Home | History | Annotate | Line # | Download | only in kern
uipc_socket2.c revision 1.90.2.3
      1 /*	$NetBSD: uipc_socket2.c,v 1.90.2.3 2008/06/06 20:18:19 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     31  *	The Regents of the University of California.  All rights reserved.
     32  *
     33  * Redistribution and use in source and binary forms, with or without
     34  * modification, are permitted provided that the following conditions
     35  * are met:
     36  * 1. Redistributions of source code must retain the above copyright
     37  *    notice, this list of conditions and the following disclaimer.
     38  * 2. Redistributions in binary form must reproduce the above copyright
     39  *    notice, this list of conditions and the following disclaimer in the
     40  *    documentation and/or other materials provided with the distribution.
     41  * 3. Neither the name of the University nor the names of its contributors
     42  *    may be used to endorse or promote products derived from this software
     43  *    without specific prior written permission.
     44  *
     45  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55  * SUCH DAMAGE.
     56  *
     57  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
     58  */
     59 
     60 #include <sys/cdefs.h>
     61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.90.2.3 2008/06/06 20:18:19 christos Exp $");
     62 
     63 #include "opt_mbuftrace.h"
     64 #include "opt_sb_max.h"
     65 
     66 #include <sys/param.h>
     67 #include <sys/systm.h>
     68 #include <sys/proc.h>
     69 #include <sys/file.h>
     70 #include <sys/buf.h>
     71 #include <sys/malloc.h>
     72 #include <sys/mbuf.h>
     73 #include <sys/protosw.h>
     74 #include <sys/domain.h>
     75 #include <sys/poll.h>
     76 #include <sys/socket.h>
     77 #include <sys/socketvar.h>
     78 #include <sys/signalvar.h>
     79 #include <sys/kauth.h>
     80 #include <sys/pool.h>
     81 
     82 /*
     83  * Primitive routines for operating on sockets and socket buffers.
     84  *
     85  * Locking rules and assumptions:
     86  *
     87  * o socket::so_lock can change on the fly.  The low level routines used
     88  *   to lock sockets are aware of this.  When so_lock is acquired, the
     89  *   routine locking must check to see if so_lock still points to the
     90  *   lock that was acquired.  If so_lock has changed in the meantime, the
     91  *   now irellevant lock that was acquired must be dropped and the lock
     92  *   operation retried.  Although not proven here, this is completely safe
     93  *   on a multiprocessor system, even with relaxed memory ordering, given
     94  *   the next two rules:
     95  *
     96  * o In order to mutate so_lock, the lock pointed to by the current value
     97  *   of so_lock must be held: i.e., the socket must be held locked by the
     98  *   changing thread.  The thread must issue membar_exit() to prevent
     99  *   memory accesses being reordered, and can set so_lock to the desired
    100  *   value.  If the lock pointed to by the new value of so_lock is not
    101  *   held by the changing thread, the socket must then be considered
    102  *   unlocked.
    103  *
    104  * o If so_lock is mutated, and the previous lock referred to by so_lock
    105  *   could still be visible to other threads in the system (e.g. via file
    106  *   descriptor or protocol-internal reference), then the old lock must
    107  *   remain valid until the socket and/or protocol control block has been
    108  *   torn down.
    109  *
    110  * o If a socket has a non-NULL so_head value (i.e. is in the process of
    111  *   connecting), then locking the socket must also lock the socket pointed
    112  *   to by so_head: their lock pointers must match.
    113  *
    114  * o If a socket has connections in progress (so_q, so_q0 not empty) then
    115  *   locking the socket must also lock the sockets attached to both queues.
    116  *   Again, their lock pointers must match.
    117  *
    118  * o Beyond the initial lock assigment in socreate(), assigning locks to
    119  *   sockets is the responsibility of the individual protocols / protocol
    120  *   domains.
    121  */
    122 
    123 static pool_cache_t socket_cache;
    124 
    125 u_long	sb_max = SB_MAX;	/* maximum socket buffer size */
    126 static u_long sb_max_adj;	/* adjusted sb_max */
    127 
    128 /*
    129  * Procedures to manipulate state flags of socket
    130  * and do appropriate wakeups.  Normal sequence from the
    131  * active (originating) side is that soisconnecting() is
    132  * called during processing of connect() call,
    133  * resulting in an eventual call to soisconnected() if/when the
    134  * connection is established.  When the connection is torn down
    135  * soisdisconnecting() is called during processing of disconnect() call,
    136  * and soisdisconnected() is called when the connection to the peer
    137  * is totally severed.  The semantics of these routines are such that
    138  * connectionless protocols can call soisconnected() and soisdisconnected()
    139  * only, bypassing the in-progress calls when setting up a ``connection''
    140  * takes no time.
    141  *
    142  * From the passive side, a socket is created with
    143  * two queues of sockets: so_q0 for connections in progress
    144  * and so_q for connections already made and awaiting user acceptance.
    145  * As a protocol is preparing incoming connections, it creates a socket
    146  * structure queued on so_q0 by calling sonewconn().  When the connection
    147  * is established, soisconnected() is called, and transfers the
    148  * socket structure to so_q, making it available to accept().
    149  *
    150  * If a socket is closed with sockets on either
    151  * so_q0 or so_q, these sockets are dropped.
    152  *
    153  * If higher level protocols are implemented in
    154  * the kernel, the wakeups done here will sometimes
    155  * cause software-interrupt process scheduling.
