register struct mbuf *m;
    539 	register struct mbuf **mp;
    540 
    541 	if (m0 == 0)
    542 		return;
    543 	for (mp = &sb->sb_mb; m = *mp; mp = &((*mp)->m_nextpkt)) {
    544 	    again:
    545 		switch (m->m_type) {
    546 
    547 		case MT_OOBDATA:
    548 			continue;		/* WANT next train */
    549 
    550 		case MT_CONTROL:
    551 			if (m = m->m_next)
    552 				goto again;	/* inspect THIS train further */
    553 		}
    554 		break;
    555 	}
    556 	/*
    557 	 * Put the first mbuf on the queue.
    558 	 * Note this permits zero length records.
    559 	 */
    560 	sballoc(sb, m0);
    561 	m0->m_nextpkt = *mp;
    562 	*mp = m0;
    563 	m = m0->m_next;
    564 	m0->m_next = 0;
    565 	if (m && (m0->m_flags & M_EOR)) {
    566 		m0->m_flags &= ~M_EOR;
    567 		m->m_flags |= M_EOR;
    568 	}
    569 	sbcompress(sb, m, m0);
    570 }
    571 
    572 /*
    573  * Append address and data, and optionally, control (ancillary) data
    574  * to the receive queue of a socket.  If present,
    575  * m0 must include a packet header with total length.
    576  * Returns 0 if no space in sockbuf or insufficient mbufs.
    577  */
    578 int
    579 sbappendaddr(sb, asa, m0, control)
    580 	register struct sockbuf *sb;
    581 	struct sockaddr *asa;
    582 	struct mbuf *m0, *control;
    583 {
    584 	register struct mbuf *m, *n;
    585 	int space = asa->sa_len;
    586 
    587 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
    588 panic("sbappendaddr");
    589 	if (m0)
    590 		space += m0->m_pkthdr.len;
    591 	for (n = control; n; n = n->m_next) {
    592 		space += n->m_len;
    593 		if (n->m_next == 0)	/* keep pointer to last control buf */
    594 			break;
    595 	}
    596 	if (space > sbspace(sb))
    597 		return (0);
    598 	if (asa->sa_len > MLEN)
    599 		return (0);
    600 	MGET(m, M_DONTWAIT, MT_SONAME);
    601 	if (m == 0)
    602 		return (0);
    603 	m->m_len = asa->sa_len;
    604 	bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
    605 	if (n)
    606 		n->m_next = m0;		/* concatenate data to control */
    607 	else
    608 		control = m0;
    609 	m->m_next = control;
    610 	for (n = m; n; n = n->m_next)
    611 		sballoc(sb, n);
    612 	if (n = sb->sb_mb) {
    613 		while (n->m_nextpkt)
    614 			n = n->m_nextpkt;
    615 		n->m_nextpkt = m;
    616 	} else
    617 		sb->sb_mb = m;
    618 	return (1);
    619 }
    620 
    621 int
    622 sbappendcontrol(sb, m0, control)
    623 	struct sockbuf *sb;
    624 	struct mbuf *m0, *control;
    625 {
    626 	register struct mbuf *m, *n;
    627 	int space = 0;
    628 
    629 	if (control == 0)
    630 		panic("sbappendcontrol");
    631 	for (m = control; ; m = m->m_next) {
    632 		space += m->m_len;
    633 		if (m->m_next == 0)
    634 			break;
    635 	}
    636 	n = m;			/* save pointer to last control buffer */
    637 	for (m = m0; m; m = m->m_next)
    638 		space += m->m_len;
    639 	if (space > sbspace(sb))
    640 		return (0);
    641 	n->m_next = m0;			/* concatenate data to control */
    642 	for (m = control; m; m = m->m_next)
    643 		sballoc(sb, m);
    644 	if (n = sb->sb_mb) {
    645 		while (n->m_nextpkt)
    646 			n = n->m_nextpkt;
    647 		n->m_nextpkt = control;
    648 	} else
    649 		sb->sb_mb = control;
    650 	return (1);
    651 }
    652 
    653 /*
    654  * Compress mbuf chain m into the socket
    655  * buffer sb following mbuf n.  If n
    656  * is null, the buffer is presumed empty.
