Home | History | Annotate | Line # | Download | only in kern
uipc_socket2.c revision 1.90
      1 /*	$NetBSD: uipc_socket2.c,v 1.90 2008/03/01 14:16:51 rmind Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.90 2008/03/01 14:16:51 rmind Exp $");
     36 
     37 #include "opt_mbuftrace.h"
     38 #include "opt_sb_max.h"
     39 
     40 #include <sys/param.h>
     41 #include <sys/systm.h>
     42 #include <sys/proc.h>
     43 #include <sys/file.h>
     44 #include <sys/buf.h>
     45 #include <sys/malloc.h>
     46 #include <sys/mbuf.h>
     47 #include <sys/protosw.h>
     48 #include <sys/poll.h>
     49 #include <sys/socket.h>
     50 #include <sys/socketvar.h>
     51 #include <sys/signalvar.h>
     52 #include <sys/kauth.h>
     53 
     54 /*
     55  * Primitive routines for operating on sockets and socket buffers
     56  */
     57 
     58 /* strings for sleep message: */
     59 const char	netcon[] = "netcon";
     60 const char	netcls[] = "netcls";
     61 const char	netio[] = "netio";
     62 const char	netlck[] = "netlck";
     63 
     64 u_long	sb_max = SB_MAX;	/* maximum socket buffer size */
     65 static u_long sb_max_adj;	/* adjusted sb_max */
     66 
     67 /*
     68  * Procedures to manipulate state flags of socket
     69  * and do appropriate wakeups.  Normal sequence from the
     70  * active (originating) side is that soisconnecting() is
     71  * called during processing of connect() call,
     72  * resulting in an eventual call to soisconnected() if/when the
     73  * connection is established.  When the connection is torn down
     74  * soisdisconnecting() is called during processing of disconnect() call,
     75  * and soisdisconnected() is called when the connection to the peer
     76  * is totally severed.  The semantics of these routines are such that
     77  * connectionless protocols can call soisconnected() and soisdisconnected()
     78  * only, bypassing the in-progress calls when setting up a ``connection''
     79  * takes no time.
     80  *
     81  * From the passive side, a socket is created with
     82  * two queues of sockets: so_q0 for connections in progress
     83  * and so_q for connections already made and awaiting user acceptance.
     84  * As a protocol is preparing incoming connections, it creates a socket
     85  * structure queued on so_q0 by calling sonewconn().  When the connection
     86  * is established, soisconnected() is called, and transfers the
     87  * socket structure to so_q, making it available to accept().
     88  *
     89  * If a socket is closed with sockets on either
     90  * so_q0 or so_q, these sockets are dropped.
     91  *
     92  * If higher level protocols are implemented in
     93  * the kernel, the wakeups done here will sometimes
     94  * cause software-interrupt process scheduling.
     95  */
     96 
     97 void
     98 soisconnecting(struct socket *so)
     99 {
    100 
    101 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
    102 	so->so_state |= SS_ISCONNECTING;
    103 }
    104 
    105 void
    106 soisconnected(struct socket *so)
    107 {
    108 	struct socket	*head;
    109 
    110 	head = so->so_head;
    111 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
    112 	so->so_state |= SS_ISCONNECTED;
    113 	if (head && soqremque(so, 0)) {
    114 		soqinsque(head, so, 1);
    115 		sorwakeup(head);
    116 		wakeup((void *)&head->so_timeo);
    117 	} else {
    118 		wakeup((void *)&so->so_timeo);
    119 		sorwakeup(so);
    120 		sowwakeup(so);
    121 	}
    122 }
    123 
    124 void
    125 soisdisconnecting(struct socket *so)
    126 {
    127 
    128 	so->so_state &= ~SS_ISCONNECTING;
    129 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
    130 	wakeup((void *)&so->so_timeo);
    131 	sowwakeup(so);
    132 	sorwakeup(so);
    133 }
    134 
    135 void
    136 soisdisconnected(struct socket *so)
    137 {
    138 
    139 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
    140 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
    141 	wakeup((void *)&so->so_timeo);
    142 	sowwakeup(so);
    143 	sorwakeup(so);
    144 }
    145 
    146 /*
    147  * When an attempt at a new connection is noted on a socket
    148  * which accepts connections, sonewconn is called.  If the
    149  * connection is possible (subject to space constraints, etc.)
    150  * then we allocate a new structure, propoerly linked into the
    151  * data structure of the original socket, and return this.