    156  */
    157 
    158 void
    159 soisconnecting(struct socket *so)
    160 {
    161 
    162 	KASSERT(solocked(so));
    163 
    164 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
    165 	so->so_state |= SS_ISCONNECTING;
    166 }
    167 
    168 void
    169 soisconnected(struct socket *so)
    170 {
    171 	struct socket	*head;
    172 
    173 	head = so->so_head;
    174 
    175 	KASSERT(solocked(so));
    176 	KASSERT(head == NULL || solocked2(so, head));
    177 
    178 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
    179 	so->so_state |= SS_ISCONNECTED;
    180 	if (head && soqremque(so, 0)) {
    181 		soqinsque(head, so, 1);
    182 		sorwakeup(head);
    183 		cv_broadcast(&head->so_cv);
    184 	} else {
    185 		cv_broadcast(&so->so_cv);
    186 		sorwakeup(so);
    187 		sowwakeup(so);
    188 	}
    189 }
    190 
    191 void
    192 soisdisconnecting(struct socket *so)
    193 {
    194 
    195 	KASSERT(solocked(so));
    196 
    197 	so->so_state &= ~SS_ISCONNECTING;
    198 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
    199 	cv_broadcast(&so->so_cv);
    200 	sowwakeup(so);
    201 	sorwakeup(so);
    202 }
    203 
    204 void
    205 soisdisconnected(struct socket *so)
    206 {
    207 
    208 	KASSERT(solocked(so));
    209 
    210 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
    211 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
    212 	cv_broadcast(&so->so_cv);
    213 	sowwakeup(so);
    214 	sorwakeup(so);
    215 }
    216 
    217 void
    218 soinit2(void)
    219 {
    220 
    221 	socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
    222 	    "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
    223 }
    224 
    225 /*
    226  * When an attempt at a new connection is noted on a socket
    227  * which accepts connections, sonewconn is called.  If the
    228  * connection is possible (subject to space constraints, etc.)
    229  * then we allocate a new structure, propoerly linked into the
    230  * data structure of the original socket, and return this.
    231  * Connstatus may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
    232  */
    233 struct socket *
    234 sonewconn(struct socket *head, int connstatus)
    235 {
    236 	struct socket	*so;
    237 	int		soqueue, error;
    238 
    239 	KASSERT(solocked(head));
    240 
    241 	soqueue = connstatus ? 1 : 0;
    242 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
    243 		return ((struct socket *)0);
    244 	so = soget(false);
    245 	if (so == NULL)
    246 		return (NULL);
    247 	mutex_obj_hold(head->so_lock);
    248 	so->so_lock = head->so_lock;
    249 	so->so_type = head->so_type;
    250 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
    251 	so->so_linger = head->so_linger;
    252 	so->so_state = head->so_state | SS_NOFDREF;
    253 	so->so_nbio = head->so_nbio;
    254 	so->so_proto = head->so_proto;
    255 	so->so_timeo = head->so_timeo;
    256 	so->so_pgid = head->so_pgid;
    257 	so->so_send = head->so_send;
    258 	so->so_receive = head->so_receive;
    259 	so->so_uidinfo = head->so_uidinfo;
    260 	so->so_egid = head->so_egid;
    261 	so->so_cpid = head->so_cpid;
    262 #ifdef MBUFTRACE
    263 	so->so_mowner = head->so_mowner;
    264 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
    265 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
    266 #endif
    267 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
    268 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
    269 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
    270 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
    271 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
    272 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
    273 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
    274 	soqinsque(head, so, soqueue);
    275 	error = (*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL,
    276 	    NULL, NULL);
    277 	KASSERT(solocked(so));
    278 	if (error != 0) {
    279 		(void) soqremque(so, soqueue);
    280 		soput(so);
    281 		return (NULL);
    282 	}
    283 	if (connstatus) {
    284 		sorwakeup(head);
    285 		cv_broadcast(&head->so_cv);
    286 		so->so_state |= connstatus;
    287 	}
    288 	return (so);
    289 }
    290 
    291 struct socket *
    292 soget(bool waitok)
    293 {
    294 	struct socket *so;
    295 
    296 	so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
    297 	if (__predict_false(so == NULL))
    298 		return (NULL);
    299 	memset(so, 0, sizeof(*so));
    300 	TAILQ_INIT(&so->so_q0);
    301 	TAILQ_INIT(&so->so_q);
    302 	cv_init(&so->so_cv, "socket");
    303 	cv_init(&so->so_rcv.sb_cv, "netio");
    304 	cv_init(&so->so_snd.sb_cv, "netio");
    305 	selinit(&so->so_rcv.sb_sel);
    306 	selinit(&so->so_snd.sb_sel);
    307 	so->so_rcv.sb_so = so;
    308 	so->so_snd.sb_so = so;
    309 	return so;
    310 }
    311 
    312 void
    313 soput(struct socket *so)
    314 {
    315 
    316 	KASSERT(!cv_has_waiters(&so->so_cv));
    317 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    318 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    319 	seldestroy(&so->so_rcv.sb_sel);
    320 	seldestroy(&so->so_snd.sb_sel);
    321 	mutex_obj_free(so->so_lock);
    322 	cv_destroy(&so->so_cv);
    323 	cv_destroy(&so->so_rcv.sb_cv);
    324 	cv_destroy(&so->so_snd.sb_cv);
    325 	pool_cache_put(socket_cache, so);
    326 }
    327 
    328 void
    329 soqinsque(struct socket *head, struct socket *so, int q)
    330 {
    331 
    332 	KASSERT(solocked2(head, so));
    333 
    334 #ifdef DIAGNOSTIC
    335 	if (so->so_onq != NULL)
    336 		panic("soqinsque");
    337 #endif
    338 
    339 	so->so_head = head;
    340 	if (q == 0) {
    341 		head->so_q0len++;
    342 		so->so_onq = &head->so_q0;
    343 	} else {
    344 		head->so_qlen++;
    345 		so->so_onq = &head->so_q;
    346 	}
    347 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
    348 }
    349 
    350 int
    351 soqremque(struct socket *so, int q)
    352 {
    353 	struct socket	*head;
    354 
    355 	head = so->so_head;
    356 
    357 	KASSERT(solocked(so));
    358 	if (q == 0) {
    359 		if (so->so_onq != &head->so_q0)
    360 			return (0);
    361 		head->so_q0len--;
    362 	} else {
    363 		if (so->so_onq != &head->so_q)
    364 			return (0);
    365 		head->so_qlen--;
    366 	}
    367 	KASSERT(solocked2(so, head));
    368 	TAILQ_REMOVE(so->so_onq, so, so_qe);
    369 	so->so_onq = NULL;
    370 	so->so_head = NULL;
    371 	return (1);
    372 }
    373 
    374 /*
    375  * Socantsendmore indicates that no more data will be sent on the
    376  * socket; it would normally be applied to a socket when the user
    377  * informs the system that no more data is to be sent, by the protocol
    378  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
    379  * will be received, and will normally be applied to the socket by a
    380  * protocol when it detects that the peer will send no more data.
