Home | History | Annotate | Line # | Download | only in kern
uipc_socket2.c revision 1.88
      1 /*	$NetBSD: uipc_socket2.c,v 1.88 2008/01/29 12:39:39 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.88 2008/01/29 12:39:39 yamt Exp $");
     36 
     37 #include "opt_mbuftrace.h"
     38 #include "opt_sb_max.h"
     39 
     40 #include <sys/param.h>
     41 #include <sys/systm.h>
     42 #include <sys/proc.h>
     43 #include <sys/file.h>
     44 #include <sys/buf.h>
     45 #include <sys/malloc.h>
     46 #include <sys/mbuf.h>
     47 #include <sys/protosw.h>
     48 #include <sys/poll.h>
     49 #include <sys/socket.h>
     50 #include <sys/socketvar.h>
     51 #include <sys/signalvar.h>
     52 #include <sys/kauth.h>
     53 
     54 /*
     55  * Primitive routines for operating on sockets and socket buffers
     56  */
     57 
     58 /* strings for sleep message: */
     59 const char	netcon[] = "netcon";
     60 const char	netcls[] = "netcls";
     61 const char	netio[] = "netio";
     62 const char	netlck[] = "netlck";
     63 
     64 u_long	sb_max = SB_MAX;	/* maximum socket buffer size */
     65 static u_long sb_max_adj;	/* adjusted sb_max */
     66 
     67 /*
     68  * Procedures to manipulate state flags of socket
     69  * and do appropriate wakeups.  Normal sequence from the
     70  * active (originating) side is that soisconnecting() is
     71  * called during processing of connect() call,
     72  * resulting in an eventual call to soisconnected() if/when the
     73  * connection is established.  When the connection is torn down
     74  * soisdisconnecting() is called during processing of disconnect() call,
     75  * and soisdisconnected() is called when the connection to the peer
     76  * is totally severed.  The semantics of these routines are such that
     77  * connectionless protocols can call soisconnected() and soisdisconnected()
     78  * only, bypassing the in-progress calls when setting up a ``connection''
     79  * takes no time.
     80  *
     81  * From the passive side, a socket is created with
     82  * two queues of sockets: so_q0 for connections in progress
     83  * and so_q for connections already made and awaiting user acceptance.
     84  * As a protocol is preparing incoming connections, it creates a socket
     85  * structure queued on so_q0 by calling sonewconn().  When the connection
     86  * is established, soisconnected() is called, and transfers the
     87  * socket structure to so_q, making it available to accept().
     88  *
     89  * If a socket is closed with sockets on either
     90  * so_q0 or so_q, these sockets are dropped.
     91  *
     92  * If higher level protocols are implemented in
     93  * the kernel, the wakeups done here will sometimes
     94  * cause software-interrupt process scheduling.
     95  */
     96 
     97 void
     98 soisconnecting(struct socket *so)
     99 {
    100 
    101 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
    102 	so->so_state |= SS_ISCONNECTING;
    103 }
    104 
    105 void
    106 soisconnected(struct socket *so)
    107 {
    108 	struct socket	*head;
    109 
    110 	head = so->so_head;
    111 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
    112 	so->so_state |= SS_ISCONNECTED;
    113 	if (head && soqremque(so, 0)) {
    114 		soqinsque(head, so, 1);
    115 		sorwakeup(head);
    116 		wakeup((void *)&head->so_timeo);
    117 	} else {
    118 		wakeup((void *)&so->so_timeo);
    119 		sorwakeup(so);
    120 		sowwakeup(so);
    121 	}
    122 }
    123 
    124 void
    125 soisdisconnecting(struct socket *so)
    126 {
    127 
    128 	so->so_state &= ~SS_ISCONNECTING;
    129 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
    130 	wakeup((void *)&so->so_timeo);
    131 	sowwakeup(so);
    132 	sorwakeup(so);
    133 }
    134 
    135 void
    136 soisdisconnected(struct socket *so)
    137 {
    138 
    139 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
    140 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
    141 	wakeup((void *)&so->so_timeo);
    142 	sowwakeup(so);
    143 	sorwakeup(so);
    144 }
    145 
    146 /*
    147  * When an attempt at a new connection is noted on a socket
    148  * which accepts connections, sonewconn is called.  If the
    149  * connection is possible (subject to space constraints, etc.)
    150  * then we allocate a new structure, propoerly linked into the
    151  * data structure of the original socket, and return this.
