uipc_socket2.c revision 1.90 1 /* $NetBSD: uipc_socket2.c,v 1.90 2008/03/01 14:16:51 rmind Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.90 2008/03/01 14:16:51 rmind Exp $");
36
37 #include "opt_mbuftrace.h"
38 #include "opt_sb_max.h"
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/file.h>
44 #include <sys/buf.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/protosw.h>
48 #include <sys/poll.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/signalvar.h>
52 #include <sys/kauth.h>
53
54 /*
55 * Primitive routines for operating on sockets and socket buffers
56 */
57
58 /* strings for sleep message: */
59 const char netcon[] = "netcon";
60 const char netcls[] = "netcls";
61 const char netio[] = "netio";
62 const char netlck[] = "netlck";
63
64 u_long sb_max = SB_MAX; /* maximum socket buffer size */
65 static u_long sb_max_adj; /* adjusted sb_max */
66
67 /*
68 * Procedures to manipulate state flags of socket
69 * and do appropriate wakeups. Normal sequence from the
70 * active (originating) side is that soisconnecting() is
71 * called during processing of connect() call,
72 * resulting in an eventual call to soisconnected() if/when the
73 * connection is established. When the connection is torn down
74 * soisdisconnecting() is called during processing of disconnect() call,
75 * and soisdisconnected() is called when the connection to the peer
76 * is totally severed. The semantics of these routines are such that
77 * connectionless protocols can call soisconnected() and soisdisconnected()
78 * only, bypassing the in-progress calls when setting up a ``connection''
79 * takes no time.
80 *
81 * From the passive side, a socket is created with
82 * two queues of sockets: so_q0 for connections in progress
83 * and so_q for connections already made and awaiting user acceptance.
84 * As a protocol is preparing incoming connections, it creates a socket
85 * structure queued on so_q0 by calling sonewconn(). When the connection
86 * is established, soisconnected() is called, and transfers the
87 * socket structure to so_q, making it available to accept().
88 *
89 * If a socket is closed with sockets on either
90 * so_q0 or so_q, these sockets are dropped.
91 *
92 * If higher level protocols are implemented in
93 * the kernel, the wakeups done here will sometimes
94 * cause software-interrupt process scheduling.
95 */
96
97 void
98 soisconnecting(struct socket *so)
99 {
100
101 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
102 so->so_state |= SS_ISCONNECTING;
103 }
104
105 void
106 soisconnected(struct socket *so)
107 {
108 struct socket *head;
109
110 head = so->so_head;
111 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
112 so->so_state |= SS_ISCONNECTED;
113 if (head && soqremque(so, 0)) {
114 soqinsque(head, so, 1);
115 sorwakeup(head);
116 wakeup((void *)&head->so_timeo);
117 } else {
118 wakeup((void *)&so->so_timeo);
119 sorwakeup(so);
120 sowwakeup(so);
121 }
122 }
123
124 void
125 soisdisconnecting(struct socket *so)
126 {
127
128 so->so_state &= ~SS_ISCONNECTING;
129 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
130 wakeup((void *)&so->so_timeo);
131 sowwakeup(so);
132 sorwakeup(so);
133 }
134
135 void
136 soisdisconnected(struct socket *so)
137 {
138
139 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
140 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
141 wakeup((void *)&so->so_timeo);
142 sowwakeup(so);
143 sorwakeup(so);
144 }
145
146 /*
147 * When an attempt at a new connection is noted on a socket
148 * which accepts connections, sonewconn is called. If the
149 * connection is possible (subject to space constraints, etc.)
150 * then we allocate a new structure, propoerly linked into the
151 * data structure of the original socket, and return this.