    381  * Data queued for reading in the socket may yet be read.
    382  */
    383 
    384 void
    385 socantsendmore(struct socket *so)
    386 {
    387 
    388 	KASSERT(solocked(so));
    389 
    390 	so->so_state |= SS_CANTSENDMORE;
    391 	sowwakeup(so);
    392 }
    393 
    394 void
    395 socantrcvmore(struct socket *so)
    396 {
    397 
    398 	KASSERT(solocked(so));
    399 
    400 	so->so_state |= SS_CANTRCVMORE;
    401 	sorwakeup(so);
    402 }
    403 
    404 /*
    405  * Wait for data to arrive at/drain from a socket buffer.
    406  */
    407 int
    408 sbwait(struct sockbuf *sb)
    409 {
    410 	struct socket *so;
    411 	kmutex_t *lock;
    412 	int error;
    413 
    414 	so = sb->sb_so;
    415 
    416 	KASSERT(solocked(so));
    417 
    418 	sb->sb_flags |= SB_NOTIFY;
    419 	lock = so->so_lock;
    420 	if ((sb->sb_flags & SB_NOINTR) != 0)
    421 		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
    422 	else
    423 		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
    424 	if (__predict_false(lock != so->so_lock))
    425 		solockretry(so, lock);
    426 	return error;
    427 }
    428 
    429 /*
    430  * Wakeup processes waiting on a socket buffer.
    431  * Do asynchronous notification via SIGIO
    432  * if the socket buffer has the SB_ASYNC flag set.
    433  */
    434 void
    435 sowakeup(struct socket *so, struct sockbuf *sb, int code)
    436 {
    437 	int band;
    438 
    439 	KASSERT(solocked(so));
    440 	KASSERT(sb->sb_so == so);
    441 
    442 	if (code == POLL_IN)
    443 		band = POLLIN|POLLRDNORM;
    444 	else
    445 		band = POLLOUT|POLLWRNORM;
    446 	sb->sb_flags &= ~SB_NOTIFY;
    447 	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
    448 	cv_broadcast(&sb->sb_cv);
    449 	if (sb->sb_flags & SB_ASYNC)
    450 		fownsignal(so->so_pgid, SIGIO, code, band, so);
    451 	if (sb->sb_flags & SB_UPCALL)
    452 		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
    453 }
    454 
    455 /*
    456  * Socket buffer (struct sockbuf) utility routines.
    457  *
    458  * Each socket contains two socket buffers: one for sending data and
    459  * one for receiving data.  Each buffer contains a queue of mbufs,
    460  * information about the number of mbufs and amount of data in the
    461  * queue, and other fields allowing poll() statements and notification
    462  * on data availability to be implemented.
    463  *
    464  * Data stored in a socket buffer is maintained as a list of records.
    465  * Each record is a list of mbufs chained together with the m_next
    466  * field.  Records are chained together with the m_nextpkt field. The upper
    467  * level routine soreceive() expects the following conventions to be
    468  * observed when placing information in the receive buffer:
    469  *
    470  * 1. If the protocol requires each message be preceded by the sender's
    471  *    name, then a record containing that name must be present before
    472  *    any associated data (mbuf's must be of type MT_SONAME).
    473  * 2. If the protocol supports the exchange of ``access rights'' (really
    474  *    just additional data associated with the message), and there are
    475  *    ``rights'' to be received, then a record containing this data
    476  *    should be present (mbuf's must be of type MT_CONTROL).
    477  * 3. If a name or rights record exists, then it must be followed by
    478  *    a data record, perhaps of zero length.
    479  *
    480  * Before using a new socket structure it is first necessary to reserve
    481  * buffer space to the socket, by calling sbreserve().  This should commit
    482  * some of the available buffer space in the system buffer pool for the
    483  * socket (currently, it does nothing but enforce limits).  The space
    484  * should be released by calling sbrelease() when the socket is destroyed.
    485  */
    486 
    487 int
    488 sb_max_set(u_long new_sbmax)
    489 {
    490 	int s;
    491 
    492 	if (new_sbmax < (16 * 1024))
    493 		return (EINVAL);
    494 
    495 	s = splsoftnet();
    496 	sb_max = new_sbmax;
    497 	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
    498 	splx(s);
    499 
    500 	return (0);
    501 }
    502 
    503 int
    504 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
    505 {
    506 
    507 	KASSERT(so->so_lock == NULL || solocked(so));
    508 
    509 	/*
    510 	 * there's at least one application (a configure script of screen)
    511 	 * which expects a fifo is writable even if it has "some" bytes
    512 	 * in its buffer.
    513 	 * so we want to make sure (hiwat - lowat) >= (some bytes).
    514 	 *
    515 	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
    516 	 * we expect it's large enough for such applications.
    517 	 */
    518 	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
    519 	u_long  hiwat = lowat + PIPE_BUF;
    520 
    521 	if (sndcc < hiwat)
    522 		sndcc = hiwat;
    523 	if (sbreserve(&so->so_snd, sndcc, so) == 0)
    524 		goto bad;
    525 	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
    526 		goto bad2;
    527 	if (so->so_rcv.sb_lowat == 0)
    528 		so->so_rcv.sb_lowat = 1;
    529 	if (so->so_snd.sb_lowat == 0)
    530 		so->so_snd.sb_lowat = lowat;
    531 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
    532 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
    533 	return (0);
    534  bad2:
    535 	sbrelease(&so->so_snd, so);
    536  bad:
    537 	return (ENOBUFS);
    538 }
    539 
    540 /*
    541  * Allot mbufs to a sockbuf.
