uipc_socket2.c revision 1.84 1 /* $NetBSD: uipc_socket2.c,v 1.84 2007/07/04 07:17:11 tls Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.84 2007/07/04 07:17:11 tls Exp $");
36
37 #include "opt_mbuftrace.h"
38 #include "opt_sb_max.h"
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/file.h>
44 #include <sys/buf.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/protosw.h>
48 #include <sys/poll.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/signalvar.h>
52 #include <sys/kauth.h>
53
54 /*
55 * Primitive routines for operating on sockets and socket buffers
56 */
57
58 /* strings for sleep message: */
59 const char netcon[] = "netcon";
60 const char netcls[] = "netcls";
61 const char netio[] = "netio";
62 const char netlck[] = "netlck";
63
64 u_long sb_max = SB_MAX; /* maximum socket buffer size */
65 static u_long sb_max_adj; /* adjusted sb_max */
66
67 /*
68 * Procedures to manipulate state flags of socket
69 * and do appropriate wakeups. Normal sequence from the
70 * active (originating) side is that soisconnecting() is
71 * called during processing of connect() call,
72 * resulting in an eventual call to soisconnected() if/when the
73 * connection is established. When the connection is torn down
74 * soisdisconnecting() is called during processing of disconnect() call,
75 * and soisdisconnected() is called when the connection to the peer
76 * is totally severed. The semantics of these routines are such that
77 * connectionless protocols can call soisconnected() and soisdisconnected()
78 * only, bypassing the in-progress calls when setting up a ``connection''
79 * takes no time.
80 *
81 * From the passive side, a socket is created with
82 * two queues of sockets: so_q0 for connections in progress
83 * and so_q for connections already made and awaiting user acceptance.
84 * As a protocol is preparing incoming connections, it creates a socket
85 * structure queued on so_q0 by calling sonewconn(). When the connection
86 * is established, soisconnected() is called, and transfers the
87 * socket structure to so_q, making it available to accept().
88 *
89 * If a socket is closed with sockets on either
90 * so_q0 or so_q, these sockets are dropped.
91 *
92 * If higher level protocols are implemented in
93 * the kernel, the wakeups done here will sometimes
94 * cause software-interrupt process scheduling.
95 */
96
97 void
98 soisconnecting(struct socket *so)
99 {
100
101 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
102 so->so_state |= SS_ISCONNECTING;
103 }
104
105 void
106 soisconnected(struct socket *so)
107 {
108 struct socket *head;
109
110 head = so->so_head;
111 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
112 so->so_state |= SS_ISCONNECTED;
113 if (head && soqremque(so, 0)) {
114 soqinsque(head, so, 1);
115 sorwakeup(head);
116 wakeup((void *)&head->so_timeo);
117 } else {
118 wakeup((void *)&so->so_timeo);
119 sorwakeup(so);
120 sowwakeup(so);
121 }
122 }
123
124 void
125 soisdisconnecting(struct socket *so)
126 {
127
128 so->so_state &= ~SS_ISCONNECTING;
129 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
130 wakeup((void *)&so->so_timeo);
131 sowwakeup(so);
132 sorwakeup(so);
133 }
134
135 void
136 soisdisconnected(struct socket *so)
137 {
138
139 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
140 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
141 wakeup((void *)&so->so_timeo);
142 sowwakeup(so);
143 sorwakeup(so);
144 }
145
146 /*
147 * When an attempt at a new connection is noted on a socket
148 * which accepts connections, sonewconn is called. If the
149 * connection is possible (subject to space constraints, etc.)
150 * then we allocate a new structure, propoerly linked into the
151 * data structure of the original socket, and return this.