    152  * Connstatus may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
    153  */
    154 struct socket *
    155 sonewconn(struct socket *head, int connstatus)
    156 {
    157 	struct socket	*so;
    158 	int		soqueue;
    159 
    160 	soqueue = connstatus ? 1 : 0;
    161 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
    162 		return ((struct socket *)0);
    163 	so = pool_get(&socket_pool, PR_NOWAIT);
    164 	if (so == NULL)
    165 		return (NULL);
    166 	memset((void *)so, 0, sizeof(*so));
    167 	so->so_type = head->so_type;
    168 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
    169 	so->so_linger = head->so_linger;
    170 	so->so_state = head->so_state | SS_NOFDREF;
    171 	so->so_proto = head->so_proto;
    172 	so->so_timeo = head->so_timeo;
    173 	so->so_pgid = head->so_pgid;
    174 	so->so_send = head->so_send;
    175 	so->so_receive = head->so_receive;
    176 	so->so_uidinfo = head->so_uidinfo;
    177 #ifdef MBUFTRACE
    178 	so->so_mowner = head->so_mowner;
    179 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
    180 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
    181 #endif
    182 	selinit(&so->so_rcv.sb_sel);
    183 	selinit(&so->so_snd.sb_sel);
    184 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
    185 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
    186 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
    187 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
    188 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
    189 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
    190 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
    191 	soqinsque(head, so, soqueue);
    192 	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
    193 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
    194 	    (struct lwp *)0)) {
    195 		(void) soqremque(so, soqueue);
    196 		seldestroy(&so->so_rcv.sb_sel);
    197 		seldestroy(&so->so_snd.sb_sel);
    198 		pool_put(&socket_pool, so);
    199 		return (NULL);
    200 	}
    201 	if (connstatus) {
    202 		sorwakeup(head);
    203 		wakeup((void *)&head->so_timeo);
    204 		so->so_state |= connstatus;
    205 	}
    206 	return (so);
    207 }
    208 
    209 void
    210 soqinsque(struct socket *head, struct socket *so, int q)
    211 {
    212 
    213 #ifdef DIAGNOSTIC
    214 	if (so->so_onq != NULL)
    215 		panic("soqinsque");
    216 #endif
    217 
    218 	so->so_head = head;
    219 	if (q == 0) {
    220 		head->so_q0len++;
    221 		so->so_onq = &head->so_q0;
    222 	} else {
    223 		head->so_qlen++;
    224 		so->so_onq = &head->so_q;
    225 	}
    226 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
    227 }
    228 
    229 int
    230 soqremque(struct socket *so, int q)
    231 {
    232 	struct socket	*head;
    233 
    234 	head = so->so_head;
    235 	if (q == 0) {
    236 		if (so->so_onq != &head->so_q0)
    237 			return (0);
    238 		head->so_q0len--;
    239 	} else {
    240 		if (so->so_onq != &head->so_q)
    241 			return (0);
    242 		head->so_qlen--;
    243 	}
    244 	TAILQ_REMOVE(so->so_onq, so, so_qe);
    245 	so->so_onq = NULL;
    246 	so->so_head = NULL;
    247 	return (1);
    248 }
    249 
    250 /*
    251  * Socantsendmore indicates that no more data will be sent on the
    252  * socket; it would normally be applied to a socket when the user
    253  * informs the system that no more data is to be sent, by the protocol
    254  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
    255  * will be received, and will normally be applied to the socket by a
    256  * protocol when it detects that the peer will send no more data.
    257  * Data queued for reading in the socket may yet be read.
    258  */
    259 
    260 void
    261 socantsendmore(struct socket *so)
    262 {
    263 
    264 	so->so_state |= SS_CANTSENDMORE;
    265 	sowwakeup(so);
    266 }
    267 
    268 void
    269 socantrcvmore(struct socket *so)
    270 {
    271 
    272 	so->so_state |= SS_CANTRCVMORE;
    273 	sorwakeup(so);
    274 }
    275 
    276 /*
    277  * Wait for data to arrive at/drain from a socket buffer.
    278  */
    279 int
    280 sbwait(struct sockbuf *sb)
    281 {
    282 
    283 	sb->sb_flags |= SB_WAIT;
    284 	return (tsleep((void *)&sb->sb_cc,
    285 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
    286 	    sb->sb_timeo));
    287 }
    288 
    289 /*
    290  * Lock a sockbuf already known to be locked;
    291  * return any error returned from sleep (EINTR).
    292  */
    293 int
    294 sb_lock(struct sockbuf *sb)
    295 {
    296 	int	error;
    297 
    298 	while (sb->sb_flags & SB_LOCK) {
    299 		sb->sb_flags |= SB_WANT;
    300 		error = tsleep((void *)&sb->sb_flags,
    301 		    (sb->sb_flags & SB_NOINTR) ?  PSOCK : PSOCK|PCATCH,
    302 		    netlck, 0);
    303 		if (error)
    304 			return (error);
    305 	}
    306 	sb->sb_flags |= SB_LOCK;
    307 	return (0);
    308 }
    309 
    310 /*
    311  * Wakeup processes waiting on a socket buffer.
    312  * Do asynchronous notification via SIGIO
    313  * if the socket buffer has the SB_ASYNC flag set.