    542  * Attempt to scale mbmax so that mbcnt doesn't become limiting
    543  * if buffering efficiency is near the normal case.
    544  */
    545 int
    546 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
    547 {
    548 	struct lwp *l = curlwp; /* XXX */
    549 	rlim_t maxcc;
    550 	struct uidinfo *uidinfo;
    551 
    552 	KASSERT(so->so_lock == NULL || solocked(so));
    553 	KASSERT(sb->sb_so == so);
    554 	KASSERT(sb_max_adj != 0);
    555 
    556 	if (cc == 0 || cc > sb_max_adj)
    557 		return (0);
    558 
    559 	if (kauth_cred_geteuid(l->l_cred) == so->so_uidinfo->ui_uid)
    560 		maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
    561 	else
    562 		maxcc = RLIM_INFINITY;
    563 
    564 	uidinfo = so->so_uidinfo;
    565 	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
    566 		return 0;
    567 	sb->sb_mbmax = min(cc * 2, sb_max);
    568 	if (sb->sb_lowat > sb->sb_hiwat)
    569 		sb->sb_lowat = sb->sb_hiwat;
    570 	return (1);
    571 }
    572 
    573 /*
    574  * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
    575  * that the socket is held locked here: see sorflush().
    576  */
    577 void
    578 sbrelease(struct sockbuf *sb, struct socket *so)
    579 {
    580 
    581 	KASSERT(sb->sb_so == so);
    582 
    583 	sbflush(sb);
    584 	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
    585 	sb->sb_mbmax = 0;
    586 }
    587 
    588 /*
    589  * Routines to add and remove
    590  * data from an mbuf queue.
    591  *
    592  * The routines sbappend() or sbappendrecord() are normally called to
    593  * append new mbufs to a socket buffer, after checking that adequate
    594  * space is available, comparing the function sbspace() with the amount
    595  * of data to be added.  sbappendrecord() differs from sbappend() in
    596  * that data supplied is treated as the beginning of a new record.
    597  * To place a sender's address, optional access rights, and data in a
    598  * socket receive buffer, sbappendaddr() should be used.  To place
    599  * access rights and data in a socket receive buffer, sbappendrights()
    600  * should be used.  In either case, the new data begins a new record.
    601  * Note that unlike sbappend() and sbappendrecord(), these routines check
    602  * for the caller that there will be enough space to store the data.
    603  * Each fails if there is not enough space, or if it cannot find mbufs
    604  * to store additional information in.
    605  *
    606  * Reliable protocols may use the socket send buffer to hold data
    607  * awaiting acknowledgement.  Data is normally copied from a socket
    608  * send buffer in a protocol with m_copy for output to a peer,
    609  * and then removing the data from the socket buffer with sbdrop()
    610  * or sbdroprecord() when the data is acknowledged by the peer.
    611  */
    612 
    613 #ifdef SOCKBUF_DEBUG
    614 void
    615 sblastrecordchk(struct sockbuf *sb, const char *where)
    616 {
    617 	struct mbuf *m = sb->sb_mb;
    618 
    619 	KASSERT(solocked(sb->sb_so));
    620 
    621 	while (m && m->m_nextpkt)
    622 		m = m->m_nextpkt;
    623 
    624 	if (m != sb->sb_lastrecord) {
    625 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
    626 		    sb->sb_mb, sb->sb_lastrecord, m);
    627 		printf("packet chain:\n");
    628 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
    629 			printf("\t%p\n", m);
    630 		panic("sblastrecordchk from %s", where);
    631 	}
    632 }
    633 
    634 void
    635 sblastmbufchk(struct sockbuf *sb, const char *where)
    636 {
    637 	struct mbuf *m = sb->sb_mb;
    638 	struct mbuf *n;
    639 
    640 	KASSERT(solocked(sb->sb_so));
    641 
    642 	while (m && m->m_nextpkt)
    643 		m = m->m_nextpkt;
    644 
    645 	while (m && m->m_next)
    646 		m = m->m_next;
    647 
    648 	if (m != sb->sb_mbtail) {
    649 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
    650 		    sb->sb_mb, sb->sb_mbtail, m);
    651 		printf("packet tree:\n");
    652 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
    653 			printf("\t");
    654 			for (n = m; n != NULL; n = n->m_next)
    655 				printf("%p ", n);
    656 			printf("\n");
    657 		}
    658 		panic("sblastmbufchk from %s", where);
    659 	}
    660 }
    661 #endif /* SOCKBUF_DEBUG */
    662 
    663 /*
    664  * Link a chain of records onto a socket buffer
    665  */
    666 #define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
    667 do {									\
    668 	if ((sb)->sb_lastrecord != NULL)				\
    669 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
    670 	else								\
    671 		(sb)->sb_mb = (m0);					\
    672 	(sb)->sb_lastrecord = (mlast);					\
    673 } while (/*CONSTCOND*/0)
    674 
    675 
    676 #define	SBLINKRECORD(sb, m0)						\
    677     SBLINKRECORDCHAIN(sb, m0, m0)
    678 
    679 /*
    680  * Append mbuf chain m to the last record in the
    681  * socket buffer sb.  The additional space associated
    682  * the mbuf chain is recorded in sb.  Empty mbufs are
    683  * discarded and mbufs are compacted where possible.
    684  */
    685 void
    686 sbappend(struct sockbuf *sb, struct mbuf *m)
    687 {
    688 	struct mbuf	*n;
    689 
    690 	KASSERT(solocked(sb->sb_so));
    691 
    692 	if (m == 0)
    693 		return;
    694 
    695 #ifdef MBUFTRACE
    696 	m_claimm(m, sb->sb_mowner);
    697 #endif
    698 
    699 	SBLASTRECORDCHK(sb, "sbappend 1");
    700 
    701 	if ((n = sb->sb_lastrecord) != NULL) {
    702 		/*
    703 		 * XXX Would like to simply use sb_mbtail here, but
    704 		 * XXX I need to verify that I won't miss an EOR that
    705 		 * XXX way.
