Home | History | Annotate | Line # | Download | only in kern
uipc_socket2.c revision 1.83
      1 /*	$NetBSD: uipc_socket2.c,v 1.83 2007/07/04 07:13:13 tls Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.83 2007/07/04 07:13:13 tls Exp $");
     36 
     37 #include "opt_mbuftrace.h"
     38 #include "opt_sb_max.h"
     39 
     40 #include <sys/param.h>
     41 #include <sys/systm.h>
     42 #include <sys/proc.h>
     43 #include <sys/file.h>
     44 #include <sys/buf.h>
     45 #include <sys/malloc.h>
     46 #include <sys/mbuf.h>
     47 #include <sys/protosw.h>
     48 #include <sys/poll.h>
     49 #include <sys/socket.h>
     50 #include <sys/socketvar.h>
     51 #include <sys/signalvar.h>
     52 #include <sys/kauth.h>
     53 
     54 /*
     55  * Primitive routines for operating on sockets and socket buffers
     56  */
     57 
     58 /* strings for sleep message: */
     59 const char	netcon[] = "netcon";
     60 const char	netcls[] = "netcls";
     61 const char	netio[] = "netio";
     62 const char	netlck[] = "netlck";
     63 
     64 u_long	sb_max = SB_MAX;	/* maximum socket buffer size */
     65 static u_long sb_max_adj;	/* adjusted sb_max */
     66 
     67 /*
     68  * Procedures to manipulate state flags of socket
     69  * and do appropriate wakeups.  Normal sequence from the
     70  * active (originating) side is that soisconnecting() is
     71  * called during processing of connect() call,
     72  * resulting in an eventual call to soisconnected() if/when the
     73  * connection is established.  When the connection is torn down
     74  * soisdisconnecting() is called during processing of disconnect() call,
     75  * and soisdisconnected() is called when the connection to the peer
     76  * is totally severed.  The semantics of these routines are such that
     77  * connectionless protocols can call soisconnected() and soisdisconnected()
     78  * only, bypassing the in-progress calls when setting up a ``connection''
     79  * takes no time.
     80  *
     81  * From the passive side, a socket is created with
     82  * two queues of sockets: so_q0 for connections in progress
     83  * and so_q for connections already made and awaiting user acceptance.
     84  * As a protocol is preparing incoming connections, it creates a socket
     85  * structure queued on so_q0 by calling sonewconn().  When the connection
     86  * is established, soisconnected() is called, and transfers the
     87  * socket structure to so_q, making it available to accept().
     88  *
     89  * If a socket is closed with sockets on either
     90  * so_q0 or so_q, these sockets are dropped.
     91  *
     92  * If higher level protocols are implemented in
     93  * the kernel, the wakeups done here will sometimes
     94  * cause software-interrupt process scheduling.
     95  */
     96 
     97 void
     98 soisconnecting(struct socket *so)
     99 {
    100 
    101 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
    102 	so->so_state |= SS_ISCONNECTING;
    103 }
    104 
    105 void
    106 soisconnected(struct socket *so)
    107 {
    108 	struct socket	*head;
    109 
    110 	head = so->so_head;
    111 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
    112 	so->so_state |= SS_ISCONNECTED;
    113 	if (head && soqremque(so, 0)) {
    114 		soqinsque(head, so, 1);
    115 		sorwakeup(head);
    116 		wakeup((void *)&head->so_timeo);
    117 	} else {
    118 		wakeup((void *)&so->so_timeo);
    119 		sorwakeup(so);
    120 		sowwakeup(so);
    121 	}
    122 }
    123 
    124 void
    125 soisdisconnecting(struct socket *so)
    126 {
    127 
    128 	so->so_state &= ~SS_ISCONNECTING;
    129 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
    130 	wakeup((void *)&so->so_timeo);
    131 	sowwakeup(so);
    132 	sorwakeup(so);
    133 }
    134 
    135 void
    136 soisdisconnected(struct socket *so)
    137 {
    138 
    139 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
    140 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
    141 	wakeup((void *)&so->so_timeo);
    142 	sowwakeup(so);
    143 	sorwakeup(so);
    144 }
    145 
    146 /*
    147  * When an attempt at a new connection is noted on a socket
    148  * which accepts connections, sonewconn is called.  If the
    149  * connection is possible (subject to space constraints, etc.)
    150  * then we allocate a new structure, propoerly linked into the
    151  * data structure of the original socket, and return this.