152 * Connstatus may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
153 */
154 struct socket *
155 sonewconn(struct socket *head, int connstatus)
156 {
157 struct socket *so;
158 int soqueue;
159
160 soqueue = connstatus ? 1 : 0;
161 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
162 return ((struct socket *)0);
163 so = pool_get(&socket_pool, PR_NOWAIT);
164 if (so == NULL)
165 return (NULL);
166 memset((void *)so, 0, sizeof(*so));
167 so->so_type = head->so_type;
168 so->so_options = head->so_options &~ SO_ACCEPTCONN;
169 so->so_linger = head->so_linger;
170 so->so_state = head->so_state | SS_NOFDREF;
171 so->so_nbio = head->so_nbio;
172 so->so_proto = head->so_proto;
173 so->so_timeo = head->so_timeo;
174 so->so_pgid = head->so_pgid;
175 so->so_send = head->so_send;
176 so->so_receive = head->so_receive;
177 so->so_uidinfo = head->so_uidinfo;
178 #ifdef MBUFTRACE
179 so->so_mowner = head->so_mowner;
180 so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
181 so->so_snd.sb_mowner = head->so_snd.sb_mowner;
182 #endif
183 selinit(&so->so_rcv.sb_sel);
184 selinit(&so->so_snd.sb_sel);
185 (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
186 so->so_snd.sb_lowat = head->so_snd.sb_lowat;
187 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
188 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
189 so->so_snd.sb_timeo = head->so_snd.sb_timeo;
190 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
191 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
192 soqinsque(head, so, soqueue);
193 if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
194 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
195 (struct lwp *)0)) {
196 (void) soqremque(so, soqueue);
197 seldestroy(&so->so_rcv.sb_sel);
198 seldestroy(&so->so_snd.sb_sel);
199 pool_put(&socket_pool, so);
200 return (NULL);
201 }
202 if (connstatus) {
203 sorwakeup(head);
204 wakeup((void *)&head->so_timeo);
205 so->so_state |= connstatus;
206 }
207 return (so);
208 }
209
210 void
211 soqinsque(struct socket *head, struct socket *so, int q)
212 {
213
214 #ifdef DIAGNOSTIC
215 if (so->so_onq != NULL)
216 panic("soqinsque");
217 #endif
218
219 so->so_head = head;
220 if (q == 0) {
221 head->so_q0len++;
222 so->so_onq = &head->so_q0;
223 } else {
224 head->so_qlen++;
225 so->so_onq = &head->so_q;
226 }
227 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
228 }
229
230 int
231 soqremque(struct socket *so, int q)
232 {
233 struct socket *head;
234
235 head = so->so_head;
236 if (q == 0) {
237 if (so->so_onq != &head->so_q0)
238 return (0);
239 head->so_q0len--;
240 } else {
241 if (so->so_onq != &head->so_q)
242 return (0);
243 head->so_qlen--;
244 }
245 TAILQ_REMOVE(so->so_onq, so, so_qe);
246 so->so_onq = NULL;
247 so->so_head = NULL;
248 return (1);
249 }
250
251 /*
252 * Socantsendmore indicates that no more data will be sent on the
253 * socket; it would normally be applied to a socket when the user
254 * informs the system that no more data is to be sent, by the protocol
255 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
256 * will be received, and will normally be applied to the socket by a
257 * protocol when it detects that the peer will send no more data.
258 * Data queued for reading in the socket may yet be read.
259 */
260
261 void
262 socantsendmore(struct socket *so)
263 {
264
265 so->so_state |= SS_CANTSENDMORE;
266 sowwakeup(so);
267 }
268
269 void
270 socantrcvmore(struct socket *so)
271 {
272
273 so->so_state |= SS_CANTRCVMORE;
274 sorwakeup(so);
275 }
276
277 /*
278 * Wait for data to arrive at/drain from a socket buffer.
279 */
280 int
281 sbwait(struct sockbuf *sb)
282 {
283
284 sb->sb_flags |= SB_WAIT;
285 return (tsleep((void *)&sb->sb_cc,
286 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
287 sb->sb_timeo));
288 }
289
290 /*
291 * Lock a sockbuf already known to be locked;
292 * return any error returned from sleep (EINTR).
293 */
294 int
295 sb_lock(struct sockbuf *sb)
296 {
297 int error;
298
299 while (sb->sb_flags & SB_LOCK) {
300 sb->sb_flags |= SB_WANT;
301 error = tsleep((void *)&sb->sb_flags,
302 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
303 netlck, 0);
304 if (error)
305 return (error);
306 }
307 sb->sb_flags |= SB_LOCK;
308 return (0);
309 }
310
311 /*
312 * Wakeup processes waiting on a socket buffer.
313 * Do asynchronous notification via SIGIO
314 * if the socket buffer has the SB_ASYNC flag set.
