uipc_socket2.c revision 1.91 1 /* $NetBSD: uipc_socket2.c,v 1.91 2008/04/24 11:38:36 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the NetBSD
18 * Foundation, Inc. and its contributors.
19 * 4. Neither the name of The NetBSD Foundation nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /*
37 * Copyright (c) 1982, 1986, 1988, 1990, 1993
38 * The Regents of the University of California. All rights reserved.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. Neither the name of the University nor the names of its contributors
49 * may be used to endorse or promote products derived from this software
50 * without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 *
64 * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
65 */
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.91 2008/04/24 11:38:36 ad Exp $");
69
70 #include "opt_mbuftrace.h"
71 #include "opt_sb_max.h"
72
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/proc.h>
76 #include <sys/file.h>
77 #include <sys/buf.h>
78 #include <sys/malloc.h>
79 #include <sys/mbuf.h>
80 #include <sys/protosw.h>
81 #include <sys/domain.h>
82 #include <sys/poll.h>
83 #include <sys/socket.h>
84 #include <sys/socketvar.h>
85 #include <sys/signalvar.h>
86 #include <sys/kauth.h>
87 #include <sys/pool.h>
88
89 /*
90 * Primitive routines for operating on sockets and socket buffers.
91 *
92 * Locking rules and assumptions:
93 *
94 * o socket::so_lock can change on the fly. The low level routines used
95 * to lock sockets are aware of this. When so_lock is acquired, the
96 * routine locking must check to see if so_lock still points to the
97 * lock that was acquired. If so_lock has changed in the meantime, the
98 * now irellevant lock that was acquired must be dropped and the lock
99 * operation retried. Although not proven here, this is completely safe
100 * on a multiprocessor system, even with relaxed memory ordering, given
101 * the next two rules:
102 *
103 * o In order to mutate so_lock, the lock pointed to by the current value
104 * of so_lock must be held: i.e., the socket must be held locked by the
105 * changing thread. The thread must issue membar_exit() to prevent
106 * memory accesses being reordered, and can set so_lock to the desired
107 * value. If the lock pointed to by the new value of so_lock is not
108 * held by the changing thread, the socket must then be considered
109 * unlocked.
110 *
111 * o If so_lock is mutated, and the previous lock referred to by so_lock
112 * could still be visible to other threads in the system (e.g. via file
113 * descriptor or protocol-internal reference), then the old lock must
114 * remain valid until the socket and/or protocol control block has been
115 * torn down.
116 *
117 * o If a socket has a non-NULL so_head value (i.e. is in the process of
118 * connecting), then locking the socket must also lock the socket pointed
119 * to by so_head: their lock pointers must match.
120 *
121 * o If a socket has connections in progress (so_q, so_q0 not empty) then
122 * locking the socket must also lock the sockets attached to both queues.
123 * Again, their lock pointers must match.
124 *
125 * o Beyond the initial lock assigment in socreate(), assigning locks to
126 * sockets is the responsibility of the individual protocols / protocol
127 * domains.
128 */
129
130 static POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL,
131 IPL_SOFTNET);
132
133 u_long sb_max = SB_MAX; /* maximum socket buffer size */
134 static u_long sb_max_adj; /* adjusted sb_max */
135
136 /*
137 * Procedures to manipulate state flags of socket
138 * and do appropriate wakeups. Normal sequence from the
139 * active (originating) side is that soisconnecting() is
140 * called during processing of connect() call,
141 * resulting in an eventual call to soisconnected() if/when the
142 * connection is established. When the connection is torn down
143 * soisdisconnecting() is called during processing of disconnect() call,
144 * and soisdisconnected() is called when the connection to the peer
145 * is totally severed. The semantics of these routines are such that
146 * connectionless protocols can call soisconnected() and soisdisconnected()
147 * only, bypassing the in-progress calls when setting up a ``connection''
148 * takes no time.
149 *
150 * From the passive side, a socket is created with
151 * two queues of sockets: so_q0 for connections in progress
152 * and so_q for connections already made and awaiting user acceptance.
153 * As a protocol is preparing incoming connections, it creates a socket
154 * structure queued on so_q0 by calling sonewconn(). When the connection
155 * is established, soisconnected() is called, and transfers the
156 * socket structure to so_q, making it available to accept().
157 *
158 * If a socket is closed with sockets on either
159 * so_q0 or so_q, these sockets are dropped.
160 *
161 * If higher level protocols are implemented in
162 * the kernel, the wakeups done here will sometimes
163 * cause software-interrupt process scheduling.
164 */
165
166 void
167 soisconnecting(struct socket *so)
168 {
169
170 KASSERT(solocked(so));
171
172 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
173 so->so_state |= SS_ISCONNECTING;
174 }
175
176 void
177 soisconnected(struct socket *so)
178 {
179 struct socket *head;
180
181 head = so->so_head;
182
183 KASSERT(solocked(so));
184 KASSERT(head == NULL || solocked2(so, head));
185
186 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
187 so->so_state |= SS_ISCONNECTED;
188 if (head && soqremque(so, 0)) {
189 soqinsque(head, so, 1);
190 sorwakeup(head);
191 cv_broadcast(&head->so_cv);
192 } else {
193 cv_broadcast(&so->so_cv);
194 sorwakeup(so);
195 sowwakeup(so);
196 }
197 }
198
199 void
200 soisdisconnecting(struct socket *so)
201 {
202
203 KASSERT(solocked(so));
204
205 so->so_state &= ~SS_ISCONNECTING;
206 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
207 cv_broadcast(&so->so_cv);
208 sowwakeup(so);
209 sorwakeup(so);
210 }
211
212 void
213 soisdisconnected(struct socket *so)
214 {
215
216 KASSERT(solocked(so));
217
218 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
219 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
220 cv_broadcast(&so->so_cv);
221 sowwakeup(so);
222 sorwakeup(so);
223 }
224
225 /*
226 * When an attempt at a new connection is noted on a socket
227 * which accepts connections, sonewconn is called. If the
228 * connection is possible (subject to space constraints, etc.)