    152  * Connstatus may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
    153  */
    154 struct socket *
    155 sonewconn(struct socket *head, int connstatus)
    156 {
    157 	struct socket	*so;
    158 	int		soqueue;
    159 
    160 	soqueue = connstatus ? 1 : 0;
    161 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
    162 		return ((struct socket *)0);
    163 	so = pool_get(&socket_pool, PR_NOWAIT);
    164 	if (so == NULL)
    165 		return (NULL);
    166 	memset((void *)so, 0, sizeof(*so));
    167 	so->so_type = head->so_type;
    168 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
    169 	so->so_linger = head->so_linger;
    170 	so->so_state = head->so_state | SS_NOFDREF;
    171 	so->so_proto = head->so_proto;
    172 	so->so_timeo = head->so_timeo;
    173 	so->so_pgid = head->so_pgid;
    174 	so->so_send = head->so_send;
    175 	so->so_receive = head->so_receive;
    176 	so->so_uidinfo = head->so_uidinfo;
    177 #ifdef MBUFTRACE
    178 	so->so_mowner = head->so_mowner;
    179 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
    180 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
    181 #endif
    182 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
    183 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
    184 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
    185 	soqinsque(head, so, soqueue);
    186 	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
    187 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
    188 	    (struct lwp *)0)) {
    189 		(void) soqremque(so, soqueue);
    190 		pool_put(&socket_pool, so);
    191 		return (NULL);
    192 	}
    193 	if (connstatus) {
    194 		sorwakeup(head);
    195 		wakeup((void *)&head->so_timeo);
    196 		so->so_state |= connstatus;
    197 	}
    198 	return (so);
    199 }
    200 
    201 void
    202 soqinsque(struct socket *head, struct socket *so, int q)
    203 {
    204 
    205 #ifdef DIAGNOSTIC
    206 	if (so->so_onq != NULL)
    207 		panic("soqinsque");
    208 #endif
    209 
    210 	so->so_head = head;
    211 	if (q == 0) {
    212 		head->so_q0len++;
    213 		so->so_onq = &head->so_q0;
    214 	} else {
    215 		head->so_qlen++;
    216 		so->so_onq = &head->so_q;
    217 	}
    218 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
    219 }
    220 
    221 int
    222 soqremque(struct socket *so, int q)
    223 {
    224 	struct socket	*head;
    225 
    226 	head = so->so_head;
    227 	if (q == 0) {
    228 		if (so->so_onq != &head->so_q0)
    229 			return (0);
    230 		head->so_q0len--;
    231 	} else {
    232 		if (so->so_onq != &head->so_q)
    233 			return (0);
    234 		head->so_qlen--;
    235 	}
    236 	TAILQ_REMOVE(so->so_onq, so, so_qe);
    237 	so->so_onq = NULL;
    238 	so->so_head = NULL;
    239 	return (1);
    240 }
    241 
    242 /*
    243  * Socantsendmore indicates that no more data will be sent on the
    244  * socket; it would normally be applied to a socket when the user
    245  * informs the system that no more data is to be sent, by the protocol
    246  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
    247  * will be received, and will normally be applied to the socket by a
    248  * protocol when it detects that the peer will send no more data.
    249  * Data queued for reading in the socket may yet be read.
    250  */
    251 
    252 void
    253 socantsendmore(struct socket *so)
    254 {
    255 
    256 	so->so_state |= SS_CANTSENDMORE;
    257 	sowwakeup(so);
    258 }
    259 
    260 void
    261 socantrcvmore(struct socket *so)
    262 {
    263 
    264 	so->so_state |= SS_CANTRCVMORE;
    265 	sorwakeup(so);
    266 }
    267 
    268 /*
    269  * Wait for data to arrive at/drain from a socket buffer.
    270  */
    271 int
    272 sbwait(struct sockbuf *sb)
    273 {
    274 
    275 	sb->sb_flags |= SB_WAIT;
    276 	return (tsleep((void *)&sb->sb_cc,
    277 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
    278 	    sb->sb_timeo));
    279 }
    280 
    281 /*
    282  * Lock a sockbuf already known to be locked;
    283  * return any error returned from sleep (EINTR).
    284  */
    285 int
    286 sb_lock(struct sockbuf *sb)
    287 {
    288 	int	error;
    289 
    290 	while (sb->sb_flags & SB_LOCK) {
    291 		sb->sb_flags |= SB_WANT;
    292 		error = tsleep((void *)&sb->sb_flags,
    293 		    (sb->sb_flags & SB_NOINTR) ?  PSOCK : PSOCK|PCATCH,
    294 		    netlck, 0);
    295 		if (error)
    296 			return (error);
    297 	}
    298 	sb->sb_flags |= SB_LOCK;
    299 	return (0);
    300 }
    301 
    302 /*
    303  * Wakeup processes waiting on a socket buffer.
    304  * Do asynchronous notification via SIGIO
    305  * if the socket buffer has the SB_ASYNC flag set.
