uipc_socket2.c revision 1.8 1 /*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * from: @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93
34 * $Id: uipc_socket2.c,v 1.8 1994/05/13 06:01:40 mycroft Exp $
35 */
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/proc.h>
40 #include <sys/file.h>
41 #include <sys/buf.h>
42 #include <sys/malloc.h>
43 #include <sys/mbuf.h>
44 #include <sys/protosw.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47
48 /*
49 * Primitive routines for operating on sockets and socket buffers
50 */
51
52 /* strings for sleep message: */
53 char netio[] = "netio";
54 char netcon[] = "netcon";
55 char netcls[] = "netcls";
56
57 u_long sb_max = SB_MAX; /* patchable */
58
59 /*
60 * Procedures to manipulate state flags of socket
61 * and do appropriate wakeups. Normal sequence from the
62 * active (originating) side is that soisconnecting() is
63 * called during processing of connect() call,
64 * resulting in an eventual call to soisconnected() if/when the
65 * connection is established. When the connection is torn down
66 * soisdisconnecting() is called during processing of disconnect() call,
67 * and soisdisconnected() is called when the connection to the peer
68 * is totally severed. The semantics of these routines are such that
69 * connectionless protocols can call soisconnected() and soisdisconnected()
70 * only, bypassing the in-progress calls when setting up a ``connection''
71 * takes no time.
72 *
73 * From the passive side, a socket is created with
74 * two queues of sockets: so_q0 for connections in progress
75 * and so_q for connections already made and awaiting user acceptance.
76 * As a protocol is preparing incoming connections, it creates a socket
77 * structure queued on so_q0 by calling sonewconn(). When the connection
78 * is established, soisconnected() is called, and transfers the
79 * socket structure to so_q, making it available to accept().
80 *
81 * If a socket is closed with sockets on either
82 * so_q0 or so_q, these sockets are dropped.
83 *
84 * If higher level protocols are implemented in
85 * the kernel, the wakeups done here will sometimes
86 * cause software-interrupt process scheduling.
87 */
88
89 void
90 soisconnecting(so)
91 register struct socket *so;
92 {
93
94 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
95 so->so_state |= SS_ISCONNECTING;
96 }
97
98 void
99 soisconnected(so)
100 register struct socket *so;
101 {
102 register struct socket *head = so->so_head;
103
104 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
105 so->so_state |= SS_ISCONNECTED;
106 if (head && soqremque(so, 0)) {
107 soqinsque(head, so, 1);
108 sorwakeup(head);
109 wakeup((caddr_t)&head->so_timeo);
110 } else {
111 wakeup((caddr_t)&so->so_timeo);
112 sorwakeup(so);
113 sowwakeup(so);
114 }
115 }
116
117 void
118 soisdisconnecting(so)
119 register struct socket *so;
120 {
121
122 so->so_state &= ~SS_ISCONNECTING;
123 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
124 wakeup((caddr_t)&so->so_timeo);
125 sowwakeup(so);
126 sorwakeup(so);
127 }
128
129 void
130 soisdisconnected(so)
131 register struct socket *so;
132 {
133
134 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
135 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
136 wakeup((caddr_t)&so->so_timeo);
137 sowwakeup(so);
138 sorwakeup(so);
139 }
140
141 /*
142 * When an attempt at a new connection is noted on a socket
143 * which accepts connections, sonewconn is called. If the
144 * connection is possible (subject to space constraints, etc.)
145 * then we allocate a new structure, propoerly linked into the
146 * data structure of the original socket, and return this.
147 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
148 *
149 * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
150 * to catch calls that are missing the (new) second parameter.