    706 		 */
    707 		do {
    708 			if (n->m_flags & M_EOR) {
    709 				sbappendrecord(sb, m); /* XXXXXX!!!! */
    710 				return;
    711 			}
    712 		} while (n->m_next && (n = n->m_next));
    713 	} else {
    714 		/*
    715 		 * If this is the first record in the socket buffer, it's
    716 		 * also the last record.
    717 		 */
    718 		sb->sb_lastrecord = m;
    719 	}
    720 	sbcompress(sb, m, n);
    721 	SBLASTRECORDCHK(sb, "sbappend 2");
    722 }
    723 
    724 /*
    725  * This version of sbappend() should only be used when the caller
    726  * absolutely knows that there will never be more than one record
    727  * in the socket buffer, that is, a stream protocol (such as TCP).
    728  */
    729 void
    730 sbappendstream(struct sockbuf *sb, struct mbuf *m)
    731 {
    732 
    733 	KASSERT(solocked(sb->sb_so));
    734 	KDASSERT(m->m_nextpkt == NULL);
    735 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
    736 
    737 	SBLASTMBUFCHK(sb, __func__);
    738 
    739 #ifdef MBUFTRACE
    740 	m_claimm(m, sb->sb_mowner);
    741 #endif
    742 
    743 	sbcompress(sb, m, sb->sb_mbtail);
    744 
    745 	sb->sb_lastrecord = sb->sb_mb;
    746 	SBLASTRECORDCHK(sb, __func__);
    747 }
    748 
    749 #ifdef SOCKBUF_DEBUG
    750 void
    751 sbcheck(struct sockbuf *sb)
    752 {
    753 	struct mbuf	*m, *m2;
    754 	u_long		len, mbcnt;
    755 
    756 	KASSERT(solocked(sb->sb_so));
    757 
    758 	len = 0;
    759 	mbcnt = 0;
    760 	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
    761 		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
    762 			len += m2->m_len;
    763 			mbcnt += MSIZE;
    764 			if (m2->m_flags & M_EXT)
    765 				mbcnt += m2->m_ext.ext_size;
    766 			if (m2->m_nextpkt != NULL)
    767 				panic("sbcheck nextpkt");
    768 		}
    769 	}
    770 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
    771 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
    772 		    mbcnt, sb->sb_mbcnt);
    773 		panic("sbcheck");
    774 	}
    775 }
    776 #endif
    777 
    778 /*
    779  * As above, except the mbuf chain
    780  * begins a new record.
    781  */
    782 void
    783 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
    784 {
    785 	struct mbuf	*m;
    786 
    787 	KASSERT(solocked(sb->sb_so));
    788 
    789 	if (m0 == 0)
    790 		return;
    791 
    792 #ifdef MBUFTRACE
    793 	m_claimm(m0, sb->sb_mowner);
    794 #endif
    795 	/*
    796 	 * Put the first mbuf on the queue.
    797 	 * Note this permits zero length records.
    798 	 */
    799 	sballoc(sb, m0);
    800 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
    801 	SBLINKRECORD(sb, m0);
    802 	m = m0->m_next;
    803 	m0->m_next = 0;
    804 	if (m && (m0->m_flags & M_EOR)) {
    805 		m0->m_flags &= ~M_EOR;
    806 		m->m_flags |= M_EOR;
    807 	}
    808 	sbcompress(sb, m, m0);
    809 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
    810 }
    811 
    812 /*
    813  * As above except that OOB data
    814  * is inserted at the beginning of the sockbuf,
    815  * but after any other OOB data.
    816  */
    817 void
    818 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
    819 {
    820 	struct mbuf	*m, **mp;
    821 
    822 	KASSERT(solocked(sb->sb_so));
    823 
    824 	if (m0 == 0)
    825 		return;
    826 
    827 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
    828 
    829 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
    830 	    again:
    831 		switch (m->m_type) {
    832 
    833 		case MT_OOBDATA:
    834 			continue;		/* WANT next train */
    835 
    836 		case MT_CONTROL:
    837 			if ((m = m->m_next) != NULL)
    838 				goto again;	/* inspect THIS train further */
    839 		}
    840 		break;
    841 	}
    842 	/*
    843 	 * Put the first mbuf on the queue.
    844 	 * Note this permits zero length records.
    845 	 */
    846 	sballoc(sb, m0);
    847 	m0->m_nextpkt = *mp;
    848 	if (*mp == NULL) {
    849 		/* m0 is actually the new tail */
    850 		sb->sb_lastrecord = m0;
    851 	}
    852 	*mp = m0;
    853 	m = m0->m_next;
    854 	m0->m_next = 0;
    855 	if (m && (m0->m_flags & M_EOR)) {
    856 		m0->m_flags &= ~M_EOR;
    857 		m->m_flags |= M_EOR;
    858 	}
    859 	sbcompress(sb, m, m0);
    860 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
    861 }
    862 
    863 /*
    864  * Append address and data, and optionally, control (ancillary) data
    865  * to the receive queue of a socket.  If present,
    866  * m0 must include a packet header with total length.
    867  * Returns 0 if no space in sockbuf or insufficient mbufs.
    868  */
    869 int
    870 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
    871 	struct mbuf *control)
    872 {
    873 	struct mbuf	*m, *n, *nlast;
    874 	int		space, len;
    875 
    876 	KASSERT(solocked(sb->sb_so));
    877 
    878 	space = asa->sa_len;
    879 
    880 	if (m0 != NULL) {
    881 		if ((m0->m_flags & M_PKTHDR) == 0)
    882 			panic("sbappendaddr");
    883 		space += m0->m_pkthdr.len;
    884 #ifdef MBUFTRACE
    885 		m_claimm(m0, sb->sb_mowner);
    886 #endif
    887 	}
    888 	for (n = control; n; n = n->m_next) {
    889 		space += n->m_len;
    890 		MCLAIM(n, sb->sb_mowner);
    891 		if (n->m_next == 0)	/* keep pointer to last control buf */
    892 			break;
    893 	}
    894 	if (space > sbspace(sb))
    895 		return (0);
    896 	MGET(m, M_DONTWAIT, MT_SONAME);
    897 	if (m == 0)
    898 		return (0);
    899 	MCLAIM(m, sb->sb_mowner);
    900 	/*
    901 	 * XXX avoid 'comparison always true' warning which isn't easily
    902 	 * avoided.