    306  */
    307 void
    308 sowakeup(struct socket *so, struct sockbuf *sb, int code)
    309 {
    310 	selnotify(&sb->sb_sel, 0);
    311 	sb->sb_flags &= ~SB_SEL;
    312 	if (sb->sb_flags & SB_WAIT) {
    313 		sb->sb_flags &= ~SB_WAIT;
    314 		wakeup((void *)&sb->sb_cc);
    315 	}
    316 	if (sb->sb_flags & SB_ASYNC) {
    317 		int band;
    318 		if (code == POLL_IN)
    319 			band = POLLIN|POLLRDNORM;
    320 		else
    321 			band = POLLOUT|POLLWRNORM;
    322 		fownsignal(so->so_pgid, SIGIO, code, band, so);
    323 	}
    324 	if (sb->sb_flags & SB_UPCALL)
    325 		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
    326 }
    327 
    328 /*
    329  * Socket buffer (struct sockbuf) utility routines.
    330  *
    331  * Each socket contains two socket buffers: one for sending data and
    332  * one for receiving data.  Each buffer contains a queue of mbufs,
    333  * information about the number of mbufs and amount of data in the
    334  * queue, and other fields allowing poll() statements and notification
    335  * on data availability to be implemented.
    336  *
    337  * Data stored in a socket buffer is maintained as a list of records.
    338  * Each record is a list of mbufs chained together with the m_next
    339  * field.  Records are chained together with the m_nextpkt field. The upper
    340  * level routine soreceive() expects the following conventions to be
    341  * observed when placing information in the receive buffer:
    342  *
    343  * 1. If the protocol requires each message be preceded by the sender's
    344  *    name, then a record containing that name must be present before
    345  *    any associated data (mbuf's must be of type MT_SONAME).
    346  * 2. If the protocol supports the exchange of ``access rights'' (really
    347  *    just additional data associated with the message), and there are
    348  *    ``rights'' to be received, then a record containing this data
    349  *    should be present (mbuf's must be of type MT_CONTROL).
    350  * 3. If a name or rights record exists, then it must be followed by
    351  *    a data record, perhaps of zero length.
    352  *
    353  * Before using a new socket structure it is first necessary to reserve
    354  * buffer space to the socket, by calling sbreserve().  This should commit
    355  * some of the available buffer space in the system buffer pool for the
    356  * socket (currently, it does nothing but enforce limits).  The space
    357  * should be released by calling sbrelease() when the socket is destroyed.
    358  */
    359 
    360 int
    361 sb_max_set(u_long new_sbmax)
    362 {
    363 	int s;
    364 
    365 	if (new_sbmax < (16 * 1024))
    366 		return (EINVAL);
    367 
    368 	s = splsoftnet();
    369 	sb_max = new_sbmax;
    370 	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
    371 	splx(s);
    372 
    373 	return (0);
    374 }
    375 
    376 int
    377 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
    378 {
    379 	/*
    380 	 * there's at least one application (a configure script of screen)
    381 	 * which expects a fifo is writable even if it has "some" bytes
    382 	 * in its buffer.
    383 	 * so we want to make sure (hiwat - lowat) >= (some bytes).
    384 	 *
    385 	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
    386 	 * we expect it's large enough for such applications.
    387 	 */
    388 	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
    389 	u_long  hiwat = lowat + PIPE_BUF;
    390 
    391 	if (sndcc < hiwat)
    392 		sndcc = hiwat;
    393 	if (sbreserve(&so->so_snd, sndcc, so) == 0)
    394 		goto bad;
    395 	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
    396 		goto bad2;
    397 	if (so->so_rcv.sb_lowat == 0)
    398 		so->so_rcv.sb_lowat = 1;
    399 	if (so->so_snd.sb_lowat == 0)
    400 		so->so_snd.sb_lowat = lowat;
    401 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
    402 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
    403 	return (0);
    404  bad2:
    405 	sbrelease(&so->so_snd, so);
    406  bad:
    407 	return (ENOBUFS);
    408 }
    409 
    410 /*
    411  * Allot mbufs to a sockbuf.
    412  * Attempt to scale mbmax so that mbcnt doesn't become limiting
    413  * if buffering efficiency is near the normal case.
    414  */
    415 int
    416 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
    417 {
    418 	struct lwp *l = curlwp; /* XXX */
    419 	rlim_t maxcc;
    420 	struct uidinfo *uidinfo;
    421 
    422 	KDASSERT(sb_max_adj != 0);
    423 	if (cc == 0 || cc > sb_max_adj)
    424 		return (0);
    425 	if (so) {
    426 		if (l && kauth_cred_geteuid(l->l_cred) == so->so_uidinfo->ui_uid)
    427 			maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
    428 		else
    429 			maxcc = RLIM_INFINITY;
    430 		uidinfo = so->so_uidinfo;
    431 	} else {
    432 		uidinfo = uid_find(0);	/* XXX: nothing better */
    433 		maxcc = RLIM_INFINITY;
    434 	}
    435 	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
    436 		return 0;
    437 	sb->sb_mbmax = min(cc * 2, sb_max);
    438 	if (sb->sb_lowat > sb->sb_hiwat)
    439 		sb->sb_lowat = sb->sb_hiwat;
    440 	return (1);
    441 }
    442 
    443 /*
    444  * Free mbufs held by a socket, and reserved mbuf space.