151 */
152 struct socket *
153 sonewconn1(head, connstatus)
154 register struct socket *head;
155 int connstatus;
156 {
157 register struct socket *so;
158 int soqueue = connstatus ? 1 : 0;
159
160 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
161 return ((struct socket *)0);
162 MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT);
163 if (so == NULL)
164 return ((struct socket *)0);
165 bzero((caddr_t)so, sizeof(*so));
166 so->so_type = head->so_type;
167 so->so_options = head->so_options &~ SO_ACCEPTCONN;
168 so->so_linger = head->so_linger;
169 so->so_state = head->so_state | SS_NOFDREF;
170 so->so_proto = head->so_proto;
171 so->so_timeo = head->so_timeo;
172 so->so_pgid = head->so_pgid;
173 (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
174 soqinsque(head, so, soqueue);
175 if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
176 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0)) {
177 (void) soqremque(so, soqueue);
178 (void) free((caddr_t)so, M_SOCKET);
179 return ((struct socket *)0);
180 }
181 if (connstatus) {
182 sorwakeup(head);
183 wakeup((caddr_t)&head->so_timeo);
184 so->so_state |= connstatus;
185 }
186 return (so);
187 }
188
189 void
190 soqinsque(head, so, q)
191 register struct socket *head, *so;
192 int q;
193 {
194
195 register struct socket **prev;
196 so->so_head = head;
197 if (q == 0) {
198 head->so_q0len++;
199 so->so_q0 = 0;
200 for (prev = &(head->so_q0); *prev; )
201 prev = &((*prev)->so_q0);
202 } else {
203 head->so_qlen++;
204 so->so_q = 0;
205 for (prev = &(head->so_q); *prev; )
206 prev = &((*prev)->so_q);
207 }
208 *prev = so;
209 }
210
211 int
212 soqremque(so, q)
213 register struct socket *so;
214 int q;
215 {
216 register struct socket *head, *prev, *next;
217
218 head = so->so_head;
219 prev = head;
220 for (;;) {
221 next = q ? prev->so_q : prev->so_q0;
222 if (next == so)
223 break;
224 if (next == 0)
225 return (0);
226 prev = next;
227 }
228 if (q == 0) {
229 prev->so_q0 = next->so_q0;
230 head->so_q0len--;
231 } else {
232 prev->so_q = next->so_q;
233 head->so_qlen--;
234 }
235 next->so_q0 = next->so_q = 0;
236 next->so_head = 0;
237 return (1);
238 }
239
240 /*
241 * Socantsendmore indicates that no more data will be sent on the
242 * socket; it would normally be applied to a socket when the user
243 * informs the system that no more data is to be sent, by the protocol
244 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
245 * will be received, and will normally be applied to the socket by a
246 * protocol when it detects that the peer will send no more data.
247 * Data queued for reading in the socket may yet be read.
248 */
249
250 void
251 socantsendmore(so)
252 struct socket *so;
253 {
254
255 so->so_state |= SS_CANTSENDMORE;
256 sowwakeup(so);
257 }
258
259 void
260 socantrcvmore(so)
261 struct socket *so;
262 {
263
264 so->so_state |= SS_CANTRCVMORE;
265 sorwakeup(so);
266 }
267
268 /*
269 * Wait for data to arrive at/drain from a socket buffer.
270 */
271 int
272 sbwait(sb)
273 struct sockbuf *sb;
274 {
275
276 sb->sb_flags |= SB_WAIT;
277 return (tsleep((caddr_t)&sb->sb_cc,
278 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
279 sb->sb_timeo));
280 }
281
282 /*
283 * Lock a sockbuf already known to be locked;
284 * return any error returned from sleep (EINTR).
285 */
286 int
287 sb_lock(sb)
288 register struct sockbuf *sb;
289 {
290 int error;
291
292 while (sb->sb_flags & SB_LOCK) {
293 sb->sb_flags |= SB_WANT;
294 if (error = tsleep((caddr_t)&sb->sb_flags,
295 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
296 netio, 0))
297 return (error);
298 }
299 sb->sb_flags |= SB_LOCK;
300 return (0);
301 }
302
303 /*
304 * Wakeup processes waiting on a socket buffer.
305 * Do asynchronous notification via SIGIO
306 * if the socket has the SS_ASYNC flag set.
307 */
308 void
309 sowakeup(so, sb)
310 register struct socket *so;
311 register struct sockbuf *sb;
312 {
313 struct proc *p;
314
315 selwakeup(&sb->sb_sel);
316 sb->sb_flags &= ~SB_SEL;
317 if (sb->sb_flags & SB_WAIT) {
318 sb->sb_flags &= ~SB_WAIT;
319 wakeup((caddr_t)&sb->sb_cc);
320 }
321 if (so->so_state & SS_ASYNC) {
322 if (so->so_pgid < 0)
323 gsignal(-so->so_pgid, SIGIO);
324 else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
325 psignal(p, SIGIO);
326 }
327 }
328
329 /*
330 * Socket buffer (struct sockbuf) utility routines.
331 *
332 * Each socket contains two socket buffers: one for sending data and
333 * one for receiving data. Each buffer contains a queue of mbufs,
334 * information about the number of mbufs and amount of data in the
335 * queue, and other fields allowing select() statements and notification
336 * on data availability to be implemented.
337 *
338 * Data stored in a socket buffer is maintained as a list of records.