229 * then we allocate a new structure, propoerly linked into the
230 * data structure of the original socket, and return this.
231 * Connstatus may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
232 */
233 struct socket *
234 sonewconn(struct socket *head, int connstatus)
235 {
236 struct socket *so;
237 int soqueue, error;
238
239 KASSERT(solocked(head));
240
241 soqueue = connstatus ? 1 : 0;
242 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
243 return ((struct socket *)0);
244 so = soget(false);
245 if (so == NULL)
246 return (NULL);
247 mutex_obj_hold(head->so_lock);
248 so->so_lock = head->so_lock;
249 so->so_type = head->so_type;
250 so->so_options = head->so_options &~ SO_ACCEPTCONN;
251 so->so_linger = head->so_linger;
252 so->so_state = head->so_state | SS_NOFDREF;
253 so->so_nbio = head->so_nbio;
254 so->so_proto = head->so_proto;
255 so->so_timeo = head->so_timeo;
256 so->so_pgid = head->so_pgid;
257 so->so_send = head->so_send;
258 so->so_receive = head->so_receive;
259 so->so_uidinfo = head->so_uidinfo;
260 #ifdef MBUFTRACE
261 so->so_mowner = head->so_mowner;
262 so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
263 so->so_snd.sb_mowner = head->so_snd.sb_mowner;
264 #endif
265 (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
266 so->so_snd.sb_lowat = head->so_snd.sb_lowat;
267 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
268 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
269 so->so_snd.sb_timeo = head->so_snd.sb_timeo;
270 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
271 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
272 soqinsque(head, so, soqueue);
273 error = (*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL,
274 NULL, NULL);
275 KASSERT(solocked(so));
276 if (error != 0) {
277 (void) soqremque(so, soqueue);
278 soput(so);
279 return (NULL);
280 }
281 if (connstatus) {
282 sorwakeup(head);
283 cv_broadcast(&head->so_cv);
284 so->so_state |= connstatus;
285 }
286 return (so);
287 }
288
289 struct socket *
290 soget(bool waitok)
291 {
292 struct socket *so;
293
294 so = pool_get(&socket_pool, (waitok ? PR_WAITOK : PR_NOWAIT));
295 if (__predict_false(so == NULL))
296 return (NULL);
297 memset(so, 0, sizeof(*so));
298 TAILQ_INIT(&so->so_q0);
299 TAILQ_INIT(&so->so_q);
300 cv_init(&so->so_cv, "socket");
301 cv_init(&so->so_rcv.sb_cv, "netio");
302 cv_init(&so->so_snd.sb_cv, "netio");
303 selinit(&so->so_rcv.sb_sel);
304 selinit(&so->so_snd.sb_sel);
305 so->so_rcv.sb_so = so;
306 so->so_snd.sb_so = so;
307 return so;
308 }
309
310 void
311 soput(struct socket *so)
312 {
313
314 KASSERT(!cv_has_waiters(&so->so_cv));
315 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
316 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
317 seldestroy(&so->so_rcv.sb_sel);
318 seldestroy(&so->so_snd.sb_sel);
319 mutex_obj_free(so->so_lock);
320 cv_destroy(&so->so_cv);
321 cv_destroy(&so->so_rcv.sb_cv);
322 cv_destroy(&so->so_snd.sb_cv);
323 pool_put(&socket_pool, so);
324 }
325
326 void
327 soqinsque(struct socket *head, struct socket *so, int q)
328 {
329
330 KASSERT(solocked2(head, so));
331
332 #ifdef DIAGNOSTIC
333 if (so->so_onq != NULL)
334 panic("soqinsque");
335 #endif
336
337 so->so_head = head;
338 if (q == 0) {
339 head->so_q0len++;
340 so->so_onq = &head->so_q0;
341 } else {
342 head->so_qlen++;
343 so->so_onq = &head->so_q;
344 }
345 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
346 }
347
348 int
349 soqremque(struct socket *so, int q)
350 {
351 struct socket *head;
352
353 head = so->so_head;
354
355 KASSERT(solocked(so));
356 if (q == 0) {
357 if (so->so_onq != &head->so_q0)
358 return (0);
359 head->so_q0len--;
360 } else {
361 if (so->so_onq != &head->so_q)
362 return (0);
363 head->so_qlen--;
364 }
365 KASSERT(solocked2(so, head));
366 TAILQ_REMOVE(so->so_onq, so, so_qe);
367 so->so_onq = NULL;
368 so->so_head = NULL;
369 return (1);
370 }
371
372 /*
373 * Socantsendmore indicates that no more data will be sent on the
374 * socket; it would normally be applied to a socket when the user
375 * informs the system that no more data is to be sent, by the protocol
376 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
377 * will be received, and will normally be applied to the socket by a
378 * protocol when it detects that the peer will send no more data.