    314  */
    315 void
    316 sowakeup(struct socket *so, struct sockbuf *sb, int code)
    317 {
    318 	selnotify(&sb->sb_sel, 0);
    319 	sb->sb_flags &= ~SB_SEL;
    320 	if (sb->sb_flags & SB_WAIT) {
    321 		sb->sb_flags &= ~SB_WAIT;
    322 		wakeup((void *)&sb->sb_cc);
    323 	}
    324 	if (sb->sb_flags & SB_ASYNC) {
    325 		int band;
    326 		if (code == POLL_IN)
    327 			band = POLLIN|POLLRDNORM;
    328 		else
    329 			band = POLLOUT|POLLWRNORM;
    330 		fownsignal(so->so_pgid, SIGIO, code, band, so);
    331 	}
    332 	if (sb->sb_flags & SB_UPCALL)
    333 		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
    334 }
    335 
    336 /*
    337  * Socket buffer (struct sockbuf) utility routines.
    338  *
    339  * Each socket contains two socket buffers: one for sending data and
    340  * one for receiving data.  Each buffer contains a queue of mbufs,
    341  * information about the number of mbufs and amount of data in the
    342  * queue, and other fields allowing poll() statements and notification
    343  * on data availability to be implemented.
    344  *
    345  * Data stored in a socket buffer is maintained as a list of records.
    346  * Each record is a list of mbufs chained together with the m_next
    347  * field.  Records are chained together with the m_nextpkt field. The upper
    348  * level routine soreceive() expects the following conventions to be
    349  * observed when placing information in the receive buffer:
    350  *
    351  * 1. If the protocol requires each message be preceded by the sender's
    352  *    name, then a record containing that name must be present before
    353  *    any associated data (mbuf's must be of type MT_SONAME).
    354  * 2. If the protocol supports the exchange of ``access rights'' (really
    355  *    just additional data associated with the message), and there are
    356  *    ``rights'' to be received, then a record containing this data
    357  *    should be present (mbuf's must be of type MT_CONTROL).
    358  * 3. If a name or rights record exists, then it must be followed by
    359  *    a data record, perhaps of zero length.
    360  *
    361  * Before using a new socket structure it is first necessary to reserve
    362  * buffer space to the socket, by calling sbreserve().  This should commit
    363  * some of the available buffer space in the system buffer pool for the
    364  * socket (currently, it does nothing but enforce limits).  The space
    365  * should be released by calling sbrelease() when the socket is destroyed.
    366  */
    367 
    368 int
    369 sb_max_set(u_long new_sbmax)
    370 {
    371 	int s;
    372 
    373 	if (new_sbmax < (16 * 1024))
    374 		return (EINVAL);
    375 
    376 	s = splsoftnet();
    377 	sb_max = new_sbmax;
    378 	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
    379 	splx(s);
    380 
    381 	return (0);
    382 }
    383 
    384 int
    385 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
    386 {
    387 	/*
    388 	 * there's at least one application (a configure script of screen)
    389 	 * which expects a fifo is writable even if it has "some" bytes
    390 	 * in its buffer.
    391 	 * so we want to make sure (hiwat - lowat) >= (some bytes).
    392 	 *
    393 	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
    394 	 * we expect it's large enough for such applications.
    395 	 */
    396 	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
    397 	u_long  hiwat = lowat + PIPE_BUF;
    398 
    399 	if (sndcc < hiwat)
    400 		sndcc = hiwat;
    401 	if (sbreserve(&so->so_snd, sndcc, so) == 0)
    402 		goto bad;
    403 	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
    404 		goto bad2;
    405 	if (so->so_rcv.sb_lowat == 0)
    406 		so->so_rcv.sb_lowat = 1;
    407 	if (so->so_snd.sb_lowat == 0)
    408 		so->so_snd.sb_lowat = lowat;
    409 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
    410 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
    411 	return (0);
    412  bad2:
    413 	sbrelease(&so->so_snd, so);
    414  bad:
    415 	return (ENOBUFS);
    416 }
    417 
    418 /*
    419  * Allot mbufs to a sockbuf.
    420  * Attempt to scale mbmax so that mbcnt doesn't become limiting
    421  * if buffering efficiency is near the normal case.
    422  */
    423 int
    424 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
    425 {
    426 	struct lwp *l = curlwp; /* XXX */
    427 	rlim_t maxcc;
    428 	struct uidinfo *uidinfo;
    429 
    430 	KDASSERT(sb_max_adj != 0);
    431 	if (cc == 0 || cc > sb_max_adj)
    432 		return (0);
    433 	if (so) {
    434 		if (kauth_cred_geteuid(l->l_cred) == so->so_uidinfo->ui_uid)
    435 			maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
    436 		else
    437 			maxcc = RLIM_INFINITY;
    438 		uidinfo = so->so_uidinfo;
    439 	} else {
    440 		uidinfo = uid_find(0);	/* XXX: nothing better */
    441 		maxcc = RLIM_INFINITY;
    442 	}
    443 	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
    444 		return 0;
    445 	sb->sb_mbmax = min(cc * 2, sb_max);
    446 	if (sb->sb_lowat > sb->sb_hiwat)
    447 		sb->sb_lowat = sb->sb_hiwat;
    448 	return (1);
    449 }
    450 
    451 /*
    452  * Free mbufs held by a socket, and reserved mbuf space.
