uipc_socket2.c revision 1.88 1 /* $NetBSD: uipc_socket2.c,v 1.88 2008/01/29 12:39:39 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.88 2008/01/29 12:39:39 yamt Exp $");
36
37 #include "opt_mbuftrace.h"
38 #include "opt_sb_max.h"
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/file.h>
44 #include <sys/buf.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/protosw.h>
48 #include <sys/poll.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/signalvar.h>
52 #include <sys/kauth.h>
53
54 /*
55 * Primitive routines for operating on sockets and socket buffers
56 */
57
58 /* strings for sleep message: */
59 const char netcon[] = "netcon";
60 const char netcls[] = "netcls";
61 const char netio[] = "netio";
62 const char netlck[] = "netlck";
63
64 u_long sb_max = SB_MAX; /* maximum socket buffer size */
65 static u_long sb_max_adj; /* adjusted sb_max */
66
67 /*
68 * Procedures to manipulate state flags of socket
69 * and do appropriate wakeups. Normal sequence from the
70 * active (originating) side is that soisconnecting() is
71 * called during processing of connect() call,
72 * resulting in an eventual call to soisconnected() if/when the
73 * connection is established. When the connection is torn down
74 * soisdisconnecting() is called during processing of disconnect() call,
75 * and soisdisconnected() is called when the connection to the peer
76 * is totally severed. The semantics of these routines are such that
77 * connectionless protocols can call soisconnected() and soisdisconnected()
78 * only, bypassing the in-progress calls when setting up a ``connection''
79 * takes no time.
80 *
81 * From the passive side, a socket is created with
82 * two queues of sockets: so_q0 for connections in progress
83 * and so_q for connections already made and awaiting user acceptance.
84 * As a protocol is preparing incoming connections, it creates a socket
85 * structure queued on so_q0 by calling sonewconn(). When the connection
86 * is established, soisconnected() is called, and transfers the
87 * socket structure to so_q, making it available to accept().
88 *
89 * If a socket is closed with sockets on either
90 * so_q0 or so_q, these sockets are dropped.
91 *
92 * If higher level protocols are implemented in
93 * the kernel, the wakeups done here will sometimes
94 * cause software-interrupt process scheduling.
95 */
96
97 void
98 soisconnecting(struct socket *so)
99 {
100
101 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
102 so->so_state |= SS_ISCONNECTING;
103 }
104
105 void
106 soisconnected(struct socket *so)
107 {
108 struct socket *head;
109
110 head = so->so_head;
111 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
112 so->so_state |= SS_ISCONNECTED;
113 if (head && soqremque(so, 0)) {
114 soqinsque(head, so, 1);
115 sorwakeup(head);
116 wakeup((void *)&head->so_timeo);
117 } else {
118 wakeup((void *)&so->so_timeo);
119 sorwakeup(so);
120 sowwakeup(so);
121 }
122 }
123
124 void
125 soisdisconnecting(struct socket *so)
126 {
127
128 so->so_state &= ~SS_ISCONNECTING;
129 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
130 wakeup((void *)&so->so_timeo);
131 sowwakeup(so);
132 sorwakeup(so);
133 }
134
135 void
136 soisdisconnected(struct socket *so)
137 {
138
139 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
140 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
141 wakeup((void *)&so->so_timeo);
142 sowwakeup(so);
143 sorwakeup(so);
144 }
145
146 /*
147 * When an attempt at a new connection is noted on a socket
148 * which accepts connections, sonewconn is called. If the
149 * connection is possible (subject to space constraints, etc.)
150 * then we allocate a new structure, propoerly linked into the
151 * data structure of the original socket, and return this.