379 * Data queued for reading in the socket may yet be read.
380 */
381
382 void
383 socantsendmore(struct socket *so)
384 {
385
386 KASSERT(solocked(so));
387
388 so->so_state |= SS_CANTSENDMORE;
389 sowwakeup(so);
390 }
391
392 void
393 socantrcvmore(struct socket *so)
394 {
395
396 KASSERT(solocked(so));
397
398 so->so_state |= SS_CANTRCVMORE;
399 sorwakeup(so);
400 }
401
402 /*
403 * Wait for data to arrive at/drain from a socket buffer.
404 */
405 int
406 sbwait(struct sockbuf *sb)
407 {
408 struct socket *so;
409 kmutex_t *lock;
410 int error;
411
412 so = sb->sb_so;
413
414 KASSERT(solocked(so));
415
416 sb->sb_flags |= SB_NOTIFY;
417 lock = so->so_lock;
418 if ((sb->sb_flags & SB_NOINTR) != 0)
419 error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
420 else
421 error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
422 if (__predict_false(lock != so->so_lock))
423 solockretry(so, lock);
424 return error;
425 }
426
427 /*
428 * Wakeup processes waiting on a socket buffer.
429 * Do asynchronous notification via SIGIO
430 * if the socket buffer has the SB_ASYNC flag set.
431 */
432 void
433 sowakeup(struct socket *so, struct sockbuf *sb, int code)
434 {
435 int band;
436
437 KASSERT(solocked(so));
438 KASSERT(sb->sb_so == so);
439
440 if (code == POLL_IN)
441 band = POLLIN|POLLRDNORM;
442 else
443 band = POLLOUT|POLLWRNORM;
444 sb->sb_flags &= ~SB_NOTIFY;
445 selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
446 cv_broadcast(&sb->sb_cv);
447 if (sb->sb_flags & SB_ASYNC)
448 fownsignal(so->so_pgid, SIGIO, code, band, so);
449 if (sb->sb_flags & SB_UPCALL)
450 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
451 }
452
453 /*
454 * Socket buffer (struct sockbuf) utility routines.
455 *
456 * Each socket contains two socket buffers: one for sending data and
457 * one for receiving data. Each buffer contains a queue of mbufs,
458 * information about the number of mbufs and amount of data in the
459 * queue, and other fields allowing poll() statements and notification
460 * on data availability to be implemented.
461 *
462 * Data stored in a socket buffer is maintained as a list of records.
463 * Each record is a list of mbufs chained together with the m_next
464 * field. Records are chained together with the m_nextpkt field. The upper
465 * level routine soreceive() expects the following conventions to be
466 * observed when placing information in the receive buffer:
467 *
468 * 1. If the protocol requires each message be preceded by the sender's
469 * name, then a record containing that name must be present before
470 * any associated data (mbuf's must be of type MT_SONAME).
471 * 2. If the protocol supports the exchange of ``access rights'' (really
472 * just additional data associated with the message), and there are
473 * ``rights'' to be received, then a record containing this data
474 * should be present (mbuf's must be of type MT_CONTROL).
475 * 3. If a name or rights record exists, then it must be followed by
476 * a data record, perhaps of zero length.
477 *
478 * Before using a new socket structure it is first necessary to reserve
479 * buffer space to the socket, by calling sbreserve(). This should commit
480 * some of the available buffer space in the system buffer pool for the
481 * socket (currently, it does nothing but enforce limits). The space
482 * should be released by calling sbrelease() when the socket is destroyed.
483 */
484
485 int
486 sb_max_set(u_long new_sbmax)
487 {
488 int s;
489
490 if (new_sbmax < (16 * 1024))
491 return (EINVAL);
492
493 s = splsoftnet();
494 sb_max = new_sbmax;
495 sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
496 splx(s);
497
498 return (0);
499 }
500
501 int
502 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
503 {
504
505 KASSERT(so->so_lock == NULL || solocked(so));
506
507 /*
508 * there's at least one application (a configure script of screen)
509 * which expects a fifo is writable even if it has "some" bytes
510 * in its buffer.
511 * so we want to make sure (hiwat - lowat) >= (some bytes).
512 *
513 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
514 * we expect it's large enough for such applications.
515 */
516 u_long lowat = MAX(sock_loan_thresh, MCLBYTES);
517 u_long hiwat = lowat + PIPE_BUF;
518
519 if (sndcc < hiwat)
520 sndcc = hiwat;
521 if (sbreserve(&so->so_snd, sndcc, so) == 0)
522 goto bad;
523 if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
524 goto bad2;
525 if (so->so_rcv.sb_lowat == 0)
526 so->so_rcv.sb_lowat = 1;
527 if (so->so_snd.sb_lowat == 0)
528 so->so_snd.sb_lowat = lowat;
529 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
530 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
531 return (0);
532 bad2:
533 sbrelease(&so->so_snd, so);
534 bad:
535 return (ENOBUFS);
536 }
537
538 /*
539 * Allot mbufs to a sockbuf.
540 * Attempt to scale mbmax so that mbcnt doesn't become limiting
541 * if buffering efficiency is near the normal case.