315 */
316 void
317 sowakeup(struct socket *so, struct sockbuf *sb, int code)
318 {
319 int band;
320
321 if (code == POLL_IN)
322 band = POLLIN|POLLRDNORM;
323 else
324 band = POLLOUT|POLLWRNORM;
325 selnotify(&sb->sb_sel, band, 0);
326
327 sb->sb_flags &= ~SB_SEL;
328 if (sb->sb_flags & SB_WAIT) {
329 sb->sb_flags &= ~SB_WAIT;
330 wakeup((void *)&sb->sb_cc);
331 }
332 if (sb->sb_flags & SB_ASYNC)
333 fownsignal(so->so_pgid, SIGIO, code, band, so);
334 if (sb->sb_flags & SB_UPCALL)
335 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
336 }
337
338 /*
339 * Socket buffer (struct sockbuf) utility routines.
340 *
341 * Each socket contains two socket buffers: one for sending data and
342 * one for receiving data. Each buffer contains a queue of mbufs,
343 * information about the number of mbufs and amount of data in the
344 * queue, and other fields allowing poll() statements and notification
345 * on data availability to be implemented.
346 *
347 * Data stored in a socket buffer is maintained as a list of records.
348 * Each record is a list of mbufs chained together with the m_next
349 * field. Records are chained together with the m_nextpkt field. The upper
350 * level routine soreceive() expects the following conventions to be
351 * observed when placing information in the receive buffer:
352 *
353 * 1. If the protocol requires each message be preceded by the sender's
354 * name, then a record containing that name must be present before
355 * any associated data (mbuf's must be of type MT_SONAME).
356 * 2. If the protocol supports the exchange of ``access rights'' (really
357 * just additional data associated with the message), and there are
358 * ``rights'' to be received, then a record containing this data
359 * should be present (mbuf's must be of type MT_CONTROL).
360 * 3. If a name or rights record exists, then it must be followed by
361 * a data record, perhaps of zero length.
362 *
363 * Before using a new socket structure it is first necessary to reserve
364 * buffer space to the socket, by calling sbreserve(). This should commit
365 * some of the available buffer space in the system buffer pool for the
366 * socket (currently, it does nothing but enforce limits). The space
367 * should be released by calling sbrelease() when the socket is destroyed.
368 */
369
370 int
371 sb_max_set(u_long new_sbmax)
372 {
373 int s;
374
375 if (new_sbmax < (16 * 1024))
376 return (EINVAL);
377
378 s = splsoftnet();
379 sb_max = new_sbmax;
380 sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
381 splx(s);
382
383 return (0);
384 }
385
386 int
387 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
388 {
389 /*
390 * there's at least one application (a configure script of screen)
391 * which expects a fifo is writable even if it has "some" bytes
392 * in its buffer.
393 * so we want to make sure (hiwat - lowat) >= (some bytes).
394 *
395 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
396 * we expect it's large enough for such applications.
397 */
398 u_long lowat = MAX(sock_loan_thresh, MCLBYTES);
399 u_long hiwat = lowat + PIPE_BUF;
400
401 if (sndcc < hiwat)
402 sndcc = hiwat;
403 if (sbreserve(&so->so_snd, sndcc, so) == 0)
404 goto bad;
405 if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
406 goto bad2;
407 if (so->so_rcv.sb_lowat == 0)
408 so->so_rcv.sb_lowat = 1;
409 if (so->so_snd.sb_lowat == 0)
410 so->so_snd.sb_lowat = lowat;
411 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
412 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
413 return (0);
414 bad2:
415 sbrelease(&so->so_snd, so);
416 bad:
417 return (ENOBUFS);
418 }
419
420 /*
421 * Allot mbufs to a sockbuf.
422 * Attempt to scale mbmax so that mbcnt doesn't become limiting
423 * if buffering efficiency is near the normal case.
424 */
425 int
426 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
427 {
428 struct lwp *l = curlwp; /* XXX */
429 rlim_t maxcc;
430 struct uidinfo *uidinfo;
431
432 KDASSERT(sb_max_adj != 0);
433 if (cc == 0 || cc > sb_max_adj)
434 return (0);
435 if (so) {
436 if (kauth_cred_geteuid(l->l_cred) == so->so_uidinfo->ui_uid)
437 maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
438 else
439 maxcc = RLIM_INFINITY;
440 uidinfo = so->so_uidinfo;
441 } else {
442 uidinfo = uid_find(0); /* XXX: nothing better */
443 maxcc = RLIM_INFINITY;
444 }
445 if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
446 return 0;
447 sb->sb_mbmax = min(cc * 2, sb_max);
448 if (sb->sb_lowat > sb->sb_hiwat)
449 sb->sb_lowat = sb->sb_hiwat;
450 return (1);
451 }
452
453 /*
454 * Free mbufs held by a socket, and reserved mbuf space.