152 * Connstatus may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
153 */
154 struct socket *
155 sonewconn(struct socket *head, int connstatus)
156 {
157 struct socket *so;
158 int soqueue;
159
160 soqueue = connstatus ? 1 : 0;
161 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
162 return ((struct socket *)0);
163 so = pool_get(&socket_pool, PR_NOWAIT);
164 if (so == NULL)
165 return (NULL);
166 memset((void *)so, 0, sizeof(*so));
167 so->so_type = head->so_type;
168 so->so_options = head->so_options &~ SO_ACCEPTCONN;
169 so->so_linger = head->so_linger;
170 so->so_state = head->so_state | SS_NOFDREF;
171 so->so_proto = head->so_proto;
172 so->so_timeo = head->so_timeo;
173 so->so_pgid = head->so_pgid;
174 so->so_send = head->so_send;
175 so->so_receive = head->so_receive;
176 so->so_uidinfo = head->so_uidinfo;
177 #ifdef MBUFTRACE
178 so->so_mowner = head->so_mowner;
179 so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
180 so->so_snd.sb_mowner = head->so_snd.sb_mowner;
181 #endif
182 (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
183 so->so_snd.sb_lowat = head->so_snd.sb_lowat;
184 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
185 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
186 so->so_snd.sb_timeo = head->so_snd.sb_timeo;
187 soqinsque(head, so, soqueue);
188 if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
189 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
190 (struct lwp *)0)) {
191 (void) soqremque(so, soqueue);
192 pool_put(&socket_pool, so);
193 return (NULL);
194 }
195 if (connstatus) {
196 sorwakeup(head);
197 wakeup((void *)&head->so_timeo);
198 so->so_state |= connstatus;
199 }
200 return (so);
201 }
202
203 void
204 soqinsque(struct socket *head, struct socket *so, int q)
205 {
206
207 #ifdef DIAGNOSTIC
208 if (so->so_onq != NULL)
209 panic("soqinsque");
210 #endif
211
212 so->so_head = head;
213 if (q == 0) {
214 head->so_q0len++;
215 so->so_onq = &head->so_q0;
216 } else {
217 head->so_qlen++;
218 so->so_onq = &head->so_q;
219 }
220 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
221 }
222
223 int
224 soqremque(struct socket *so, int q)
225 {
226 struct socket *head;
227
228 head = so->so_head;
229 if (q == 0) {
230 if (so->so_onq != &head->so_q0)
231 return (0);
232 head->so_q0len--;
233 } else {
234 if (so->so_onq != &head->so_q)
235 return (0);
236 head->so_qlen--;
237 }
238 TAILQ_REMOVE(so->so_onq, so, so_qe);
239 so->so_onq = NULL;
240 so->so_head = NULL;
241 return (1);
242 }
243
244 /*
245 * Socantsendmore indicates that no more data will be sent on the
246 * socket; it would normally be applied to a socket when the user
247 * informs the system that no more data is to be sent, by the protocol
248 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
249 * will be received, and will normally be applied to the socket by a
250 * protocol when it detects that the peer will send no more data.
251 * Data queued for reading in the socket may yet be read.
252 */
253
254 void
255 socantsendmore(struct socket *so)
256 {
257
258 so->so_state |= SS_CANTSENDMORE;
259 sowwakeup(so);
260 }
261
262 void
263 socantrcvmore(struct socket *so)
264 {
265
266 so->so_state |= SS_CANTRCVMORE;
267 sorwakeup(so);
268 }
269
270 /*
271 * Wait for data to arrive at/drain from a socket buffer.
272 */
273 int
274 sbwait(struct sockbuf *sb)
275 {
276
277 sb->sb_flags |= SB_WAIT;
278 return (tsleep((void *)&sb->sb_cc,
279 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
280 sb->sb_timeo));
281 }
282
283 /*
284 * Lock a sockbuf already known to be locked;
285 * return any error returned from sleep (EINTR).
286 */
287 int
288 sb_lock(struct sockbuf *sb)
289 {
290 int error;
291
292 while (sb->sb_flags & SB_LOCK) {
293 sb->sb_flags |= SB_WANT;
294 error = tsleep((void *)&sb->sb_flags,
295 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
296 netlck, 0);
297 if (error)
298 return (error);
299 }
300 sb->sb_flags |= SB_LOCK;
301 return (0);
302 }
303
304 /*
305 * Wakeup processes waiting on a socket buffer.
306 * Do asynchronous notification via SIGIO
307 * if the socket buffer has the SB_ASYNC flag set.
308 */
309 void
310 sowakeup(struct socket *so, struct sockbuf *sb, int code)
311 {
312 selnotify(&sb->sb_sel, 0);
313 sb->sb_flags &= ~SB_SEL;
314 if (sb->sb_flags & SB_WAIT) {
315 sb->sb_flags &= ~SB_WAIT;
316 wakeup((void *)&sb->sb_cc);
317 }
318 if (sb->sb_flags & SB_ASYNC) {
319 int band;
320 if (code == POLL_IN)
321 band = POLLIN|POLLRDNORM;
322 else
323 band = POLLOUT|POLLWRNORM;
324 fownsignal(so->so_pgid, SIGIO, code, band, so);
325 }
326 if (sb->sb_flags & SB_UPCALL)
327 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
328 }
329
330 /*
331 * Socket buffer (struct sockbuf) utility routines.