152 * Connstatus may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
153 */
154 struct socket *
155 sonewconn(struct socket *head, int connstatus)
156 {
157 struct socket *so;
158 int soqueue;
159
160 soqueue = connstatus ? 1 : 0;
161 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
162 return ((struct socket *)0);
163 so = pool_get(&socket_pool, PR_NOWAIT);
164 if (so == NULL)
165 return (NULL);
166 memset((void *)so, 0, sizeof(*so));
167 so->so_type = head->so_type;
168 so->so_options = head->so_options &~ SO_ACCEPTCONN;
169 so->so_linger = head->so_linger;
170 so->so_state = head->so_state | SS_NOFDREF;
171 so->so_proto = head->so_proto;
172 so->so_timeo = head->so_timeo;
173 so->so_pgid = head->so_pgid;
174 so->so_send = head->so_send;
175 so->so_receive = head->so_receive;
176 so->so_uidinfo = head->so_uidinfo;
177 #ifdef MBUFTRACE
178 so->so_mowner = head->so_mowner;
179 so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
180 so->so_snd.sb_mowner = head->so_snd.sb_mowner;
181 #endif
182 selinit(&so->so_rcv.sb_sel);
183 selinit(&so->so_snd.sb_sel);
184 (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
185 so->so_snd.sb_lowat = head->so_snd.sb_lowat;
186 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
187 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
188 so->so_snd.sb_timeo = head->so_snd.sb_timeo;
189 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
190 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
191 soqinsque(head, so, soqueue);
192 if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
193 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
194 (struct lwp *)0)) {
195 (void) soqremque(so, soqueue);
196 seldestroy(&so->so_rcv.sb_sel);
197 seldestroy(&so->so_snd.sb_sel);
198 pool_put(&socket_pool, so);
199 return (NULL);
200 }
201 if (connstatus) {
202 sorwakeup(head);
203 wakeup((void *)&head->so_timeo);
204 so->so_state |= connstatus;
205 }
206 return (so);
207 }
208
209 void
210 soqinsque(struct socket *head, struct socket *so, int q)
211 {
212
213 #ifdef DIAGNOSTIC
214 if (so->so_onq != NULL)
215 panic("soqinsque");
216 #endif
217
218 so->so_head = head;
219 if (q == 0) {
220 head->so_q0len++;
221 so->so_onq = &head->so_q0;
222 } else {
223 head->so_qlen++;
224 so->so_onq = &head->so_q;
225 }
226 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
227 }
228
229 int
230 soqremque(struct socket *so, int q)
231 {
232 struct socket *head;
233
234 head = so->so_head;
235 if (q == 0) {
236 if (so->so_onq != &head->so_q0)
237 return (0);
238 head->so_q0len--;
239 } else {
240 if (so->so_onq != &head->so_q)
241 return (0);
242 head->so_qlen--;
243 }
244 TAILQ_REMOVE(so->so_onq, so, so_qe);
245 so->so_onq = NULL;
246 so->so_head = NULL;
247 return (1);
248 }
249
250 /*
251 * Socantsendmore indicates that no more data will be sent on the
252 * socket; it would normally be applied to a socket when the user
253 * informs the system that no more data is to be sent, by the protocol
254 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
255 * will be received, and will normally be applied to the socket by a
256 * protocol when it detects that the peer will send no more data.
257 * Data queued for reading in the socket may yet be read.
258 */
259
260 void
261 socantsendmore(struct socket *so)
262 {
263
264 so->so_state |= SS_CANTSENDMORE;
265 sowwakeup(so);
266 }
267
268 void
269 socantrcvmore(struct socket *so)
270 {
271
272 so->so_state |= SS_CANTRCVMORE;
273 sorwakeup(so);
274 }
275
276 /*
277 * Wait for data to arrive at/drain from a socket buffer.
278 */
279 int
280 sbwait(struct sockbuf *sb)
281 {
282
283 sb->sb_flags |= SB_WAIT;
284 return (tsleep((void *)&sb->sb_cc,
285 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
286 sb->sb_timeo));
287 }
288
289 /*
290 * Lock a sockbuf already known to be locked;
291 * return any error returned from sleep (EINTR).
292 */
293 int
294 sb_lock(struct sockbuf *sb)
295 {
296 int error;
297
298 while (sb->sb_flags & SB_LOCK) {
299 sb->sb_flags |= SB_WANT;
300 error = tsleep((void *)&sb->sb_flags,
301 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
302 netlck, 0);
303 if (error)
304 return (error);
305 }
306 sb->sb_flags |= SB_LOCK;
307 return (0);
308 }
309
310 /*
311 * Wakeup processes waiting on a socket buffer.
312 * Do asynchronous notification via SIGIO
313 * if the socket buffer has the SB_ASYNC flag set.