455 */
456 void
457 sbrelease(struct sockbuf *sb, struct socket *so)
458 {
459
460 sbflush(sb);
461 (void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
462 sb->sb_mbmax = 0;
463 }
464
465 /*
466 * Routines to add and remove
467 * data from an mbuf queue.
468 *
469 * The routines sbappend() or sbappendrecord() are normally called to
470 * append new mbufs to a socket buffer, after checking that adequate
471 * space is available, comparing the function sbspace() with the amount
472 * of data to be added. sbappendrecord() differs from sbappend() in
473 * that data supplied is treated as the beginning of a new record.
474 * To place a sender's address, optional access rights, and data in a
475 * socket receive buffer, sbappendaddr() should be used. To place
476 * access rights and data in a socket receive buffer, sbappendrights()
477 * should be used. In either case, the new data begins a new record.
478 * Note that unlike sbappend() and sbappendrecord(), these routines check
479 * for the caller that there will be enough space to store the data.
480 * Each fails if there is not enough space, or if it cannot find mbufs
481 * to store additional information in.
482 *
483 * Reliable protocols may use the socket send buffer to hold data
484 * awaiting acknowledgement. Data is normally copied from a socket
485 * send buffer in a protocol with m_copy for output to a peer,
486 * and then removing the data from the socket buffer with sbdrop()
487 * or sbdroprecord() when the data is acknowledged by the peer.
488 */
489
490 #ifdef SOCKBUF_DEBUG
491 void
492 sblastrecordchk(struct sockbuf *sb, const char *where)
493 {
494 struct mbuf *m = sb->sb_mb;
495
496 while (m && m->m_nextpkt)
497 m = m->m_nextpkt;
498
499 if (m != sb->sb_lastrecord) {
500 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
501 sb->sb_mb, sb->sb_lastrecord, m);
502 printf("packet chain:\n");
503 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
504 printf("\t%p\n", m);
505 panic("sblastrecordchk from %s", where);
506 }
507 }
508
509 void
510 sblastmbufchk(struct sockbuf *sb, const char *where)
511 {
512 struct mbuf *m = sb->sb_mb;
513 struct mbuf *n;
514
515 while (m && m->m_nextpkt)
516 m = m->m_nextpkt;
517
518 while (m && m->m_next)
519 m = m->m_next;
520
521 if (m != sb->sb_mbtail) {
522 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
523 sb->sb_mb, sb->sb_mbtail, m);
524 printf("packet tree:\n");
525 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
526 printf("\t");
527 for (n = m; n != NULL; n = n->m_next)
528 printf("%p ", n);
529 printf("\n");
530 }
531 panic("sblastmbufchk from %s", where);
532 }
533 }
534 #endif /* SOCKBUF_DEBUG */
535
536 /*
537 * Link a chain of records onto a socket buffer
538 */
539 #define SBLINKRECORDCHAIN(sb, m0, mlast) \
540 do { \
541 if ((sb)->sb_lastrecord != NULL) \
542 (sb)->sb_lastrecord->m_nextpkt = (m0); \
543 else \
544 (sb)->sb_mb = (m0); \
545 (sb)->sb_lastrecord = (mlast); \
546 } while (/*CONSTCOND*/0)
547
548
549 #define SBLINKRECORD(sb, m0) \
550 SBLINKRECORDCHAIN(sb, m0, m0)
551
552 /*
553 * Append mbuf chain m to the last record in the
554 * socket buffer sb. The additional space associated
555 * the mbuf chain is recorded in sb. Empty mbufs are
556 * discarded and mbufs are compacted where possible.
557 */
558 void
559 sbappend(struct sockbuf *sb, struct mbuf *m)
560 {
561 struct mbuf *n;
562
563 if (m == 0)
564 return;
565
566 #ifdef MBUFTRACE
567 m_claimm(m, sb->sb_mowner);
568 #endif
569
570 SBLASTRECORDCHK(sb, "sbappend 1");
571
572 if ((n = sb->sb_lastrecord) != NULL) {
573 /*
574 * XXX Would like to simply use sb_mbtail here, but
575 * XXX I need to verify that I won't miss an EOR that
576 * XXX way.