339 * Each record is a list of mbufs chained together with the m_next
340 * field. Records are chained together with the m_nextpkt field. The upper
341 * level routine soreceive() expects the following conventions to be
342 * observed when placing information in the receive buffer:
343 *
344 * 1. If the protocol requires each message be preceded by the sender's
345 * name, then a record containing that name must be present before
346 * any associated data (mbuf's must be of type MT_SONAME).
347 * 2. If the protocol supports the exchange of ``access rights'' (really
348 * just additional data associated with the message), and there are
349 * ``rights'' to be received, then a record containing this data
350 * should be present (mbuf's must be of type MT_RIGHTS).
351 * 3. If a name or rights record exists, then it must be followed by
352 * a data record, perhaps of zero length.
353 *
354 * Before using a new socket structure it is first necessary to reserve
355 * buffer space to the socket, by calling sbreserve(). This should commit
356 * some of the available buffer space in the system buffer pool for the
357 * socket (currently, it does nothing but enforce limits). The space
358 * should be released by calling sbrelease() when the socket is destroyed.
359 */
360
361 int
362 soreserve(so, sndcc, rcvcc)
363 register struct socket *so;
364 u_long sndcc, rcvcc;
365 {
366
367 if (sbreserve(&so->so_snd, sndcc) == 0)
368 goto bad;
369 if (sbreserve(&so->so_rcv, rcvcc) == 0)
370 goto bad2;
371 if (so->so_rcv.sb_lowat == 0)
372 so->so_rcv.sb_lowat = 1;
373 if (so->so_snd.sb_lowat == 0)
374 so->so_snd.sb_lowat = MCLBYTES;
375 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
376 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
377 return (0);
378 bad2:
379 sbrelease(&so->so_snd);
380 bad:
381 return (ENOBUFS);
382 }
383
384 /*
385 * Allot mbufs to a sockbuf.
386 * Attempt to scale mbmax so that mbcnt doesn't become limiting
387 * if buffering efficiency is near the normal case.
388 */
389 int
390 sbreserve(sb, cc)
391 struct sockbuf *sb;
392 u_long cc;
393 {
394
395 if (cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES))
396 return (0);
397 sb->sb_hiwat = cc;
398 sb->sb_mbmax = min(cc * 2, sb_max);
399 if (sb->sb_lowat > sb->sb_hiwat)
400 sb->sb_lowat = sb->sb_hiwat;
401 return (1);
402 }
403
404 /*
405 * Free mbufs held by a socket, and reserved mbuf space.
406 */
407 void
408 sbrelease(sb)
409 struct sockbuf *sb;
410 {
411
412 sbflush(sb);
413 sb->sb_hiwat = sb->sb_mbmax = 0;
414 }
415
416 /*
417 * Routines to add and remove
418 * data from an mbuf queue.
419 *
420 * The routines sbappend() or sbappendrecord() are normally called to
421 * append new mbufs to a socket buffer, after checking that adequate
422 * space is available, comparing the function sbspace() with the amount
423 * of data to be added. sbappendrecord() differs from sbappend() in
424 * that data supplied is treated as the beginning of a new record.
425 * To place a sender's address, optional access rights, and data in a
426 * socket receive buffer, sbappendaddr() should be used. To place
427 * access rights and data in a socket receive buffer, sbappendrights()
428 * should be used. In either case, the new data begins a new record.
429 * Note that unlike sbappend() and sbappendrecord(), these routines check
430 * for the caller that there will be enough space to store the data.
431 * Each fails if there is not enough space, or if it cannot find mbufs
432 * to store additional information in.
433 *
434 * Reliable protocols may use the socket send buffer to hold data
435 * awaiting acknowledgement. Data is normally copied from a socket
436 * send buffer in a protocol with m_copy for output to a peer,
437 * and then removing the data from the socket buffer with sbdrop()
438 * or sbdroprecord() when the data is acknowledged by the peer.
439 */
440
441 /*
442 * Append mbuf chain m to the last record in the
443 * socket buffer sb. The additional space associated
444 * the mbuf chain is recorded in sb. Empty mbufs are
445 * discarded and mbufs are compacted where possible.