314 */
315 void
316 sowakeup(struct socket *so, struct sockbuf *sb, int code)
317 {
318 selnotify(&sb->sb_sel, 0);
319 sb->sb_flags &= ~SB_SEL;
320 if (sb->sb_flags & SB_WAIT) {
321 sb->sb_flags &= ~SB_WAIT;
322 wakeup((void *)&sb->sb_cc);
323 }
324 if (sb->sb_flags & SB_ASYNC) {
325 int band;
326 if (code == POLL_IN)
327 band = POLLIN|POLLRDNORM;
328 else
329 band = POLLOUT|POLLWRNORM;
330 fownsignal(so->so_pgid, SIGIO, code, band, so);
331 }
332 if (sb->sb_flags & SB_UPCALL)
333 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
334 }
335
336 /*
337 * Socket buffer (struct sockbuf) utility routines.
338 *
339 * Each socket contains two socket buffers: one for sending data and
340 * one for receiving data. Each buffer contains a queue of mbufs,
341 * information about the number of mbufs and amount of data in the
342 * queue, and other fields allowing poll() statements and notification
343 * on data availability to be implemented.
344 *
345 * Data stored in a socket buffer is maintained as a list of records.
346 * Each record is a list of mbufs chained together with the m_next
347 * field. Records are chained together with the m_nextpkt field. The upper
348 * level routine soreceive() expects the following conventions to be
349 * observed when placing information in the receive buffer:
350 *
351 * 1. If the protocol requires each message be preceded by the sender's
352 * name, then a record containing that name must be present before
353 * any associated data (mbuf's must be of type MT_SONAME).
354 * 2. If the protocol supports the exchange of ``access rights'' (really
355 * just additional data associated with the message), and there are
356 * ``rights'' to be received, then a record containing this data
357 * should be present (mbuf's must be of type MT_CONTROL).
358 * 3. If a name or rights record exists, then it must be followed by
359 * a data record, perhaps of zero length.
360 *
361 * Before using a new socket structure it is first necessary to reserve
362 * buffer space to the socket, by calling sbreserve(). This should commit
363 * some of the available buffer space in the system buffer pool for the
364 * socket (currently, it does nothing but enforce limits). The space
365 * should be released by calling sbrelease() when the socket is destroyed.
366 */
367
368 int
369 sb_max_set(u_long new_sbmax)
370 {
371 int s;
372
373 if (new_sbmax < (16 * 1024))
374 return (EINVAL);
375
376 s = splsoftnet();
377 sb_max = new_sbmax;
378 sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
379 splx(s);
380
381 return (0);
382 }
383
384 int
385 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
386 {
387 /*
388 * there's at least one application (a configure script of screen)
389 * which expects a fifo is writable even if it has "some" bytes
390 * in its buffer.
391 * so we want to make sure (hiwat - lowat) >= (some bytes).
392 *
393 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
394 * we expect it's large enough for such applications.
395 */
396 u_long lowat = MAX(sock_loan_thresh, MCLBYTES);
397 u_long hiwat = lowat + PIPE_BUF;
398
399 if (sndcc < hiwat)
400 sndcc = hiwat;
401 if (sbreserve(&so->so_snd, sndcc, so) == 0)
402 goto bad;
403 if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
404 goto bad2;
405 if (so->so_rcv.sb_lowat == 0)
406 so->so_rcv.sb_lowat = 1;
407 if (so->so_snd.sb_lowat == 0)
408 so->so_snd.sb_lowat = lowat;
409 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
410 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
411 return (0);
412 bad2:
413 sbrelease(&so->so_snd, so);
414 bad:
415 return (ENOBUFS);
416 }
417
418 /*
419 * Allot mbufs to a sockbuf.
420 * Attempt to scale mbmax so that mbcnt doesn't become limiting
421 * if buffering efficiency is near the normal case.
422 */
423 int
424 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
425 {
426 struct lwp *l = curlwp; /* XXX */
427 rlim_t maxcc;
428 struct uidinfo *uidinfo;
429
430 KDASSERT(sb_max_adj != 0);
431 if (cc == 0 || cc > sb_max_adj)
432 return (0);
433 if (so) {
434 if (kauth_cred_geteuid(l->l_cred) == so->so_uidinfo->ui_uid)
435 maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
436 else
437 maxcc = RLIM_INFINITY;
438 uidinfo = so->so_uidinfo;
439 } else {
440 uidinfo = uid_find(0); /* XXX: nothing better */
441 maxcc = RLIM_INFINITY;
442 }
443 if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
444 return 0;
445 sb->sb_mbmax = min(cc * 2, sb_max);
446 if (sb->sb_lowat > sb->sb_hiwat)
447 sb->sb_lowat = sb->sb_hiwat;
448 return (1);
449 }
450
451 /*
452 * Free mbufs held by a socket, and reserved mbuf space.