    152  * Connstatus may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
    153  */
    154 struct socket *
    155 sonewconn(struct socket *head, int connstatus)
    156 {
    157 	struct socket	*so;
    158 	int		soqueue;
    159 
    160 	soqueue = connstatus ? 1 : 0;
    161 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
    162 		return ((struct socket *)0);
    163 	so = pool_get(&socket_pool, PR_NOWAIT);
    164 	if (so == NULL)
    165 		return (NULL);
    166 	memset((void *)so, 0, sizeof(*so));
    167 	so->so_type = head->so_type;
    168 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
    169 	so->so_linger = head->so_linger;
    170 	so->so_state = head->so_state | SS_NOFDREF;
    171 	so->so_nbio = head->so_nbio;
    172 	so->so_proto = head->so_proto;
    173 	so->so_timeo = head->so_timeo;
    174 	so->so_pgid = head->so_pgid;
    175 	so->so_send = head->so_send;
    176 	so->so_receive = head->so_receive;
    177 	so->so_uidinfo = head->so_uidinfo;
    178 #ifdef MBUFTRACE
    179 	so->so_mowner = head->so_mowner;
    180 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
    181 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
    182 #endif
    183 	selinit(&so->so_rcv.sb_sel);
    184 	selinit(&so->so_snd.sb_sel);
    185 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
    186 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
    187 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
    188 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
    189 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
    190 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
    191 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
    192 	soqinsque(head, so, soqueue);
    193 	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
    194 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
    195 	    (struct lwp *)0)) {
    196 		(void) soqremque(so, soqueue);
    197 		seldestroy(&so->so_rcv.sb_sel);
    198 		seldestroy(&so->so_snd.sb_sel);
    199 		pool_put(&socket_pool, so);
    200 		return (NULL);
    201 	}
    202 	if (connstatus) {
    203 		sorwakeup(head);
    204 		wakeup((void *)&head->so_timeo);
    205 		so->so_state |= connstatus;
    206 	}
    207 	return (so);
    208 }
    209 
    210 void
    211 soqinsque(struct socket *head, struct socket *so, int q)
    212 {
    213 
    214 #ifdef DIAGNOSTIC
    215 	if (so->so_onq != NULL)
    216 		panic("soqinsque");
    217 #endif
    218 
    219 	so->so_head = head;
    220 	if (q == 0) {
    221 		head->so_q0len++;
    222 		so->so_onq = &head->so_q0;
    223 	} else {
    224 		head->so_qlen++;
    225 		so->so_onq = &head->so_q;
    226 	}
    227 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
    228 }
    229 
    230 int
    231 soqremque(struct socket *so, int q)
    232 {
    233 	struct socket	*head;
    234 
    235 	head = so->so_head;
    236 	if (q == 0) {
    237 		if (so->so_onq != &head->so_q0)
    238 			return (0);
    239 		head->so_q0len--;
    240 	} else {
    241 		if (so->so_onq != &head->so_q)
    242 			return (0);
    243 		head->so_qlen--;
    244 	}
    245 	TAILQ_REMOVE(so->so_onq, so, so_qe);
    246 	so->so_onq = NULL;
    247 	so->so_head = NULL;
    248 	return (1);
    249 }
    250 
    251 /*
    252  * Socantsendmore indicates that no more data will be sent on the
    253  * socket; it would normally be applied to a socket when the user
    254  * informs the system that no more data is to be sent, by the protocol
    255  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
    256  * will be received, and will normally be applied to the socket by a
    257  * protocol when it detects that the peer will send no more data.
    258  * Data queued for reading in the socket may yet be read.
    259  */
    260 
    261 void
    262 socantsendmore(struct socket *so)
    263 {
    264 
    265 	so->so_state |= SS_CANTSENDMORE;
    266 	sowwakeup(so);
    267 }
    268 
    269 void
    270 socantrcvmore(struct socket *so)
    271 {
    272 
    273 	so->so_state |= SS_CANTRCVMORE;
    274 	sorwakeup(so);
    275 }
    276 
    277 /*
    278  * Wait for data to arrive at/drain from a socket buffer.
    279  */
    280 int
    281 sbwait(struct sockbuf *sb)
    282 {
    283 
    284 	sb->sb_flags |= SB_WAIT;
    285 	return (tsleep((void *)&sb->sb_cc,
    286 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
    287 	    sb->sb_timeo));
    288 }
    289 
    290 /*
    291  * Lock a sockbuf already known to be locked;
    292  * return any error returned from sleep (EINTR).
    293  */
    294 int
    295 sb_lock(struct sockbuf *sb)
    296 {
    297 	int	error;
    298 
    299 	while (sb->sb_flags & SB_LOCK) {
    300 		sb->sb_flags |= SB_WANT;
    301 		error = tsleep((void *)&sb->sb_flags,
    302 		    (sb->sb_flags & SB_NOINTR) ?  PSOCK : PSOCK|PCATCH,
    303 		    netlck, 0);
    304 		if (error)
    305 			return (error);
    306 	}
    307 	sb->sb_flags |= SB_LOCK;
    308 	return (0);
    309 }
    310 
    311 /*
    312  * Wakeup processes waiting on a socket buffer.
    313  * Do asynchronous notification via SIGIO
    314  * if the socket buffer has the SB_ASYNC flag set.