446 */
447 void
448 sbappend(sb, m)
449 struct sockbuf *sb;
450 struct mbuf *m;
451 {
452 register struct mbuf *n;
453
454 if (m == 0)
455 return;
456 if (n = sb->sb_mb) {
457 while (n->m_nextpkt)
458 n = n->m_nextpkt;
459 do {
460 if (n->m_flags & M_EOR) {
461 sbappendrecord(sb, m); /* XXXXXX!!!! */
462 return;
463 }
464 } while (n->m_next && (n = n->m_next));
465 }
466 sbcompress(sb, m, n);
467 }
468
469 #ifdef SOCKBUF_DEBUG
470 void
471 sbcheck(sb)
472 register struct sockbuf *sb;
473 {
474 register struct mbuf *m;
475 register int len = 0, mbcnt = 0;
476
477 for (m = sb->sb_mb; m; m = m->m_next) {
478 len += m->m_len;
479 mbcnt += MSIZE;
480 if (m->m_flags & M_EXT)
481 mbcnt += m->m_ext.ext_size;
482 if (m->m_nextpkt)
483 panic("sbcheck nextpkt");
484 }
485 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
486 printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
487 mbcnt, sb->sb_mbcnt);
488 panic("sbcheck");
489 }
490 }
491 #endif
492
493 /*
494 * As above, except the mbuf chain
495 * begins a new record.
496 */
497 void
498 sbappendrecord(sb, m0)
499 register struct sockbuf *sb;
500 register struct mbuf *m0;
501 {
502 register struct mbuf *m;
503
504 if (m0 == 0)
505 return;
506 if (m = sb->sb_mb)
507 while (m->m_nextpkt)
508 m = m->m_nextpkt;
509 /*
510 * Put the first mbuf on the queue.
511 * Note this permits zero length records.
512 */
513 sballoc(sb, m0);
514 if (m)
515 m->m_nextpkt = m0;
516 else
517 sb->sb_mb = m0;
518 m = m0->m_next;
519 m0->m_next = 0;
520 if (m && (m0->m_flags & M_EOR)) {
521 m0->m_flags &= ~M_EOR;
522 m->m_flags |= M_EOR;
523 }
524 sbcompress(sb, m, m0);
525 }
526
527 /*
528 * As above except that OOB data
529 * is inserted at the beginning of the sockbuf,
530 * but after any other OOB data.
531 */
532 void
533 sbinsertoob(sb, m0)
534 register struct sockbuf *sb;
535 register struct mbuf *m0;
536 {
537 register struct mbuf *m;
538 register struct mbuf **mp;
539
540 if (m0 == 0)
541 return;
542 for (mp = &sb->sb_mb; m = *mp; mp = &((*mp)->m_nextpkt)) {
543 again:
544 switch (m->m_type) {
545
546 case MT_OOBDATA:
547 continue; /* WANT next train */
548
549 case MT_CONTROL:
550 if (m = m->m_next)
551 goto again; /* inspect THIS train further */
552 }
553 break;
554 }
555 /*
556 * Put the first mbuf on the queue.
557 * Note this permits zero length records.
558 */
559 sballoc(sb, m0);
560 m0->m_nextpkt = *mp;
561 *mp = m0;
562 m = m0->m_next;
563 m0->m_next = 0;
564 if (m && (m0->m_flags & M_EOR)) {
565 m0->m_flags &= ~M_EOR;
566 m->m_flags |= M_EOR;
567 }
568 sbcompress(sb, m, m0);
569 }
570
571 /*
572 * Append address and data, and optionally, control (ancillary) data
573 * to the receive queue of a socket. If present,
574 * m0 must include a packet header with total length.
575 * Returns 0 if no space in sockbuf or insufficient mbufs.