    453  */
    454 void
    455 sbrelease(struct sockbuf *sb, struct socket *so)
    456 {
    457 
    458 	sbflush(sb);
    459 	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
    460 	sb->sb_mbmax = 0;
    461 }
    462 
    463 /*
    464  * Routines to add and remove
    465  * data from an mbuf queue.
    466  *
    467  * The routines sbappend() or sbappendrecord() are normally called to
    468  * append new mbufs to a socket buffer, after checking that adequate
    469  * space is available, comparing the function sbspace() with the amount
    470  * of data to be added.  sbappendrecord() differs from sbappend() in
    471  * that data supplied is treated as the beginning of a new record.
    472  * To place a sender's address, optional access rights, and data in a
    473  * socket receive buffer, sbappendaddr() should be used.  To place
    474  * access rights and data in a socket receive buffer, sbappendrights()
    475  * should be used.  In either case, the new data begins a new record.
    476  * Note that unlike sbappend() and sbappendrecord(), these routines check
    477  * for the caller that there will be enough space to store the data.
    478  * Each fails if there is not enough space, or if it cannot find mbufs
    479  * to store additional information in.
    480  *
    481  * Reliable protocols may use the socket send buffer to hold data
    482  * awaiting acknowledgement.  Data is normally copied from a socket
    483  * send buffer in a protocol with m_copy for output to a peer,
    484  * and then removing the data from the socket buffer with sbdrop()
    485  * or sbdroprecord() when the data is acknowledged by the peer.
    486  */
    487 
    488 #ifdef SOCKBUF_DEBUG
    489 void
    490 sblastrecordchk(struct sockbuf *sb, const char *where)
    491 {
    492 	struct mbuf *m = sb->sb_mb;
    493 
    494 	while (m && m->m_nextpkt)
    495 		m = m->m_nextpkt;
    496 
    497 	if (m != sb->sb_lastrecord) {
    498 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
    499 		    sb->sb_mb, sb->sb_lastrecord, m);
    500 		printf("packet chain:\n");
    501 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
    502 			printf("\t%p\n", m);
    503 		panic("sblastrecordchk from %s", where);
    504 	}
    505 }
    506 
    507 void
    508 sblastmbufchk(struct sockbuf *sb, const char *where)
    509 {
    510 	struct mbuf *m = sb->sb_mb;
    511 	struct mbuf *n;
    512 
    513 	while (m && m->m_nextpkt)
    514 		m = m->m_nextpkt;
    515 
    516 	while (m && m->m_next)
    517 		m = m->m_next;
    518 
    519 	if (m != sb->sb_mbtail) {
    520 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
    521 		    sb->sb_mb, sb->sb_mbtail, m);
    522 		printf("packet tree:\n");
    523 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
    524 			printf("\t");
    525 			for (n = m; n != NULL; n = n->m_next)
    526 				printf("%p ", n);
    527 			printf("\n");
    528 		}
    529 		panic("sblastmbufchk from %s", where);
    530 	}
    531 }
    532 #endif /* SOCKBUF_DEBUG */
    533 
    534 /*
    535  * Link a chain of records onto a socket buffer
    536  */
    537 #define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
    538 do {									\
    539 	if ((sb)->sb_lastrecord != NULL)				\
    540 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
    541 	else								\
    542 		(sb)->sb_mb = (m0);					\
    543 	(sb)->sb_lastrecord = (mlast);					\
    544 } while (/*CONSTCOND*/0)
    545 
    546 
    547 #define	SBLINKRECORD(sb, m0)						\
    548     SBLINKRECORDCHAIN(sb, m0, m0)
    549 
    550 /*
    551  * Append mbuf chain m to the last record in the
    552  * socket buffer sb.  The additional space associated
    553  * the mbuf chain is recorded in sb.  Empty mbufs are
    554  * discarded and mbufs are compacted where possible.
    555  */
    556 void
    557 sbappend(struct sockbuf *sb, struct mbuf *m)
    558 {
    559 	struct mbuf	*n;
    560 
    561 	if (m == 0)
    562 		return;
    563 
    564 #ifdef MBUFTRACE
    565 	m_claimm(m, sb->sb_mowner);
    566 #endif
    567 
    568 	SBLASTRECORDCHK(sb, "sbappend 1");
    569 
    570 	if ((n = sb->sb_lastrecord) != NULL) {
    571 		/*
    572 		 * XXX Would like to simply use sb_mbtail here, but
    573 		 * XXX I need to verify that I won't miss an EOR that
    574 		 * XXX way.
