uipc_socket2.c revision 1.91.2.1 1 /* $NetBSD: uipc_socket2.c,v 1.91.2.1 2008/05/16 02:25:28 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the University nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
58 */
59
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.91.2.1 2008/05/16 02:25:28 yamt Exp $");
62
63 #include "opt_mbuftrace.h"
64 #include "opt_sb_max.h"
65
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/proc.h>
69 #include <sys/file.h>
70 #include <sys/buf.h>
71 #include <sys/malloc.h>
72 #include <sys/mbuf.h>
73 #include <sys/protosw.h>
74 #include <sys/domain.h>
75 #include <sys/poll.h>
76 #include <sys/socket.h>
77 #include <sys/socketvar.h>
78 #include <sys/signalvar.h>
79 #include <sys/kauth.h>
80 #include <sys/pool.h>
81
82 /*
83 * Primitive routines for operating on sockets and socket buffers.
84 *
85 * Locking rules and assumptions:
86 *
87 * o socket::so_lock can change on the fly. The low level routines used
88 * to lock sockets are aware of this. When so_lock is acquired, the
89 * routine locking must check to see if so_lock still points to the
90 * lock that was acquired. If so_lock has changed in the meantime, the
91 * now irellevant lock that was acquired must be dropped and the lock
92 * operation retried. Although not proven here, this is completely safe
93 * on a multiprocessor system, even with relaxed memory ordering, given
94 * the next two rules:
95 *
96 * o In order to mutate so_lock, the lock pointed to by the current value
97 * of so_lock must be held: i.e., the socket must be held locked by the
98 * changing thread. The thread must issue membar_exit() to prevent
99 * memory accesses being reordered, and can set so_lock to the desired
100 * value. If the lock pointed to by the new value of so_lock is not
101 * held by the changing thread, the socket must then be considered
102 * unlocked.
103 *
104 * o If so_lock is mutated, and the previous lock referred to by so_lock
105 * could still be visible to other threads in the system (e.g. via file
106 * descriptor or protocol-internal reference), then the old lock must
107 * remain valid until the socket and/or protocol control block has been
108 * torn down.
109 *
110 * o If a socket has a non-NULL so_head value (i.e. is in the process of
111 * connecting), then locking the socket must also lock the socket pointed
112 * to by so_head: their lock pointers must match.
113 *
114 * o If a socket has connections in progress (so_q, so_q0 not empty) then
115 * locking the socket must also lock the sockets attached to both queues.
116 * Again, their lock pointers must match.
117 *
118 * o Beyond the initial lock assigment in socreate(), assigning locks to
119 * sockets is the responsibility of the individual protocols / protocol
120 * domains.
121 */
122
123 static POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL,
124 IPL_SOFTNET);
125
126 u_long sb_max = SB_MAX; /* maximum socket buffer size */
127 static u_long sb_max_adj; /* adjusted sb_max */
128
129 /*
130 * Procedures to manipulate state flags of socket
131 * and do appropriate wakeups. Normal sequence from the
132 * active (originating) side is that soisconnecting() is
133 * called during processing of connect() call,
134 * resulting in an eventual call to soisconnected() if/when the
135 * connection is established. When the connection is torn down
136 * soisdisconnecting() is called during processing of disconnect() call,
137 * and soisdisconnected() is called when the connection to the peer
138 * is totally severed. The semantics of these routines are such that
139 * connectionless protocols can call soisconnected() and soisdisconnected()
140 * only, bypassing the in-progress calls when setting up a ``connection''
141 * takes no time.
142 *
143 * From the passive side, a socket is created with
144 * two queues of sockets: so_q0 for connections in progress
145 * and so_q for connections already made and awaiting user acceptance.
146 * As a protocol is preparing incoming connections, it creates a socket
147 * structure queued on so_q0 by calling sonewconn(). When the connection
148 * is established, soisconnected() is called, and transfers the
149 * socket structure to so_q, making it available to accept().