577 */
578 do {
579 if (n->m_flags & M_EOR) {
580 sbappendrecord(sb, m); /* XXXXXX!!!! */
581 return;
582 }
583 } while (n->m_next && (n = n->m_next));
584 } else {
585 /*
586 * If this is the first record in the socket buffer, it's
587 * also the last record.
588 */
589 sb->sb_lastrecord = m;
590 }
591 sbcompress(sb, m, n);
592 SBLASTRECORDCHK(sb, "sbappend 2");
593 }
594
595 /*
596 * This version of sbappend() should only be used when the caller
597 * absolutely knows that there will never be more than one record
598 * in the socket buffer, that is, a stream protocol (such as TCP).
599 */
600 void
601 sbappendstream(struct sockbuf *sb, struct mbuf *m)
602 {
603
604 KDASSERT(m->m_nextpkt == NULL);
605 KASSERT(sb->sb_mb == sb->sb_lastrecord);
606
607 SBLASTMBUFCHK(sb, __func__);
608
609 #ifdef MBUFTRACE
610 m_claimm(m, sb->sb_mowner);
611 #endif
612
613 sbcompress(sb, m, sb->sb_mbtail);
614
615 sb->sb_lastrecord = sb->sb_mb;
616 SBLASTRECORDCHK(sb, __func__);
617 }
618
619 #ifdef SOCKBUF_DEBUG
620 void
621 sbcheck(struct sockbuf *sb)
622 {
623 struct mbuf *m;
624 u_long len, mbcnt;
625
626 len = 0;
627 mbcnt = 0;
628 for (m = sb->sb_mb; m; m = m->m_next) {
629 len += m->m_len;
630 mbcnt += MSIZE;
631 if (m->m_flags & M_EXT)
632 mbcnt += m->m_ext.ext_size;
633 if (m->m_nextpkt)
634 panic("sbcheck nextpkt");
635 }
636 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
637 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
638 mbcnt, sb->sb_mbcnt);
639 panic("sbcheck");
640 }
641 }
642 #endif
643
644 /*
645 * As above, except the mbuf chain
646 * begins a new record.
647 */
648 void
649 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
650 {
651 struct mbuf *m;
652
653 if (m0 == 0)
654 return;
655
656 #ifdef MBUFTRACE
657 m_claimm(m0, sb->sb_mowner);
658 #endif
659 /*
660 * Put the first mbuf on the queue.
661 * Note this permits zero length records.
662 */
663 sballoc(sb, m0);
664 SBLASTRECORDCHK(sb, "sbappendrecord 1");
665 SBLINKRECORD(sb, m0);
666 m = m0->m_next;
667 m0->m_next = 0;
668 if (m && (m0->m_flags & M_EOR)) {
669 m0->m_flags &= ~M_EOR;
670 m->m_flags |= M_EOR;
671 }
672 sbcompress(sb, m, m0);
673 SBLASTRECORDCHK(sb, "sbappendrecord 2");
674 }
675
676 /*
677 * As above except that OOB data
678 * is inserted at the beginning of the sockbuf,
679 * but after any other OOB data.
680 */
681 void
682 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
683 {
684 struct mbuf *m, **mp;
685
686 if (m0 == 0)
687 return;
688
689 SBLASTRECORDCHK(sb, "sbinsertoob 1");
690
691 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
692 again:
693 switch (m->m_type) {
694
695 case MT_OOBDATA:
696 continue; /* WANT next train */
697
698 case MT_CONTROL:
699 if ((m = m->m_next) != NULL)
700 goto again; /* inspect THIS train further */
701 }
702 break;
703 }
704 /*
705 * Put the first mbuf on the queue.
706 * Note this permits zero length records.
707 */
708 sballoc(sb, m0);
709 m0->m_nextpkt = *mp;
710 if (*mp == NULL) {
711 /* m0 is actually the new tail */
712 sb->sb_lastrecord = m0;
713 }
714 *mp = m0;
715 m = m0->m_next;
716 m0->m_next = 0;
717 if (m && (m0->m_flags & M_EOR)) {
718 m0->m_flags &= ~M_EOR;
719 m->m_flags |= M_EOR;
720 }
721 sbcompress(sb, m, m0);
722 SBLASTRECORDCHK(sb, "sbinsertoob 2");
723 }
724
725 /*
726 * Append address and data, and optionally, control (ancillary) data
727 * to the receive queue of a socket. If present,
728 * m0 must include a packet header with total length.