453 */
454 void
455 sbrelease(struct sockbuf *sb, struct socket *so)
456 {
457
458 sbflush(sb);
459 (void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
460 sb->sb_mbmax = 0;
461 }
462
463 /*
464 * Routines to add and remove
465 * data from an mbuf queue.
466 *
467 * The routines sbappend() or sbappendrecord() are normally called to
468 * append new mbufs to a socket buffer, after checking that adequate
469 * space is available, comparing the function sbspace() with the amount
470 * of data to be added. sbappendrecord() differs from sbappend() in
471 * that data supplied is treated as the beginning of a new record.
472 * To place a sender's address, optional access rights, and data in a
473 * socket receive buffer, sbappendaddr() should be used. To place
474 * access rights and data in a socket receive buffer, sbappendrights()
475 * should be used. In either case, the new data begins a new record.
476 * Note that unlike sbappend() and sbappendrecord(), these routines check
477 * for the caller that there will be enough space to store the data.
478 * Each fails if there is not enough space, or if it cannot find mbufs
479 * to store additional information in.
480 *
481 * Reliable protocols may use the socket send buffer to hold data
482 * awaiting acknowledgement. Data is normally copied from a socket
483 * send buffer in a protocol with m_copy for output to a peer,
484 * and then removing the data from the socket buffer with sbdrop()
485 * or sbdroprecord() when the data is acknowledged by the peer.
486 */
487
488 #ifdef SOCKBUF_DEBUG
489 void
490 sblastrecordchk(struct sockbuf *sb, const char *where)
491 {
492 struct mbuf *m = sb->sb_mb;
493
494 while (m && m->m_nextpkt)
495 m = m->m_nextpkt;
496
497 if (m != sb->sb_lastrecord) {
498 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
499 sb->sb_mb, sb->sb_lastrecord, m);
500 printf("packet chain:\n");
501 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
502 printf("\t%p\n", m);
503 panic("sblastrecordchk from %s", where);
504 }
505 }
506
507 void
508 sblastmbufchk(struct sockbuf *sb, const char *where)
509 {
510 struct mbuf *m = sb->sb_mb;
511 struct mbuf *n;
512
513 while (m && m->m_nextpkt)
514 m = m->m_nextpkt;
515
516 while (m && m->m_next)
517 m = m->m_next;
518
519 if (m != sb->sb_mbtail) {
520 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
521 sb->sb_mb, sb->sb_mbtail, m);
522 printf("packet tree:\n");
523 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
524 printf("\t");
525 for (n = m; n != NULL; n = n->m_next)
526 printf("%p ", n);
527 printf("\n");
528 }
529 panic("sblastmbufchk from %s", where);
530 }
531 }
532 #endif /* SOCKBUF_DEBUG */
533
534 /*
535 * Link a chain of records onto a socket buffer
536 */
537 #define SBLINKRECORDCHAIN(sb, m0, mlast) \
538 do { \
539 if ((sb)->sb_lastrecord != NULL) \
540 (sb)->sb_lastrecord->m_nextpkt = (m0); \
541 else \
542 (sb)->sb_mb = (m0); \
543 (sb)->sb_lastrecord = (mlast); \
544 } while (/*CONSTCOND*/0)
545
546
547 #define SBLINKRECORD(sb, m0) \
548 SBLINKRECORDCHAIN(sb, m0, m0)
549
550 /*
551 * Append mbuf chain m to the last record in the
552 * socket buffer sb. The additional space associated
553 * the mbuf chain is recorded in sb. Empty mbufs are
554 * discarded and mbufs are compacted where possible.
555 */
556 void
557 sbappend(struct sockbuf *sb, struct mbuf *m)
558 {
559 struct mbuf *n;
560
561 if (m == 0)
562 return;
563
564 #ifdef MBUFTRACE
565 m_claimm(m, sb->sb_mowner);
566 #endif
567
568 SBLASTRECORDCHK(sb, "sbappend 1");
569
570 if ((n = sb->sb_lastrecord) != NULL) {
571 /*
572 * XXX Would like to simply use sb_mbtail here, but
573 * XXX I need to verify that I won't miss an EOR that
574 * XXX way.