    445  */
    446 void
    447 sbrelease(struct sockbuf *sb, struct socket *so)
    448 {
    449 
    450 	sbflush(sb);
    451 	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0,
    452 	    RLIM_INFINITY);
    453 	sb->sb_mbmax = 0;
    454 }
    455 
    456 /*
    457  * Routines to add and remove
    458  * data from an mbuf queue.
    459  *
    460  * The routines sbappend() or sbappendrecord() are normally called to
    461  * append new mbufs to a socket buffer, after checking that adequate
    462  * space is available, comparing the function sbspace() with the amount
    463  * of data to be added.  sbappendrecord() differs from sbappend() in
    464  * that data supplied is treated as the beginning of a new record.
    465  * To place a sender's address, optional access rights, and data in a
    466  * socket receive buffer, sbappendaddr() should be used.  To place
    467  * access rights and data in a socket receive buffer, sbappendrights()
    468  * should be used.  In either case, the new data begins a new record.
    469  * Note that unlike sbappend() and sbappendrecord(), these routines check
    470  * for the caller that there will be enough space to store the data.
    471  * Each fails if there is not enough space, or if it cannot find mbufs
    472  * to store additional information in.
    473  *
    474  * Reliable protocols may use the socket send buffer to hold data
    475  * awaiting acknowledgement.  Data is normally copied from a socket
    476  * send buffer in a protocol with m_copy for output to a peer,
    477  * and then removing the data from the socket buffer with sbdrop()
    478  * or sbdroprecord() when the data is acknowledged by the peer.
    479  */
    480 
    481 #ifdef SOCKBUF_DEBUG
    482 void
    483 sblastrecordchk(struct sockbuf *sb, const char *where)
    484 {
    485 	struct mbuf *m = sb->sb_mb;
    486 
    487 	while (m && m->m_nextpkt)
    488 		m = m->m_nextpkt;
    489 
    490 	if (m != sb->sb_lastrecord) {
    491 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
    492 		    sb->sb_mb, sb->sb_lastrecord, m);
    493 		printf("packet chain:\n");
    494 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
    495 			printf("\t%p\n", m);
    496 		panic("sblastrecordchk from %s", where);
    497 	}
    498 }
    499 
    500 void
    501 sblastmbufchk(struct sockbuf *sb, const char *where)
    502 {
    503 	struct mbuf *m = sb->sb_mb;
    504 	struct mbuf *n;
    505 
    506 	while (m && m->m_nextpkt)
    507 		m = m->m_nextpkt;
    508 
    509 	while (m && m->m_next)
    510 		m = m->m_next;
    511 
    512 	if (m != sb->sb_mbtail) {
    513 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
    514 		    sb->sb_mb, sb->sb_mbtail, m);
    515 		printf("packet tree:\n");
    516 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
    517 			printf("\t");
    518 			for (n = m; n != NULL; n = n->m_next)
    519 				printf("%p ", n);
    520 			printf("\n");
    521 		}
    522 		panic("sblastmbufchk from %s", where);
    523 	}
    524 }
    525 #endif /* SOCKBUF_DEBUG */
    526 
    527 /*
    528  * Link a chain of records onto a socket buffer
    529  */
    530 #define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
    531 do {									\
    532 	if ((sb)->sb_lastrecord != NULL)				\
    533 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
    534 	else								\
    535 		(sb)->sb_mb = (m0);					\
    536 	(sb)->sb_lastrecord = (mlast);					\
    537 } while (/*CONSTCOND*/0)
    538 
    539 
    540 #define	SBLINKRECORD(sb, m0)						\
    541     SBLINKRECORDCHAIN(sb, m0, m0)
    542 
    543 /*
    544  * Append mbuf chain m to the last record in the
    545  * socket buffer sb.  The additional space associated
    546  * the mbuf chain is recorded in sb.  Empty mbufs are
    547  * discarded and mbufs are compacted where possible.
    548  */
    549 void
    550 sbappend(struct sockbuf *sb, struct mbuf *m)
    551 {
    552 	struct mbuf	*n;
    553 
    554 	if (m == 0)
    555 		return;
    556 
    557 #ifdef MBUFTRACE
    558 	m_claimm(m, sb->sb_mowner);
    559 #endif
    560 
    561 	SBLASTRECORDCHK(sb, "sbappend 1");
    562 
    563 	if ((n = sb->sb_lastrecord) != NULL) {
    564 		/*
    565 		 * XXX Would like to simply use sb_mbtail here, but
    566 		 * XXX I need to verify that I won't miss an EOR that
    567 		 * XXX way.