    903 	 */
    904 	len = asa->sa_len;
    905 	if (len > MLEN) {
    906 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
    907 		if ((m->m_flags & M_EXT) == 0) {
    908 			m_free(m);
    909 			return (0);
    910 		}
    911 	}
    912 	m->m_len = asa->sa_len;
    913 	memcpy(mtod(m, void *), asa, asa->sa_len);
    914 	if (n)
    915 		n->m_next = m0;		/* concatenate data to control */
    916 	else
    917 		control = m0;
    918 	m->m_next = control;
    919 
    920 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
    921 
    922 	for (n = m; n->m_next != NULL; n = n->m_next)
    923 		sballoc(sb, n);
    924 	sballoc(sb, n);
    925 	nlast = n;
    926 	SBLINKRECORD(sb, m);
    927 
    928 	sb->sb_mbtail = nlast;
    929 	SBLASTMBUFCHK(sb, "sbappendaddr");
    930 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
    931 
    932 	return (1);
    933 }
    934 
    935 /*
    936  * Helper for sbappendchainaddr: prepend a struct sockaddr* to
    937  * an mbuf chain.
    938  */
    939 static inline struct mbuf *
    940 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
    941 		   const struct sockaddr *asa)
    942 {
    943 	struct mbuf *m;
    944 	const int salen = asa->sa_len;
    945 
    946 	KASSERT(solocked(sb->sb_so));
    947 
    948 	/* only the first in each chain need be a pkthdr */
    949 	MGETHDR(m, M_DONTWAIT, MT_SONAME);
    950 	if (m == 0)
    951 		return (0);
    952 	MCLAIM(m, sb->sb_mowner);
    953 #ifdef notyet
    954 	if (salen > MHLEN) {
    955 		MEXTMALLOC(m, salen, M_NOWAIT);
    956 		if ((m->m_flags & M_EXT) == 0) {
    957 			m_free(m);
    958 			return (0);
    959 		}
    960 	}
    961 #else
    962 	KASSERT(salen <= MHLEN);
    963 #endif
    964 	m->m_len = salen;
    965 	memcpy(mtod(m, void *), asa, salen);
    966 	m->m_next = m0;
    967 	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
    968 
    969 	return m;
    970 }
    971 
    972 int
    973 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
    974 		  struct mbuf *m0, int sbprio)
    975 {
    976 	int space;
    977 	struct mbuf *m, *n, *n0, *nlast;
    978 	int error;
    979 
    980 	KASSERT(solocked(sb->sb_so));
    981 
    982 	/*
    983 	 * XXX sbprio reserved for encoding priority of this* request:
    984 	 *  SB_PRIO_NONE --> honour normal sb limits
    985 	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
    986 	 *	take whole chain. Intended for large requests
    987 	 *      that should be delivered atomically (all, or none).
    988 	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
    989 	 *       over normal socket limits, for messages indicating
    990 	 *       buffer overflow in earlier normal/lower-priority messages
    991 	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
    992 	 *       Intended for  kernel-generated messages only.
    993 	 *        Up to generator to avoid total mbuf resource exhaustion.
    994 	 */
    995 	(void)sbprio;
    996 
    997 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
    998 		panic("sbappendaddrchain");
    999 
   1000 	space = sbspace(sb);
   1001 
   1002 #ifdef notyet
   1003 	/*
   1004 	 * Enforce SB_PRIO_* limits as described above.
   1005 	 */
   1006 #endif
   1007 
   1008 	n0 = NULL;
   1009 	nlast = NULL;
   1010 	for (m = m0; m; m = m->m_nextpkt) {
   1011 		struct mbuf *np;
   1012 
   1013 #ifdef MBUFTRACE
   1014 		m_claimm(m, sb->sb_mowner);
   1015 #endif
   1016 
   1017 		/* Prepend sockaddr to this record (m) of input chain m0 */
   1018 	  	n = m_prepend_sockaddr(sb, m, asa);
   1019 		if (n == NULL) {
   1020 			error = ENOBUFS;
   1021 			goto bad;
   1022 		}
   1023 
   1024 		/* Append record (asa+m) to end of new chain n0 */
   1025 		if (n0 == NULL) {
   1026 			n0 = n;
   1027 		} else {
   1028 			nlast->m_nextpkt = n;
   1029 		}
   1030 		/* Keep track of last record on new chain */
   1031 		nlast = n;
   1032 
   1033 		for (np = n; np; np = np->m_next)
   1034 			sballoc(sb, np);
   1035 	}
   1036 
   1037 	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
   1038 
   1039 	/* Drop the entire chain of (asa+m) records onto the socket */
   1040 	SBLINKRECORDCHAIN(sb, n0, nlast);
   1041 
   1042 	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
   1043 
   1044 	for (m = nlast; m->m_next; m = m->m_next)
   1045 		;
   1046 	sb->sb_mbtail = m;
   1047 	SBLASTMBUFCHK(sb, "sbappendaddrchain");
   1048 
   1049 	return (1);
   1050 
   1051 bad:
   1052 	/*
   1053 	 * On error, free the prepended addreseses. For consistency
   1054 	 * with sbappendaddr(), leave it to our caller to free
   1055 	 * the input record chain passed to us as m0.
