Home | History | Annotate | Line # | Download | only in kern
uipc_socket2.c revision 1.91
      1 /*	$NetBSD: uipc_socket2.c,v 1.91 2008/04/24 11:38:36 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the NetBSD
     18  *	Foundation, Inc. and its contributors.
     19  * 4. Neither the name of The NetBSD Foundation nor the names of its
     20  *    contributors may be used to endorse or promote products derived
     21  *    from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 
     36 /*
     37  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     38  *	The Regents of the University of California.  All rights reserved.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  * 3. Neither the name of the University nor the names of its contributors
     49  *    may be used to endorse or promote products derived from this software
     50  *    without specific prior written permission.
     51  *
     52  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     55  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     56  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     57  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     58  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     59  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     60  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     61  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     62  * SUCH DAMAGE.
     63  *
     64  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
     65  */
     66 
     67 #include <sys/cdefs.h>
     68 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.91 2008/04/24 11:38:36 ad Exp $");
     69 
     70 #include "opt_mbuftrace.h"
     71 #include "opt_sb_max.h"
     72 
     73 #include <sys/param.h>
     74 #include <sys/systm.h>
     75 #include <sys/proc.h>
     76 #include <sys/file.h>
     77 #include <sys/buf.h>
     78 #include <sys/malloc.h>
     79 #include <sys/mbuf.h>
     80 #include <sys/protosw.h>
     81 #include <sys/domain.h>
     82 #include <sys/poll.h>
     83 #include <sys/socket.h>
     84 #include <sys/socketvar.h>
     85 #include <sys/signalvar.h>
     86 #include <sys/kauth.h>
     87 #include <sys/pool.h>
     88 
     89 /*
     90  * Primitive routines for operating on sockets and socket buffers.
     91  *
     92  * Locking rules and assumptions:
     93  *
     94  * o socket::so_lock can change on the fly.  The low level routines used
     95  *   to lock sockets are aware of this.  When so_lock is acquired, the
     96  *   routine locking must check to see if so_lock still points to the
     97  *   lock that was acquired.  If so_lock has changed in the meantime, the
     98  *   now irellevant lock that was acquired must be dropped and the lock
     99  *   operation retried.  Although not proven here, this is completely safe
    100  *   on a multiprocessor system, even with relaxed memory ordering, given
    101  *   the next two rules:
    102  *
    103  * o In order to mutate so_lock, the lock pointed to by the current value
    104  *   of so_lock must be held: i.e., the socket must be held locked by the
    105  *   changing thread.  The thread must issue membar_exit() to prevent
    106  *   memory accesses being reordered, and can set so_lock to the desired
    107  *   value.  If the lock pointed to by the new value of so_lock is not
    108  *   held by the changing thread, the socket must then be considered
    109  *   unlocked.
    110  *
    111  * o If so_lock is mutated, and the previous lock referred to by so_lock
    112  *   could still be visible to other threads in the system (e.g. via file
    113  *   descriptor or protocol-internal reference), then the old lock must
    114  *   remain valid until the socket and/or protocol control block has been
    115  *   torn down.
    116  *
    117  * o If a socket has a non-NULL so_head value (i.e. is in the process of
    118  *   connecting), then locking the socket must also lock the socket pointed
    119  *   to by so_head: their lock pointers must match.
    120  *
    121  * o If a socket has connections in progress (so_q, so_q0 not empty) then
    122  *   locking the socket must also lock the sockets attached to both queues.
    123  *   Again, their lock pointers must match.
    124  *
    125  * o Beyond the initial lock assigment in socreate(), assigning locks to
    126  *   sockets is the responsibility of the individual protocols / protocol
    127  *   domains.
    128  */
    129 
    130 static POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL,
    131     IPL_SOFTNET);
    132 
    133 u_long	sb_max = SB_MAX;	/* maximum socket buffer size */
    134 static u_long sb_max_adj;	/* adjusted sb_max */
    135 
    136 /*
    137  * Procedures to manipulate state flags of socket
    138  * and do appropriate wakeups.  Normal sequence from the
    139  * active (originating) side is that soisconnecting() is
    140  * called during processing of connect() call,
    141  * resulting in an eventual call to soisconnected() if/when the
    142  * connection is established.  When the connection is torn down
    143  * soisdisconnecting() is called during processing of disconnect() call,
    144  * and soisdisconnected() is called when the connection to the peer
    145  * is totally severed.  The semantics of these routines are such that
    146  * connectionless protocols can call soisconnected() and soisdisconnected()
    147  * only, bypassing the in-progress calls when setting up a ``connection''
    148  * takes no time.
    149  *
    150  * From the passive side, a socket is created with
    151  * two queues of sockets: so_q0 for connections in progress
    152  * and so_q for connections already made and awaiting user acceptance.
    153  * As a protocol is preparing incoming connections, it creates a socket
    154  * structure queued on so_q0 by calling sonewconn().  When the connection
    155  * is established, soisconnected() is called, and transfers the
    156  * socket structure to so_q, making it available to accept().
    157  *
    158  * If a socket is closed with sockets on either
    159  * so_q0 or so_q, these sockets are dropped.
    160  *
    161  * If higher level protocols are implemented in
    162  * the kernel, the wakeups done here will sometimes
    163  * cause software-interrupt process scheduling.