    568 		 */
    569 		do {
    570 			if (n->m_flags & M_EOR) {
    571 				sbappendrecord(sb, m); /* XXXXXX!!!! */
    572 				return;
    573 			}
    574 		} while (n->m_next && (n = n->m_next));
    575 	} else {
    576 		/*
    577 		 * If this is the first record in the socket buffer, it's
    578 		 * also the last record.
    579 		 */
    580 		sb->sb_lastrecord = m;
    581 	}
    582 	sbcompress(sb, m, n);
    583 	SBLASTRECORDCHK(sb, "sbappend 2");
    584 }
    585 
    586 /*
    587  * This version of sbappend() should only be used when the caller
    588  * absolutely knows that there will never be more than one record
    589  * in the socket buffer, that is, a stream protocol (such as TCP).
    590  */
    591 void
    592 sbappendstream(struct sockbuf *sb, struct mbuf *m)
    593 {
    594 
    595 	KDASSERT(m->m_nextpkt == NULL);
    596 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
    597 
    598 	SBLASTMBUFCHK(sb, __func__);
    599 
    600 #ifdef MBUFTRACE
    601 	m_claimm(m, sb->sb_mowner);
    602 #endif
    603 
    604 	sbcompress(sb, m, sb->sb_mbtail);
    605 
    606 	sb->sb_lastrecord = sb->sb_mb;
    607 	SBLASTRECORDCHK(sb, __func__);
    608 }
    609 
    610 #ifdef SOCKBUF_DEBUG
    611 void
    612 sbcheck(struct sockbuf *sb)
    613 {
    614 	struct mbuf	*m;
    615 	u_long		len, mbcnt;
    616 
    617 	len = 0;
    618 	mbcnt = 0;
    619 	for (m = sb->sb_mb; m; m = m->m_next) {
    620 		len += m->m_len;
    621 		mbcnt += MSIZE;
    622 		if (m->m_flags & M_EXT)
    623 			mbcnt += m->m_ext.ext_size;
    624 		if (m->m_nextpkt)
    625 			panic("sbcheck nextpkt");
    626 	}
    627 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
    628 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
    629 		    mbcnt, sb->sb_mbcnt);
    630 		panic("sbcheck");
    631 	}
    632 }
    633 #endif
    634 
    635 /*
    636  * As above, except the mbuf chain
    637  * begins a new record.
    638  */
    639 void
    640 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
    641 {
    642 	struct mbuf	*m;
    643 
    644 	if (m0 == 0)
    645 		return;
    646 
    647 #ifdef MBUFTRACE
    648 	m_claimm(m0, sb->sb_mowner);
    649 #endif
    650 	/*
    651 	 * Put the first mbuf on the queue.
    652 	 * Note this permits zero length records.
    653 	 */
    654 	sballoc(sb, m0);
    655 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
    656 	SBLINKRECORD(sb, m0);
    657 	m = m0->m_next;
    658 	m0->m_next = 0;
    659 	if (m && (m0->m_flags & M_EOR)) {
    660 		m0->m_flags &= ~M_EOR;
    661 		m->m_flags |= M_EOR;
    662 	}
    663 	sbcompress(sb, m, m0);
    664 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
    665 }
    666 
    667 /*
    668  * As above except that OOB data
    669  * is inserted at the beginning of the sockbuf,
    670  * but after any other OOB data.
    671  */
    672 void
    673 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
    674 {
    675 	struct mbuf	*m, **mp;
    676 
    677 	if (m0 == 0)
    678 		return;
    679 
    680 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
    681 
    682 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
    683 	    again:
    684 		switch (m->m_type) {
    685 
    686 		case MT_OOBDATA:
    687 			continue;		/* WANT next train */
    688 
    689 		case MT_CONTROL:
    690 			if ((m = m->m_next) != NULL)
    691 				goto again;	/* inspect THIS train further */
    692 		}
    693 		break;
    694 	}
    695 	/*
    696 	 * Put the first mbuf on the queue.
    697 	 * Note this permits zero length records.
    698 	 */
    699 	sballoc(sb, m0);
    700 	m0->m_nextpkt = *mp;
    701 	if (*mp == NULL) {
    702 		/* m0 is actually the new tail */
    703 		sb->sb_lastrecord = m0;
    704 	}
    705 	*mp = m0;
    706 	m = m0->m_next;
    707 	m0->m_next = 0;
    708 	if (m && (m0->m_flags & M_EOR)) {
    709 		m0->m_flags &= ~M_EOR;
    710 		m->m_flags |= M_EOR;
    711 	}
    712 	sbcompress(sb, m, m0);
    713 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
    714 }
    715 
    716 /*
    717  * Append address and data, and optionally, control (ancillary) data
    718  * to the receive queue of a socket.  If present,
    719  * m0 must include a packet header with total length.