332 *
333 * Each socket contains two socket buffers: one for sending data and
334 * one for receiving data. Each buffer contains a queue of mbufs,
335 * information about the number of mbufs and amount of data in the
336 * queue, and other fields allowing poll() statements and notification
337 * on data availability to be implemented.
338 *
339 * Data stored in a socket buffer is maintained as a list of records.
340 * Each record is a list of mbufs chained together with the m_next
341 * field. Records are chained together with the m_nextpkt field. The upper
342 * level routine soreceive() expects the following conventions to be
343 * observed when placing information in the receive buffer:
344 *
345 * 1. If the protocol requires each message be preceded by the sender's
346 * name, then a record containing that name must be present before
347 * any associated data (mbuf's must be of type MT_SONAME).
348 * 2. If the protocol supports the exchange of ``access rights'' (really
349 * just additional data associated with the message), and there are
350 * ``rights'' to be received, then a record containing this data
351 * should be present (mbuf's must be of type MT_CONTROL).
352 * 3. If a name or rights record exists, then it must be followed by
353 * a data record, perhaps of zero length.
354 *
355 * Before using a new socket structure it is first necessary to reserve
356 * buffer space to the socket, by calling sbreserve(). This should commit
357 * some of the available buffer space in the system buffer pool for the
358 * socket (currently, it does nothing but enforce limits). The space
359 * should be released by calling sbrelease() when the socket is destroyed.
360 */
361
362 int
363 sb_max_set(u_long new_sbmax)
364 {
365 int s;
366
367 if (new_sbmax < (16 * 1024))
368 return (EINVAL);
369
370 s = splsoftnet();
371 sb_max = new_sbmax;
372 sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
373 splx(s);
374
375 return (0);
376 }
377
378 int
379 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
380 {
381 /*
382 * there's at least one application (a configure script of screen)
383 * which expects a fifo is writable even if it has "some" bytes
384 * in its buffer.
385 * so we want to make sure (hiwat - lowat) >= (some bytes).
386 *
387 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
388 * we expect it's large enough for such applications.
389 */
390 u_long lowat = MAX(sock_loan_thresh, MCLBYTES);
391 u_long hiwat = lowat + PIPE_BUF;
392
393 if (sndcc < hiwat)
394 sndcc = hiwat;
395 if (sbreserve(&so->so_snd, sndcc, so) == 0)
396 goto bad;
397 if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
398 goto bad2;
399 if (so->so_rcv.sb_lowat == 0)
400 so->so_rcv.sb_lowat = 1;
401 if (so->so_snd.sb_lowat == 0)
402 so->so_snd.sb_lowat = lowat;
403 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
404 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
405 return (0);
406 bad2:
407 sbrelease(&so->so_snd, so);
408 bad:
409 return (ENOBUFS);
410 }
411
412 /*
413 * Allot mbufs to a sockbuf.
414 * Attempt to scale mbmax so that mbcnt doesn't become limiting
415 * if buffering efficiency is near the normal case.
416 */
417 int
418 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
419 {
420 struct lwp *l = curlwp; /* XXX */
421 rlim_t maxcc;
422 struct uidinfo *uidinfo;
423
424 KDASSERT(sb_max_adj != 0);
425 if (cc == 0 || cc > sb_max_adj)
426 return (0);
427 if (so) {
428 if (l && kauth_cred_geteuid(l->l_cred) == so->so_uidinfo->ui_uid)
429 maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
430 else
431 maxcc = RLIM_INFINITY;
432 uidinfo = so->so_uidinfo;
433 } else {
434 uidinfo = uid_find(0); /* XXX: nothing better */
435 maxcc = RLIM_INFINITY;
436 }
437 if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
438 return 0;
439 sb->sb_mbmax = min(cc * 2, sb_max);
440 if (sb->sb_lowat > sb->sb_hiwat)
441 sb->sb_lowat = sb->sb_hiwat;
442 return (1);
443 }
444
445 /*
446 * Free mbufs held by a socket, and reserved mbuf space.