542 */
543 int
544 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
545 {
546 struct lwp *l = curlwp; /* XXX */
547 rlim_t maxcc;
548 struct uidinfo *uidinfo;
549
550 KASSERT(so->so_lock == NULL || solocked(so));
551 KASSERT(sb->sb_so == so);
552 KASSERT(sb_max_adj != 0);
553
554 if (cc == 0 || cc > sb_max_adj)
555 return (0);
556 if (so) {
557 if (kauth_cred_geteuid(l->l_cred) == so->so_uidinfo->ui_uid)
558 maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
559 else
560 maxcc = RLIM_INFINITY;
561 uidinfo = so->so_uidinfo;
562 } else {
563 uidinfo = uid_find(0); /* XXX: nothing better */
564 maxcc = RLIM_INFINITY;
565 }
566 if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
567 return 0;
568 sb->sb_mbmax = min(cc * 2, sb_max);
569 if (sb->sb_lowat > sb->sb_hiwat)
570 sb->sb_lowat = sb->sb_hiwat;
571 return (1);
572 }
573
574 /*
575 * Free mbufs held by a socket, and reserved mbuf space. We do not assert
576 * that the socket is held locked here: see sorflush().
577 */
578 void
579 sbrelease(struct sockbuf *sb, struct socket *so)
580 {
581
582 KASSERT(sb->sb_so == so);
583
584 sbflush(sb);
585 (void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
586 sb->sb_mbmax = 0;
587 }
588
589 /*
590 * Routines to add and remove
591 * data from an mbuf queue.
592 *
593 * The routines sbappend() or sbappendrecord() are normally called to
594 * append new mbufs to a socket buffer, after checking that adequate
595 * space is available, comparing the function sbspace() with the amount
596 * of data to be added. sbappendrecord() differs from sbappend() in
597 * that data supplied is treated as the beginning of a new record.
598 * To place a sender's address, optional access rights, and data in a
599 * socket receive buffer, sbappendaddr() should be used. To place
600 * access rights and data in a socket receive buffer, sbappendrights()
601 * should be used. In either case, the new data begins a new record.
602 * Note that unlike sbappend() and sbappendrecord(), these routines check
603 * for the caller that there will be enough space to store the data.
604 * Each fails if there is not enough space, or if it cannot find mbufs
605 * to store additional information in.
606 *
607 * Reliable protocols may use the socket send buffer to hold data
608 * awaiting acknowledgement. Data is normally copied from a socket
609 * send buffer in a protocol with m_copy for output to a peer,
610 * and then removing the data from the socket buffer with sbdrop()
611 * or sbdroprecord() when the data is acknowledged by the peer.
612 */
613
614 #ifdef SOCKBUF_DEBUG
615 void
616 sblastrecordchk(struct sockbuf *sb, const char *where)
617 {
618 struct mbuf *m = sb->sb_mb;
619
620 KASSERT(solocked(sb->sb_so));
621
622 while (m && m->m_nextpkt)
623 m = m->m_nextpkt;
624
625 if (m != sb->sb_lastrecord) {
626 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
627 sb->sb_mb, sb->sb_lastrecord, m);
628 printf("packet chain:\n");
629 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
630 printf("\t%p\n", m);
631 panic("sblastrecordchk from %s", where);
632 }
633 }
634
635 void
636 sblastmbufchk(struct sockbuf *sb, const char *where)
637 {
638 struct mbuf *m = sb->sb_mb;
639 struct mbuf *n;
640
641 KASSERT(solocked(sb->sb_so));
642
643 while (m && m->m_nextpkt)
644 m = m->m_nextpkt;
645
646 while (m && m->m_next)
647 m = m->m_next;
648
649 if (m != sb->sb_mbtail) {
650 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
651 sb->sb_mb, sb->sb_mbtail, m);
652 printf("packet tree:\n");
653 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
654 printf("\t");
655 for (n = m; n != NULL; n = n->m_next)
656 printf("%p ", n);
657 printf("\n");
658 }
659 panic("sblastmbufchk from %s", where);
660 }
661 }
662 #endif /* SOCKBUF_DEBUG */
663
664 /*
665 * Link a chain of records onto a socket buffer
666 */
667 #define SBLINKRECORDCHAIN(sb, m0, mlast) \
668 do { \
669 if ((sb)->sb_lastrecord != NULL) \
670 (sb)->sb_lastrecord->m_nextpkt = (m0); \
671 else \
672 (sb)->sb_mb = (m0); \
673 (sb)->sb_lastrecord = (mlast); \
674 } while (/*CONSTCOND*/0)
675
676
677 #define SBLINKRECORD(sb, m0) \
678 SBLINKRECORDCHAIN(sb, m0, m0)
679
680 /*
681 * Append mbuf chain m to the last record in the
682 * socket buffer sb. The additional space associated
683 * the mbuf chain is recorded in sb. Empty mbufs are
684 * discarded and mbufs are compacted where possible.
685 */
686 void
687 sbappend(struct sockbuf *sb, struct mbuf *m)
688 {
689 struct mbuf *n;
690
691 KASSERT(solocked(sb->sb_so));
692
693 if (m == 0)
694 return;
695
696 #ifdef MBUFTRACE
697 m_claimm(m, sb->sb_mowner);
698 #endif
699
700 SBLASTRECORDCHK(sb, "sbappend 1");
701
702 if ((n = sb->sb_lastrecord) != NULL) {
703 /*
704 * XXX Would like to simply use sb_mbtail here, but
705 * XXX I need to verify that I won't miss an EOR that
706 * XXX way.