    315  */
    316 void
    317 sowakeup(struct socket *so, struct sockbuf *sb, int code)
    318 {
    319 	int band;
    320 
    321 	if (code == POLL_IN)
    322 		band = POLLIN|POLLRDNORM;
    323 	else
    324 		band = POLLOUT|POLLWRNORM;
    325 	selnotify(&sb->sb_sel, band, 0);
    326 
    327 	sb->sb_flags &= ~SB_SEL;
    328 	if (sb->sb_flags & SB_WAIT) {
    329 		sb->sb_flags &= ~SB_WAIT;
    330 		wakeup((void *)&sb->sb_cc);
    331 	}
    332 	if (sb->sb_flags & SB_ASYNC)
    333 		fownsignal(so->so_pgid, SIGIO, code, band, so);
    334 	if (sb->sb_flags & SB_UPCALL)
    335 		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
    336 }
    337 
    338 /*
    339  * Socket buffer (struct sockbuf) utility routines.
    340  *
    341  * Each socket contains two socket buffers: one for sending data and
    342  * one for receiving data.  Each buffer contains a queue of mbufs,
    343  * information about the number of mbufs and amount of data in the
    344  * queue, and other fields allowing poll() statements and notification
    345  * on data availability to be implemented.
    346  *
    347  * Data stored in a socket buffer is maintained as a list of records.
    348  * Each record is a list of mbufs chained together with the m_next
    349  * field.  Records are chained together with the m_nextpkt field. The upper
    350  * level routine soreceive() expects the following conventions to be
    351  * observed when placing information in the receive buffer:
    352  *
    353  * 1. If the protocol requires each message be preceded by the sender's
    354  *    name, then a record containing that name must be present before
    355  *    any associated data (mbuf's must be of type MT_SONAME).
    356  * 2. If the protocol supports the exchange of ``access rights'' (really
    357  *    just additional data associated with the message), and there are
    358  *    ``rights'' to be received, then a record containing this data
    359  *    should be present (mbuf's must be of type MT_CONTROL).
    360  * 3. If a name or rights record exists, then it must be followed by
    361  *    a data record, perhaps of zero length.
    362  *
    363  * Before using a new socket structure it is first necessary to reserve
    364  * buffer space to the socket, by calling sbreserve().  This should commit
    365  * some of the available buffer space in the system buffer pool for the
    366  * socket (currently, it does nothing but enforce limits).  The space
    367  * should be released by calling sbrelease() when the socket is destroyed.
    368  */
    369 
    370 int
    371 sb_max_set(u_long new_sbmax)
    372 {
    373 	int s;
    374 
    375 	if (new_sbmax < (16 * 1024))
    376 		return (EINVAL);
    377 
    378 	s = splsoftnet();
    379 	sb_max = new_sbmax;
    380 	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
    381 	splx(s);
    382 
    383 	return (0);
    384 }
    385 
    386 int
    387 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
    388 {
    389 	/*
    390 	 * there's at least one application (a configure script of screen)
    391 	 * which expects a fifo is writable even if it has "some" bytes
    392 	 * in its buffer.
    393 	 * so we want to make sure (hiwat - lowat) >= (some bytes).
    394 	 *
    395 	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
    396 	 * we expect it's large enough for such applications.
    397 	 */
    398 	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
    399 	u_long  hiwat = lowat + PIPE_BUF;
    400 
    401 	if (sndcc < hiwat)
    402 		sndcc = hiwat;
    403 	if (sbreserve(&so->so_snd, sndcc, so) == 0)
    404 		goto bad;
    405 	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
    406 		goto bad2;
    407 	if (so->so_rcv.sb_lowat == 0)
    408 		so->so_rcv.sb_lowat = 1;
    409 	if (so->so_snd.sb_lowat == 0)
    410 		so->so_snd.sb_lowat = lowat;
    411 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
    412 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
    413 	return (0);
    414  bad2:
    415 	sbrelease(&so->so_snd, so);
    416  bad:
    417 	return (ENOBUFS);
    418 }
    419 
    420 /*
    421  * Allot mbufs to a sockbuf.
    422  * Attempt to scale mbmax so that mbcnt doesn't become limiting
    423  * if buffering efficiency is near the normal case.
    424  */
    425 int
    426 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
    427 {
    428 	struct lwp *l = curlwp; /* XXX */
    429 	rlim_t maxcc;
    430 	struct uidinfo *uidinfo;
    431 
    432 	KDASSERT(sb_max_adj != 0);
    433 	if (cc == 0 || cc > sb_max_adj)
    434 		return (0);
    435 	if (so) {
    436 		if (kauth_cred_geteuid(l->l_cred) == so->so_uidinfo->ui_uid)
    437 			maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
    438 		else
    439 			maxcc = RLIM_INFINITY;
    440 		uidinfo = so->so_uidinfo;
    441 	} else {
    442 		uidinfo = uid_find(0);	/* XXX: nothing better */
    443 		maxcc = RLIM_INFINITY;
    444 	}
    445 	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
    446 		return 0;
    447 	sb->sb_mbmax = min(cc * 2, sb_max);
    448 	if (sb->sb_lowat > sb->sb_hiwat)
    449 		sb->sb_lowat = sb->sb_hiwat;
    450 	return (1);
    451 }
    452 
    453 /*
    454  * Free mbufs held by a socket, and reserved mbuf space.