150 *
151 * If a socket is closed with sockets on either
152 * so_q0 or so_q, these sockets are dropped.
153 *
154 * If higher level protocols are implemented in
155 * the kernel, the wakeups done here will sometimes
156 * cause software-interrupt process scheduling.
157 */
158
159 void
160 soisconnecting(struct socket *so)
161 {
162
163 KASSERT(solocked(so));
164
165 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
166 so->so_state |= SS_ISCONNECTING;
167 }
168
169 void
170 soisconnected(struct socket *so)
171 {
172 struct socket *head;
173
174 head = so->so_head;
175
176 KASSERT(solocked(so));
177 KASSERT(head == NULL || solocked2(so, head));
178
179 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
180 so->so_state |= SS_ISCONNECTED;
181 if (head && soqremque(so, 0)) {
182 soqinsque(head, so, 1);
183 sorwakeup(head);
184 cv_broadcast(&head->so_cv);
185 } else {
186 cv_broadcast(&so->so_cv);
187 sorwakeup(so);
188 sowwakeup(so);
189 }
190 }
191
192 void
193 soisdisconnecting(struct socket *so)
194 {
195
196 KASSERT(solocked(so));
197
198 so->so_state &= ~SS_ISCONNECTING;
199 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
200 cv_broadcast(&so->so_cv);
201 sowwakeup(so);
202 sorwakeup(so);
203 }
204
205 void
206 soisdisconnected(struct socket *so)
207 {
208
209 KASSERT(solocked(so));
210
211 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
212 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
213 cv_broadcast(&so->so_cv);
214 sowwakeup(so);
215 sorwakeup(so);
216 }
217
218 /*
219 * When an attempt at a new connection is noted on a socket
220 * which accepts connections, sonewconn is called. If the
221 * connection is possible (subject to space constraints, etc.)
222 * then we allocate a new structure, propoerly linked into the
223 * data structure of the original socket, and return this.
224 * Connstatus may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
225 */
226 struct socket *
227 sonewconn(struct socket *head, int connstatus)
228 {
229 struct socket *so;
230 int soqueue, error;
231
232 KASSERT(solocked(head));
233
234 soqueue = connstatus ? 1 : 0;
235 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
236 return ((struct socket *)0);
237 so = soget(false);
238 if (so == NULL)
239 return (NULL);
240 mutex_obj_hold(head->so_lock);
241 so->so_lock = head->so_lock;
242 so->so_type = head->so_type;
243 so->so_options = head->so_options &~ SO_ACCEPTCONN;
244 so->so_linger = head->so_linger;
245 so->so_state = head->so_state | SS_NOFDREF;
246 so->so_nbio = head->so_nbio;
247 so->so_proto = head->so_proto;
248 so->so_timeo = head->so_timeo;
249 so->so_pgid = head->so_pgid;
250 so->so_send = head->so_send;
251 so->so_receive = head->so_receive;
252 so->so_uidinfo = head->so_uidinfo;
253 #ifdef MBUFTRACE
254 so->so_mowner = head->so_mowner;
255 so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
256 so->so_snd.sb_mowner = head->so_snd.sb_mowner;
257 #endif
258 (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
259 so->so_snd.sb_lowat = head->so_snd.sb_lowat;
260 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
261 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
262 so->so_snd.sb_timeo = head->so_snd.sb_timeo;
263 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
264 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
265 soqinsque(head, so, soqueue);
266 error = (*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL,
267 NULL, NULL);
268 KASSERT(solocked(so));
269 if (error != 0) {
270 (void) soqremque(so, soqueue);
271 soput(so);
272 return (NULL);