    575 		 */
    576 		do {
    577 			if (n->m_flags & M_EOR) {
    578 				sbappendrecord(sb, m); /* XXXXXX!!!! */
    579 				return;
    580 			}
    581 		} while (n->m_next && (n = n->m_next));
    582 	} else {
    583 		/*
    584 		 * If this is the first record in the socket buffer, it's
    585 		 * also the last record.
    586 		 */
    587 		sb->sb_lastrecord = m;
    588 	}
    589 	sbcompress(sb, m, n);
    590 	SBLASTRECORDCHK(sb, "sbappend 2");
    591 }
    592 
    593 /*
    594  * This version of sbappend() should only be used when the caller
    595  * absolutely knows that there will never be more than one record
    596  * in the socket buffer, that is, a stream protocol (such as TCP).
    597  */
    598 void
    599 sbappendstream(struct sockbuf *sb, struct mbuf *m)
    600 {
    601 
    602 	KDASSERT(m->m_nextpkt == NULL);
    603 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
    604 
    605 	SBLASTMBUFCHK(sb, __func__);
    606 
    607 #ifdef MBUFTRACE
    608 	m_claimm(m, sb->sb_mowner);
    609 #endif
    610 
    611 	sbcompress(sb, m, sb->sb_mbtail);
    612 
    613 	sb->sb_lastrecord = sb->sb_mb;
    614 	SBLASTRECORDCHK(sb, __func__);
    615 }
    616 
    617 #ifdef SOCKBUF_DEBUG
    618 void
    619 sbcheck(struct sockbuf *sb)
    620 {
    621 	struct mbuf	*m;
    622 	u_long		len, mbcnt;
    623 
    624 	len = 0;
    625 	mbcnt = 0;
    626 	for (m = sb->sb_mb; m; m = m->m_next) {
    627 		len += m->m_len;
    628 		mbcnt += MSIZE;
    629 		if (m->m_flags & M_EXT)
    630 			mbcnt += m->m_ext.ext_size;
    631 		if (m->m_nextpkt)
    632 			panic("sbcheck nextpkt");
    633 	}
    634 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
    635 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
    636 		    mbcnt, sb->sb_mbcnt);
    637 		panic("sbcheck");
    638 	}
    639 }
    640 #endif
    641 
    642 /*
    643  * As above, except the mbuf chain
    644  * begins a new record.
    645  */
    646 void
    647 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
    648 {
    649 	struct mbuf	*m;
    650 
    651 	if (m0 == 0)
    652 		return;
    653 
    654 #ifdef MBUFTRACE
    655 	m_claimm(m0, sb->sb_mowner);
    656 #endif
    657 	/*
    658 	 * Put the first mbuf on the queue.
    659 	 * Note this permits zero length records.
    660 	 */
    661 	sballoc(sb, m0);
    662 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
    663 	SBLINKRECORD(sb, m0);
    664 	m = m0->m_next;
    665 	m0->m_next = 0;
    666 	if (m && (m0->m_flags & M_EOR)) {
    667 		m0->m_flags &= ~M_EOR;
    668 		m->m_flags |= M_EOR;
    669 	}
    670 	sbcompress(sb, m, m0);
    671 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
    672 }
    673 
    674 /*
    675  * As above except that OOB data
    676  * is inserted at the beginning of the sockbuf,
    677  * but after any other OOB data.
    678  */
    679 void
    680 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
    681 {
    682 	struct mbuf	*m, **mp;
    683 
    684 	if (m0 == 0)
    685 		return;
    686 
    687 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
    688 
    689 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
    690 	    again:
    691 		switch (m->m_type) {
    692 
    693 		case MT_OOBDATA:
    694 			continue;		/* WANT next train */
    695 
    696 		case MT_CONTROL:
    697 			if ((m = m->m_next) != NULL)
    698 				goto again;	/* inspect THIS train further */
    699 		}
    700 		break;
    701 	}
    702 	/*
    703 	 * Put the first mbuf on the queue.
    704 	 * Note this permits zero length records.
    705 	 */
    706 	sballoc(sb, m0);
    707 	m0->m_nextpkt = *mp;
    708 	if (*mp == NULL) {
    709 		/* m0 is actually the new tail */
    710 		sb->sb_lastrecord = m0;
    711 	}
    712 	*mp = m0;
    713 	m = m0->m_next;
    714 	m0->m_next = 0;
    715 	if (m && (m0->m_flags & M_EOR)) {
    716 		m0->m_flags &= ~M_EOR;
    717 		m->m_flags |= M_EOR;
    718 	}
    719 	sbcompress(sb, m, m0);
    720 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
    721 }
    722 
    723 /*
    724  * Append address and data, and optionally, control (ancillary) data
    725  * to the receive queue of a socket.  If present,
    726  * m0 must include a packet header with total length.