    455  */
    456 void
    457 sbrelease(struct sockbuf *sb, struct socket *so)
    458 {
    459 
    460 	sbflush(sb);
    461 	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
    462 	sb->sb_mbmax = 0;
    463 }
    464 
    465 /*
    466  * Routines to add and remove
    467  * data from an mbuf queue.
    468  *
    469  * The routines sbappend() or sbappendrecord() are normally called to
    470  * append new mbufs to a socket buffer, after checking that adequate
    471  * space is available, comparing the function sbspace() with the amount
    472  * of data to be added.  sbappendrecord() differs from sbappend() in
    473  * that data supplied is treated as the beginning of a new record.
    474  * To place a sender's address, optional access rights, and data in a
    475  * socket receive buffer, sbappendaddr() should be used.  To place
    476  * access rights and data in a socket receive buffer, sbappendrights()
    477  * should be used.  In either case, the new data begins a new record.
    478  * Note that unlike sbappend() and sbappendrecord(), these routines check
    479  * for the caller that there will be enough space to store the data.
    480  * Each fails if there is not enough space, or if it cannot find mbufs
    481  * to store additional information in.
    482  *
    483  * Reliable protocols may use the socket send buffer to hold data
    484  * awaiting acknowledgement.  Data is normally copied from a socket
    485  * send buffer in a protocol with m_copy for output to a peer,
    486  * and then removing the data from the socket buffer with sbdrop()
    487  * or sbdroprecord() when the data is acknowledged by the peer.
    488  */
    489 
    490 #ifdef SOCKBUF_DEBUG
    491 void
    492 sblastrecordchk(struct sockbuf *sb, const char *where)
    493 {
    494 	struct mbuf *m = sb->sb_mb;
    495 
    496 	while (m && m->m_nextpkt)
    497 		m = m->m_nextpkt;
    498 
    499 	if (m != sb->sb_lastrecord) {
    500 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
    501 		    sb->sb_mb, sb->sb_lastrecord, m);
    502 		printf("packet chain:\n");
    503 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
    504 			printf("\t%p\n", m);
    505 		panic("sblastrecordchk from %s", where);
    506 	}
    507 }
    508 
    509 void
    510 sblastmbufchk(struct sockbuf *sb, const char *where)
    511 {
    512 	struct mbuf *m = sb->sb_mb;
    513 	struct mbuf *n;
    514 
    515 	while (m && m->m_nextpkt)
    516 		m = m->m_nextpkt;
    517 
    518 	while (m && m->m_next)
    519 		m = m->m_next;
    520 
    521 	if (m != sb->sb_mbtail) {
    522 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
    523 		    sb->sb_mb, sb->sb_mbtail, m);
    524 		printf("packet tree:\n");
    525 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
    526 			printf("\t");
    527 			for (n = m; n != NULL; n = n->m_next)
    528 				printf("%p ", n);
    529 			printf("\n");
    530 		}
    531 		panic("sblastmbufchk from %s", where);
    532 	}
    533 }
    534 #endif /* SOCKBUF_DEBUG */
    535 
    536 /*
    537  * Link a chain of records onto a socket buffer
    538  */
    539 #define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
    540 do {									\
    541 	if ((sb)->sb_lastrecord != NULL)				\
    542 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
    543 	else								\
    544 		(sb)->sb_mb = (m0);					\
    545 	(sb)->sb_lastrecord = (mlast);					\
    546 } while (/*CONSTCOND*/0)
    547 
    548 
    549 #define	SBLINKRECORD(sb, m0)						\
    550     SBLINKRECORDCHAIN(sb, m0, m0)
    551 
    552 /*
    553  * Append mbuf chain m to the last record in the
    554  * socket buffer sb.  The additional space associated
    555  * the mbuf chain is recorded in sb.  Empty mbufs are
    556  * discarded and mbufs are compacted where possible.
    557  */
    558 void
    559 sbappend(struct sockbuf *sb, struct mbuf *m)
    560 {
    561 	struct mbuf	*n;
    562 
    563 	if (m == 0)
    564 		return;
    565 
    566 #ifdef MBUFTRACE
    567 	m_claimm(m, sb->sb_mowner);
    568 #endif
    569 
    570 	SBLASTRECORDCHK(sb, "sbappend 1");
    571 
    572 	if ((n = sb->sb_lastrecord) != NULL) {
    573 		/*
    574 		 * XXX Would like to simply use sb_mbtail here, but
    575 		 * XXX I need to verify that I won't miss an EOR that
    576 		 * XXX way.