273 }
274 if (connstatus) {
275 sorwakeup(head);
276 cv_broadcast(&head->so_cv);
277 so->so_state |= connstatus;
278 }
279 return (so);
280 }
281
282 struct socket *
283 soget(bool waitok)
284 {
285 struct socket *so;
286
287 so = pool_get(&socket_pool, (waitok ? PR_WAITOK : PR_NOWAIT));
288 if (__predict_false(so == NULL))
289 return (NULL);
290 memset(so, 0, sizeof(*so));
291 TAILQ_INIT(&so->so_q0);
292 TAILQ_INIT(&so->so_q);
293 cv_init(&so->so_cv, "socket");
294 cv_init(&so->so_rcv.sb_cv, "netio");
295 cv_init(&so->so_snd.sb_cv, "netio");
296 selinit(&so->so_rcv.sb_sel);
297 selinit(&so->so_snd.sb_sel);
298 so->so_rcv.sb_so = so;
299 so->so_snd.sb_so = so;
300 return so;
301 }
302
303 void
304 soput(struct socket *so)
305 {
306
307 KASSERT(!cv_has_waiters(&so->so_cv));
308 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
309 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
310 seldestroy(&so->so_rcv.sb_sel);
311 seldestroy(&so->so_snd.sb_sel);
312 mutex_obj_free(so->so_lock);
313 cv_destroy(&so->so_cv);
314 cv_destroy(&so->so_rcv.sb_cv);
315 cv_destroy(&so->so_snd.sb_cv);
316 pool_put(&socket_pool, so);
317 }
318
319 void
320 soqinsque(struct socket *head, struct socket *so, int q)
321 {
322
323 KASSERT(solocked2(head, so));
324
325 #ifdef DIAGNOSTIC
326 if (so->so_onq != NULL)
327 panic("soqinsque");
328 #endif
329
330 so->so_head = head;
331 if (q == 0) {
332 head->so_q0len++;
333 so->so_onq = &head->so_q0;
334 } else {
335 head->so_qlen++;
336 so->so_onq = &head->so_q;
337 }
338 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
339 }
340
341 int
342 soqremque(struct socket *so, int q)
343 {
344 struct socket *head;
345
346 head = so->so_head;
347
348 KASSERT(solocked(so));
349 if (q == 0) {
350 if (so->so_onq != &head->so_q0)
351 return (0);
352 head->so_q0len--;
353 } else {
354 if (so->so_onq != &head->so_q)
355 return (0);
356 head->so_qlen--;
357 }
358 KASSERT(solocked2(so, head));
359 TAILQ_REMOVE(so->so_onq, so, so_qe);
360 so->so_onq = NULL;
361 so->so_head = NULL;
362 return (1);
363 }
364
365 /*
366 * Socantsendmore indicates that no more data will be sent on the
367 * socket; it would normally be applied to a socket when the user
368 * informs the system that no more data is to be sent, by the protocol
369 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
370 * will be received, and will normally be applied to the socket by a
371 * protocol when it detects that the peer will send no more data.
372 * Data queued for reading in the socket may yet be read.
373 */
374
375 void
376 socantsendmore(struct socket *so)
377 {
378
379 KASSERT(solocked(so));
380
381 so->so_state |= SS_CANTSENDMORE;
382 sowwakeup(so);
383 }
384
385 void
386 socantrcvmore(struct socket *so)
387 {
388
389 KASSERT(solocked(so));
390
391 so->so_state |= SS_CANTRCVMORE;
392 sorwakeup(so);
393 }
394
395 /*
396 * Wait for data to arrive at/drain from a socket buffer.
397 */
398 int
399 sbwait(struct sockbuf *sb)
400 {
401 struct socket *so;
402 kmutex_t *lock;
403 int error;
404
405 so = sb->sb_so;
406
407 KASSERT(solocked(so));
408
409 sb->sb_flags |= SB_NOTIFY;
410 lock = so->so_lock;
411 if ((sb->sb_flags & SB_NOINTR) != 0)
412 error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
413 else
414 error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
415 if (__predict_false(lock != so->so_lock))
416 solockretry(so, lock);
417 return error;
418 }
419
420 /*
421 * Wakeup processes waiting on a socket buffer.
422 * Do asynchronous notification via SIGIO
423 * if the socket buffer has the SB_ASYNC flag set.