575 */
576 do {
577 if (n->m_flags & M_EOR) {
578 sbappendrecord(sb, m); /* XXXXXX!!!! */
579 return;
580 }
581 } while (n->m_next && (n = n->m_next));
582 } else {
583 /*
584 * If this is the first record in the socket buffer, it's
585 * also the last record.
586 */
587 sb->sb_lastrecord = m;
588 }
589 sbcompress(sb, m, n);
590 SBLASTRECORDCHK(sb, "sbappend 2");
591 }
592
593 /*
594 * This version of sbappend() should only be used when the caller
595 * absolutely knows that there will never be more than one record
596 * in the socket buffer, that is, a stream protocol (such as TCP).
597 */
598 void
599 sbappendstream(struct sockbuf *sb, struct mbuf *m)
600 {
601
602 KDASSERT(m->m_nextpkt == NULL);
603 KASSERT(sb->sb_mb == sb->sb_lastrecord);
604
605 SBLASTMBUFCHK(sb, __func__);
606
607 #ifdef MBUFTRACE
608 m_claimm(m, sb->sb_mowner);
609 #endif
610
611 sbcompress(sb, m, sb->sb_mbtail);
612
613 sb->sb_lastrecord = sb->sb_mb;
614 SBLASTRECORDCHK(sb, __func__);
615 }
616
617 #ifdef SOCKBUF_DEBUG
618 void
619 sbcheck(struct sockbuf *sb)
620 {
621 struct mbuf *m;
622 u_long len, mbcnt;
623
624 len = 0;
625 mbcnt = 0;
626 for (m = sb->sb_mb; m; m = m->m_next) {
627 len += m->m_len;
628 mbcnt += MSIZE;
629 if (m->m_flags & M_EXT)
630 mbcnt += m->m_ext.ext_size;
631 if (m->m_nextpkt)
632 panic("sbcheck nextpkt");
633 }
634 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
635 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
636 mbcnt, sb->sb_mbcnt);
637 panic("sbcheck");
638 }
639 }
640 #endif
641
642 /*
643 * As above, except the mbuf chain
644 * begins a new record.
645 */
646 void
647 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
648 {
649 struct mbuf *m;
650
651 if (m0 == 0)
652 return;
653
654 #ifdef MBUFTRACE
655 m_claimm(m0, sb->sb_mowner);
656 #endif
657 /*
658 * Put the first mbuf on the queue.
659 * Note this permits zero length records.
660 */
661 sballoc(sb, m0);
662 SBLASTRECORDCHK(sb, "sbappendrecord 1");
663 SBLINKRECORD(sb, m0);
664 m = m0->m_next;
665 m0->m_next = 0;
666 if (m && (m0->m_flags & M_EOR)) {
667 m0->m_flags &= ~M_EOR;
668 m->m_flags |= M_EOR;
669 }
670 sbcompress(sb, m, m0);
671 SBLASTRECORDCHK(sb, "sbappendrecord 2");
672 }
673
674 /*
675 * As above except that OOB data
676 * is inserted at the beginning of the sockbuf,
677 * but after any other OOB data.
678 */
679 void
680 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
681 {
682 struct mbuf *m, **mp;
683
684 if (m0 == 0)
685 return;
686
687 SBLASTRECORDCHK(sb, "sbinsertoob 1");
688
689 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
690 again:
691 switch (m->m_type) {
692
693 case MT_OOBDATA:
694 continue; /* WANT next train */
695
696 case MT_CONTROL:
697 if ((m = m->m_next) != NULL)
698 goto again; /* inspect THIS train further */
699 }
700 break;
701 }
702 /*
703 * Put the first mbuf on the queue.
704 * Note this permits zero length records.
705 */
706 sballoc(sb, m0);
707 m0->m_nextpkt = *mp;
708 if (*mp == NULL) {
709 /* m0 is actually the new tail */
710 sb->sb_lastrecord = m0;
711 }
712 *mp = m0;
713 m = m0->m_next;
714 m0->m_next = 0;
715 if (m && (m0->m_flags & M_EOR)) {
716 m0->m_flags &= ~M_EOR;
717 m->m_flags |= M_EOR;
718 }
719 sbcompress(sb, m, m0);
720 SBLASTRECORDCHK(sb, "sbinsertoob 2");
721 }
722
723 /*
724 * Append address and data, and optionally, control (ancillary) data
725 * to the receive queue of a socket. If present,
726 * m0 must include a packet header with total length.