    164  */
    165 
    166 void
    167 soisconnecting(struct socket *so)
    168 {
    169 
    170 	KASSERT(solocked(so));
    171 
    172 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
    173 	so->so_state |= SS_ISCONNECTING;
    174 }
    175 
    176 void
    177 soisconnected(struct socket *so)
    178 {
    179 	struct socket	*head;
    180 
    181 	head = so->so_head;
    182 
    183 	KASSERT(solocked(so));
    184 	KASSERT(head == NULL || solocked2(so, head));
    185 
    186 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
    187 	so->so_state |= SS_ISCONNECTED;
    188 	if (head && soqremque(so, 0)) {
    189 		soqinsque(head, so, 1);
    190 		sorwakeup(head);
    191 		cv_broadcast(&head->so_cv);
    192 	} else {
    193 		cv_broadcast(&so->so_cv);
    194 		sorwakeup(so);
    195 		sowwakeup(so);
    196 	}
    197 }
    198 
    199 void
    200 soisdisconnecting(struct socket *so)
    201 {
    202 
    203 	KASSERT(solocked(so));
    204 
    205 	so->so_state &= ~SS_ISCONNECTING;
    206 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
    207 	cv_broadcast(&so->so_cv);
    208 	sowwakeup(so);
    209 	sorwakeup(so);
    210 }
    211 
    212 void
    213 soisdisconnected(struct socket *so)
    214 {
    215 
    216 	KASSERT(solocked(so));
    217 
    218 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
    219 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
    220 	cv_broadcast(&so->so_cv);
    221 	sowwakeup(so);
    222 	sorwakeup(so);
    223 }
    224 
    225 /*
    226  * When an attempt at a new connection is noted on a socket
    227  * which accepts connections, sonewconn is called.  If the
    228  * connection is possible (subject to space constraints, etc.)
    229  * then we allocate a new structure, propoerly linked into the
    230  * data structure of the original socket, and return this.
    231  * Connstatus may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
    232  */
    233 struct socket *
    234 sonewconn(struct socket *head, int connstatus)
    235 {
    236 	struct socket	*so;
    237 	int		soqueue, error;
    238 
    239 	KASSERT(solocked(head));
    240 
    241 	soqueue = connstatus ? 1 : 0;
    242 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
    243 		return ((struct socket *)0);
    244 	so = soget(false);
    245 	if (so == NULL)
    246 		return (NULL);
    247 	mutex_obj_hold(head->so_lock);
    248 	so->so_lock = head->so_lock;
    249 	so->so_type = head->so_type;
    250 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
    251 	so->so_linger = head->so_linger;
    252 	so->so_state = head->so_state | SS_NOFDREF;
    253 	so->so_nbio = head->so_nbio;
    254 	so->so_proto = head->so_proto;
    255 	so->so_timeo = head->so_timeo;
    256 	so->so_pgid = head->so_pgid;
    257 	so->so_send = head->so_send;
    258 	so->so_receive = head->so_receive;
    259 	so->so_uidinfo = head->so_uidinfo;
    260 #ifdef MBUFTRACE
    261 	so->so_mowner = head->so_mowner;
    262 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
    263 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
    264 #endif
    265 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
    266 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
    267 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
    268 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
    269 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
    270 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
    271 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
    272 	soqinsque(head, so, soqueue);
    273 	error = (*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL,
    274 	    NULL, NULL);
    275 	KASSERT(solocked(so));
    276 	if (error != 0) {
    277 		(void) soqremque(so, soqueue);
    278 		soput(so);
    279 		return (NULL);
    280 	}
    281 	if (connstatus) {
    282 		sorwakeup(head);
    283 		cv_broadcast(&head->so_cv);
    284 		so->so_state |= connstatus;
    285 	}
    286 	return (so);
    287 }
    288 
    289 struct socket *
    290 soget(bool waitok)
    291 {
    292 	struct socket *so;
    293 
    294 	so = pool_get(&socket_pool, (waitok ? PR_WAITOK : PR_NOWAIT));
    295 	if (__predict_false(so == NULL))
    296 		return (NULL);
    297 	memset(so, 0, sizeof(*so));
    298 	TAILQ_INIT(&so->so_q0);
    299 	TAILQ_INIT(&so->so_q);
    300 	cv_init(&so->so_cv, "socket");
    301 	cv_init(&so->so_rcv.sb_cv, "netio");
    302 	cv_init(&so->so_snd.sb_cv, "netio");
    303 	selinit(&so->so_rcv.sb_sel);
    304 	selinit(&so->so_snd.sb_sel);
    305 	so->so_rcv.sb_so = so;
    306 	so->so_snd.sb_so = so;
    307 	return so;
    308 }
    309 
    310 void
    311 soput(struct socket *so)
    312 {
    313 
    314 	KASSERT(!cv_has_waiters(&so->so_cv));
    315 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    316 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    317 	seldestroy(&so->so_rcv.sb_sel);
    318 	seldestroy(&so->so_snd.sb_sel);
    319 	mutex_obj_free(so->so_lock);
    320 	cv_destroy(&so->so_cv);
    321 	cv_destroy(&so->so_rcv.sb_cv);
    322 	cv_destroy(&so->so_snd.sb_cv);
    323 	pool_put(&socket_pool, so);
    324 }
    325 
    326 void
    327 soqinsque(struct socket *head, struct socket *so, int q)
    328 {
    329 
    330 	KASSERT(solocked2(head, so));
    331 
    332 #ifdef DIAGNOSTIC
    333 	if (so->so_onq != NULL)
    334 		panic("soqinsque");
    335 #endif
    336 
    337 	so->so_head = head;
    338 	if (q == 0) {
    339 		head->so_q0len++;
    340 		so->so_onq = &head->so_q0;
    341 	} else {
    342 		head->so_qlen++;
    343 		so->so_onq = &head->so_q;
    344 	}
    345 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
    346 }
    347 
    348 int
    349 soqremque(struct socket *so, int q)
    350 {
    351 	struct socket	*head;
    352 
    353 	head = so->so_head;
    354 
    355 	KASSERT(solocked(so));
    356 	if (q == 0) {
    357 		if (so->so_onq != &head->so_q0)
    358 			return (0);
    359 		head->so_q0len--;
    360 	} else {
    361 		if (so->so_onq != &head->so_q)
    362 			return (0);
    363 		head->so_qlen--;
    364 	}
    365 	KASSERT(solocked2(so, head));
    366 	TAILQ_REMOVE(so->so_onq, so, so_qe);
    367 	so->so_onq = NULL;
    368 	so->so_head = NULL;
    369 	return (1);
    370 }
    371 
    372 /*
    373  * Socantsendmore indicates that no more data will be sent on the
    374  * socket; it would normally be applied to a socket when the user
    375  * informs the system that no more data is to be sent, by the protocol
    376  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
    377  * will be received, and will normally be applied to the socket by a
    378  * protocol when it detects that the peer will send no more data.