    577 		 */
    578 		do {
    579 			if (n->m_flags & M_EOR) {
    580 				sbappendrecord(sb, m); /* XXXXXX!!!! */
    581 				return;
    582 			}
    583 		} while (n->m_next && (n = n->m_next));
    584 	} else {
    585 		/*
    586 		 * If this is the first record in the socket buffer, it's
    587 		 * also the last record.
    588 		 */
    589 		sb->sb_lastrecord = m;
    590 	}
    591 	sbcompress(sb, m, n);
    592 	SBLASTRECORDCHK(sb, "sbappend 2");
    593 }
    594 
    595 /*
    596  * This version of sbappend() should only be used when the caller
    597  * absolutely knows that there will never be more than one record
    598  * in the socket buffer, that is, a stream protocol (such as TCP).
    599  */
    600 void
    601 sbappendstream(struct sockbuf *sb, struct mbuf *m)
    602 {
    603 
    604 	KDASSERT(m->m_nextpkt == NULL);
    605 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
    606 
    607 	SBLASTMBUFCHK(sb, __func__);
    608 
    609 #ifdef MBUFTRACE
    610 	m_claimm(m, sb->sb_mowner);
    611 #endif
    612 
    613 	sbcompress(sb, m, sb->sb_mbtail);
    614 
    615 	sb->sb_lastrecord = sb->sb_mb;
    616 	SBLASTRECORDCHK(sb, __func__);
    617 }
    618 
    619 #ifdef SOCKBUF_DEBUG
    620 void
    621 sbcheck(struct sockbuf *sb)
    622 {
    623 	struct mbuf	*m;
    624 	u_long		len, mbcnt;
    625 
    626 	len = 0;
    627 	mbcnt = 0;
    628 	for (m = sb->sb_mb; m; m = m->m_next) {
    629 		len += m->m_len;
    630 		mbcnt += MSIZE;
    631 		if (m->m_flags & M_EXT)
    632 			mbcnt += m->m_ext.ext_size;
    633 		if (m->m_nextpkt)
    634 			panic("sbcheck nextpkt");
    635 	}
    636 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
    637 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
    638 		    mbcnt, sb->sb_mbcnt);
    639 		panic("sbcheck");
    640 	}
    641 }
    642 #endif
    643 
    644 /*
    645  * As above, except the mbuf chain
    646  * begins a new record.
    647  */
    648 void
    649 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
    650 {
    651 	struct mbuf	*m;
    652 
    653 	if (m0 == 0)
    654 		return;
    655 
    656 #ifdef MBUFTRACE
    657 	m_claimm(m0, sb->sb_mowner);
    658 #endif
    659 	/*
    660 	 * Put the first mbuf on the queue.
    661 	 * Note this permits zero length records.
    662 	 */
    663 	sballoc(sb, m0);
    664 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
    665 	SBLINKRECORD(sb, m0);
    666 	m = m0->m_next;
    667 	m0->m_next = 0;
    668 	if (m && (m0->m_flags & M_EOR)) {
    669 		m0->m_flags &= ~M_EOR;
    670 		m->m_flags |= M_EOR;
    671 	}
    672 	sbcompress(sb, m, m0);
    673 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
    674 }
    675 
    676 /*
    677  * As above except that OOB data
    678  * is inserted at the beginning of the sockbuf,
    679  * but after any other OOB data.
    680  */
    681 void
    682 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
    683 {
    684 	struct mbuf	*m, **mp;
    685 
    686 	if (m0 == 0)
    687 		return;
    688 
    689 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
    690 
    691 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
    692 	    again:
    693 		switch (m->m_type) {
    694 
    695 		case MT_OOBDATA:
    696 			continue;		/* WANT next train */
    697 
    698 		case MT_CONTROL:
    699 			if ((m = m->m_next) != NULL)
    700 				goto again;	/* inspect THIS train further */
    701 		}
    702 		break;
    703 	}
    704 	/*
    705 	 * Put the first mbuf on the queue.
    706 	 * Note this permits zero length records.
    707 	 */
    708 	sballoc(sb, m0);
    709 	m0->m_nextpkt = *mp;
    710 	if (*mp == NULL) {
    711 		/* m0 is actually the new tail */
    712 		sb->sb_lastrecord = m0;
    713 	}
    714 	*mp = m0;
    715 	m = m0->m_next;
    716 	m0->m_next = 0;
    717 	if (m && (m0->m_flags & M_EOR)) {
    718 		m0->m_flags &= ~M_EOR;
    719 		m->m_flags |= M_EOR;
    720 	}
    721 	sbcompress(sb, m, m0);
    722 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
    723 }
    724 
    725 /*
    726  * Append address and data, and optionally, control (ancillary) data
    727  * to the receive queue of a socket.  If present,
    728  * m0 must include a packet header with total length.