727 * Returns 0 if no space in sockbuf or insufficient mbufs.
728 */
729 int
730 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
731 struct mbuf *control)
732 {
733 struct mbuf *m, *n, *nlast;
734 int space, len;
735
736 space = asa->sa_len;
737
738 if (m0 != NULL) {
739 if ((m0->m_flags & M_PKTHDR) == 0)
740 panic("sbappendaddr");
741 space += m0->m_pkthdr.len;
742 #ifdef MBUFTRACE
743 m_claimm(m0, sb->sb_mowner);
744 #endif
745 }
746 for (n = control; n; n = n->m_next) {
747 space += n->m_len;
748 MCLAIM(n, sb->sb_mowner);
749 if (n->m_next == 0) /* keep pointer to last control buf */
750 break;
751 }
752 if (space > sbspace(sb))
753 return (0);
754 MGET(m, M_DONTWAIT, MT_SONAME);
755 if (m == 0)
756 return (0);
757 MCLAIM(m, sb->sb_mowner);
758 /*
759 * XXX avoid 'comparison always true' warning which isn't easily
760 * avoided.
761 */
762 len = asa->sa_len;
763 if (len > MLEN) {
764 MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
765 if ((m->m_flags & M_EXT) == 0) {
766 m_free(m);
767 return (0);
768 }
769 }
770 m->m_len = asa->sa_len;
771 memcpy(mtod(m, void *), asa, asa->sa_len);
772 if (n)
773 n->m_next = m0; /* concatenate data to control */
774 else
775 control = m0;
776 m->m_next = control;
777
778 SBLASTRECORDCHK(sb, "sbappendaddr 1");
779
780 for (n = m; n->m_next != NULL; n = n->m_next)
781 sballoc(sb, n);
782 sballoc(sb, n);
783 nlast = n;
784 SBLINKRECORD(sb, m);
785
786 sb->sb_mbtail = nlast;
787 SBLASTMBUFCHK(sb, "sbappendaddr");
788
789 SBLASTRECORDCHK(sb, "sbappendaddr 2");
790
791 return (1);
792 }
793
794 /*
795 * Helper for sbappendchainaddr: prepend a struct sockaddr* to
796 * an mbuf chain.
797 */
798 static inline struct mbuf *
799 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
800 const struct sockaddr *asa)
801 {
802 struct mbuf *m;
803 const int salen = asa->sa_len;
804
805 /* only the first in each chain need be a pkthdr */
806 MGETHDR(m, M_DONTWAIT, MT_SONAME);
807 if (m == 0)
808 return (0);
809 MCLAIM(m, sb->sb_mowner);
810 #ifdef notyet
811 if (salen > MHLEN) {
812 MEXTMALLOC(m, salen, M_NOWAIT);
813 if ((m->m_flags & M_EXT) == 0) {
814 m_free(m);
815 return (0);
816 }
817 }
818 #else
819 KASSERT(salen <= MHLEN);
820 #endif
821 m->m_len = salen;
822 memcpy(mtod(m, void *), asa, salen);
823 m->m_next = m0;
824 m->m_pkthdr.len = salen + m0->m_pkthdr.len;
825
826 return m;
827 }
828
829 int
830 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
831 struct mbuf *m0, int sbprio)
832 {
833 int space;
834 struct mbuf *m, *n, *n0, *nlast;
835 int error;
836
837 /*
838 * XXX sbprio reserved for encoding priority of this* request:
839 * SB_PRIO_NONE --> honour normal sb limits
840 * SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
841 * take whole chain. Intended for large requests
842 * that should be delivered atomically (all, or none).
843 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
844 * over normal socket limits, for messages indicating
845 * buffer overflow in earlier normal/lower-priority messages
846 * SB_PRIO_BESTEFFORT --> ignore limits entirely.
847 * Intended for kernel-generated messages only.
848 * Up to generator to avoid total mbuf resource exhaustion.
849 */
850 (void)sbprio;
851
852 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
853 panic("sbappendaddrchain");
854
855 space = sbspace(sb);
856
857 #ifdef notyet
858 /*
859 * Enforce SB_PRIO_* limits as described above.