447 */
448 void
449 sbrelease(struct sockbuf *sb, struct socket *so)
450 {
451
452 sbflush(sb);
453 (void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0,
454 RLIM_INFINITY);
455 sb->sb_mbmax = 0;
456 }
457
458 /*
459 * Routines to add and remove
460 * data from an mbuf queue.
461 *
462 * The routines sbappend() or sbappendrecord() are normally called to
463 * append new mbufs to a socket buffer, after checking that adequate
464 * space is available, comparing the function sbspace() with the amount
465 * of data to be added. sbappendrecord() differs from sbappend() in
466 * that data supplied is treated as the beginning of a new record.
467 * To place a sender's address, optional access rights, and data in a
468 * socket receive buffer, sbappendaddr() should be used. To place
469 * access rights and data in a socket receive buffer, sbappendrights()
470 * should be used. In either case, the new data begins a new record.
471 * Note that unlike sbappend() and sbappendrecord(), these routines check
472 * for the caller that there will be enough space to store the data.
473 * Each fails if there is not enough space, or if it cannot find mbufs
474 * to store additional information in.
475 *
476 * Reliable protocols may use the socket send buffer to hold data
477 * awaiting acknowledgement. Data is normally copied from a socket
478 * send buffer in a protocol with m_copy for output to a peer,
479 * and then removing the data from the socket buffer with sbdrop()
480 * or sbdroprecord() when the data is acknowledged by the peer.
481 */
482
483 #ifdef SOCKBUF_DEBUG
484 void
485 sblastrecordchk(struct sockbuf *sb, const char *where)
486 {
487 struct mbuf *m = sb->sb_mb;
488
489 while (m && m->m_nextpkt)
490 m = m->m_nextpkt;
491
492 if (m != sb->sb_lastrecord) {
493 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
494 sb->sb_mb, sb->sb_lastrecord, m);
495 printf("packet chain:\n");
496 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
497 printf("\t%p\n", m);
498 panic("sblastrecordchk from %s", where);
499 }
500 }
501
502 void
503 sblastmbufchk(struct sockbuf *sb, const char *where)
504 {
505 struct mbuf *m = sb->sb_mb;
506 struct mbuf *n;
507
508 while (m && m->m_nextpkt)
509 m = m->m_nextpkt;
510
511 while (m && m->m_next)
512 m = m->m_next;
513
514 if (m != sb->sb_mbtail) {
515 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
516 sb->sb_mb, sb->sb_mbtail, m);
517 printf("packet tree:\n");
518 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
519 printf("\t");
520 for (n = m; n != NULL; n = n->m_next)
521 printf("%p ", n);
522 printf("\n");
523 }
524 panic("sblastmbufchk from %s", where);
525 }
526 }
527 #endif /* SOCKBUF_DEBUG */
528
529 /*
530 * Link a chain of records onto a socket buffer
531 */
532 #define SBLINKRECORDCHAIN(sb, m0, mlast) \
533 do { \
534 if ((sb)->sb_lastrecord != NULL) \
535 (sb)->sb_lastrecord->m_nextpkt = (m0); \
536 else \
537 (sb)->sb_mb = (m0); \
538 (sb)->sb_lastrecord = (mlast); \
539 } while (/*CONSTCOND*/0)
540
541
542 #define SBLINKRECORD(sb, m0) \
543 SBLINKRECORDCHAIN(sb, m0, m0)
544
545 /*
546 * Append mbuf chain m to the last record in the
547 * socket buffer sb. The additional space associated
548 * the mbuf chain is recorded in sb. Empty mbufs are
549 * discarded and mbufs are compacted where possible.
550 */
551 void
552 sbappend(struct sockbuf *sb, struct mbuf *m)
553 {
554 struct mbuf *n;
555
556 if (m == 0)
557 return;
558
559 #ifdef MBUFTRACE
560 m_claimm(m, sb->sb_mowner);
561 #endif
562
563 SBLASTRECORDCHK(sb, "sbappend 1");
564
565 if ((n = sb->sb_lastrecord) != NULL) {
566 /*
567 * XXX Would like to simply use sb_mbtail here, but
568 * XXX I need to verify that I won't miss an EOR that
569 * XXX way.