    657  */
    658 void
    659 sbcompress(sb, m, n)
    660 	register struct sockbuf *sb;
    661 	register struct mbuf *m, *n;
    662 {
    663 	register int eor = 0;
    664 	register struct mbuf *o;
    665 
    666 	while (m) {
    667 		eor |= m->m_flags & M_EOR;
    668 		if (m->m_len == 0 &&
    669 		    (eor == 0 ||
    670 		     (((o = m->m_next) || (o = n)) &&
    671 		      o->m_type == m->m_type))) {
    672 			m = m_free(m);
    673 			continue;
    674 		}
    675 		if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
    676 		    (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
    677 		    n->m_type == m->m_type) {
    678 			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
    679 			    (unsigned)m->m_len);
    680 			n->m_len += m->m_len;
    681 			sb->sb_cc += m->m_len;
    682 			m = m_free(m);
    683 			continue;
    684 		}
    685 		if (n)
    686 			n->m_next = m;
    687 		else
    688 			sb->sb_mb = m;
    689 		sballoc(sb, m);
    690 		n = m;
    691 		m->m_flags &= ~M_EOR;
    692 		m = m->m_next;
    693 		n->m_next = 0;
    694 	}
    695 	if (eor) {
    696 		if (n)
    697 			n->m_flags |= eor;
    698 		else
    699 			printf("semi-panic: sbcompress\n");
    700 	}
    701 }
    702 
    703 /*
    704  * Free all mbufs in a sockbuf.
    705  * Check that all resources are reclaimed.
    706  */
    707 void
    708 sbflush(sb)
    709 	register struct sockbuf *sb;
    710 {
    711 
    712 	if (sb->sb_flags & SB_LOCK)
    713 		panic("sbflush");
    714 	while (sb->sb_mbcnt)
    715 		sbdrop(sb, (int)sb->sb_cc);
    716 	if (sb->sb_cc || sb->sb_mb)
    717 		panic("sbflush 2");
    718 }
    719 
    720 /*
    721  * Drop data from (the front of) a sockbuf.
    722  */
    723 void
    724 sbdrop(sb, len)
    725 	register struct sockbuf *sb;
    726 	register int len;
    727 {
    728 	register struct mbuf *m, *mn;
    729 	struct mbuf *next;
    730 
    731 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
    732 	while (len > 0) {
    733 		if (m == 0) {
    734 			if (next == 0)
    735 				panic("sbdrop");
    736 			m = next;
    737 			next = m->m_nextpkt;
    738 			continue;
    739 		}
    740 		if (m->m_len > len) {
    741 			m->m_len -= len;
    742 			m->m_data += len;
    743 			sb->sb_cc -= len;
    744 			break;
    745 		}
    746 		len -= m->m_len;
    747 		sbfree(sb, m);
    748 		MFREE(m, mn);
    749 		m = mn;
    750 	}
    751 	while (m && m->m_len == 0) {
    752 		sbfree(sb, m);
    753 		MFREE(m, mn);
    754 		m = mn;
    755 	}
    756 	if (m) {
    757 		sb->sb_mb = m;
    758 		m->m_nextpkt = next;
    759 	} else
    760 		sb->sb_mb = next;
    761 }
    762 
    763 /*
    764  * Drop a record off the front of a sockbuf
    765  * and move the next record to the front.
    766  */
    767 void
    768 sbdroprecord(sb)
    769 	register struct sockbuf *sb;
    770 {
    771 	register struct mbuf *m, *mn;
    772 
    773 	m = sb->sb_mb;
    774 	if (m) {
    775 		sb->sb_mb = m->m_nextpkt;
    776 		do {
    777 			sbfree(sb, m);
    778 			MFREE(m, mn);
    779 		} while (m = mn);
    780 	}
    781 }
    782