   1056 	 */
   1057 	while ((n = n0) != NULL) {
   1058 	  	struct mbuf *np;
   1059 
   1060 		/* Undo the sballoc() of this record */
   1061 		for (np = n; np; np = np->m_next)
   1062 			sbfree(sb, np);
   1063 
   1064 		n0 = n->m_nextpkt;	/* iterate at next prepended address */
   1065 		MFREE(n, np);		/* free prepended address (not data) */
   1066 	}
   1067 	return 0;
   1068 }
   1069 
   1070 
   1071 int
   1072 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
   1073 {
   1074 	struct mbuf	*m, *mlast, *n;
   1075 	int		space;
   1076 
   1077 	KASSERT(solocked(sb->sb_so));
   1078 
   1079 	space = 0;
   1080 	if (control == 0)
   1081 		panic("sbappendcontrol");
   1082 	for (m = control; ; m = m->m_next) {
   1083 		space += m->m_len;
   1084 		MCLAIM(m, sb->sb_mowner);
   1085 		if (m->m_next == 0)
   1086 			break;
   1087 	}
   1088 	n = m;			/* save pointer to last control buffer */
   1089 	for (m = m0; m; m = m->m_next) {
   1090 		MCLAIM(m, sb->sb_mowner);
   1091 		space += m->m_len;
   1092 	}
   1093 	if (space > sbspace(sb))
   1094 		return (0);
   1095 	n->m_next = m0;			/* concatenate data to control */
   1096 
   1097 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
   1098 
   1099 	for (m = control; m->m_next != NULL; m = m->m_next)
   1100 		sballoc(sb, m);
   1101 	sballoc(sb, m);
   1102 	mlast = m;
   1103 	SBLINKRECORD(sb, control);
   1104 
   1105 	sb->sb_mbtail = mlast;
   1106 	SBLASTMBUFCHK(sb, "sbappendcontrol");
   1107 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
   1108 
   1109 	return (1);
   1110 }
   1111 
   1112 /*
   1113  * Compress mbuf chain m into the socket
   1114  * buffer sb following mbuf n.  If n
   1115  * is null, the buffer is presumed empty.
   1116  */
   1117 void
   1118 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
   1119 {
   1120 	int		eor;
   1121 	struct mbuf	*o;
   1122 
   1123 	KASSERT(solocked(sb->sb_so));
   1124 
   1125 	eor = 0;
   1126 	while (m) {
   1127 		eor |= m->m_flags & M_EOR;
   1128 		if (m->m_len == 0 &&
   1129 		    (eor == 0 ||
   1130 		     (((o = m->m_next) || (o = n)) &&
   1131 		      o->m_type == m->m_type))) {
   1132 			if (sb->sb_lastrecord == m)
   1133 				sb->sb_lastrecord = m->m_next;
   1134 			m = m_free(m);
   1135 			continue;
   1136 		}
   1137 		if (n && (n->m_flags & M_EOR) == 0 &&
   1138 		    /* M_TRAILINGSPACE() checks buffer writeability */
   1139 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
   1140 		    m->m_len <= M_TRAILINGSPACE(n) &&
   1141 		    n->m_type == m->m_type) {
   1142 			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
   1143 			    (unsigned)m->m_len);
   1144 			n->m_len += m->m_len;
   1145 			sb->sb_cc += m->m_len;
   1146 			m = m_free(m);
   1147 			continue;
   1148 		}
   1149 		if (n)
   1150 			n->m_next = m;
   1151 		else
   1152 			sb->sb_mb = m;
   1153 		sb->sb_mbtail = m;
   1154 		sballoc(sb, m);
   1155 		n = m;
   1156 		m->m_flags &= ~M_EOR;
   1157 		m = m->m_next;
   1158 		n->m_next = 0;
   1159 	}
   1160 	if (eor) {
   1161 		if (n)
   1162 			n->m_flags |= eor;
   1163 		else
   1164 			printf("semi-panic: sbcompress\n");
   1165 	}
   1166 	SBLASTMBUFCHK(sb, __func__);
   1167 }
   1168 
   1169 /*
   1170  * Free all mbufs in a sockbuf.
   1171  * Check that all resources are reclaimed.
   1172  */
   1173 void
   1174 sbflush(struct sockbuf *sb)
   1175 {
   1176 
   1177 	KASSERT(solocked(sb->sb_so));
   1178 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
   1179 
   1180 	while (sb->sb_mbcnt)
   1181 		sbdrop(sb, (int)sb->sb_cc);
   1182 
   1183 	KASSERT(sb->sb_cc == 0);
   1184 	KASSERT(sb->sb_mb == NULL);
   1185 	KASSERT(sb->sb_mbtail == NULL);
   1186 	KASSERT(sb->sb_lastrecord == NULL);
   1187 }
   1188 
   1189 /*
   1190  * Drop data from (the front of) a sockbuf.
   1191  */
   1192 void
   1193 sbdrop(struct sockbuf *sb, int len)
   1194 {
   1195 	struct mbuf	*m, *mn, *next;
   1196 
   1197 	KASSERT(solocked(sb->sb_so));
   1198 
   1199 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
   1200 	while (len > 0) {
   1201 		if (m == 0) {
   1202 			if (next == 0)
   1203 				panic("sbdrop");
   1204 			m = next;
   1205 			next = m->m_nextpkt;
   1206 			continue;
   1207 		}
   1208 		if (m->m_len > len) {
   1209 			m->m_len -= len;
   1210 			m->m_data += len;
   1211 			sb->sb_cc -= len;
   1212 			break;
   1213 		}
   1214 		len -= m->m_len;
   1215 		sbfree(sb, m);
   1216 		MFREE(m, mn);
   1217 		m = mn;
   1218 	}
   1219 	while (m && m->m_len == 0) {
   1220 		sbfree(sb, m);
   1221 		MFREE(m, mn);
   1222 		m = mn;
   1223 	}
   1224 	if (m) {
   1225 		sb->sb_mb = m;
   1226 		m->m_nextpkt = next;
   1227 	} else
   1228 		sb->sb_mb = next;
   1229 	/*
   1230 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
   1231 	 * makes sure sb_lastrecord is up-to-date if we dropped
   1232 	 * part of the last record.