424 */
425 void
426 sowakeup(struct socket *so, struct sockbuf *sb, int code)
427 {
428 int band;
429
430 KASSERT(solocked(so));
431 KASSERT(sb->sb_so == so);
432
433 if (code == POLL_IN)
434 band = POLLIN|POLLRDNORM;
435 else
436 band = POLLOUT|POLLWRNORM;
437 sb->sb_flags &= ~SB_NOTIFY;
438 selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
439 cv_broadcast(&sb->sb_cv);
440 if (sb->sb_flags & SB_ASYNC)
441 fownsignal(so->so_pgid, SIGIO, code, band, so);
442 if (sb->sb_flags & SB_UPCALL)
443 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
444 }
445
446 /*
447 * Socket buffer (struct sockbuf) utility routines.
448 *
449 * Each socket contains two socket buffers: one for sending data and
450 * one for receiving data. Each buffer contains a queue of mbufs,
451 * information about the number of mbufs and amount of data in the
452 * queue, and other fields allowing poll() statements and notification
453 * on data availability to be implemented.
454 *
455 * Data stored in a socket buffer is maintained as a list of records.
456 * Each record is a list of mbufs chained together with the m_next
457 * field. Records are chained together with the m_nextpkt field. The upper
458 * level routine soreceive() expects the following conventions to be
459 * observed when placing information in the receive buffer:
460 *
461 * 1. If the protocol requires each message be preceded by the sender's
462 * name, then a record containing that name must be present before
463 * any associated data (mbuf's must be of type MT_SONAME).
464 * 2. If the protocol supports the exchange of ``access rights'' (really
465 * just additional data associated with the message), and there are
466 * ``rights'' to be received, then a record containing this data
467 * should be present (mbuf's must be of type MT_CONTROL).
468 * 3. If a name or rights record exists, then it must be followed by
469 * a data record, perhaps of zero length.
470 *
471 * Before using a new socket structure it is first necessary to reserve
472 * buffer space to the socket, by calling sbreserve(). This should commit
473 * some of the available buffer space in the system buffer pool for the
474 * socket (currently, it does nothing but enforce limits). The space
475 * should be released by calling sbrelease() when the socket is destroyed.
476 */
477
478 int
479 sb_max_set(u_long new_sbmax)
480 {
481 int s;
482
483 if (new_sbmax < (16 * 1024))
484 return (EINVAL);
485
486 s = splsoftnet();
487 sb_max = new_sbmax;
488 sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
489 splx(s);
490
491 return (0);
492 }
493
494 int
495 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
496 {
497
498 KASSERT(so->so_lock == NULL || solocked(so));
499
500 /*
501 * there's at least one application (a configure script of screen)
502 * which expects a fifo is writable even if it has "some" bytes
503 * in its buffer.
504 * so we want to make sure (hiwat - lowat) >= (some bytes).
505 *
506 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
507 * we expect it's large enough for such applications.
508 */
509 u_long lowat = MAX(sock_loan_thresh, MCLBYTES);
510 u_long hiwat = lowat + PIPE_BUF;
511
512 if (sndcc < hiwat)
513 sndcc = hiwat;
514 if (sbreserve(&so->so_snd, sndcc, so) == 0)
515 goto bad;
516 if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
517 goto bad2;
518 if (so->so_rcv.sb_lowat == 0)
519 so->so_rcv.sb_lowat = 1;
520 if (so->so_snd.sb_lowat == 0)
521 so->so_snd.sb_lowat = lowat;
522 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
523 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
524 return (0);
525 bad2:
526 sbrelease(&so->so_snd, so);
527 bad:
528 return (ENOBUFS);
529 }
530
531 /*
532 * Allot mbufs to a sockbuf.
533 * Attempt to scale mbmax so that mbcnt doesn't become limiting
534 * if buffering efficiency is near the normal case.