    379  * Data queued for reading in the socket may yet be read.
    380  */
    381 
    382 void
    383 socantsendmore(struct socket *so)
    384 {
    385 
    386 	KASSERT(solocked(so));
    387 
    388 	so->so_state |= SS_CANTSENDMORE;
    389 	sowwakeup(so);
    390 }
    391 
    392 void
    393 socantrcvmore(struct socket *so)
    394 {
    395 
    396 	KASSERT(solocked(so));
    397 
    398 	so->so_state |= SS_CANTRCVMORE;
    399 	sorwakeup(so);
    400 }
    401 
    402 /*
    403  * Wait for data to arrive at/drain from a socket buffer.
    404  */
    405 int
    406 sbwait(struct sockbuf *sb)
    407 {
    408 	struct socket *so;
    409 	kmutex_t *lock;
    410 	int error;
    411 
    412 	so = sb->sb_so;
    413 
    414 	KASSERT(solocked(so));
    415 
    416 	sb->sb_flags |= SB_NOTIFY;
    417 	lock = so->so_lock;
    418 	if ((sb->sb_flags & SB_NOINTR) != 0)
    419 		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
    420 	else
    421 		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
    422 	if (__predict_false(lock != so->so_lock))
    423 		solockretry(so, lock);
    424 	return error;
    425 }
    426 
    427 /*
    428  * Wakeup processes waiting on a socket buffer.
    429  * Do asynchronous notification via SIGIO
    430  * if the socket buffer has the SB_ASYNC flag set.
    431  */
    432 void
    433 sowakeup(struct socket *so, struct sockbuf *sb, int code)
    434 {
    435 	int band;
    436 
    437 	KASSERT(solocked(so));
    438 	KASSERT(sb->sb_so == so);
    439 
    440 	if (code == POLL_IN)
    441 		band = POLLIN|POLLRDNORM;
    442 	else
    443 		band = POLLOUT|POLLWRNORM;
    444 	sb->sb_flags &= ~SB_NOTIFY;
    445 	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
    446 	cv_broadcast(&sb->sb_cv);
    447 	if (sb->sb_flags & SB_ASYNC)
    448 		fownsignal(so->so_pgid, SIGIO, code, band, so);
    449 	if (sb->sb_flags & SB_UPCALL)
    450 		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
    451 }
    452 
    453 /*
    454  * Socket buffer (struct sockbuf) utility routines.
    455  *
    456  * Each socket contains two socket buffers: one for sending data and
    457  * one for receiving data.  Each buffer contains a queue of mbufs,
    458  * information about the number of mbufs and amount of data in the
    459  * queue, and other fields allowing poll() statements and notification
    460  * on data availability to be implemented.
    461  *
    462  * Data stored in a socket buffer is maintained as a list of records.
    463  * Each record is a list of mbufs chained together with the m_next
    464  * field.  Records are chained together with the m_nextpkt field. The upper
    465  * level routine soreceive() expects the following conventions to be
    466  * observed when placing information in the receive buffer:
    467  *
    468  * 1. If the protocol requires each message be preceded by the sender's
    469  *    name, then a record containing that name must be present before
    470  *    any associated data (mbuf's must be of type MT_SONAME).
    471  * 2. If the protocol supports the exchange of ``access rights'' (really
    472  *    just additional data associated with the message), and there are
    473  *    ``rights'' to be received, then a record containing this data
    474  *    should be present (mbuf's must be of type MT_CONTROL).
    475  * 3. If a name or rights record exists, then it must be followed by
    476  *    a data record, perhaps of zero length.
    477  *
    478  * Before using a new socket structure it is first necessary to reserve
    479  * buffer space to the socket, by calling sbreserve().  This should commit
    480  * some of the available buffer space in the system buffer pool for the
    481  * socket (currently, it does nothing but enforce limits).  The space
    482  * should be released by calling sbrelease() when the socket is destroyed.
    483  */
    484 
    485 int
    486 sb_max_set(u_long new_sbmax)
    487 {
    488 	int s;
    489 
    490 	if (new_sbmax < (16 * 1024))
    491 		return (EINVAL);
    492 
    493 	s = splsoftnet();
    494 	sb_max = new_sbmax;
    495 	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
    496 	splx(s);
    497 
    498 	return (0);
    499 }
    500 
    501 int
    502 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
    503 {
    504 
    505 	KASSERT(so->so_lock == NULL || solocked(so));
    506 
    507 	/*
    508 	 * there's at least one application (a configure script of screen)
    509 	 * which expects a fifo is writable even if it has "some" bytes
    510 	 * in its buffer.
    511 	 * so we want to make sure (hiwat - lowat) >= (some bytes).
    512 	 *
    513 	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
    514 	 * we expect it's large enough for such applications.
    515 	 */
    516 	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
    517 	u_long  hiwat = lowat + PIPE_BUF;
    518 
    519 	if (sndcc < hiwat)
    520 		sndcc = hiwat;
    521 	if (sbreserve(&so->so_snd, sndcc, so) == 0)
    522 		goto bad;
    523 	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
    524 		goto bad2;
    525 	if (so->so_rcv.sb_lowat == 0)
    526 		so->so_rcv.sb_lowat = 1;
    527 	if (so->so_snd.sb_lowat == 0)
    528 		so->so_snd.sb_lowat = lowat;
    529 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
    530 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
    531 	return (0);
    532  bad2:
    533 	sbrelease(&so->so_snd, so);
    534  bad:
    535 	return (ENOBUFS);
    536 }
    537 
    538 /*
    539  * Allot mbufs to a sockbuf.
    540  * Attempt to scale mbmax so that mbcnt doesn't become limiting
    541  * if buffering efficiency is near the normal case.