    727  * Returns 0 if no space in sockbuf or insufficient mbufs.
    728  */
    729 int
    730 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
    731 	struct mbuf *control)
    732 {
    733 	struct mbuf	*m, *n, *nlast;
    734 	int		space, len;
    735 
    736 	space = asa->sa_len;
    737 
    738 	if (m0 != NULL) {
    739 		if ((m0->m_flags & M_PKTHDR) == 0)
    740 			panic("sbappendaddr");
    741 		space += m0->m_pkthdr.len;
    742 #ifdef MBUFTRACE
    743 		m_claimm(m0, sb->sb_mowner);
    744 #endif
    745 	}
    746 	for (n = control; n; n = n->m_next) {
    747 		space += n->m_len;
    748 		MCLAIM(n, sb->sb_mowner);
    749 		if (n->m_next == 0)	/* keep pointer to last control buf */
    750 			break;
    751 	}
    752 	if (space > sbspace(sb))
    753 		return (0);
    754 	MGET(m, M_DONTWAIT, MT_SONAME);
    755 	if (m == 0)
    756 		return (0);
    757 	MCLAIM(m, sb->sb_mowner);
    758 	/*
    759 	 * XXX avoid 'comparison always true' warning which isn't easily
    760 	 * avoided.
    761 	 */
    762 	len = asa->sa_len;
    763 	if (len > MLEN) {
    764 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
    765 		if ((m->m_flags & M_EXT) == 0) {
    766 			m_free(m);
    767 			return (0);
    768 		}
    769 	}
    770 	m->m_len = asa->sa_len;
    771 	memcpy(mtod(m, void *), asa, asa->sa_len);
    772 	if (n)
    773 		n->m_next = m0;		/* concatenate data to control */
    774 	else
    775 		control = m0;
    776 	m->m_next = control;
    777 
    778 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
    779 
    780 	for (n = m; n->m_next != NULL; n = n->m_next)
    781 		sballoc(sb, n);
    782 	sballoc(sb, n);
    783 	nlast = n;
    784 	SBLINKRECORD(sb, m);
    785 
    786 	sb->sb_mbtail = nlast;
    787 	SBLASTMBUFCHK(sb, "sbappendaddr");
    788 
    789 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
    790 
    791 	return (1);
    792 }
    793 
    794 /*
    795  * Helper for sbappendchainaddr: prepend a struct sockaddr* to
    796  * an mbuf chain.
    797  */
    798 static inline struct mbuf *
    799 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
    800 		   const struct sockaddr *asa)
    801 {
    802 	struct mbuf *m;
    803 	const int salen = asa->sa_len;
    804 
    805 	/* only the first in each chain need be a pkthdr */
    806 	MGETHDR(m, M_DONTWAIT, MT_SONAME);
    807 	if (m == 0)
    808 		return (0);
    809 	MCLAIM(m, sb->sb_mowner);
    810 #ifdef notyet
    811 	if (salen > MHLEN) {
    812 		MEXTMALLOC(m, salen, M_NOWAIT);
    813 		if ((m->m_flags & M_EXT) == 0) {
    814 			m_free(m);
    815 			return (0);
    816 		}
    817 	}
    818 #else
    819 	KASSERT(salen <= MHLEN);
    820 #endif
    821 	m->m_len = salen;
    822 	memcpy(mtod(m, void *), asa, salen);
    823 	m->m_next = m0;
    824 	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
    825 
    826 	return m;
    827 }
    828 
    829 int
    830 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
    831 		  struct mbuf *m0, int sbprio)
    832 {
    833 	int space;
    834 	struct mbuf *m, *n, *n0, *nlast;
    835 	int error;
    836 
    837 	/*
    838 	 * XXX sbprio reserved for encoding priority of this* request:
    839 	 *  SB_PRIO_NONE --> honour normal sb limits
    840 	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
    841 	 *	take whole chain. Intended for large requests
    842 	 *      that should be delivered atomically (all, or none).
    843 	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
    844 	 *       over normal socket limits, for messages indicating
    845 	 *       buffer overflow in earlier normal/lower-priority messages
    846 	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
    847 	 *       Intended for  kernel-generated messages only.
    848 	 *        Up to generator to avoid total mbuf resource exhaustion.
    849 	 */
    850 	(void)sbprio;
    851 
    852 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
    853 		panic("sbappendaddrchain");
    854 
    855 	space = sbspace(sb);
    856 
    857 #ifdef notyet
    858 	/*
    859 	 * Enforce SB_PRIO_* limits as described above.