535 */
536 int
537 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
538 {
539 struct lwp *l = curlwp; /* XXX */
540 rlim_t maxcc;
541 struct uidinfo *uidinfo;
542
543 KASSERT(so->so_lock == NULL || solocked(so));
544 KASSERT(sb->sb_so == so);
545 KASSERT(sb_max_adj != 0);
546
547 if (cc == 0 || cc > sb_max_adj)
548 return (0);
549 if (so) {
550 if (kauth_cred_geteuid(l->l_cred) == so->so_uidinfo->ui_uid)
551 maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
552 else
553 maxcc = RLIM_INFINITY;
554 uidinfo = so->so_uidinfo;
555 } else {
556 uidinfo = uid_find(0); /* XXX: nothing better */
557 maxcc = RLIM_INFINITY;
558 }
559 if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
560 return 0;
561 sb->sb_mbmax = min(cc * 2, sb_max);
562 if (sb->sb_lowat > sb->sb_hiwat)
563 sb->sb_lowat = sb->sb_hiwat;
564 return (1);
565 }
566
567 /*
568 * Free mbufs held by a socket, and reserved mbuf space. We do not assert
569 * that the socket is held locked here: see sorflush().
570 */
571 void
572 sbrelease(struct sockbuf *sb, struct socket *so)
573 {
574
575 KASSERT(sb->sb_so == so);
576
577 sbflush(sb);
578 (void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
579 sb->sb_mbmax = 0;
580 }
581
582 /*
583 * Routines to add and remove
584 * data from an mbuf queue.
585 *
586 * The routines sbappend() or sbappendrecord() are normally called to
587 * append new mbufs to a socket buffer, after checking that adequate
588 * space is available, comparing the function sbspace() with the amount
589 * of data to be added. sbappendrecord() differs from sbappend() in
590 * that data supplied is treated as the beginning of a new record.
591 * To place a sender's address, optional access rights, and data in a
592 * socket receive buffer, sbappendaddr() should be used. To place
593 * access rights and data in a socket receive buffer, sbappendrights()
594 * should be used. In either case, the new data begins a new record.
595 * Note that unlike sbappend() and sbappendrecord(), these routines check
596 * for the caller that there will be enough space to store the data.
597 * Each fails if there is not enough space, or if it cannot find mbufs
598 * to store additional information in.
599 *
600 * Reliable protocols may use the socket send buffer to hold data
601 * awaiting acknowledgement. Data is normally copied from a socket
602 * send buffer in a protocol with m_copy for output to a peer,
603 * and then removing the data from the socket buffer with sbdrop()
604 * or sbdroprecord() when the data is acknowledged by the peer.
605 */
606
607 #ifdef SOCKBUF_DEBUG
608 void
609 sblastrecordchk(struct sockbuf *sb, const char *where)
610 {
611 struct mbuf *m = sb->sb_mb;
612
613 KASSERT(solocked(sb->sb_so));
614
615 while (m && m->m_nextpkt)
616 m = m->m_nextpkt;
617
618 if (m != sb->sb_lastrecord) {
619 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
620 sb->sb_mb, sb->sb_lastrecord, m);
621 printf("packet chain:\n");
622 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
623 printf("\t%p\n", m);
624 panic("sblastrecordchk from %s", where);
625 }
626 }
627
628 void
629 sblastmbufchk(struct sockbuf *sb, const char *where)
630 {
631 struct mbuf *m = sb->sb_mb;
632 struct mbuf *n;
633
634 KASSERT(solocked(sb->sb_so));
635
636 while (m && m->m_nextpkt)
637 m = m->m_nextpkt;
638
639 while (m && m->m_next)
640 m = m->m_next;
641
642 if (m != sb->sb_mbtail) {
643 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
644 sb->sb_mb, sb->sb_mbtail, m);
645 printf("packet tree:\n");
646 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
647 printf("\t");
648 for (n = m; n != NULL; n = n->m_next)
649 printf("%p ", n);
650 printf("\n");
651 }
652 panic("sblastmbufchk from %s", where);
653 }
654 }
655 #endif /* SOCKBUF_DEBUG */
656
657 /*
658 * Link a chain of records onto a socket buffer
659 */
660 #define SBLINKRECORDCHAIN(sb, m0, mlast) \
661 do { \
662 if ((sb)->sb_lastrecord != NULL) \
663 (sb)->sb_lastrecord->m_nextpkt = (m0); \
664 else \
665 (sb)->sb_mb = (m0); \
666 (sb)->sb_lastrecord = (mlast); \
667 } while (/*CONSTCOND*/0)
668
669
670 #define SBLINKRECORD(sb, m0) \
671 SBLINKRECORDCHAIN(sb, m0, m0)
672
673 /*
674 * Append mbuf chain m to the last record in the
675 * socket buffer sb. The additional space associated
676 * the mbuf chain is recorded in sb. Empty mbufs are
677 * discarded and mbufs are compacted where possible.