    542  */
    543 int
    544 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
    545 {
    546 	struct lwp *l = curlwp; /* XXX */
    547 	rlim_t maxcc;
    548 	struct uidinfo *uidinfo;
    549 
    550 	KASSERT(so->so_lock == NULL || solocked(so));
    551 	KASSERT(sb->sb_so == so);
    552 	KASSERT(sb_max_adj != 0);
    553 
    554 	if (cc == 0 || cc > sb_max_adj)
    555 		return (0);
    556 	if (so) {
    557 		if (kauth_cred_geteuid(l->l_cred) == so->so_uidinfo->ui_uid)
    558 			maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
    559 		else
    560 			maxcc = RLIM_INFINITY;
    561 		uidinfo = so->so_uidinfo;
    562 	} else {
    563 		uidinfo = uid_find(0);	/* XXX: nothing better */
    564 		maxcc = RLIM_INFINITY;
    565 	}
    566 	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
    567 		return 0;
    568 	sb->sb_mbmax = min(cc * 2, sb_max);
    569 	if (sb->sb_lowat > sb->sb_hiwat)
    570 		sb->sb_lowat = sb->sb_hiwat;
    571 	return (1);
    572 }
    573 
    574 /*
    575  * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
    576  * that the socket is held locked here: see sorflush().
    577  */
    578 void
    579 sbrelease(struct sockbuf *sb, struct socket *so)
    580 {
    581 
    582 	KASSERT(sb->sb_so == so);
    583 
    584 	sbflush(sb);
    585 	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
    586 	sb->sb_mbmax = 0;
    587 }
    588 
    589 /*
    590  * Routines to add and remove
    591  * data from an mbuf queue.
    592  *
    593  * The routines sbappend() or sbappendrecord() are normally called to
    594  * append new mbufs to a socket buffer, after checking that adequate
    595  * space is available, comparing the function sbspace() with the amount
    596  * of data to be added.  sbappendrecord() differs from sbappend() in
    597  * that data supplied is treated as the beginning of a new record.
    598  * To place a sender's address, optional access rights, and data in a
    599  * socket receive buffer, sbappendaddr() should be used.  To place
    600  * access rights and data in a socket receive buffer, sbappendrights()
    601  * should be used.  In either case, the new data begins a new record.
    602  * Note that unlike sbappend() and sbappendrecord(), these routines check
    603  * for the caller that there will be enough space to store the data.
    604  * Each fails if there is not enough space, or if it cannot find mbufs
    605  * to store additional information in.
    606  *
    607  * Reliable protocols may use the socket send buffer to hold data
    608  * awaiting acknowledgement.  Data is normally copied from a socket
    609  * send buffer in a protocol with m_copy for output to a peer,
    610  * and then removing the data from the socket buffer with sbdrop()
    611  * or sbdroprecord() when the data is acknowledged by the peer.
    612  */
    613 
    614 #ifdef SOCKBUF_DEBUG
    615 void
    616 sblastrecordchk(struct sockbuf *sb, const char *where)
    617 {
    618 	struct mbuf *m = sb->sb_mb;
    619 
    620 	KASSERT(solocked(sb->sb_so));
    621 
    622 	while (m && m->m_nextpkt)
    623 		m = m->m_nextpkt;
    624 
    625 	if (m != sb->sb_lastrecord) {
    626 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
    627 		    sb->sb_mb, sb->sb_lastrecord, m);
    628 		printf("packet chain:\n");
    629 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
    630 			printf("\t%p\n", m);
    631 		panic("sblastrecordchk from %s", where);
    632 	}
    633 }
    634 
    635 void
    636 sblastmbufchk(struct sockbuf *sb, const char *where)
    637 {
    638 	struct mbuf *m = sb->sb_mb;
    639 	struct mbuf *n;
    640 
    641 	KASSERT(solocked(sb->sb_so));
    642 
    643 	while (m && m->m_nextpkt)
    644 		m = m->m_nextpkt;
    645 
    646 	while (m && m->m_next)
    647 		m = m->m_next;
    648 
    649 	if (m != sb->sb_mbtail) {
    650 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
    651 		    sb->sb_mb, sb->sb_mbtail, m);
    652 		printf("packet tree:\n");
    653 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
    654 			printf("\t");
    655 			for (n = m; n != NULL; n = n->m_next)
    656 				printf("%p ", n);
    657 			printf("\n");
    658 		}
    659 		panic("sblastmbufchk from %s", where);
    660 	}
    661 }
    662 #endif /* SOCKBUF_DEBUG */
    663 
    664 /*
    665  * Link a chain of records onto a socket buffer
    666  */
    667 #define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
    668 do {									\
    669 	if ((sb)->sb_lastrecord != NULL)				\
    670 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
    671 	else								\
    672 		(sb)->sb_mb = (m0);					\
    673 	(sb)->sb_lastrecord = (mlast);					\
    674 } while (/*CONSTCOND*/0)
    675 
    676 
    677 #define	SBLINKRECORD(sb, m0)						\
    678     SBLINKRECORDCHAIN(sb, m0, m0)
    679 
    680 /*
    681  * Append mbuf chain m to the last record in the
    682  * socket buffer sb.  The additional space associated
    683  * the mbuf chain is recorded in sb.  Empty mbufs are
    684  * discarded and mbufs are compacted where possible.
    685  */
    686 void
    687 sbappend(struct sockbuf *sb, struct mbuf *m)
    688 {
    689 	struct mbuf	*n;
    690 
    691 	KASSERT(solocked(sb->sb_so));
    692 
    693 	if (m == 0)
    694 		return;
    695 
    696 #ifdef MBUFTRACE
    697 	m_claimm(m, sb->sb_mowner);
    698 #endif
    699 
    700 	SBLASTRECORDCHK(sb, "sbappend 1");
    701 
    702 	if ((n = sb->sb_lastrecord) != NULL) {
    703 		/*
    704 		 * XXX Would like to simply use sb_mbtail here, but
    705 		 * XXX I need to verify that I won't miss an EOR that
    706 		 * XXX way.