707 */
708 do {
709 if (n->m_flags & M_EOR) {
710 sbappendrecord(sb, m); /* XXXXXX!!!! */
711 return;
712 }
713 } while (n->m_next && (n = n->m_next));
714 } else {
715 /*
716 * If this is the first record in the socket buffer, it's
717 * also the last record.
718 */
719 sb->sb_lastrecord = m;
720 }
721 sbcompress(sb, m, n);
722 SBLASTRECORDCHK(sb, "sbappend 2");
723 }
724
725 /*
726 * This version of sbappend() should only be used when the caller
727 * absolutely knows that there will never be more than one record
728 * in the socket buffer, that is, a stream protocol (such as TCP).
729 */
730 void
731 sbappendstream(struct sockbuf *sb, struct mbuf *m)
732 {
733
734 KASSERT(solocked(sb->sb_so));
735 KDASSERT(m->m_nextpkt == NULL);
736 KASSERT(sb->sb_mb == sb->sb_lastrecord);
737
738 SBLASTMBUFCHK(sb, __func__);
739
740 #ifdef MBUFTRACE
741 m_claimm(m, sb->sb_mowner);
742 #endif
743
744 sbcompress(sb, m, sb->sb_mbtail);
745
746 sb->sb_lastrecord = sb->sb_mb;
747 SBLASTRECORDCHK(sb, __func__);
748 }
749
750 #ifdef SOCKBUF_DEBUG
751 void
752 sbcheck(struct sockbuf *sb)
753 {
754 struct mbuf *m, *m2;
755 u_long len, mbcnt;
756
757 KASSERT(solocked(sb->sb_so));
758
759 len = 0;
760 mbcnt = 0;
761 for (m = sb->sb_mb; m; m = m->m_nextpkt) {
762 for (m2 = m; m2 != NULL; m2 = m2->m_next) {
763 len += m2->m_len;
764 mbcnt += MSIZE;
765 if (m2->m_flags & M_EXT)
766 mbcnt += m2->m_ext.ext_size;
767 if (m2->m_nextpkt != NULL)
768 panic("sbcheck nextpkt");
769 }
770 }
771 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
772 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
773 mbcnt, sb->sb_mbcnt);
774 panic("sbcheck");
775 }
776 }
777 #endif
778
779 /*
780 * As above, except the mbuf chain
781 * begins a new record.
782 */
783 void
784 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
785 {
786 struct mbuf *m;
787
788 KASSERT(solocked(sb->sb_so));
789
790 if (m0 == 0)
791 return;
792
793 #ifdef MBUFTRACE
794 m_claimm(m0, sb->sb_mowner);
795 #endif
796 /*
797 * Put the first mbuf on the queue.
798 * Note this permits zero length records.
799 */
800 sballoc(sb, m0);
801 SBLASTRECORDCHK(sb, "sbappendrecord 1");
802 SBLINKRECORD(sb, m0);
803 m = m0->m_next;
804 m0->m_next = 0;
805 if (m && (m0->m_flags & M_EOR)) {
806 m0->m_flags &= ~M_EOR;
807 m->m_flags |= M_EOR;
808 }
809 sbcompress(sb, m, m0);
810 SBLASTRECORDCHK(sb, "sbappendrecord 2");
811 }
812
813 /*
814 * As above except that OOB data
815 * is inserted at the beginning of the sockbuf,
816 * but after any other OOB data.
817 */
818 void
819 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
820 {
821 struct mbuf *m, **mp;
822
823 KASSERT(solocked(sb->sb_so));
824
825 if (m0 == 0)
826 return;
827
828 SBLASTRECORDCHK(sb, "sbinsertoob 1");
829
830 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
831 again:
832 switch (m->m_type) {
833
834 case MT_OOBDATA:
835 continue; /* WANT next train */
836
837 case MT_CONTROL:
838 if ((m = m->m_next) != NULL)
839 goto again; /* inspect THIS train further */
840 }
841 break;
842 }
843 /*
844 * Put the first mbuf on the queue.
845 * Note this permits zero length records.
846 */
847 sballoc(sb, m0);
848 m0->m_nextpkt = *mp;
849 if (*mp == NULL) {
850 /* m0 is actually the new tail */
851 sb->sb_lastrecord = m0;
852 }
853 *mp = m0;
854 m = m0->m_next;
855 m0->m_next = 0;
856 if (m && (m0->m_flags & M_EOR)) {
857 m0->m_flags &= ~M_EOR;
858 m->m_flags |= M_EOR;
859 }
860 sbcompress(sb, m, m0);
861 SBLASTRECORDCHK(sb, "sbinsertoob 2");
862 }
863
864 /*
865 * Append address and data, and optionally, control (ancillary) data
866 * to the receive queue of a socket. If present,
867 * m0 must include a packet header with total length.
868 * Returns 0 if no space in sockbuf or insufficient mbufs.