    729  * Returns 0 if no space in sockbuf or insufficient mbufs.
    730  */
    731 int
    732 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
    733 	struct mbuf *control)
    734 {
    735 	struct mbuf	*m, *n, *nlast;
    736 	int		space, len;
    737 
    738 	space = asa->sa_len;
    739 
    740 	if (m0 != NULL) {
    741 		if ((m0->m_flags & M_PKTHDR) == 0)
    742 			panic("sbappendaddr");
    743 		space += m0->m_pkthdr.len;
    744 #ifdef MBUFTRACE
    745 		m_claimm(m0, sb->sb_mowner);
    746 #endif
    747 	}
    748 	for (n = control; n; n = n->m_next) {
    749 		space += n->m_len;
    750 		MCLAIM(n, sb->sb_mowner);
    751 		if (n->m_next == 0)	/* keep pointer to last control buf */
    752 			break;
    753 	}
    754 	if (space > sbspace(sb))
    755 		return (0);
    756 	MGET(m, M_DONTWAIT, MT_SONAME);
    757 	if (m == 0)
    758 		return (0);
    759 	MCLAIM(m, sb->sb_mowner);
    760 	/*
    761 	 * XXX avoid 'comparison always true' warning which isn't easily
    762 	 * avoided.
    763 	 */
    764 	len = asa->sa_len;
    765 	if (len > MLEN) {
    766 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
    767 		if ((m->m_flags & M_EXT) == 0) {
    768 			m_free(m);
    769 			return (0);
    770 		}
    771 	}
    772 	m->m_len = asa->sa_len;
    773 	memcpy(mtod(m, void *), asa, asa->sa_len);
    774 	if (n)
    775 		n->m_next = m0;		/* concatenate data to control */
    776 	else
    777 		control = m0;
    778 	m->m_next = control;
    779 
    780 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
    781 
    782 	for (n = m; n->m_next != NULL; n = n->m_next)
    783 		sballoc(sb, n);
    784 	sballoc(sb, n);
    785 	nlast = n;
    786 	SBLINKRECORD(sb, m);
    787 
    788 	sb->sb_mbtail = nlast;
    789 	SBLASTMBUFCHK(sb, "sbappendaddr");
    790 
    791 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
    792 
    793 	return (1);
    794 }
    795 
    796 /*
    797  * Helper for sbappendchainaddr: prepend a struct sockaddr* to
    798  * an mbuf chain.
    799  */
    800 static inline struct mbuf *
    801 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
    802 		   const struct sockaddr *asa)
    803 {
    804 	struct mbuf *m;
    805 	const int salen = asa->sa_len;
    806 
    807 	/* only the first in each chain need be a pkthdr */
    808 	MGETHDR(m, M_DONTWAIT, MT_SONAME);
    809 	if (m == 0)
    810 		return (0);
    811 	MCLAIM(m, sb->sb_mowner);
    812 #ifdef notyet
    813 	if (salen > MHLEN) {
    814 		MEXTMALLOC(m, salen, M_NOWAIT);
    815 		if ((m->m_flags & M_EXT) == 0) {
    816 			m_free(m);
    817 			return (0);
    818 		}
    819 	}
    820 #else
    821 	KASSERT(salen <= MHLEN);
    822 #endif
    823 	m->m_len = salen;
    824 	memcpy(mtod(m, void *), asa, salen);
    825 	m->m_next = m0;
    826 	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
    827 
    828 	return m;
    829 }
    830 
    831 int
    832 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
    833 		  struct mbuf *m0, int sbprio)
    834 {
    835 	int space;
    836 	struct mbuf *m, *n, *n0, *nlast;
    837 	int error;
    838 
    839 	/*
    840 	 * XXX sbprio reserved for encoding priority of this* request:
    841 	 *  SB_PRIO_NONE --> honour normal sb limits
    842 	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
    843 	 *	take whole chain. Intended for large requests
    844 	 *      that should be delivered atomically (all, or none).
    845 	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
    846 	 *       over normal socket limits, for messages indicating
    847 	 *       buffer overflow in earlier normal/lower-priority messages
    848 	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
    849 	 *       Intended for  kernel-generated messages only.
    850 	 *        Up to generator to avoid total mbuf resource exhaustion.
    851 	 */
    852 	(void)sbprio;
    853 
    854 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
    855 		panic("sbappendaddrchain");
    856 
    857 	space = sbspace(sb);
    858 
    859 #ifdef notyet
    860 	/*
    861 	 * Enforce SB_PRIO_* limits as described above.