    860 	 */
    861 #endif
    862 
    863 	n0 = NULL;
    864 	nlast = NULL;
    865 	for (m = m0; m; m = m->m_nextpkt) {
    866 		struct mbuf *np;
    867 
    868 #ifdef MBUFTRACE
    869 		m_claimm(m, sb->sb_mowner);
    870 #endif
    871 
    872 		/* Prepend sockaddr to this record (m) of input chain m0 */
    873 	  	n = m_prepend_sockaddr(sb, m, asa);
    874 		if (n == NULL) {
    875 			error = ENOBUFS;
    876 			goto bad;
    877 		}
    878 
    879 		/* Append record (asa+m) to end of new chain n0 */
    880 		if (n0 == NULL) {
    881 			n0 = n;
    882 		} else {
    883 			nlast->m_nextpkt = n;
    884 		}
    885 		/* Keep track of last record on new chain */
    886 		nlast = n;
    887 
    888 		for (np = n; np; np = np->m_next)
    889 			sballoc(sb, np);
    890 	}
    891 
    892 	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
    893 
    894 	/* Drop the entire chain of (asa+m) records onto the socket */
    895 	SBLINKRECORDCHAIN(sb, n0, nlast);
    896 
    897 	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
    898 
    899 	for (m = nlast; m->m_next; m = m->m_next)
    900 		;
    901 	sb->sb_mbtail = m;
    902 	SBLASTMBUFCHK(sb, "sbappendaddrchain");
    903 
    904 	return (1);
    905 
    906 bad:
    907 	/*
    908 	 * On error, free the prepended addreseses. For consistency
    909 	 * with sbappendaddr(), leave it to our caller to free
    910 	 * the input record chain passed to us as m0.
    911 	 */
    912 	while ((n = n0) != NULL) {
    913 	  	struct mbuf *np;
    914 
    915 		/* Undo the sballoc() of this record */
    916 		for (np = n; np; np = np->m_next)
    917 			sbfree(sb, np);
    918 
    919 		n0 = n->m_nextpkt;	/* iterate at next prepended address */
    920 		MFREE(n, np);		/* free prepended address (not data) */
    921 	}
    922 	return 0;
    923 }
    924 
    925 
    926 int
    927 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
    928 {
    929 	struct mbuf	*m, *mlast, *n;
    930 	int		space;
    931 
    932 	space = 0;
    933 	if (control == 0)
    934 		panic("sbappendcontrol");
    935 	for (m = control; ; m = m->m_next) {
    936 		space += m->m_len;
    937 		MCLAIM(m, sb->sb_mowner);
    938 		if (m->m_next == 0)
    939 			break;
    940 	}
    941 	n = m;			/* save pointer to last control buffer */
    942 	for (m = m0; m; m = m->m_next) {
    943 		MCLAIM(m, sb->sb_mowner);
    944 		space += m->m_len;
    945 	}
    946 	if (space > sbspace(sb))
    947 		return (0);
    948 	n->m_next = m0;			/* concatenate data to control */
    949 
    950 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
    951 
    952 	for (m = control; m->m_next != NULL; m = m->m_next)
    953 		sballoc(sb, m);
    954 	sballoc(sb, m);
    955 	mlast = m;
    956 	SBLINKRECORD(sb, control);
    957 
    958 	sb->sb_mbtail = mlast;
    959 	SBLASTMBUFCHK(sb, "sbappendcontrol");
    960 
    961 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
    962 
    963 	return (1);
    964 }
    965 
    966 /*
    967  * Compress mbuf chain m into the socket
    968  * buffer sb following mbuf n.  If n
    969  * is null, the buffer is presumed empty.
    970  */
    971 void
    972 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
    973 {
    974 	int		eor;
    975 	struct mbuf	*o;
    976 
    977 	eor = 0;
    978 	while (m) {
    979 		eor |= m->m_flags & M_EOR;
    980 		if (m->m_len == 0 &&
    981 		    (eor == 0 ||
    982 		     (((o = m->m_next) || (o = n)) &&
    983 		      o->m_type == m->m_type))) {
    984 			if (sb->sb_lastrecord == m)
    985 				sb->sb_lastrecord = m->m_next;
    986 			m = m_free(m);
    987 			continue;
    988 		}
    989 		if (n && (n->m_flags & M_EOR) == 0 &&
    990 		    /* M_TRAILINGSPACE() checks buffer writeability */
    991 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
    992 		    m->m_len <= M_TRAILINGSPACE(n) &&
    993 		    n->m_type == m->m_type) {
    994 			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
    995 			    (unsigned)m->m_len);
    996 			n->m_len += m->m_len;
    997 			sb->sb_cc += m->m_len;
    998 			m = m_free(m);
    999 			continue;
   1000 		}
   1001 		if (n)
   1002 			n->m_next = m;
   1003 		else
   1004 			sb->sb_mb = m;
   1005 		sb->sb_mbtail = m;
   1006 		sballoc(sb, m);
   1007 		n = m;
   1008 		m->m_flags &= ~M_EOR;
   1009 		m = m->m_next;
   1010 		n->m_next = 0;
   1011 	}
   1012 	if (eor) {
   1013 		if (n)
   1014 			n->m_flags |= eor;
   1015 		else
   1016 			printf("semi-panic: sbcompress\n");
   1017 	}
   1018 	SBLASTMBUFCHK(sb, __func__);
   1019 }
   1020 
   1021 /*
   1022  * Free all mbufs in a sockbuf.