    720  * Returns 0 if no space in sockbuf or insufficient mbufs.
    721  */
    722 int
    723 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
    724 	struct mbuf *control)
    725 {
    726 	struct mbuf	*m, *n, *nlast;
    727 	int		space, len;
    728 
    729 	space = asa->sa_len;
    730 
    731 	if (m0 != NULL) {
    732 		if ((m0->m_flags & M_PKTHDR) == 0)
    733 			panic("sbappendaddr");
    734 		space += m0->m_pkthdr.len;
    735 #ifdef MBUFTRACE
    736 		m_claimm(m0, sb->sb_mowner);
    737 #endif
    738 	}
    739 	for (n = control; n; n = n->m_next) {
    740 		space += n->m_len;
    741 		MCLAIM(n, sb->sb_mowner);
    742 		if (n->m_next == 0)	/* keep pointer to last control buf */
    743 			break;
    744 	}
    745 	if (space > sbspace(sb))
    746 		return (0);
    747 	MGET(m, M_DONTWAIT, MT_SONAME);
    748 	if (m == 0)
    749 		return (0);
    750 	MCLAIM(m, sb->sb_mowner);
    751 	/*
    752 	 * XXX avoid 'comparison always true' warning which isn't easily
    753 	 * avoided.
    754 	 */
    755 	len = asa->sa_len;
    756 	if (len > MLEN) {
    757 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
    758 		if ((m->m_flags & M_EXT) == 0) {
    759 			m_free(m);
    760 			return (0);
    761 		}
    762 	}
    763 	m->m_len = asa->sa_len;
    764 	memcpy(mtod(m, void *), asa, asa->sa_len);
    765 	if (n)
    766 		n->m_next = m0;		/* concatenate data to control */
    767 	else
    768 		control = m0;
    769 	m->m_next = control;
    770 
    771 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
    772 
    773 	for (n = m; n->m_next != NULL; n = n->m_next)
    774 		sballoc(sb, n);
    775 	sballoc(sb, n);
    776 	nlast = n;
    777 	SBLINKRECORD(sb, m);
    778 
    779 	sb->sb_mbtail = nlast;
    780 	SBLASTMBUFCHK(sb, "sbappendaddr");
    781 
    782 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
    783 
    784 	return (1);
    785 }
    786 
    787 /*
    788  * Helper for sbappendchainaddr: prepend a struct sockaddr* to
    789  * an mbuf chain.
    790  */
    791 static inline struct mbuf *
    792 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
    793 		   const struct sockaddr *asa)
    794 {
    795 	struct mbuf *m;
    796 	const int salen = asa->sa_len;
    797 
    798 	/* only the first in each chain need be a pkthdr */
    799 	MGETHDR(m, M_DONTWAIT, MT_SONAME);
    800 	if (m == 0)
    801 		return (0);
    802 	MCLAIM(m, sb->sb_mowner);
    803 #ifdef notyet
    804 	if (salen > MHLEN) {
    805 		MEXTMALLOC(m, salen, M_NOWAIT);
    806 		if ((m->m_flags & M_EXT) == 0) {
    807 			m_free(m);
    808 			return (0);
    809 		}
    810 	}
    811 #else
    812 	KASSERT(salen <= MHLEN);
    813 #endif
    814 	m->m_len = salen;
    815 	memcpy(mtod(m, void *), asa, salen);
    816 	m->m_next = m0;
    817 	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
    818 
    819 	return m;
    820 }
    821 
    822 int
    823 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
    824 		  struct mbuf *m0, int sbprio)
    825 {
    826 	int space;
    827 	struct mbuf *m, *n, *n0, *nlast;
    828 	int error;
    829 
    830 	/*
    831 	 * XXX sbprio reserved for encoding priority of this* request:
    832 	 *  SB_PRIO_NONE --> honour normal sb limits
    833 	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
    834 	 *	take whole chain. Intended for large requests
    835 	 *      that should be delivered atomically (all, or none).
    836 	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
    837 	 *       over normal socket limits, for messages indicating
    838 	 *       buffer overflow in earlier normal/lower-priority messages
    839 	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
    840 	 *       Intended for  kernel-generated messages only.
    841 	 *        Up to generator to avoid total mbuf resource exhaustion.
    842 	 */
    843 	(void)sbprio;
    844 
    845 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
    846 		panic("sbappendaddrchain");
    847 
    848 	space = sbspace(sb);
    849 
    850 #ifdef notyet
    851 	/*
    852 	 * Enforce SB_PRIO_* limits as described above.