   1233 	 */
   1234 	m = sb->sb_mb;
   1235 	if (m == NULL) {
   1236 		sb->sb_mbtail = NULL;
   1237 		sb->sb_lastrecord = NULL;
   1238 	} else if (m->m_nextpkt == NULL)
   1239 		sb->sb_lastrecord = m;
   1240 }
   1241 
   1242 /*
   1243  * Drop a record off the front of a sockbuf
   1244  * and move the next record to the front.
   1245  */
   1246 void
   1247 sbdroprecord(struct sockbuf *sb)
   1248 {
   1249 	struct mbuf	*m, *mn;
   1250 
   1251 	KASSERT(solocked(sb->sb_so));
   1252 
   1253 	m = sb->sb_mb;
   1254 	if (m) {
   1255 		sb->sb_mb = m->m_nextpkt;
   1256 		do {
   1257 			sbfree(sb, m);
   1258 			MFREE(m, mn);
   1259 		} while ((m = mn) != NULL);
   1260 	}
   1261 	SB_EMPTY_FIXUP(sb);
   1262 }
   1263 
   1264 /*
   1265  * Create a "control" mbuf containing the specified data
   1266  * with the specified type for presentation on a socket buffer.
   1267  */
   1268 struct mbuf *
   1269 sbcreatecontrol(void *p, int size, int type, int level)
   1270 {
   1271 	struct cmsghdr	*cp;
   1272 	struct mbuf	*m;
   1273 
   1274 	if (CMSG_SPACE(size) > MCLBYTES) {
   1275 		printf("sbcreatecontrol: message too large %d\n", size);
   1276 		return NULL;
   1277 	}
   1278 
   1279 	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
   1280 		return ((struct mbuf *) NULL);
   1281 	if (CMSG_SPACE(size) > MLEN) {
   1282 		MCLGET(m, M_DONTWAIT);
   1283 		if ((m->m_flags & M_EXT) == 0) {
   1284 			m_free(m);
   1285 			return NULL;
   1286 		}
   1287 	}
   1288 	cp = mtod(m, struct cmsghdr *);
   1289 	memcpy(CMSG_DATA(cp), p, size);
   1290 	m->m_len = CMSG_SPACE(size);
   1291 	cp->cmsg_len = CMSG_LEN(size);
   1292 	cp->cmsg_level = level;
   1293 	cp->cmsg_type = type;
   1294 	return (m);
   1295 }
   1296 
   1297 void
   1298 solockretry(struct socket *so, kmutex_t *lock)
   1299 {
   1300 
   1301 	while (lock != so->so_lock) {
   1302 		mutex_exit(lock);
   1303 		lock = so->so_lock;
   1304 		mutex_enter(lock);
   1305 	}
   1306 }
   1307 
   1308 bool
   1309 solocked(struct socket *so)
   1310 {
   1311 
   1312 	return mutex_owned(so->so_lock);
   1313 }
   1314 
   1315 bool
   1316 solocked2(struct socket *so1, struct socket *so2)
   1317 {
   1318 	kmutex_t *lock;
   1319 
   1320 	lock = so1->so_lock;
   1321 	if (lock != so2->so_lock)
   1322 		return false;
   1323 	return mutex_owned(lock);
   1324 }
   1325 
   1326 /*
   1327  * Assign a default lock to a new socket.  For PRU_ATTACH, and done by
   1328  * protocols that do not have special locking requirements.
   1329  */
   1330 void
   1331 sosetlock(struct socket *so)
   1332 {
   1333 	kmutex_t *lock;
   1334 
   1335 	if (so->so_lock == NULL) {
   1336 		lock = softnet_lock;
   1337 		so->so_lock = lock;
   1338 		mutex_obj_hold(lock);
   1339 		mutex_enter(lock);
   1340 	}
   1341 
   1342 	/* In all cases, lock must be held on return from PRU_ATTACH. */
   1343 	KASSERT(solocked(so));
   1344 }
   1345 
   1346 /*
   1347  * Set lock on sockbuf sb; sleep if lock is already held.
   1348  * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
   1349  * Returns error without lock if sleep is interrupted.
   1350  */
   1351 int
   1352 sblock(struct sockbuf *sb, int wf)
   1353 {
   1354 	struct socket *so;
   1355 	kmutex_t *lock;
   1356 	int error;
   1357 
   1358 	KASSERT(solocked(sb->sb_so));
   1359 
   1360 	for (;;) {
   1361 		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
   1362 			sb->sb_flags |= SB_LOCK;
   1363 			return 0;
   1364 		}
   1365 		if (wf != M_WAITOK)
   1366 			return EWOULDBLOCK;
   1367 		so = sb->sb_so;
   1368 		lock = so->so_lock;
   1369 		if ((sb->sb_flags & SB_NOINTR) != 0) {
   1370 			cv_wait(&so->so_cv, lock);
   1371 			error = 0;
   1372 		} else
   1373 			error = cv_wait_sig(&so->so_cv, lock);
   1374 		if (__predict_false(lock != so->so_lock))
   1375 			solockretry(so, lock);
   1376 		if (error != 0)
   1377 			return error;
   1378 	}
   1379 }
   1380 
   1381 void
   1382 sbunlock(struct sockbuf *sb)
   1383 {
   1384 	struct socket *so;
   1385 
   1386 	so = sb->sb_so;
   1387 
   1388 	KASSERT(solocked(so));
   1389 	KASSERT((sb->sb_flags & SB_LOCK) != 0);
   1390 
   1391 	sb->sb_flags &= ~SB_LOCK;
   1392 	cv_broadcast(&so->so_cv);
   1393 }
   1394 
   1395 int
   1396 sowait(struct socket *so, int timo)
   1397 {
   1398 	kmutex_t *lock;
   1399 	int error;
   1400 
   1401 	KASSERT(solocked(so));
   1402 
   1403 	lock = so->so_lock;
   1404 	error = cv_timedwait_sig(&so->so_cv, lock, timo);
   1405 	if (__predict_false(lock != so->so_lock))
   1406 		solockretry(so, lock);
   1407 	return error;
   1408 }
   1409