869 */
870 int
871 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
872 struct mbuf *control)
873 {
874 struct mbuf *m, *n, *nlast;
875 int space, len;
876
877 KASSERT(solocked(sb->sb_so));
878
879 space = asa->sa_len;
880
881 if (m0 != NULL) {
882 if ((m0->m_flags & M_PKTHDR) == 0)
883 panic("sbappendaddr");
884 space += m0->m_pkthdr.len;
885 #ifdef MBUFTRACE
886 m_claimm(m0, sb->sb_mowner);
887 #endif
888 }
889 for (n = control; n; n = n->m_next) {
890 space += n->m_len;
891 MCLAIM(n, sb->sb_mowner);
892 if (n->m_next == 0) /* keep pointer to last control buf */
893 break;
894 }
895 if (space > sbspace(sb))
896 return (0);
897 MGET(m, M_DONTWAIT, MT_SONAME);
898 if (m == 0)
899 return (0);
900 MCLAIM(m, sb->sb_mowner);
901 /*
902 * XXX avoid 'comparison always true' warning which isn't easily
903 * avoided.
904 */
905 len = asa->sa_len;
906 if (len > MLEN) {
907 MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
908 if ((m->m_flags & M_EXT) == 0) {
909 m_free(m);
910 return (0);
911 }
912 }
913 m->m_len = asa->sa_len;
914 memcpy(mtod(m, void *), asa, asa->sa_len);
915 if (n)
916 n->m_next = m0; /* concatenate data to control */
917 else
918 control = m0;
919 m->m_next = control;
920
921 SBLASTRECORDCHK(sb, "sbappendaddr 1");
922
923 for (n = m; n->m_next != NULL; n = n->m_next)
924 sballoc(sb, n);
925 sballoc(sb, n);
926 nlast = n;
927 SBLINKRECORD(sb, m);
928
929 sb->sb_mbtail = nlast;
930 SBLASTMBUFCHK(sb, "sbappendaddr");
931 SBLASTRECORDCHK(sb, "sbappendaddr 2");
932
933 return (1);
934 }
935
936 /*
937 * Helper for sbappendchainaddr: prepend a struct sockaddr* to
938 * an mbuf chain.
939 */
940 static inline struct mbuf *
941 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
942 const struct sockaddr *asa)
943 {
944 struct mbuf *m;
945 const int salen = asa->sa_len;
946
947 KASSERT(solocked(sb->sb_so));
948
949 /* only the first in each chain need be a pkthdr */
950 MGETHDR(m, M_DONTWAIT, MT_SONAME);
951 if (m == 0)
952 return (0);
953 MCLAIM(m, sb->sb_mowner);
954 #ifdef notyet
955 if (salen > MHLEN) {
956 MEXTMALLOC(m, salen, M_NOWAIT);
957 if ((m->m_flags & M_EXT) == 0) {
958 m_free(m);
959 return (0);
960 }
961 }
962 #else
963 KASSERT(salen <= MHLEN);
964 #endif
965 m->m_len = salen;
966 memcpy(mtod(m, void *), asa, salen);
967 m->m_next = m0;
968 m->m_pkthdr.len = salen + m0->m_pkthdr.len;
969
970 return m;
971 }
972
973 int
974 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
975 struct mbuf *m0, int sbprio)
976 {
977 int space;
978 struct mbuf *m, *n, *n0, *nlast;
979 int error;
980
981 KASSERT(solocked(sb->sb_so));
982
983 /*
984 * XXX sbprio reserved for encoding priority of this* request:
985 * SB_PRIO_NONE --> honour normal sb limits
986 * SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
987 * take whole chain. Intended for large requests
988 * that should be delivered atomically (all, or none).
989 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
990 * over normal socket limits, for messages indicating
991 * buffer overflow in earlier normal/lower-priority messages
992 * SB_PRIO_BESTEFFORT --> ignore limits entirely.
993 * Intended for kernel-generated messages only.
994 * Up to generator to avoid total mbuf resource exhaustion.
995 */
996 (void)sbprio;
997
998 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
999 panic("sbappendaddrchain");
1000
1001 space = sbspace(sb);
1002
1003 #ifdef notyet
1004 /*
1005 * Enforce SB_PRIO_* limits as described above.
1006 */
1007 #endif
1008
1009 n0 = NULL;
1010 nlast = NULL;
1011 for (m = m0; m; m = m->m_nextpkt) {
1012 struct mbuf *np;
1013
1014 #ifdef MBUFTRACE
1015 m_claimm(m, sb->sb_mowner);
1016 #endif
1017
1018 /* Prepend sockaddr to this record (m) of input chain m0 */
1019 n = m_prepend_sockaddr(sb, m, asa);
1020 if (n == NULL) {
1021 error = ENOBUFS;
1022 goto bad;
1023 }
1024
1025 /* Append record (asa+m) to end of new chain n0 */
1026 if (n0 == NULL) {
1027 n0 = n;
1028 } else {
1029 nlast->m_nextpkt = n;
1030 }
1031 /* Keep track of last record on new chain */
1032 nlast = n;
1033
1034 for (np = n; np; np = np->m_next)
1035 sballoc(sb, np);
1036 }
1037
1038 SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1039
1040 /* Drop the entire chain of (asa+m) records onto the socket */
1041 SBLINKRECORDCHAIN(sb, n0, nlast);
1042
1043 SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1044
1045 for (m = nlast; m->m_next; m = m->m_next)
1046 ;
1047 sb->sb_mbtail = m;
1048 SBLASTMBUFCHK(sb, "sbappendaddrchain");
1049
1050 return (1);
1051
1052 bad:
1053 /*
1054 * On error, free the prepended addreseses. For consistency
1055 * with sbappendaddr(), leave it to our caller to free
1056 * the input record chain passed to us as m0.