860 */
861 #endif
862
863 n0 = NULL;
864 nlast = NULL;
865 for (m = m0; m; m = m->m_nextpkt) {
866 struct mbuf *np;
867
868 #ifdef MBUFTRACE
869 m_claimm(m, sb->sb_mowner);
870 #endif
871
872 /* Prepend sockaddr to this record (m) of input chain m0 */
873 n = m_prepend_sockaddr(sb, m, asa);
874 if (n == NULL) {
875 error = ENOBUFS;
876 goto bad;
877 }
878
879 /* Append record (asa+m) to end of new chain n0 */
880 if (n0 == NULL) {
881 n0 = n;
882 } else {
883 nlast->m_nextpkt = n;
884 }
885 /* Keep track of last record on new chain */
886 nlast = n;
887
888 for (np = n; np; np = np->m_next)
889 sballoc(sb, np);
890 }
891
892 SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
893
894 /* Drop the entire chain of (asa+m) records onto the socket */
895 SBLINKRECORDCHAIN(sb, n0, nlast);
896
897 SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
898
899 for (m = nlast; m->m_next; m = m->m_next)
900 ;
901 sb->sb_mbtail = m;
902 SBLASTMBUFCHK(sb, "sbappendaddrchain");
903
904 return (1);
905
906 bad:
907 /*
908 * On error, free the prepended addreseses. For consistency
909 * with sbappendaddr(), leave it to our caller to free
910 * the input record chain passed to us as m0.
911 */
912 while ((n = n0) != NULL) {
913 struct mbuf *np;
914
915 /* Undo the sballoc() of this record */
916 for (np = n; np; np = np->m_next)
917 sbfree(sb, np);
918
919 n0 = n->m_nextpkt; /* iterate at next prepended address */
920 MFREE(n, np); /* free prepended address (not data) */
921 }
922 return 0;
923 }
924
925
926 int
927 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
928 {
929 struct mbuf *m, *mlast, *n;
930 int space;
931
932 space = 0;
933 if (control == 0)
934 panic("sbappendcontrol");
935 for (m = control; ; m = m->m_next) {
936 space += m->m_len;
937 MCLAIM(m, sb->sb_mowner);
938 if (m->m_next == 0)
939 break;
940 }
941 n = m; /* save pointer to last control buffer */
942 for (m = m0; m; m = m->m_next) {
943 MCLAIM(m, sb->sb_mowner);
944 space += m->m_len;
945 }
946 if (space > sbspace(sb))
947 return (0);
948 n->m_next = m0; /* concatenate data to control */
949
950 SBLASTRECORDCHK(sb, "sbappendcontrol 1");
951
952 for (m = control; m->m_next != NULL; m = m->m_next)
953 sballoc(sb, m);
954 sballoc(sb, m);
955 mlast = m;
956 SBLINKRECORD(sb, control);
957
958 sb->sb_mbtail = mlast;
959 SBLASTMBUFCHK(sb, "sbappendcontrol");
960
961 SBLASTRECORDCHK(sb, "sbappendcontrol 2");
962
963 return (1);
964 }
965
966 /*
967 * Compress mbuf chain m into the socket
968 * buffer sb following mbuf n. If n
969 * is null, the buffer is presumed empty.
970 */
971 void
972 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
973 {
974 int eor;
975 struct mbuf *o;
976
977 eor = 0;
978 while (m) {
979 eor |= m->m_flags & M_EOR;
980 if (m->m_len == 0 &&
981 (eor == 0 ||
982 (((o = m->m_next) || (o = n)) &&
983 o->m_type == m->m_type))) {
984 if (sb->sb_lastrecord == m)
985 sb->sb_lastrecord = m->m_next;
986 m = m_free(m);
987 continue;
988 }
989 if (n && (n->m_flags & M_EOR) == 0 &&
990 /* M_TRAILINGSPACE() checks buffer writeability */
991 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
992 m->m_len <= M_TRAILINGSPACE(n) &&
993 n->m_type == m->m_type) {
994 memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
995 (unsigned)m->m_len);
996 n->m_len += m->m_len;
997 sb->sb_cc += m->m_len;
998 m = m_free(m);
999 continue;
1000 }
1001 if (n)
1002 n->m_next = m;
1003 else
1004 sb->sb_mb = m;
1005 sb->sb_mbtail = m;
1006 sballoc(sb, m);
1007 n = m;
1008 m->m_flags &= ~M_EOR;
1009 m = m->m_next;
1010 n->m_next = 0;
1011 }
1012 if (eor) {
1013 if (n)
1014 n->m_flags |= eor;
1015 else
1016 printf("semi-panic: sbcompress\n");
1017 }
1018 SBLASTMBUFCHK(sb, __func__);
1019 }
1020
1021 /*
1022 * Free all mbufs in a sockbuf.