    853 	 */
    854 #endif
    855 
    856 	n0 = NULL;
    857 	nlast = NULL;
    858 	for (m = m0; m; m = m->m_nextpkt) {
    859 		struct mbuf *np;
    860 
    861 #ifdef MBUFTRACE
    862 		m_claimm(m, sb->sb_mowner);
    863 #endif
    864 
    865 		/* Prepend sockaddr to this record (m) of input chain m0 */
    866 	  	n = m_prepend_sockaddr(sb, m, asa);
    867 		if (n == NULL) {
    868 			error = ENOBUFS;
    869 			goto bad;
    870 		}
    871 
    872 		/* Append record (asa+m) to end of new chain n0 */
    873 		if (n0 == NULL) {
    874 			n0 = n;
    875 		} else {
    876 			nlast->m_nextpkt = n;
    877 		}
    878 		/* Keep track of last record on new chain */
    879 		nlast = n;
    880 
    881 		for (np = n; np; np = np->m_next)
    882 			sballoc(sb, np);
    883 	}
    884 
    885 	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
    886 
    887 	/* Drop the entire chain of (asa+m) records onto the socket */
    888 	SBLINKRECORDCHAIN(sb, n0, nlast);
    889 
    890 	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
    891 
    892 	for (m = nlast; m->m_next; m = m->m_next)
    893 		;
    894 	sb->sb_mbtail = m;
    895 	SBLASTMBUFCHK(sb, "sbappendaddrchain");
    896 
    897 	return (1);
    898 
    899 bad:
    900 	/*
    901 	 * On error, free the prepended addreseses. For consistency
    902 	 * with sbappendaddr(), leave it to our caller to free
    903 	 * the input record chain passed to us as m0.
    904 	 */
    905 	while ((n = n0) != NULL) {
    906 	  	struct mbuf *np;
    907 
    908 		/* Undo the sballoc() of this record */
    909 		for (np = n; np; np = np->m_next)
    910 			sbfree(sb, np);
    911 
    912 		n0 = n->m_nextpkt;	/* iterate at next prepended address */
    913 		MFREE(n, np);		/* free prepended address (not data) */
    914 	}
    915 	return 0;
    916 }
    917 
    918 
    919 int
    920 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
    921 {
    922 	struct mbuf	*m, *mlast, *n;
    923 	int		space;
    924 
    925 	space = 0;
    926 	if (control == 0)
    927 		panic("sbappendcontrol");
    928 	for (m = control; ; m = m->m_next) {
    929 		space += m->m_len;
    930 		MCLAIM(m, sb->sb_mowner);
    931 		if (m->m_next == 0)
    932 			break;
    933 	}
    934 	n = m;			/* save pointer to last control buffer */
    935 	for (m = m0; m; m = m->m_next) {
    936 		MCLAIM(m, sb->sb_mowner);
    937 		space += m->m_len;
    938 	}
    939 	if (space > sbspace(sb))
    940 		return (0);
    941 	n->m_next = m0;			/* concatenate data to control */
    942 
    943 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
    944 
    945 	for (m = control; m->m_next != NULL; m = m->m_next)
    946 		sballoc(sb, m);
    947 	sballoc(sb, m);
    948 	mlast = m;
    949 	SBLINKRECORD(sb, control);
    950 
    951 	sb->sb_mbtail = mlast;
    952 	SBLASTMBUFCHK(sb, "sbappendcontrol");
    953 
    954 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
    955 
    956 	return (1);
    957 }
    958 
    959 /*
    960  * Compress mbuf chain m into the socket
    961  * buffer sb following mbuf n.  If n
    962  * is null, the buffer is presumed empty.
    963  */
    964 void
    965 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
    966 {
    967 	int		eor;
    968 	struct mbuf	*o;
    969 
    970 	eor = 0;
    971 	while (m) {
    972 		eor |= m->m_flags & M_EOR;
    973 		if (m->m_len == 0 &&
    974 		    (eor == 0 ||
    975 		     (((o = m->m_next) || (o = n)) &&
    976 		      o->m_type == m->m_type))) {
    977 			if (sb->sb_lastrecord == m)
    978 				sb->sb_lastrecord = m->m_next;
    979 			m = m_free(m);
    980 			continue;
    981 		}
    982 		if (n && (n->m_flags & M_EOR) == 0 &&
    983 		    /* M_TRAILINGSPACE() checks buffer writeability */
    984 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
    985 		    m->m_len <= M_TRAILINGSPACE(n) &&
    986 		    n->m_type == m->m_type) {
    987 			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
    988 			    (unsigned)m->m_len);
    989 			n->m_len += m->m_len;
    990 			sb->sb_cc += m->m_len;
    991 			m = m_free(m);
    992 			continue;
    993 		}
    994 		if (n)
    995 			n->m_next = m;
    996 		else
    997 			sb->sb_mb = m;
    998 		sb->sb_mbtail = m;
    999 		sballoc(sb, m);
   1000 		n = m;
   1001 		m->m_flags &= ~M_EOR;
   1002 		m = m->m_next;
   1003 		n->m_next = 0;
   1004 	}
   1005 	if (eor) {
   1006 		if (n)
   1007 			n->m_flags |= eor;
   1008 		else
   1009 			printf("semi-panic: sbcompress\n");
   1010 	}
   1011 	SBLASTMBUFCHK(sb, __func__);
   1012 }
   1013 
   1014 /*
   1015  * Free all mbufs in a sockbuf.