570 */
571 do {
572 if (n->m_flags & M_EOR) {
573 sbappendrecord(sb, m); /* XXXXXX!!!! */
574 return;
575 }
576 } while (n->m_next && (n = n->m_next));
577 } else {
578 /*
579 * If this is the first record in the socket buffer, it's
580 * also the last record.
581 */
582 sb->sb_lastrecord = m;
583 }
584 sbcompress(sb, m, n);
585 SBLASTRECORDCHK(sb, "sbappend 2");
586 }
587
588 /*
589 * This version of sbappend() should only be used when the caller
590 * absolutely knows that there will never be more than one record
591 * in the socket buffer, that is, a stream protocol (such as TCP).
592 */
593 void
594 sbappendstream(struct sockbuf *sb, struct mbuf *m)
595 {
596
597 KDASSERT(m->m_nextpkt == NULL);
598 KASSERT(sb->sb_mb == sb->sb_lastrecord);
599
600 SBLASTMBUFCHK(sb, __func__);
601
602 #ifdef MBUFTRACE
603 m_claimm(m, sb->sb_mowner);
604 #endif
605
606 sbcompress(sb, m, sb->sb_mbtail);
607
608 sb->sb_lastrecord = sb->sb_mb;
609 SBLASTRECORDCHK(sb, __func__);
610 }
611
612 #ifdef SOCKBUF_DEBUG
613 void
614 sbcheck(struct sockbuf *sb)
615 {
616 struct mbuf *m;
617 u_long len, mbcnt;
618
619 len = 0;
620 mbcnt = 0;
621 for (m = sb->sb_mb; m; m = m->m_next) {
622 len += m->m_len;
623 mbcnt += MSIZE;
624 if (m->m_flags & M_EXT)
625 mbcnt += m->m_ext.ext_size;
626 if (m->m_nextpkt)
627 panic("sbcheck nextpkt");
628 }
629 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
630 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
631 mbcnt, sb->sb_mbcnt);
632 panic("sbcheck");
633 }
634 }
635 #endif
636
637 /*
638 * As above, except the mbuf chain
639 * begins a new record.
640 */
641 void
642 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
643 {
644 struct mbuf *m;
645
646 if (m0 == 0)
647 return;
648
649 #ifdef MBUFTRACE
650 m_claimm(m0, sb->sb_mowner);
651 #endif
652 /*
653 * Put the first mbuf on the queue.
654 * Note this permits zero length records.
655 */
656 sballoc(sb, m0);
657 SBLASTRECORDCHK(sb, "sbappendrecord 1");
658 SBLINKRECORD(sb, m0);
659 m = m0->m_next;
660 m0->m_next = 0;
661 if (m && (m0->m_flags & M_EOR)) {
662 m0->m_flags &= ~M_EOR;
663 m->m_flags |= M_EOR;
664 }
665 sbcompress(sb, m, m0);
666 SBLASTRECORDCHK(sb, "sbappendrecord 2");
667 }
668
669 /*
670 * As above except that OOB data
671 * is inserted at the beginning of the sockbuf,
672 * but after any other OOB data.
673 */
674 void
675 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
676 {
677 struct mbuf *m, **mp;
678
679 if (m0 == 0)
680 return;
681
682 SBLASTRECORDCHK(sb, "sbinsertoob 1");
683
684 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
685 again:
686 switch (m->m_type) {
687
688 case MT_OOBDATA:
689 continue; /* WANT next train */
690
691 case MT_CONTROL:
692 if ((m = m->m_next) != NULL)
693 goto again; /* inspect THIS train further */
694 }
695 break;
696 }
697 /*
698 * Put the first mbuf on the queue.
699 * Note this permits zero length records.
700 */
701 sballoc(sb, m0);
702 m0->m_nextpkt = *mp;
703 if (*mp == NULL) {
704 /* m0 is actually the new tail */
705 sb->sb_lastrecord = m0;
706 }
707 *mp = m0;
708 m = m0->m_next;
709 m0->m_next = 0;
710 if (m && (m0->m_flags & M_EOR)) {
711 m0->m_flags &= ~M_EOR;
712 m->m_flags |= M_EOR;
713 }
714 sbcompress(sb, m, m0);
715 SBLASTRECORDCHK(sb, "sbinsertoob 2");
716 }
717
718 /*
719 * Append address and data, and optionally, control (ancillary) data
720 * to the receive queue of a socket. If present,
721 * m0 must include a packet header with total length.