678 */
679 void
680 sbappend(struct sockbuf *sb, struct mbuf *m)
681 {
682 struct mbuf *n;
683
684 KASSERT(solocked(sb->sb_so));
685
686 if (m == 0)
687 return;
688
689 #ifdef MBUFTRACE
690 m_claimm(m, sb->sb_mowner);
691 #endif
692
693 SBLASTRECORDCHK(sb, "sbappend 1");
694
695 if ((n = sb->sb_lastrecord) != NULL) {
696 /*
697 * XXX Would like to simply use sb_mbtail here, but
698 * XXX I need to verify that I won't miss an EOR that
699 * XXX way.
700 */
701 do {
702 if (n->m_flags & M_EOR) {
703 sbappendrecord(sb, m); /* XXXXXX!!!! */
704 return;
705 }
706 } while (n->m_next && (n = n->m_next));
707 } else {
708 /*
709 * If this is the first record in the socket buffer, it's
710 * also the last record.
711 */
712 sb->sb_lastrecord = m;
713 }
714 sbcompress(sb, m, n);
715 SBLASTRECORDCHK(sb, "sbappend 2");
716 }
717
718 /*
719 * This version of sbappend() should only be used when the caller
720 * absolutely knows that there will never be more than one record
721 * in the socket buffer, that is, a stream protocol (such as TCP).
722 */
723 void
724 sbappendstream(struct sockbuf *sb, struct mbuf *m)
725 {
726
727 KASSERT(solocked(sb->sb_so));
728 KDASSERT(m->m_nextpkt == NULL);
729 KASSERT(sb->sb_mb == sb->sb_lastrecord);
730
731 SBLASTMBUFCHK(sb, __func__);
732
733 #ifdef MBUFTRACE
734 m_claimm(m, sb->sb_mowner);
735 #endif
736
737 sbcompress(sb, m, sb->sb_mbtail);
738
739 sb->sb_lastrecord = sb->sb_mb;
740 SBLASTRECORDCHK(sb, __func__);
741 }
742
743 #ifdef SOCKBUF_DEBUG
744 void
745 sbcheck(struct sockbuf *sb)
746 {
747 struct mbuf *m, *m2;
748 u_long len, mbcnt;
749
750 KASSERT(solocked(sb->sb_so));
751
752 len = 0;
753 mbcnt = 0;
754 for (m = sb->sb_mb; m; m = m->m_nextpkt) {
755 for (m2 = m; m2 != NULL; m2 = m2->m_next) {
756 len += m2->m_len;
757 mbcnt += MSIZE;
758 if (m2->m_flags & M_EXT)
759 mbcnt += m2->m_ext.ext_size;
760 if (m2->m_nextpkt != NULL)
761 panic("sbcheck nextpkt");
762 }
763 }
764 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
765 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
766 mbcnt, sb->sb_mbcnt);
767 panic("sbcheck");
768 }
769 }
770 #endif
771
772 /*
773 * As above, except the mbuf chain
774 * begins a new record.