729 * Returns 0 if no space in sockbuf or insufficient mbufs.
730 */
731 int
732 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
733 struct mbuf *control)
734 {
735 struct mbuf *m, *n, *nlast;
736 int space, len;
737
738 space = asa->sa_len;
739
740 if (m0 != NULL) {
741 if ((m0->m_flags & M_PKTHDR) == 0)
742 panic("sbappendaddr");
743 space += m0->m_pkthdr.len;
744 #ifdef MBUFTRACE
745 m_claimm(m0, sb->sb_mowner);
746 #endif
747 }
748 for (n = control; n; n = n->m_next) {
749 space += n->m_len;
750 MCLAIM(n, sb->sb_mowner);
751 if (n->m_next == 0) /* keep pointer to last control buf */
752 break;
753 }
754 if (space > sbspace(sb))
755 return (0);
756 MGET(m, M_DONTWAIT, MT_SONAME);
757 if (m == 0)
758 return (0);
759 MCLAIM(m, sb->sb_mowner);
760 /*
761 * XXX avoid 'comparison always true' warning which isn't easily
762 * avoided.
763 */
764 len = asa->sa_len;
765 if (len > MLEN) {
766 MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
767 if ((m->m_flags & M_EXT) == 0) {
768 m_free(m);
769 return (0);
770 }
771 }
772 m->m_len = asa->sa_len;
773 memcpy(mtod(m, void *), asa, asa->sa_len);
774 if (n)
775 n->m_next = m0; /* concatenate data to control */
776 else
777 control = m0;
778 m->m_next = control;
779
780 SBLASTRECORDCHK(sb, "sbappendaddr 1");
781
782 for (n = m; n->m_next != NULL; n = n->m_next)
783 sballoc(sb, n);
784 sballoc(sb, n);
785 nlast = n;
786 SBLINKRECORD(sb, m);
787
788 sb->sb_mbtail = nlast;
789 SBLASTMBUFCHK(sb, "sbappendaddr");
790
791 SBLASTRECORDCHK(sb, "sbappendaddr 2");
792
793 return (1);
794 }
795
796 /*
797 * Helper for sbappendchainaddr: prepend a struct sockaddr* to
798 * an mbuf chain.
799 */
800 static inline struct mbuf *
801 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
802 const struct sockaddr *asa)
803 {
804 struct mbuf *m;
805 const int salen = asa->sa_len;
806
807 /* only the first in each chain need be a pkthdr */
808 MGETHDR(m, M_DONTWAIT, MT_SONAME);
809 if (m == 0)
810 return (0);
811 MCLAIM(m, sb->sb_mowner);
812 #ifdef notyet
813 if (salen > MHLEN) {
814 MEXTMALLOC(m, salen, M_NOWAIT);
815 if ((m->m_flags & M_EXT) == 0) {
816 m_free(m);
817 return (0);
818 }
819 }
820 #else
821 KASSERT(salen <= MHLEN);
822 #endif
823 m->m_len = salen;
824 memcpy(mtod(m, void *), asa, salen);
825 m->m_next = m0;
826 m->m_pkthdr.len = salen + m0->m_pkthdr.len;
827
828 return m;
829 }
830
831 int
832 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
833 struct mbuf *m0, int sbprio)
834 {
835 int space;
836 struct mbuf *m, *n, *n0, *nlast;
837 int error;
838
839 /*
840 * XXX sbprio reserved for encoding priority of this* request:
841 * SB_PRIO_NONE --> honour normal sb limits
842 * SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
843 * take whole chain. Intended for large requests
844 * that should be delivered atomically (all, or none).
845 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
846 * over normal socket limits, for messages indicating
847 * buffer overflow in earlier normal/lower-priority messages
848 * SB_PRIO_BESTEFFORT --> ignore limits entirely.
849 * Intended for kernel-generated messages only.
850 * Up to generator to avoid total mbuf resource exhaustion.
851 */
852 (void)sbprio;
853
854 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
855 panic("sbappendaddrchain");
856
857 space = sbspace(sb);
858
859 #ifdef notyet
860 /*
861 * Enforce SB_PRIO_* limits as described above.