722 * Returns 0 if no space in sockbuf or insufficient mbufs.
723 */
724 int
725 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
726 struct mbuf *control)
727 {
728 struct mbuf *m, *n, *nlast;
729 int space, len;
730
731 space = asa->sa_len;
732
733 if (m0 != NULL) {
734 if ((m0->m_flags & M_PKTHDR) == 0)
735 panic("sbappendaddr");
736 space += m0->m_pkthdr.len;
737 #ifdef MBUFTRACE
738 m_claimm(m0, sb->sb_mowner);
739 #endif
740 }
741 for (n = control; n; n = n->m_next) {
742 space += n->m_len;
743 MCLAIM(n, sb->sb_mowner);
744 if (n->m_next == 0) /* keep pointer to last control buf */
745 break;
746 }
747 if (space > sbspace(sb))
748 return (0);
749 MGET(m, M_DONTWAIT, MT_SONAME);
750 if (m == 0)
751 return (0);
752 MCLAIM(m, sb->sb_mowner);
753 /*
754 * XXX avoid 'comparison always true' warning which isn't easily
755 * avoided.
756 */
757 len = asa->sa_len;
758 if (len > MLEN) {
759 MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
760 if ((m->m_flags & M_EXT) == 0) {
761 m_free(m);
762 return (0);
763 }
764 }
765 m->m_len = asa->sa_len;
766 memcpy(mtod(m, void *), asa, asa->sa_len);
767 if (n)
768 n->m_next = m0; /* concatenate data to control */
769 else
770 control = m0;
771 m->m_next = control;
772
773 SBLASTRECORDCHK(sb, "sbappendaddr 1");
774
775 for (n = m; n->m_next != NULL; n = n->m_next)
776 sballoc(sb, n);
777 sballoc(sb, n);
778 nlast = n;
779 SBLINKRECORD(sb, m);
780
781 sb->sb_mbtail = nlast;
782 SBLASTMBUFCHK(sb, "sbappendaddr");
783
784 SBLASTRECORDCHK(sb, "sbappendaddr 2");
785
786 return (1);
787 }
788
789 /*
790 * Helper for sbappendchainaddr: prepend a struct sockaddr* to
791 * an mbuf chain.
792 */
793 static inline struct mbuf *
794 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
795 const struct sockaddr *asa)
796 {
797 struct mbuf *m;
798 const int salen = asa->sa_len;
799
800 /* only the first in each chain need be a pkthdr */
801 MGETHDR(m, M_DONTWAIT, MT_SONAME);
802 if (m == 0)
803 return (0);
804 MCLAIM(m, sb->sb_mowner);
805 #ifdef notyet
806 if (salen > MHLEN) {
807 MEXTMALLOC(m, salen, M_NOWAIT);
808 if ((m->m_flags & M_EXT) == 0) {
809 m_free(m);
810 return (0);
811 }
812 }
813 #else
814 KASSERT(salen <= MHLEN);
815 #endif
816 m->m_len = salen;
817 memcpy(mtod(m, void *), asa, salen);
818 m->m_next = m0;
819 m->m_pkthdr.len = salen + m0->m_pkthdr.len;
820
821 return m;
822 }
823
824 int
825 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
826 struct mbuf *m0, int sbprio)
827 {
828 int space;
829 struct mbuf *m, *n, *n0, *nlast;
830 int error;
831
832 /*
833 * XXX sbprio reserved for encoding priority of this* request:
834 * SB_PRIO_NONE --> honour normal sb limits
835 * SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
836 * take whole chain. Intended for large requests
837 * that should be delivered atomically (all, or none).
838 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
839 * over normal socket limits, for messages indicating
840 * buffer overflow in earlier normal/lower-priority messages
841 * SB_PRIO_BESTEFFORT --> ignore limits entirely.
842 * Intended for kernel-generated messages only.
843 * Up to generator to avoid total mbuf resource exhaustion.
844 */
845 (void)sbprio;
846
847 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
848 panic("sbappendaddrchain");
849
850 space = sbspace(sb);
851
852 #ifdef notyet
853 /*
854 * Enforce SB_PRIO_* limits as described above.