    707 		 */
    708 		do {
    709 			if (n->m_flags & M_EOR) {
    710 				sbappendrecord(sb, m); /* XXXXXX!!!! */
    711 				return;
    712 			}
    713 		} while (n->m_next && (n = n->m_next));
    714 	} else {
    715 		/*
    716 		 * If this is the first record in the socket buffer, it's
    717 		 * also the last record.
    718 		 */
    719 		sb->sb_lastrecord = m;
    720 	}
    721 	sbcompress(sb, m, n);
    722 	SBLASTRECORDCHK(sb, "sbappend 2");
    723 }
    724 
    725 /*
    726  * This version of sbappend() should only be used when the caller
    727  * absolutely knows that there will never be more than one record
    728  * in the socket buffer, that is, a stream protocol (such as TCP).
    729  */
    730 void
    731 sbappendstream(struct sockbuf *sb, struct mbuf *m)
    732 {
    733 
    734 	KASSERT(solocked(sb->sb_so));
    735 	KDASSERT(m->m_nextpkt == NULL);
    736 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
    737 
    738 	SBLASTMBUFCHK(sb, __func__);
    739 
    740 #ifdef MBUFTRACE
    741 	m_claimm(m, sb->sb_mowner);
    742 #endif
    743 
    744 	sbcompress(sb, m, sb->sb_mbtail);
    745 
    746 	sb->sb_lastrecord = sb->sb_mb;
    747 	SBLASTRECORDCHK(sb, __func__);
    748 }
    749 
    750 #ifdef SOCKBUF_DEBUG
    751 void
    752 sbcheck(struct sockbuf *sb)
    753 {
    754 	struct mbuf	*m, *m2;
    755 	u_long		len, mbcnt;
    756 
    757 	KASSERT(solocked(sb->sb_so));
    758 
    759 	len = 0;
    760 	mbcnt = 0;
    761 	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
    762 		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
    763 			len += m2->m_len;
    764 			mbcnt += MSIZE;
    765 			if (m2->m_flags & M_EXT)
    766 				mbcnt += m2->m_ext.ext_size;
    767 			if (m2->m_nextpkt != NULL)
    768 				panic("sbcheck nextpkt");
    769 		}
    770 	}
    771 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
    772 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
    773 		    mbcnt, sb->sb_mbcnt);
    774 		panic("sbcheck");
    775 	}
    776 }
    777 #endif
    778 
    779 /*
    780  * As above, except the mbuf chain
    781  * begins a new record.
    782  */
    783 void
    784 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
    785 {
    786 	struct mbuf	*m;
    787 
    788 	KASSERT(solocked(sb->sb_so));
    789 
    790 	if (m0 == 0)
    791 		return;
    792 
    793 #ifdef MBUFTRACE
    794 	m_claimm(m0, sb->sb_mowner);
    795 #endif
    796 	/*
    797 	 * Put the first mbuf on the queue.
    798 	 * Note this permits zero length records.
    799 	 */
    800 	sballoc(sb, m0);
    801 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
    802 	SBLINKRECORD(sb, m0);
    803 	m = m0->m_next;
    804 	m0->m_next = 0;
    805 	if (m && (m0->m_flags & M_EOR)) {
    806 		m0->m_flags &= ~M_EOR;
    807 		m->m_flags |= M_EOR;
    808 	}
    809 	sbcompress(sb, m, m0);
    810 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
    811 }
    812 
    813 /*
    814  * As above except that OOB data
    815  * is inserted at the beginning of the sockbuf,
    816  * but after any other OOB data.
    817  */
    818 void
    819 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
    820 {
    821 	struct mbuf	*m, **mp;
    822 
    823 	KASSERT(solocked(sb->sb_so));
    824 
    825 	if (m0 == 0)
    826 		return;
    827 
    828 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
    829 
    830 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
    831 	    again:
    832 		switch (m->m_type) {
    833 
    834 		case MT_OOBDATA:
    835 			continue;		/* WANT next train */
    836 
    837 		case MT_CONTROL:
    838 			if ((m = m->m_next) != NULL)
    839 				goto again;	/* inspect THIS train further */
    840 		}
    841 		break;
    842 	}
    843 	/*
    844 	 * Put the first mbuf on the queue.
    845 	 * Note this permits zero length records.
    846 	 */
    847 	sballoc(sb, m0);
    848 	m0->m_nextpkt = *mp;
    849 	if (*mp == NULL) {
    850 		/* m0 is actually the new tail */
    851 		sb->sb_lastrecord = m0;
    852 	}
    853 	*mp = m0;
    854 	m = m0->m_next;
    855 	m0->m_next = 0;
    856 	if (m && (m0->m_flags & M_EOR)) {
    857 		m0->m_flags &= ~M_EOR;
    858 		m->m_flags |= M_EOR;
    859 	}
    860 	sbcompress(sb, m, m0);
    861 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
    862 }
    863 
    864 /*
    865  * Append address and data, and optionally, control (ancillary) data
    866  * to the receive queue of a socket.  If present,
    867  * m0 must include a packet header with total length.
    868  * Returns 0 if no space in sockbuf or insufficient mbufs.
    869  */
    870 int
    871 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
    872 	struct mbuf *control)
    873 {
    874 	struct mbuf	*m, *n, *nlast;
    875 	int		space, len;
    876 
    877 	KASSERT(solocked(sb->sb_so));
    878 
    879 	space = asa->sa_len;
    880 
    881 	if (m0 != NULL) {
    882 		if ((m0->m_flags & M_PKTHDR) == 0)
    883 			panic("sbappendaddr");
    884 		space += m0->m_pkthdr.len;
    885 #ifdef MBUFTRACE
    886 		m_claimm(m0, sb->sb_mowner);
    887 #endif
    888 	}
    889 	for (n = control; n; n = n->m_next) {
    890 		space += n->m_len;
    891 		MCLAIM(n, sb->sb_mowner);
    892 		if (n->m_next == 0)	/* keep pointer to last control buf */
    893 			break;
    894 	}
    895 	if (space > sbspace(sb))
    896 		return (0);
    897 	MGET(m, M_DONTWAIT, MT_SONAME);
    898 	if (m == 0)
    899 		return (0);
    900 	MCLAIM(m, sb->sb_mowner);
    901 	/*
    902 	 * XXX avoid 'comparison always true' warning which isn't easily
    903 	 * avoided.