   1016  * Check that all resources are reclaimed.
   1017  */
   1018 void
   1019 sbflush(struct sockbuf *sb)
   1020 {
   1021 
   1022 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
   1023 
   1024 	while (sb->sb_mbcnt)
   1025 		sbdrop(sb, (int)sb->sb_cc);
   1026 
   1027 	KASSERT(sb->sb_cc == 0);
   1028 	KASSERT(sb->sb_mb == NULL);
   1029 	KASSERT(sb->sb_mbtail == NULL);
   1030 	KASSERT(sb->sb_lastrecord == NULL);
   1031 }
   1032 
   1033 /*
   1034  * Drop data from (the front of) a sockbuf.
   1035  */
   1036 void
   1037 sbdrop(struct sockbuf *sb, int len)
   1038 {
   1039 	struct mbuf	*m, *mn, *next;
   1040 
   1041 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
   1042 	while (len > 0) {
   1043 		if (m == 0) {
   1044 			if (next == 0)
   1045 				panic("sbdrop");
   1046 			m = next;
   1047 			next = m->m_nextpkt;
   1048 			continue;
   1049 		}
   1050 		if (m->m_len > len) {
   1051 			m->m_len -= len;
   1052 			m->m_data += len;
   1053 			sb->sb_cc -= len;
   1054 			break;
   1055 		}
   1056 		len -= m->m_len;
   1057 		sbfree(sb, m);
   1058 		MFREE(m, mn);
   1059 		m = mn;
   1060 	}
   1061 	while (m && m->m_len == 0) {
   1062 		sbfree(sb, m);
   1063 		MFREE(m, mn);
   1064 		m = mn;
   1065 	}
   1066 	if (m) {
   1067 		sb->sb_mb = m;
   1068 		m->m_nextpkt = next;
   1069 	} else
   1070 		sb->sb_mb = next;
   1071 	/*
   1072 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
   1073 	 * makes sure sb_lastrecord is up-to-date if we dropped
   1074 	 * part of the last record.
   1075 	 */
   1076 	m = sb->sb_mb;
   1077 	if (m == NULL) {
   1078 		sb->sb_mbtail = NULL;
   1079 		sb->sb_lastrecord = NULL;
   1080 	} else if (m->m_nextpkt == NULL)
   1081 		sb->sb_lastrecord = m;
   1082 }
   1083 
   1084 /*
   1085  * Drop a record off the front of a sockbuf
   1086  * and move the next record to the front.
   1087  */
   1088 void
   1089 sbdroprecord(struct sockbuf *sb)
   1090 {
   1091 	struct mbuf	*m, *mn;
   1092 
   1093 	m = sb->sb_mb;
   1094 	if (m) {
   1095 		sb->sb_mb = m->m_nextpkt;
   1096 		do {
   1097 			sbfree(sb, m);
   1098 			MFREE(m, mn);
   1099 		} while ((m = mn) != NULL);
   1100 	}
   1101 	SB_EMPTY_FIXUP(sb);
   1102 }
   1103 
   1104 /*
   1105  * Create a "control" mbuf containing the specified data
   1106  * with the specified type for presentation on a socket buffer.
   1107  */
   1108 struct mbuf *
   1109 sbcreatecontrol(void *p, int size, int type, int level)
   1110 {
   1111 	struct cmsghdr	*cp;
   1112 	struct mbuf	*m;
   1113 
   1114 	if (CMSG_SPACE(size) > MCLBYTES) {
   1115 		printf("sbcreatecontrol: message too large %d\n", size);
   1116 		return NULL;
   1117 	}
   1118 
   1119 	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
   1120 		return ((struct mbuf *) NULL);
   1121 	if (CMSG_SPACE(size) > MLEN) {
   1122 		MCLGET(m, M_DONTWAIT);
   1123 		if ((m->m_flags & M_EXT) == 0) {
   1124 			m_free(m);
   1125 			return NULL;
   1126 		}
   1127 	}
   1128 	cp = mtod(m, struct cmsghdr *);
   1129 	memcpy(CMSG_DATA(cp), p, size);
   1130 	m->m_len = CMSG_SPACE(size);
   1131 	cp->cmsg_len = CMSG_LEN(size);
   1132 	cp->cmsg_level = level;
   1133 	cp->cmsg_type = type;
   1134 	return (m);
   1135 }
   1136