862 */
863 #endif
864
865 n0 = NULL;
866 nlast = NULL;
867 for (m = m0; m; m = m->m_nextpkt) {
868 struct mbuf *np;
869
870 #ifdef MBUFTRACE
871 m_claimm(m, sb->sb_mowner);
872 #endif
873
874 /* Prepend sockaddr to this record (m) of input chain m0 */
875 n = m_prepend_sockaddr(sb, m, asa);
876 if (n == NULL) {
877 error = ENOBUFS;
878 goto bad;
879 }
880
881 /* Append record (asa+m) to end of new chain n0 */
882 if (n0 == NULL) {
883 n0 = n;
884 } else {
885 nlast->m_nextpkt = n;
886 }
887 /* Keep track of last record on new chain */
888 nlast = n;
889
890 for (np = n; np; np = np->m_next)
891 sballoc(sb, np);
892 }
893
894 SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
895
896 /* Drop the entire chain of (asa+m) records onto the socket */
897 SBLINKRECORDCHAIN(sb, n0, nlast);
898
899 SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
900
901 for (m = nlast; m->m_next; m = m->m_next)
902 ;
903 sb->sb_mbtail = m;
904 SBLASTMBUFCHK(sb, "sbappendaddrchain");
905
906 return (1);
907
908 bad:
909 /*
910 * On error, free the prepended addreseses. For consistency
911 * with sbappendaddr(), leave it to our caller to free
912 * the input record chain passed to us as m0.
913 */
914 while ((n = n0) != NULL) {
915 struct mbuf *np;
916
917 /* Undo the sballoc() of this record */
918 for (np = n; np; np = np->m_next)
919 sbfree(sb, np);
920
921 n0 = n->m_nextpkt; /* iterate at next prepended address */
922 MFREE(n, np); /* free prepended address (not data) */
923 }
924 return 0;
925 }
926
927
928 int
929 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
930 {
931 struct mbuf *m, *mlast, *n;
932 int space;
933
934 space = 0;
935 if (control == 0)
936 panic("sbappendcontrol");
937 for (m = control; ; m = m->m_next) {
938 space += m->m_len;
939 MCLAIM(m, sb->sb_mowner);
940 if (m->m_next == 0)
941 break;
942 }
943 n = m; /* save pointer to last control buffer */
944 for (m = m0; m; m = m->m_next) {
945 MCLAIM(m, sb->sb_mowner);
946 space += m->m_len;
947 }
948 if (space > sbspace(sb))
949 return (0);
950 n->m_next = m0; /* concatenate data to control */
951
952 SBLASTRECORDCHK(sb, "sbappendcontrol 1");
953
954 for (m = control; m->m_next != NULL; m = m->m_next)
955 sballoc(sb, m);
956 sballoc(sb, m);
957 mlast = m;
958 SBLINKRECORD(sb, control);
959
960 sb->sb_mbtail = mlast;
961 SBLASTMBUFCHK(sb, "sbappendcontrol");
962
963 SBLASTRECORDCHK(sb, "sbappendcontrol 2");
964
965 return (1);
966 }
967
968 /*
969 * Compress mbuf chain m into the socket
970 * buffer sb following mbuf n. If n
971 * is null, the buffer is presumed empty.
972 */
973 void
974 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
975 {
976 int eor;
977 struct mbuf *o;
978
979 eor = 0;
980 while (m) {
981 eor |= m->m_flags & M_EOR;
982 if (m->m_len == 0 &&
983 (eor == 0 ||
984 (((o = m->m_next) || (o = n)) &&
985 o->m_type == m->m_type))) {
986 if (sb->sb_lastrecord == m)
987 sb->sb_lastrecord = m->m_next;
988 m = m_free(m);
989 continue;
990 }
991 if (n && (n->m_flags & M_EOR) == 0 &&
992 /* M_TRAILINGSPACE() checks buffer writeability */
993 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
994 m->m_len <= M_TRAILINGSPACE(n) &&
995 n->m_type == m->m_type) {
996 memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
997 (unsigned)m->m_len);
998 n->m_len += m->m_len;
999 sb->sb_cc += m->m_len;
1000 m = m_free(m);
1001 continue;
1002 }
1003 if (n)
1004 n->m_next = m;
1005 else
1006 sb->sb_mb = m;
1007 sb->sb_mbtail = m;
1008 sballoc(sb, m);
1009 n = m;
1010 m->m_flags &= ~M_EOR;
1011 m = m->m_next;
1012 n->m_next = 0;
1013 }
1014 if (eor) {
1015 if (n)
1016 n->m_flags |= eor;
1017 else
1018 printf("semi-panic: sbcompress\n");
1019 }
1020 SBLASTMBUFCHK(sb, __func__);
1021 }
1022
1023 /*
1024 * Free all mbufs in a sockbuf.