    904 	 */
    905 	len = asa->sa_len;
    906 	if (len > MLEN) {
    907 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
    908 		if ((m->m_flags & M_EXT) == 0) {
    909 			m_free(m);
    910 			return (0);
    911 		}
    912 	}
    913 	m->m_len = asa->sa_len;
    914 	memcpy(mtod(m, void *), asa, asa->sa_len);
    915 	if (n)
    916 		n->m_next = m0;		/* concatenate data to control */
    917 	else
    918 		control = m0;
    919 	m->m_next = control;
    920 
    921 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
    922 
    923 	for (n = m; n->m_next != NULL; n = n->m_next)
    924 		sballoc(sb, n);
    925 	sballoc(sb, n);
    926 	nlast = n;
    927 	SBLINKRECORD(sb, m);
    928 
    929 	sb->sb_mbtail = nlast;
    930 	SBLASTMBUFCHK(sb, "sbappendaddr");
    931 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
    932 
    933 	return (1);
    934 }
    935 
    936 /*
    937  * Helper for sbappendchainaddr: prepend a struct sockaddr* to
    938  * an mbuf chain.
    939  */
    940 static inline struct mbuf *
    941 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
    942 		   const struct sockaddr *asa)
    943 {
    944 	struct mbuf *m;
    945 	const int salen = asa->sa_len;
    946 
    947 	KASSERT(solocked(sb->sb_so));
    948 
    949 	/* only the first in each chain need be a pkthdr */
    950 	MGETHDR(m, M_DONTWAIT, MT_SONAME);
    951 	if (m == 0)
    952 		return (0);
    953 	MCLAIM(m, sb->sb_mowner);
    954 #ifdef notyet
    955 	if (salen > MHLEN) {
    956 		MEXTMALLOC(m, salen, M_NOWAIT);
    957 		if ((m->m_flags & M_EXT) == 0) {
    958 			m_free(m);
    959 			return (0);
    960 		}
    961 	}
    962 #else
    963 	KASSERT(salen <= MHLEN);
    964 #endif
    965 	m->m_len = salen;
    966 	memcpy(mtod(m, void *), asa, salen);
    967 	m->m_next = m0;
    968 	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
    969 
    970 	return m;
    971 }
    972 
    973 int
    974 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
    975 		  struct mbuf *m0, int sbprio)
    976 {
    977 	int space;
    978 	struct mbuf *m, *n, *n0, *nlast;
    979 	int error;
    980 
    981 	KASSERT(solocked(sb->sb_so));
    982 
    983 	/*
    984 	 * XXX sbprio reserved for encoding priority of this* request:
    985 	 *  SB_PRIO_NONE --> honour normal sb limits
    986 	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
    987 	 *	take whole chain. Intended for large requests
    988 	 *      that should be delivered atomically (all, or none).
    989 	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
    990 	 *       over normal socket limits, for messages indicating
    991 	 *       buffer overflow in earlier normal/lower-priority messages
    992 	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
    993 	 *       Intended for  kernel-generated messages only.
    994 	 *        Up to generator to avoid total mbuf resource exhaustion.
    995 	 */
    996 	(void)sbprio;
    997 
    998 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
    999 		panic("sbappendaddrchain");
   1000 
   1001 	space = sbspace(sb);
   1002 
   1003 #ifdef notyet
   1004 	/*
   1005 	 * Enforce SB_PRIO_* limits as described above.
   1006 	 */
   1007 #endif
   1008 
   1009 	n0 = NULL;
   1010 	nlast = NULL;
   1011 	for (m = m0; m; m = m->m_nextpkt) {
   1012 		struct mbuf *np;
   1013 
   1014 #ifdef MBUFTRACE
   1015 		m_claimm(m, sb->sb_mowner);
   1016 #endif
   1017 
   1018 		/* Prepend sockaddr to this record (m) of input chain m0 */
   1019 	  	n = m_prepend_sockaddr(sb, m, asa);
   1020 		if (n == NULL) {
   1021 			error = ENOBUFS;
   1022 			goto bad;
   1023 		}
   1024 
   1025 		/* Append record (asa+m) to end of new chain n0 */
   1026 		if (n0 == NULL) {
   1027 			n0 = n;
   1028 		} else {
   1029 			nlast->m_nextpkt = n;
   1030 		}
   1031 		/* Keep track of last record on new chain */
   1032 		nlast = n;
   1033 
   1034 		for (np = n; np; np = np->m_next)
   1035 			sballoc(sb, np);
   1036 	}
   1037 
   1038 	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
   1039 
   1040 	/* Drop the entire chain of (asa+m) records onto the socket */
   1041 	SBLINKRECORDCHAIN(sb, n0, nlast);
   1042 
   1043 	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
   1044 
   1045 	for (m = nlast; m->m_next; m = m->m_next)
   1046 		;
   1047 	sb->sb_mbtail = m;
   1048 	SBLASTMBUFCHK(sb, "sbappendaddrchain");
   1049 
   1050 	return (1);
   1051 
   1052 bad:
   1053 	/*
   1054 	 * On error, free the prepended addreseses. For consistency
   1055 	 * with sbappendaddr(), leave it to our caller to free
   1056 	 * the input record chain passed to us as m0.