576 */
577 int
578 sbappendaddr(sb, asa, m0, control)
579 register struct sockbuf *sb;
580 struct sockaddr *asa;
581 struct mbuf *m0, *control;
582 {
583 register struct mbuf *m, *n;
584 int space = asa->sa_len;
585
586 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
587 panic("sbappendaddr");
588 if (m0)
589 space += m0->m_pkthdr.len;
590 for (n = control; n; n = n->m_next) {
591 space += n->m_len;
592 if (n->m_next == 0) /* keep pointer to last control buf */
593 break;
594 }
595 if (space > sbspace(sb))
596 return (0);
597 if (asa->sa_len > MLEN)
598 return (0);
599 MGET(m, M_DONTWAIT, MT_SONAME);
600 if (m == 0)
601 return (0);
602 m->m_len = asa->sa_len;
603 bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
604 if (n)
605 n->m_next = m0; /* concatenate data to control */
606 else
607 control = m0;
608 m->m_next = control;
609 for (n = m; n; n = n->m_next)
610 sballoc(sb, n);
611 if (n = sb->sb_mb) {
612 while (n->m_nextpkt)
613 n = n->m_nextpkt;
614 n->m_nextpkt = m;
615 } else
616 sb->sb_mb = m;
617 return (1);
618 }
619
620 int
621 sbappendcontrol(sb, m0, control)
622 struct sockbuf *sb;
623 struct mbuf *m0, *control;
624 {
625 register struct mbuf *m, *n;
626 int space = 0;
627
628 if (control == 0)
629 panic("sbappendcontrol");
630 for (m = control; ; m = m->m_next) {
631 space += m->m_len;
632 if (m->m_next == 0)
633 break;
634 }
635 n = m; /* save pointer to last control buffer */
636 for (m = m0; m; m = m->m_next)
637 space += m->m_len;
638 if (space > sbspace(sb))
639 return (0);
640 n->m_next = m0; /* concatenate data to control */
641 for (m = control; m; m = m->m_next)
642 sballoc(sb, m);
643 if (n = sb->sb_mb) {
644 while (n->m_nextpkt)
645 n = n->m_nextpkt;
646 n->m_nextpkt = control;
647 } else
648 sb->sb_mb = control;
649 return (1);
650 }
651
652 /*
653 * Compress mbuf chain m into the socket
654 * buffer sb following mbuf n. If n
655 * is null, the buffer is presumed empty.
656 */
657 void
658 sbcompress(sb, m, n)
659 register struct sockbuf *sb;
660 register struct mbuf *m, *n;
661 {
662 register int eor = 0;
663 register struct mbuf *o;
664
665 while (m) {
666 eor |= m->m_flags & M_EOR;
667 if (m->m_len == 0 &&
668 (eor == 0 ||
669 (((o = m->m_next) || (o = n)) &&
670 o->m_type == m->m_type))) {
671 m = m_free(m);
672 continue;
673 }
674 if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
675 (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
676 n->m_type == m->m_type) {
677 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
678 (unsigned)m->m_len);
679 n->m_len += m->m_len;
680 sb->sb_cc += m->m_len;
681 m = m_free(m);
682 continue;
683 }
684 if (n)
685 n->m_next = m;
686 else
687 sb->sb_mb = m;
688 sballoc(sb, m);
689 n = m;
690 m->m_flags &= ~M_EOR;
691 m = m->m_next;
692 n->m_next = 0;
693 }
694 if (eor) {
695 if (n)
696 n->m_flags |= eor;
697 else
698 printf("semi-panic: sbcompress\n");
699 }
700 }
701
702 /*
703 * Free all mbufs in a sockbuf.
704 * Check that all resources are reclaimed.
705 */
706 void
707 sbflush(sb)
708 register struct sockbuf *sb;
709 {
710
711 if (sb->sb_flags & SB_LOCK)
712 panic("sbflush");
713 while (sb->sb_mbcnt)
714 sbdrop(sb, (int)sb->sb_cc);
715 if (sb->sb_cc || sb->sb_mb)
716 panic("sbflush 2");
717 }
718
719 /*
720 * Drop data from (the front of) a sockbuf.
721 */
722 void
723 sbdrop(sb, len)
724 register struct sockbuf *sb;
725 register int len;
726 {
727 register struct mbuf *m, *mn;
728 struct mbuf *next;
729
730 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
731 while (len > 0) {
732 if (m == 0) {
733 if (next == 0)
734 panic("sbdrop");
735 m = next;
736 next = m->m_nextpkt;
737 continue;
738 }
739 if (m->m_len > len) {
740 m->m_len -= len;
741 m->m_data += len;
742 sb->sb_cc -= len;
743 break;
744 }
745 len -= m->m_len;
746 sbfree(sb, m);
747 MFREE(m, mn);
748 m = mn;
749 }
750 while (m && m->m_len == 0) {
751 sbfree(sb, m);
752 MFREE(m, mn);
753 m = mn;
754 }
755 if (m) {
756 sb->sb_mb = m;
757 m->m_nextpkt = next;
758 } else
759 sb->sb_mb = next;
760 }
761
762 /*
763 * Drop a record off the front of a sockbuf
764 * and move the next record to the front.
765 */
766 void
767 sbdroprecord(sb)
768 register struct sockbuf *sb;
769 {
770 register struct mbuf *m, *mn;
771
772 m = sb->sb_mb;
773 if (m) {
774 sb->sb_mb = m->m_nextpkt;
775 do {
776 sbfree(sb, m);
777 MFREE(m, mn);
778 } while (m = mn);
779 }
780 }
781