    862 	 */
    863 #endif
    864 
    865 	n0 = NULL;
    866 	nlast = NULL;
    867 	for (m = m0; m; m = m->m_nextpkt) {
    868 		struct mbuf *np;
    869 
    870 #ifdef MBUFTRACE
    871 		m_claimm(m, sb->sb_mowner);
    872 #endif
    873 
    874 		/* Prepend sockaddr to this record (m) of input chain m0 */
    875 	  	n = m_prepend_sockaddr(sb, m, asa);
    876 		if (n == NULL) {
    877 			error = ENOBUFS;
    878 			goto bad;
    879 		}
    880 
    881 		/* Append record (asa+m) to end of new chain n0 */
    882 		if (n0 == NULL) {
    883 			n0 = n;
    884 		} else {
    885 			nlast->m_nextpkt = n;
    886 		}
    887 		/* Keep track of last record on new chain */
    888 		nlast = n;
    889 
    890 		for (np = n; np; np = np->m_next)
    891 			sballoc(sb, np);
    892 	}
    893 
    894 	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
    895 
    896 	/* Drop the entire chain of (asa+m) records onto the socket */
    897 	SBLINKRECORDCHAIN(sb, n0, nlast);
    898 
    899 	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
    900 
    901 	for (m = nlast; m->m_next; m = m->m_next)
    902 		;
    903 	sb->sb_mbtail = m;
    904 	SBLASTMBUFCHK(sb, "sbappendaddrchain");
    905 
    906 	return (1);
    907 
    908 bad:
    909 	/*
    910 	 * On error, free the prepended addreseses. For consistency
    911 	 * with sbappendaddr(), leave it to our caller to free
    912 	 * the input record chain passed to us as m0.
    913 	 */
    914 	while ((n = n0) != NULL) {
    915 	  	struct mbuf *np;
    916 
    917 		/* Undo the sballoc() of this record */
    918 		for (np = n; np; np = np->m_next)
    919 			sbfree(sb, np);
    920 
    921 		n0 = n->m_nextpkt;	/* iterate at next prepended address */
    922 		MFREE(n, np);		/* free prepended address (not data) */
    923 	}
    924 	return 0;
    925 }
    926 
    927 
    928 int
    929 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
    930 {
    931 	struct mbuf	*m, *mlast, *n;
    932 	int		space;
    933 
    934 	space = 0;
    935 	if (control == 0)
    936 		panic("sbappendcontrol");
    937 	for (m = control; ; m = m->m_next) {
    938 		space += m->m_len;
    939 		MCLAIM(m, sb->sb_mowner);
    940 		if (m->m_next == 0)
    941 			break;
    942 	}
    943 	n = m;			/* save pointer to last control buffer */
    944 	for (m = m0; m; m = m->m_next) {
    945 		MCLAIM(m, sb->sb_mowner);
    946 		space += m->m_len;
    947 	}
    948 	if (space > sbspace(sb))
    949 		return (0);
    950 	n->m_next = m0;			/* concatenate data to control */
    951 
    952 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
    953 
    954 	for (m = control; m->m_next != NULL; m = m->m_next)
    955 		sballoc(sb, m);
    956 	sballoc(sb, m);
    957 	mlast = m;
    958 	SBLINKRECORD(sb, control);
    959 
    960 	sb->sb_mbtail = mlast;
    961 	SBLASTMBUFCHK(sb, "sbappendcontrol");
    962 
    963 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
    964 
    965 	return (1);
    966 }
    967 
    968 /*
    969  * Compress mbuf chain m into the socket
    970  * buffer sb following mbuf n.  If n
    971  * is null, the buffer is presumed empty.
    972  */
    973 void
    974 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
    975 {
    976 	int		eor;
    977 	struct mbuf	*o;
    978 
    979 	eor = 0;
    980 	while (m) {
    981 		eor |= m->m_flags & M_EOR;
    982 		if (m->m_len == 0 &&
    983 		    (eor == 0 ||
    984 		     (((o = m->m_next) || (o = n)) &&
    985 		      o->m_type == m->m_type))) {
    986 			if (sb->sb_lastrecord == m)
    987 				sb->sb_lastrecord = m->m_next;
    988 			m = m_free(m);
    989 			continue;
    990 		}
    991 		if (n && (n->m_flags & M_EOR) == 0 &&
    992 		    /* M_TRAILINGSPACE() checks buffer writeability */
    993 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
    994 		    m->m_len <= M_TRAILINGSPACE(n) &&
    995 		    n->m_type == m->m_type) {
    996 			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
    997 			    (unsigned)m->m_len);
    998 			n->m_len += m->m_len;
    999 			sb->sb_cc += m->m_len;
   1000 			m = m_free(m);
   1001 			continue;
   1002 		}
   1003 		if (n)
   1004 			n->m_next = m;
   1005 		else
   1006 			sb->sb_mb = m;
   1007 		sb->sb_mbtail = m;
   1008 		sballoc(sb, m);
   1009 		n = m;
   1010 		m->m_flags &= ~M_EOR;
   1011 		m = m->m_next;
   1012 		n->m_next = 0;
   1013 	}
   1014 	if (eor) {
   1015 		if (n)
   1016 			n->m_flags |= eor;
   1017 		else
   1018 			printf("semi-panic: sbcompress\n");
   1019 	}
   1020 	SBLASTMBUFCHK(sb, __func__);
   1021 }
   1022 
   1023 /*
   1024  * Free all mbufs in a sockbuf.