   1057 	 */
   1058 	while ((n = n0) != NULL) {
   1059 	  	struct mbuf *np;
   1060 
   1061 		/* Undo the sballoc() of this record */
   1062 		for (np = n; np; np = np->m_next)
   1063 			sbfree(sb, np);
   1064 
   1065 		n0 = n->m_nextpkt;	/* iterate at next prepended address */
   1066 		MFREE(n, np);		/* free prepended address (not data) */
   1067 	}
   1068 	return 0;
   1069 }
   1070 
   1071 
   1072 int
   1073 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
   1074 {
   1075 	struct mbuf	*m, *mlast, *n;
   1076 	int		space;
   1077 
   1078 	KASSERT(solocked(sb->sb_so));
   1079 
   1080 	space = 0;
   1081 	if (control == 0)
   1082 		panic("sbappendcontrol");
   1083 	for (m = control; ; m = m->m_next) {
   1084 		space += m->m_len;
   1085 		MCLAIM(m, sb->sb_mowner);
   1086 		if (m->m_next == 0)
   1087 			break;
   1088 	}
   1089 	n = m;			/* save pointer to last control buffer */
   1090 	for (m = m0; m; m = m->m_next) {
   1091 		MCLAIM(m, sb->sb_mowner);
   1092 		space += m->m_len;
   1093 	}
   1094 	if (space > sbspace(sb))
   1095 		return (0);
   1096 	n->m_next = m0;			/* concatenate data to control */
   1097 
   1098 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
   1099 
   1100 	for (m = control; m->m_next != NULL; m = m->m_next)
   1101 		sballoc(sb, m);
   1102 	sballoc(sb, m);
   1103 	mlast = m;
   1104 	SBLINKRECORD(sb, control);
   1105 
   1106 	sb->sb_mbtail = mlast;
   1107 	SBLASTMBUFCHK(sb, "sbappendcontrol");
   1108 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
   1109 
   1110 	return (1);
   1111 }
   1112 
   1113 /*
   1114  * Compress mbuf chain m into the socket
   1115  * buffer sb following mbuf n.  If n
   1116  * is null, the buffer is presumed empty.
   1117  */
   1118 void
   1119 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
   1120 {
   1121 	int		eor;
   1122 	struct mbuf	*o;
   1123 
   1124 	KASSERT(solocked(sb->sb_so));
   1125 
   1126 	eor = 0;
   1127 	while (m) {
   1128 		eor |= m->m_flags & M_EOR;
   1129 		if (m->m_len == 0 &&
   1130 		    (eor == 0 ||
   1131 		     (((o = m->m_next) || (o = n)) &&
   1132 		      o->m_type == m->m_type))) {
   1133 			if (sb->sb_lastrecord == m)
   1134 				sb->sb_lastrecord = m->m_next;
   1135 			m = m_free(m);
   1136 			continue;
   1137 		}
   1138 		if (n && (n->m_flags & M_EOR) == 0 &&
   1139 		    /* M_TRAILINGSPACE() checks buffer writeability */
   1140 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
   1141 		    m->m_len <= M_TRAILINGSPACE(n) &&
   1142 		    n->m_type == m->m_type) {
   1143 			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
   1144 			    (unsigned)m->m_len);
   1145 			n->m_len += m->m_len;
   1146 			sb->sb_cc += m->m_len;
   1147 			m = m_free(m);
   1148 			continue;
   1149 		}
   1150 		if (n)
   1151 			n->m_next = m;
   1152 		else
   1153 			sb->sb_mb = m;
   1154 		sb->sb_mbtail = m;
   1155 		sballoc(sb, m);
   1156 		n = m;
   1157 		m->m_flags &= ~M_EOR;
   1158 		m = m->m_next;
   1159 		n->m_next = 0;
   1160 	}
   1161 	if (eor) {
   1162 		if (n)
   1163 			n->m_flags |= eor;
   1164 		else
   1165 			printf("semi-panic: sbcompress\n");
   1166 	}
   1167 	SBLASTMBUFCHK(sb, __func__);
   1168 }
   1169 
   1170 /*
   1171  * Free all mbufs in a sockbuf.
   1172  * Check that all resources are reclaimed.
   1173  */
   1174 void
   1175 sbflush(struct sockbuf *sb)
   1176 {
   1177 
   1178 	KASSERT(solocked(sb->sb_so));
   1179 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
   1180 
   1181 	while (sb->sb_mbcnt)
   1182 		sbdrop(sb, (int)sb->sb_cc);
   1183 
   1184 	KASSERT(sb->sb_cc == 0);
   1185 	KASSERT(sb->sb_mb == NULL);
   1186 	KASSERT(sb->sb_mbtail == NULL);
   1187 	KASSERT(sb->sb_lastrecord == NULL);
   1188 }
   1189 
   1190 /*
   1191  * Drop data from (the front of) a sockbuf.
   1192  */
   1193 void
   1194 sbdrop(struct sockbuf *sb, int len)
   1195 {
   1196 	struct mbuf	*m, *mn, *next;
   1197 
   1198 	KASSERT(solocked(sb->sb_so));
   1199 
   1200 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
   1201 	while (len > 0) {
   1202 		if (m == 0) {
   1203 			if (next == 0)
   1204 				panic("sbdrop");
   1205 			m = next;
   1206 			next = m->m_nextpkt;
   1207 			continue;
   1208 		}
   1209 		if (m->m_len > len) {
   1210 			m->m_len -= len;
   1211 			m->m_data += len;
   1212 			sb->sb_cc -= len;
   1213 			break;
   1214 		}
   1215 		len -= m->m_len;
   1216 		sbfree(sb, m);
   1217 		MFREE(m, mn);
   1218 		m = mn;
   1219 	}
   1220 	while (m && m->m_len == 0) {
   1221 		sbfree(sb, m);
   1222 		MFREE(m, mn);
   1223 		m = mn;
   1224 	}
   1225 	if (m) {
   1226 		sb->sb_mb = m;
   1227 		m->m_nextpkt = next;
   1228 	} else
   1229 		sb->sb_mb = next;
   1230 	/*
   1231 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
   1232 	 * makes sure sb_lastrecord is up-to-date if we dropped
   1233 	 * part of the last record.