1057 */
1058 while ((n = n0) != NULL) {
1059 struct mbuf *np;
1060
1061 /* Undo the sballoc() of this record */
1062 for (np = n; np; np = np->m_next)
1063 sbfree(sb, np);
1064
1065 n0 = n->m_nextpkt; /* iterate at next prepended address */
1066 MFREE(n, np); /* free prepended address (not data) */
1067 }
1068 return 0;
1069 }
1070
1071
1072 int
1073 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1074 {
1075 struct mbuf *m, *mlast, *n;
1076 int space;
1077
1078 KASSERT(solocked(sb->sb_so));
1079
1080 space = 0;
1081 if (control == 0)
1082 panic("sbappendcontrol");
1083 for (m = control; ; m = m->m_next) {
1084 space += m->m_len;
1085 MCLAIM(m, sb->sb_mowner);
1086 if (m->m_next == 0)
1087 break;
1088 }
1089 n = m; /* save pointer to last control buffer */
1090 for (m = m0; m; m = m->m_next) {
1091 MCLAIM(m, sb->sb_mowner);
1092 space += m->m_len;
1093 }
1094 if (space > sbspace(sb))
1095 return (0);
1096 n->m_next = m0; /* concatenate data to control */
1097
1098 SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1099
1100 for (m = control; m->m_next != NULL; m = m->m_next)
1101 sballoc(sb, m);
1102 sballoc(sb, m);
1103 mlast = m;
1104 SBLINKRECORD(sb, control);
1105
1106 sb->sb_mbtail = mlast;
1107 SBLASTMBUFCHK(sb, "sbappendcontrol");
1108 SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1109
1110 return (1);
1111 }
1112
1113 /*
1114 * Compress mbuf chain m into the socket
1115 * buffer sb following mbuf n. If n
1116 * is null, the buffer is presumed empty.
1117 */
1118 void
1119 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1120 {
1121 int eor;
1122 struct mbuf *o;
1123
1124 KASSERT(solocked(sb->sb_so));
1125
1126 eor = 0;
1127 while (m) {
1128 eor |= m->m_flags & M_EOR;
1129 if (m->m_len == 0 &&
1130 (eor == 0 ||
1131 (((o = m->m_next) || (o = n)) &&
1132 o->m_type == m->m_type))) {
1133 if (sb->sb_lastrecord == m)
1134 sb->sb_lastrecord = m->m_next;
1135 m = m_free(m);
1136 continue;
1137 }
1138 if (n && (n->m_flags & M_EOR) == 0 &&
1139 /* M_TRAILINGSPACE() checks buffer writeability */
1140 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1141 m->m_len <= M_TRAILINGSPACE(n) &&
1142 n->m_type == m->m_type) {
1143 memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1144 (unsigned)m->m_len);
1145 n->m_len += m->m_len;
1146 sb->sb_cc += m->m_len;
1147 m = m_free(m);
1148 continue;
1149 }
1150 if (n)
1151 n->m_next = m;
1152 else
1153 sb->sb_mb = m;
1154 sb->sb_mbtail = m;
1155 sballoc(sb, m);
1156 n = m;
1157 m->m_flags &= ~M_EOR;
1158 m = m->m_next;
1159 n->m_next = 0;
1160 }
1161 if (eor) {
1162 if (n)
1163 n->m_flags |= eor;
1164 else
1165 printf("semi-panic: sbcompress\n");
1166 }
1167 SBLASTMBUFCHK(sb, __func__);
1168 }
1169
1170 /*
1171 * Free all mbufs in a sockbuf.
1172 * Check that all resources are reclaimed.
1173 */
1174 void
1175 sbflush(struct sockbuf *sb)
1176 {
1177
1178 KASSERT(solocked(sb->sb_so));
1179 KASSERT((sb->sb_flags & SB_LOCK) == 0);
1180
1181 while (sb->sb_mbcnt)
1182 sbdrop(sb, (int)sb->sb_cc);
1183
1184 KASSERT(sb->sb_cc == 0);
1185 KASSERT(sb->sb_mb == NULL);
1186 KASSERT(sb->sb_mbtail == NULL);
1187 KASSERT(sb->sb_lastrecord == NULL);
1188 }
1189
1190 /*
1191 * Drop data from (the front of) a sockbuf.
1192 */
1193 void
1194 sbdrop(struct sockbuf *sb, int len)
1195 {
1196 struct mbuf *m, *mn, *next;
1197
1198 KASSERT(solocked(sb->sb_so));
1199
1200 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1201 while (len > 0) {
1202 if (m == 0) {
1203 if (next == 0)
1204 panic("sbdrop");
1205 m = next;
1206 next = m->m_nextpkt;
1207 continue;
1208 }
1209 if (m->m_len > len) {
1210 m->m_len -= len;
1211 m->m_data += len;
1212 sb->sb_cc -= len;
1213 break;
1214 }
1215 len -= m->m_len;
1216 sbfree(sb, m);
1217 MFREE(m, mn);
1218 m = mn;
1219 }
1220 while (m && m->m_len == 0) {
1221 sbfree(sb, m);
1222 MFREE(m, mn);
1223 m = mn;
1224 }
1225 if (m) {
1226 sb->sb_mb = m;
1227 m->m_nextpkt = next;
1228 } else
1229 sb->sb_mb = next;
1230 /*
1231 * First part is an inline SB_EMPTY_FIXUP(). Second part
1232 * makes sure sb_lastrecord is up-to-date if we dropped
1233 * part of the last record.