855 */
856 #endif
857
858 n0 = NULL;
859 nlast = NULL;
860 for (m = m0; m; m = m->m_nextpkt) {
861 struct mbuf *np;
862
863 #ifdef MBUFTRACE
864 m_claimm(m, sb->sb_mowner);
865 #endif
866
867 /* Prepend sockaddr to this record (m) of input chain m0 */
868 n = m_prepend_sockaddr(sb, m, asa);
869 if (n == NULL) {
870 error = ENOBUFS;
871 goto bad;
872 }
873
874 /* Append record (asa+m) to end of new chain n0 */
875 if (n0 == NULL) {
876 n0 = n;
877 } else {
878 nlast->m_nextpkt = n;
879 }
880 /* Keep track of last record on new chain */
881 nlast = n;
882
883 for (np = n; np; np = np->m_next)
884 sballoc(sb, np);
885 }
886
887 SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
888
889 /* Drop the entire chain of (asa+m) records onto the socket */
890 SBLINKRECORDCHAIN(sb, n0, nlast);
891
892 SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
893
894 for (m = nlast; m->m_next; m = m->m_next)
895 ;
896 sb->sb_mbtail = m;
897 SBLASTMBUFCHK(sb, "sbappendaddrchain");
898
899 return (1);
900
901 bad:
902 /*
903 * On error, free the prepended addreseses. For consistency
904 * with sbappendaddr(), leave it to our caller to free
905 * the input record chain passed to us as m0.
906 */
907 while ((n = n0) != NULL) {
908 struct mbuf *np;
909
910 /* Undo the sballoc() of this record */
911 for (np = n; np; np = np->m_next)
912 sbfree(sb, np);
913
914 n0 = n->m_nextpkt; /* iterate at next prepended address */
915 MFREE(n, np); /* free prepended address (not data) */
916 }
917 return 0;
918 }
919
920
921 int
922 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
923 {
924 struct mbuf *m, *mlast, *n;
925 int space;
926
927 space = 0;
928 if (control == 0)
929 panic("sbappendcontrol");
930 for (m = control; ; m = m->m_next) {
931 space += m->m_len;
932 MCLAIM(m, sb->sb_mowner);
933 if (m->m_next == 0)
934 break;
935 }
936 n = m; /* save pointer to last control buffer */
937 for (m = m0; m; m = m->m_next) {
938 MCLAIM(m, sb->sb_mowner);
939 space += m->m_len;
940 }
941 if (space > sbspace(sb))
942 return (0);
943 n->m_next = m0; /* concatenate data to control */
944
945 SBLASTRECORDCHK(sb, "sbappendcontrol 1");
946
947 for (m = control; m->m_next != NULL; m = m->m_next)
948 sballoc(sb, m);
949 sballoc(sb, m);
950 mlast = m;
951 SBLINKRECORD(sb, control);
952
953 sb->sb_mbtail = mlast;
954 SBLASTMBUFCHK(sb, "sbappendcontrol");
955
956 SBLASTRECORDCHK(sb, "sbappendcontrol 2");
957
958 return (1);
959 }
960
961 /*
962 * Compress mbuf chain m into the socket
963 * buffer sb following mbuf n. If n
964 * is null, the buffer is presumed empty.
965 */
966 void
967 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
968 {
969 int eor;
970 struct mbuf *o;
971
972 eor = 0;
973 while (m) {
974 eor |= m->m_flags & M_EOR;
975 if (m->m_len == 0 &&
976 (eor == 0 ||
977 (((o = m->m_next) || (o = n)) &&
978 o->m_type == m->m_type))) {
979 if (sb->sb_lastrecord == m)
980 sb->sb_lastrecord = m->m_next;
981 m = m_free(m);
982 continue;
983 }
984 if (n && (n->m_flags & M_EOR) == 0 &&
985 /* M_TRAILINGSPACE() checks buffer writeability */
986 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
987 m->m_len <= M_TRAILINGSPACE(n) &&
988 n->m_type == m->m_type) {
989 memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
990 (unsigned)m->m_len);
991 n->m_len += m->m_len;
992 sb->sb_cc += m->m_len;
993 m = m_free(m);
994 continue;
995 }
996 if (n)
997 n->m_next = m;
998 else
999 sb->sb_mb = m;
1000 sb->sb_mbtail = m;
1001 sballoc(sb, m);
1002 n = m;
1003 m->m_flags &= ~M_EOR;
1004 m = m->m_next;
1005 n->m_next = 0;
1006 }
1007 if (eor) {
1008 if (n)
1009 n->m_flags |= eor;
1010 else
1011 printf("semi-panic: sbcompress\n");
1012 }
1013 SBLASTMBUFCHK(sb, __func__);
1014 }
1015
1016 /*
1017 * Free all mbufs in a sockbuf.