   1234 	 */
   1235 	m = sb->sb_mb;
   1236 	if (m == NULL) {
   1237 		sb->sb_mbtail = NULL;
   1238 		sb->sb_lastrecord = NULL;
   1239 	} else if (m->m_nextpkt == NULL)
   1240 		sb->sb_lastrecord = m;
   1241 }
   1242 
   1243 /*
   1244  * Drop a record off the front of a sockbuf
   1245  * and move the next record to the front.
   1246  */
   1247 void
   1248 sbdroprecord(struct sockbuf *sb)
   1249 {
   1250 	struct mbuf	*m, *mn;
   1251 
   1252 	KASSERT(solocked(sb->sb_so));
   1253 
   1254 	m = sb->sb_mb;
   1255 	if (m) {
   1256 		sb->sb_mb = m->m_nextpkt;
   1257 		do {
   1258 			sbfree(sb, m);
   1259 			MFREE(m, mn);
   1260 		} while ((m = mn) != NULL);
   1261 	}
   1262 	SB_EMPTY_FIXUP(sb);
   1263 }
   1264 
   1265 /*
   1266  * Create a "control" mbuf containing the specified data
   1267  * with the specified type for presentation on a socket buffer.
   1268  */
   1269 struct mbuf *
   1270 sbcreatecontrol(void *p, int size, int type, int level)
   1271 {
   1272 	struct cmsghdr	*cp;
   1273 	struct mbuf	*m;
   1274 
   1275 	if (CMSG_SPACE(size) > MCLBYTES) {
   1276 		printf("sbcreatecontrol: message too large %d\n", size);
   1277 		return NULL;
   1278 	}
   1279 
   1280 	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
   1281 		return ((struct mbuf *) NULL);
   1282 	if (CMSG_SPACE(size) > MLEN) {
   1283 		MCLGET(m, M_DONTWAIT);
   1284 		if ((m->m_flags & M_EXT) == 0) {
   1285 			m_free(m);
   1286 			return NULL;
   1287 		}
   1288 	}
   1289 	cp = mtod(m, struct cmsghdr *);
   1290 	memcpy(CMSG_DATA(cp), p, size);
   1291 	m->m_len = CMSG_SPACE(size);
   1292 	cp->cmsg_len = CMSG_LEN(size);
   1293 	cp->cmsg_level = level;
   1294 	cp->cmsg_type = type;
   1295 	return (m);
   1296 }
   1297 
   1298 void
   1299 solockretry(struct socket *so, kmutex_t *lock)
   1300 {
   1301 
   1302 	while (lock != so->so_lock) {
   1303 		mutex_exit(lock);
   1304 		lock = so->so_lock;
   1305 		mutex_enter(lock);
   1306 	}
   1307 }
   1308 
   1309 bool
   1310 solocked(struct socket *so)
   1311 {
   1312 
   1313 	return mutex_owned(so->so_lock);
   1314 }
   1315 
   1316 bool
   1317 solocked2(struct socket *so1, struct socket *so2)
   1318 {
   1319 	kmutex_t *lock;
   1320 
   1321 	lock = so1->so_lock;
   1322 	if (lock != so2->so_lock)
   1323 		return false;
   1324 	return mutex_owned(lock);
   1325 }
   1326 
   1327 /*
   1328  * Assign a default lock to a new socket.  For PRU_ATTACH, and done by
   1329  * protocols that do not have special locking requirements.
   1330  */
   1331 void
   1332 sosetlock(struct socket *so)
   1333 {
   1334 	kmutex_t *lock;
   1335 
   1336 	if (so->so_lock == NULL) {
   1337 		lock = softnet_lock;
   1338 		so->so_lock = lock;
   1339 		mutex_obj_hold(lock);
   1340 		mutex_enter(lock);
   1341 	}
   1342 
   1343 	/* In all cases, lock must be held on return from PRU_ATTACH. */
   1344 	KASSERT(solocked(so));
   1345 }
   1346 
   1347 /*
   1348  * Set lock on sockbuf sb; sleep if lock is already held.
   1349  * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
   1350  * Returns error without lock if sleep is interrupted.
   1351  */
   1352 int
   1353 sblock(struct sockbuf *sb, int wf)
   1354 {
   1355 	struct socket *so;
   1356 	kmutex_t *lock;
   1357 	int error;
   1358 
   1359 	KASSERT(solocked(sb->sb_so));
   1360 
   1361 	for (;;) {
   1362 		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
   1363 			sb->sb_flags |= SB_LOCK;
   1364 			return 0;
   1365 		}
   1366 		if (wf != M_WAITOK)
   1367 			return EWOULDBLOCK;
   1368 		so = sb->sb_so;
   1369 		lock = so->so_lock;
   1370 		if ((sb->sb_flags & SB_NOINTR) != 0) {
   1371 			cv_wait(&so->so_cv, lock);
   1372 			error = 0;
   1373 		} else
   1374 			error = cv_wait_sig(&so->so_cv, lock);
   1375 		if (__predict_false(lock != so->so_lock))
   1376 			solockretry(so, lock);
   1377 		if (error != 0)
   1378 			return error;
   1379 	}
   1380 }
   1381 
   1382 void
   1383 sbunlock(struct sockbuf *sb)
   1384 {
   1385 	struct socket *so;
   1386 
   1387 	so = sb->sb_so;
   1388 
   1389 	KASSERT(solocked(so));
   1390 	KASSERT((sb->sb_flags & SB_LOCK) != 0);
   1391 
   1392 	sb->sb_flags &= ~SB_LOCK;
   1393 	cv_broadcast(&so->so_cv);
   1394 }
   1395 
   1396 int
   1397 sowait(struct socket *so, int timo)
   1398 {
   1399 	kmutex_t *lock;
   1400 	int error;
   1401 
   1402 	KASSERT(solocked(so));
   1403 
   1404 	lock = so->so_lock;
   1405 	error = cv_timedwait_sig(&so->so_cv, lock, timo);
   1406 	if (__predict_false(lock != so->so_lock))
   1407 		solockretry(so, lock);
   1408 	return error;
   1409 }
   1410