1234 */
1235 m = sb->sb_mb;
1236 if (m == NULL) {
1237 sb->sb_mbtail = NULL;
1238 sb->sb_lastrecord = NULL;
1239 } else if (m->m_nextpkt == NULL)
1240 sb->sb_lastrecord = m;
1241 }
1242
1243 /*
1244 * Drop a record off the front of a sockbuf
1245 * and move the next record to the front.
1246 */
1247 void
1248 sbdroprecord(struct sockbuf *sb)
1249 {
1250 struct mbuf *m, *mn;
1251
1252 KASSERT(solocked(sb->sb_so));
1253
1254 m = sb->sb_mb;
1255 if (m) {
1256 sb->sb_mb = m->m_nextpkt;
1257 do {
1258 sbfree(sb, m);
1259 MFREE(m, mn);
1260 } while ((m = mn) != NULL);
1261 }
1262 SB_EMPTY_FIXUP(sb);
1263 }
1264
1265 /*
1266 * Create a "control" mbuf containing the specified data
1267 * with the specified type for presentation on a socket buffer.
1268 */
1269 struct mbuf *
1270 sbcreatecontrol(void *p, int size, int type, int level)
1271 {
1272 struct cmsghdr *cp;
1273 struct mbuf *m;
1274
1275 if (CMSG_SPACE(size) > MCLBYTES) {
1276 printf("sbcreatecontrol: message too large %d\n", size);
1277 return NULL;
1278 }
1279
1280 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
1281 return ((struct mbuf *) NULL);
1282 if (CMSG_SPACE(size) > MLEN) {
1283 MCLGET(m, M_DONTWAIT);
1284 if ((m->m_flags & M_EXT) == 0) {
1285 m_free(m);
1286 return NULL;
1287 }
1288 }
1289 cp = mtod(m, struct cmsghdr *);
1290 memcpy(CMSG_DATA(cp), p, size);
1291 m->m_len = CMSG_SPACE(size);
1292 cp->cmsg_len = CMSG_LEN(size);
1293 cp->cmsg_level = level;
1294 cp->cmsg_type = type;
1295 return (m);
1296 }
1297
1298 void
1299 solockretry(struct socket *so, kmutex_t *lock)
1300 {
1301
1302 while (lock != so->so_lock) {
1303 mutex_exit(lock);
1304 lock = so->so_lock;
1305 mutex_enter(lock);
1306 }
1307 }
1308
1309 bool
1310 solocked(struct socket *so)
1311 {
1312
1313 return mutex_owned(so->so_lock);
1314 }
1315
1316 bool
1317 solocked2(struct socket *so1, struct socket *so2)
1318 {
1319 kmutex_t *lock;
1320
1321 lock = so1->so_lock;
1322 if (lock != so2->so_lock)
1323 return false;
1324 return mutex_owned(lock);
1325 }
1326
1327 /*
1328 * Assign a default lock to a new socket. For PRU_ATTACH, and done by
1329 * protocols that do not have special locking requirements.
1330 */
1331 void
1332 sosetlock(struct socket *so)
1333 {
1334 kmutex_t *lock;
1335
1336 if (so->so_lock == NULL) {
1337 lock = softnet_lock;
1338 so->so_lock = lock;
1339 mutex_obj_hold(lock);
1340 mutex_enter(lock);
1341 }
1342
1343 /* In all cases, lock must be held on return from PRU_ATTACH. */
1344 KASSERT(solocked(so));
1345 }
1346
1347 /*
1348 * Set lock on sockbuf sb; sleep if lock is already held.
1349 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1350 * Returns error without lock if sleep is interrupted.
1351 */
1352 int
1353 sblock(struct sockbuf *sb, int wf)
1354 {
1355 struct socket *so;
1356 kmutex_t *lock;
1357 int error;
1358
1359 KASSERT(solocked(sb->sb_so));
1360
1361 for (;;) {
1362 if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1363 sb->sb_flags |= SB_LOCK;
1364 return 0;
1365 }
1366 if (wf != M_WAITOK)
1367 return EWOULDBLOCK;
1368 so = sb->sb_so;
1369 lock = so->so_lock;
1370 if ((sb->sb_flags & SB_NOINTR) != 0) {
1371 cv_wait(&so->so_cv, lock);
1372 error = 0;
1373 } else
1374 error = cv_wait_sig(&so->so_cv, lock);
1375 if (__predict_false(lock != so->so_lock))
1376 solockretry(so, lock);
1377 if (error != 0)
1378 return error;
1379 }
1380 }
1381
1382 void
1383 sbunlock(struct sockbuf *sb)
1384 {
1385 struct socket *so;
1386
1387 so = sb->sb_so;
1388
1389 KASSERT(solocked(so));
1390 KASSERT((sb->sb_flags & SB_LOCK) != 0);
1391
1392 sb->sb_flags &= ~SB_LOCK;
1393 cv_broadcast(&so->so_cv);
1394 }
1395
1396 int
1397 sowait(struct socket *so, int timo)
1398 {
1399 kmutex_t *lock;
1400 int error;
1401
1402 KASSERT(solocked(so));
1403
1404 lock = so->so_lock;
1405 error = cv_timedwait_sig(&so->so_cv, lock, timo);
1406 if (__predict_false(lock != so->so_lock))
1407 solockretry(so, lock);
1408 return error;
1409 }
1410