1018 * Check that all resources are reclaimed.
1019 */
1020 void
1021 sbflush(struct sockbuf *sb)
1022 {
1023
1024 KASSERT((sb->sb_flags & SB_LOCK) == 0);
1025
1026 while (sb->sb_mbcnt)
1027 sbdrop(sb, (int)sb->sb_cc);
1028
1029 KASSERT(sb->sb_cc == 0);
1030 KASSERT(sb->sb_mb == NULL);
1031 KASSERT(sb->sb_mbtail == NULL);
1032 KASSERT(sb->sb_lastrecord == NULL);
1033 }
1034
1035 /*
1036 * Drop data from (the front of) a sockbuf.
1037 */
1038 void
1039 sbdrop(struct sockbuf *sb, int len)
1040 {
1041 struct mbuf *m, *mn, *next;
1042
1043 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1044 while (len > 0) {
1045 if (m == 0) {
1046 if (next == 0)
1047 panic("sbdrop");
1048 m = next;
1049 next = m->m_nextpkt;
1050 continue;
1051 }
1052 if (m->m_len > len) {
1053 m->m_len -= len;
1054 m->m_data += len;
1055 sb->sb_cc -= len;
1056 break;
1057 }
1058 len -= m->m_len;
1059 sbfree(sb, m);
1060 MFREE(m, mn);
1061 m = mn;
1062 }
1063 while (m && m->m_len == 0) {
1064 sbfree(sb, m);
1065 MFREE(m, mn);
1066 m = mn;
1067 }
1068 if (m) {
1069 sb->sb_mb = m;
1070 m->m_nextpkt = next;
1071 } else
1072 sb->sb_mb = next;
1073 /*
1074 * First part is an inline SB_EMPTY_FIXUP(). Second part
1075 * makes sure sb_lastrecord is up-to-date if we dropped
1076 * part of the last record.
1077 */
1078 m = sb->sb_mb;
1079 if (m == NULL) {
1080 sb->sb_mbtail = NULL;
1081 sb->sb_lastrecord = NULL;
1082 } else if (m->m_nextpkt == NULL)
1083 sb->sb_lastrecord = m;
1084 }
1085
1086 /*
1087 * Drop a record off the front of a sockbuf
1088 * and move the next record to the front.
1089 */
1090 void
1091 sbdroprecord(struct sockbuf *sb)
1092 {
1093 struct mbuf *m, *mn;
1094
1095 m = sb->sb_mb;
1096 if (m) {
1097 sb->sb_mb = m->m_nextpkt;
1098 do {
1099 sbfree(sb, m);
1100 MFREE(m, mn);
1101 } while ((m = mn) != NULL);
1102 }
1103 SB_EMPTY_FIXUP(sb);
1104 }
1105
1106 /*
1107 * Create a "control" mbuf containing the specified data
1108 * with the specified type for presentation on a socket buffer.
1109 */
1110 struct mbuf *
1111 sbcreatecontrol(void *p, int size, int type, int level)
1112 {
1113 struct cmsghdr *cp;
1114 struct mbuf *m;
1115
1116 if (CMSG_SPACE(size) > MCLBYTES) {
1117 printf("sbcreatecontrol: message too large %d\n", size);
1118 return NULL;
1119 }
1120
1121 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
1122 return ((struct mbuf *) NULL);
1123 if (CMSG_SPACE(size) > MLEN) {
1124 MCLGET(m, M_DONTWAIT);
1125 if ((m->m_flags & M_EXT) == 0) {
1126 m_free(m);
1127 return NULL;
1128 }
1129 }
1130 cp = mtod(m, struct cmsghdr *);
1131 memcpy(CMSG_DATA(cp), p, size);
1132 m->m_len = CMSG_SPACE(size);
1133 cp->cmsg_len = CMSG_LEN(size);
1134 cp->cmsg_level = level;
1135 cp->cmsg_type = type;
1136 return (m);
1137 }
1138