1025 * Check that all resources are reclaimed.
1026 */
1027 void
1028 sbflush(struct sockbuf *sb)
1029 {
1030
1031 KASSERT((sb->sb_flags & SB_LOCK) == 0);
1032
1033 while (sb->sb_mbcnt)
1034 sbdrop(sb, (int)sb->sb_cc);
1035
1036 KASSERT(sb->sb_cc == 0);
1037 KASSERT(sb->sb_mb == NULL);
1038 KASSERT(sb->sb_mbtail == NULL);
1039 KASSERT(sb->sb_lastrecord == NULL);
1040 }
1041
1042 /*
1043 * Drop data from (the front of) a sockbuf.
1044 */
1045 void
1046 sbdrop(struct sockbuf *sb, int len)
1047 {
1048 struct mbuf *m, *mn, *next;
1049
1050 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1051 while (len > 0) {
1052 if (m == 0) {
1053 if (next == 0)
1054 panic("sbdrop");
1055 m = next;
1056 next = m->m_nextpkt;
1057 continue;
1058 }
1059 if (m->m_len > len) {
1060 m->m_len -= len;
1061 m->m_data += len;
1062 sb->sb_cc -= len;
1063 break;
1064 }
1065 len -= m->m_len;
1066 sbfree(sb, m);
1067 MFREE(m, mn);
1068 m = mn;
1069 }
1070 while (m && m->m_len == 0) {
1071 sbfree(sb, m);
1072 MFREE(m, mn);
1073 m = mn;
1074 }
1075 if (m) {
1076 sb->sb_mb = m;
1077 m->m_nextpkt = next;
1078 } else
1079 sb->sb_mb = next;
1080 /*
1081 * First part is an inline SB_EMPTY_FIXUP(). Second part
1082 * makes sure sb_lastrecord is up-to-date if we dropped
1083 * part of the last record.
1084 */
1085 m = sb->sb_mb;
1086 if (m == NULL) {
1087 sb->sb_mbtail = NULL;
1088 sb->sb_lastrecord = NULL;
1089 } else if (m->m_nextpkt == NULL)
1090 sb->sb_lastrecord = m;
1091 }
1092
1093 /*
1094 * Drop a record off the front of a sockbuf
1095 * and move the next record to the front.
1096 */
1097 void
1098 sbdroprecord(struct sockbuf *sb)
1099 {
1100 struct mbuf *m, *mn;
1101
1102 m = sb->sb_mb;
1103 if (m) {
1104 sb->sb_mb = m->m_nextpkt;
1105 do {
1106 sbfree(sb, m);
1107 MFREE(m, mn);
1108 } while ((m = mn) != NULL);
1109 }
1110 SB_EMPTY_FIXUP(sb);
1111 }
1112
1113 /*
1114 * Create a "control" mbuf containing the specified data
1115 * with the specified type for presentation on a socket buffer.
1116 */
1117 struct mbuf *
1118 sbcreatecontrol(void *p, int size, int type, int level)
1119 {
1120 struct cmsghdr *cp;
1121 struct mbuf *m;
1122
1123 if (CMSG_SPACE(size) > MCLBYTES) {
1124 printf("sbcreatecontrol: message too large %d\n", size);
1125 return NULL;
1126 }
1127
1128 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
1129 return ((struct mbuf *) NULL);
1130 if (CMSG_SPACE(size) > MLEN) {
1131 MCLGET(m, M_DONTWAIT);
1132 if ((m->m_flags & M_EXT) == 0) {
1133 m_free(m);
1134 return NULL;
1135 }
1136 }
1137 cp = mtod(m, struct cmsghdr *);
1138 memcpy(CMSG_DATA(cp), p, size);
1139 m->m_len = CMSG_SPACE(size);
1140 cp->cmsg_len = CMSG_LEN(size);
1141 cp->cmsg_level = level;
1142 cp->cmsg_type = type;
1143 return (m);
1144 }
1145