1023 * Check that all resources are reclaimed.
1024 */
1025 void
1026 sbflush(struct sockbuf *sb)
1027 {
1028
1029 KASSERT((sb->sb_flags & SB_LOCK) == 0);
1030
1031 while (sb->sb_mbcnt)
1032 sbdrop(sb, (int)sb->sb_cc);
1033
1034 KASSERT(sb->sb_cc == 0);
1035 KASSERT(sb->sb_mb == NULL);
1036 KASSERT(sb->sb_mbtail == NULL);
1037 KASSERT(sb->sb_lastrecord == NULL);
1038 }
1039
1040 /*
1041 * Drop data from (the front of) a sockbuf.
1042 */
1043 void
1044 sbdrop(struct sockbuf *sb, int len)
1045 {
1046 struct mbuf *m, *mn, *next;
1047
1048 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1049 while (len > 0) {
1050 if (m == 0) {
1051 if (next == 0)
1052 panic("sbdrop");
1053 m = next;
1054 next = m->m_nextpkt;
1055 continue;
1056 }
1057 if (m->m_len > len) {
1058 m->m_len -= len;
1059 m->m_data += len;
1060 sb->sb_cc -= len;
1061 break;
1062 }
1063 len -= m->m_len;
1064 sbfree(sb, m);
1065 MFREE(m, mn);
1066 m = mn;
1067 }
1068 while (m && m->m_len == 0) {
1069 sbfree(sb, m);
1070 MFREE(m, mn);
1071 m = mn;
1072 }
1073 if (m) {
1074 sb->sb_mb = m;
1075 m->m_nextpkt = next;
1076 } else
1077 sb->sb_mb = next;
1078 /*
1079 * First part is an inline SB_EMPTY_FIXUP(). Second part
1080 * makes sure sb_lastrecord is up-to-date if we dropped
1081 * part of the last record.
1082 */
1083 m = sb->sb_mb;
1084 if (m == NULL) {
1085 sb->sb_mbtail = NULL;
1086 sb->sb_lastrecord = NULL;
1087 } else if (m->m_nextpkt == NULL)
1088 sb->sb_lastrecord = m;
1089 }
1090
1091 /*
1092 * Drop a record off the front of a sockbuf
1093 * and move the next record to the front.
1094 */
1095 void
1096 sbdroprecord(struct sockbuf *sb)
1097 {
1098 struct mbuf *m, *mn;
1099
1100 m = sb->sb_mb;
1101 if (m) {
1102 sb->sb_mb = m->m_nextpkt;
1103 do {
1104 sbfree(sb, m);
1105 MFREE(m, mn);
1106 } while ((m = mn) != NULL);
1107 }
1108 SB_EMPTY_FIXUP(sb);
1109 }
1110
1111 /*
1112 * Create a "control" mbuf containing the specified data
1113 * with the specified type for presentation on a socket buffer.
1114 */
1115 struct mbuf *
1116 sbcreatecontrol(void *p, int size, int type, int level)
1117 {
1118 struct cmsghdr *cp;
1119 struct mbuf *m;
1120
1121 if (CMSG_SPACE(size) > MCLBYTES) {
1122 printf("sbcreatecontrol: message too large %d\n", size);
1123 return NULL;
1124 }
1125
1126 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
1127 return ((struct mbuf *) NULL);
1128 if (CMSG_SPACE(size) > MLEN) {
1129 MCLGET(m, M_DONTWAIT);
1130 if ((m->m_flags & M_EXT) == 0) {
1131 m_free(m);
1132 return NULL;
1133 }
1134 }
1135 cp = mtod(m, struct cmsghdr *);
1136 memcpy(CMSG_DATA(cp), p, size);
1137 m->m_len = CMSG_SPACE(size);
1138 cp->cmsg_len = CMSG_LEN(size);
1139 cp->cmsg_level = level;
1140 cp->cmsg_type = type;
1141 return (m);
1142 }
1143