   1023  * Check that all resources are reclaimed.
   1024  */
   1025 void
   1026 sbflush(struct sockbuf *sb)
   1027 {
   1028 
   1029 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
   1030 
   1031 	while (sb->sb_mbcnt)
   1032 		sbdrop(sb, (int)sb->sb_cc);
   1033 
   1034 	KASSERT(sb->sb_cc == 0);
   1035 	KASSERT(sb->sb_mb == NULL);
   1036 	KASSERT(sb->sb_mbtail == NULL);
   1037 	KASSERT(sb->sb_lastrecord == NULL);
   1038 }
   1039 
   1040 /*
   1041  * Drop data from (the front of) a sockbuf.
   1042  */
   1043 void
   1044 sbdrop(struct sockbuf *sb, int len)
   1045 {
   1046 	struct mbuf	*m, *mn, *next;
   1047 
   1048 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
   1049 	while (len > 0) {
   1050 		if (m == 0) {
   1051 			if (next == 0)
   1052 				panic("sbdrop");
   1053 			m = next;
   1054 			next = m->m_nextpkt;
   1055 			continue;
   1056 		}
   1057 		if (m->m_len > len) {
   1058 			m->m_len -= len;
   1059 			m->m_data += len;
   1060 			sb->sb_cc -= len;
   1061 			break;
   1062 		}
   1063 		len -= m->m_len;
   1064 		sbfree(sb, m);
   1065 		MFREE(m, mn);
   1066 		m = mn;
   1067 	}
   1068 	while (m && m->m_len == 0) {
   1069 		sbfree(sb, m);
   1070 		MFREE(m, mn);
   1071 		m = mn;
   1072 	}
   1073 	if (m) {
   1074 		sb->sb_mb = m;
   1075 		m->m_nextpkt = next;
   1076 	} else
   1077 		sb->sb_mb = next;
   1078 	/*
   1079 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
   1080 	 * makes sure sb_lastrecord is up-to-date if we dropped
   1081 	 * part of the last record.
   1082 	 */
   1083 	m = sb->sb_mb;
   1084 	if (m == NULL) {
   1085 		sb->sb_mbtail = NULL;
   1086 		sb->sb_lastrecord = NULL;
   1087 	} else if (m->m_nextpkt == NULL)
   1088 		sb->sb_lastrecord = m;
   1089 }
   1090 
   1091 /*
   1092  * Drop a record off the front of a sockbuf
   1093  * and move the next record to the front.
   1094  */
   1095 void
   1096 sbdroprecord(struct sockbuf *sb)
   1097 {
   1098 	struct mbuf	*m, *mn;
   1099 
   1100 	m = sb->sb_mb;
   1101 	if (m) {
   1102 		sb->sb_mb = m->m_nextpkt;
   1103 		do {
   1104 			sbfree(sb, m);
   1105 			MFREE(m, mn);
   1106 		} while ((m = mn) != NULL);
   1107 	}
   1108 	SB_EMPTY_FIXUP(sb);
   1109 }
   1110 
   1111 /*
   1112  * Create a "control" mbuf containing the specified data
   1113  * with the specified type for presentation on a socket buffer.
   1114  */
   1115 struct mbuf *
   1116 sbcreatecontrol(void *p, int size, int type, int level)
   1117 {
   1118 	struct cmsghdr	*cp;
   1119 	struct mbuf	*m;
   1120 
   1121 	if (CMSG_SPACE(size) > MCLBYTES) {
   1122 		printf("sbcreatecontrol: message too large %d\n", size);
   1123 		return NULL;
   1124 	}
   1125 
   1126 	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
   1127 		return ((struct mbuf *) NULL);
   1128 	if (CMSG_SPACE(size) > MLEN) {
   1129 		MCLGET(m, M_DONTWAIT);
   1130 		if ((m->m_flags & M_EXT) == 0) {
   1131 			m_free(m);
   1132 			return NULL;
   1133 		}
   1134 	}
   1135 	cp = mtod(m, struct cmsghdr *);
   1136 	memcpy(CMSG_DATA(cp), p, size);
   1137 	m->m_len = CMSG_SPACE(size);
   1138 	cp->cmsg_len = CMSG_LEN(size);
   1139 	cp->cmsg_level = level;
   1140 	cp->cmsg_type = type;
   1141 	return (m);
   1142 }
   1143