   1025  * Check that all resources are reclaimed.
   1026  */
   1027 void
   1028 sbflush(struct sockbuf *sb)
   1029 {
   1030 
   1031 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
   1032 
   1033 	while (sb->sb_mbcnt)
   1034 		sbdrop(sb, (int)sb->sb_cc);
   1035 
   1036 	KASSERT(sb->sb_cc == 0);
   1037 	KASSERT(sb->sb_mb == NULL);
   1038 	KASSERT(sb->sb_mbtail == NULL);
   1039 	KASSERT(sb->sb_lastrecord == NULL);
   1040 }
   1041 
   1042 /*
   1043  * Drop data from (the front of) a sockbuf.
   1044  */
   1045 void
   1046 sbdrop(struct sockbuf *sb, int len)
   1047 {
   1048 	struct mbuf	*m, *mn, *next;
   1049 
   1050 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
   1051 	while (len > 0) {
   1052 		if (m == 0) {
   1053 			if (next == 0)
   1054 				panic("sbdrop");
   1055 			m = next;
   1056 			next = m->m_nextpkt;
   1057 			continue;
   1058 		}
   1059 		if (m->m_len > len) {
   1060 			m->m_len -= len;
   1061 			m->m_data += len;
   1062 			sb->sb_cc -= len;
   1063 			break;
   1064 		}
   1065 		len -= m->m_len;
   1066 		sbfree(sb, m);
   1067 		MFREE(m, mn);
   1068 		m = mn;
   1069 	}
   1070 	while (m && m->m_len == 0) {
   1071 		sbfree(sb, m);
   1072 		MFREE(m, mn);
   1073 		m = mn;
   1074 	}
   1075 	if (m) {
   1076 		sb->sb_mb = m;
   1077 		m->m_nextpkt = next;
   1078 	} else
   1079 		sb->sb_mb = next;
   1080 	/*
   1081 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
   1082 	 * makes sure sb_lastrecord is up-to-date if we dropped
   1083 	 * part of the last record.
   1084 	 */
   1085 	m = sb->sb_mb;
   1086 	if (m == NULL) {
   1087 		sb->sb_mbtail = NULL;
   1088 		sb->sb_lastrecord = NULL;
   1089 	} else if (m->m_nextpkt == NULL)
   1090 		sb->sb_lastrecord = m;
   1091 }
   1092 
   1093 /*
   1094  * Drop a record off the front of a sockbuf
   1095  * and move the next record to the front.
   1096  */
   1097 void
   1098 sbdroprecord(struct sockbuf *sb)
   1099 {
   1100 	struct mbuf	*m, *mn;
   1101 
   1102 	m = sb->sb_mb;
   1103 	if (m) {
   1104 		sb->sb_mb = m->m_nextpkt;
   1105 		do {
   1106 			sbfree(sb, m);
   1107 			MFREE(m, mn);
   1108 		} while ((m = mn) != NULL);
   1109 	}
   1110 	SB_EMPTY_FIXUP(sb);
   1111 }
   1112 
   1113 /*
   1114  * Create a "control" mbuf containing the specified data
   1115  * with the specified type for presentation on a socket buffer.
   1116  */
   1117 struct mbuf *
   1118 sbcreatecontrol(void *p, int size, int type, int level)
   1119 {
   1120 	struct cmsghdr	*cp;
   1121 	struct mbuf	*m;
   1122 
   1123 	if (CMSG_SPACE(size) > MCLBYTES) {
   1124 		printf("sbcreatecontrol: message too large %d\n", size);
   1125 		return NULL;
   1126 	}
   1127 
   1128 	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
   1129 		return ((struct mbuf *) NULL);
   1130 	if (CMSG_SPACE(size) > MLEN) {
   1131 		MCLGET(m, M_DONTWAIT);
   1132 		if ((m->m_flags & M_EXT) == 0) {
   1133 			m_free(m);
   1134 			return NULL;
   1135 		}
   1136 	}
   1137 	cp = mtod(m, struct cmsghdr *);
   1138 	memcpy(CMSG_DATA(cp), p, size);
   1139 	m->m_len = CMSG_SPACE(size);
   1140 	cp->cmsg_len = CMSG_LEN(size);
   1141 	cp->cmsg_level = level;
   1142 	cp->cmsg_type = type;
   1143 	return (m);
   1144 }
   1145