775 */
776 void
777 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
778 {
779 struct mbuf *m;
780
781 KASSERT(solocked(sb->sb_so));
782
783 if (m0 == 0)
784 return;
785
786 #ifdef MBUFTRACE
787 m_claimm(m0, sb->sb_mowner);
788 #endif
789 /*
790 * Put the first mbuf on the queue.
791 * Note this permits zero length records.
792 */
793 sballoc(sb, m0);
794 SBLASTRECORDCHK(sb, "sbappendrecord 1");
795 SBLINKRECORD(sb, m0);
796 m = m0->m_next;
797 m0->m_next = 0;
798 if (m && (m0->m_flags & M_EOR)) {
799 m0->m_flags &= ~M_EOR;
800 m->m_flags |= M_EOR;
801 }
802 sbcompress(sb, m, m0);
803 SBLASTRECORDCHK(sb, "sbappendrecord 2");
804 }
805
806 /*
807 * As above except that OOB data
808 * is inserted at the beginning of the sockbuf,
809 * but after any other OOB data.
810 */
811 void
812 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
813 {
814 struct mbuf *m, **mp;
815
816 KASSERT(solocked(sb->sb_so));
817
818 if (m0 == 0)
819 return;
820
821 SBLASTRECORDCHK(sb, "sbinsertoob 1");
822
823 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
824 again:
825 switch (m->m_type) {
826
827 case MT_OOBDATA:
828 continue; /* WANT next train */
829
830 case MT_CONTROL:
831 if ((m = m->m_next) != NULL)
832 goto again; /* inspect THIS train further */
833 }
834 break;
835 }
836 /*
837 * Put the first mbuf on the queue.
838 * Note this permits zero length records.
839 */
840 sballoc(sb, m0);
841 m0->m_nextpkt = *mp;
842 if (*mp == NULL) {
843 /* m0 is actually the new tail */
844 sb->sb_lastrecord = m0;
845 }
846 *mp = m0;
847 m = m0->m_next;
848 m0->m_next = 0;
849 if (m && (m0->m_flags & M_EOR)) {
850 m0->m_flags &= ~M_EOR;
851 m->m_flags |= M_EOR;
852 }
853 sbcompress(sb, m, m0);
854 SBLASTRECORDCHK(sb, "sbinsertoob 2");
855 }
856
857 /*
858 * Append address and data, and optionally, control (ancillary) data
859 * to the receive queue of a socket. If present,
860 * m0 must include a packet header with total length.
861 * Returns 0 if no space in sockbuf or insufficient mbufs.
862 */
863 int
864 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
865 struct mbuf *control)
866 {
867 struct mbuf *m, *n, *nlast;
868 int space, len;
869
870 KASSERT(solocked(sb->sb_so));
871
872 space = asa->sa_len;
873
874 if (m0 != NULL) {
875 if ((m0->m_flags & M_PKTHDR) == 0)
876 panic("sbappendaddr");
877 space += m0->m_pkthdr.len;
878 #ifdef MBUFTRACE
879 m_claimm(m0, sb->sb_mowner);
880 #endif
881 }
882 for (n = control; n; n = n->m_next) {
883 space += n->m_len;
884 MCLAIM(n, sb->sb_mowner);
885 if (n->m_next == 0) /* keep pointer to last control buf */
886 break;
887 }
888 if (space > sbspace(sb))
889 return (0);
890 MGET(m, M_DONTWAIT, MT_SONAME);
891 if (m == 0)
892 return (0);
893 MCLAIM(m, sb->sb_mowner);
894 /*
895 * XXX avoid 'comparison always true' warning which isn't easily
896 * avoided.
897 */
898 len = asa->sa_len;
899 if (len > MLEN) {
900 MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
901 if ((m->m_flags & M_EXT) == 0) {
902 m_free(m);
903 return (0);
904 }
905 }
906 m->m_len = asa->sa_len;
907 memcpy(mtod(m, void *), asa, asa->sa_len);
908 if (n)
909 n->m_next = m0; /* concatenate data to control */
910 else
911 control = m0;
912 m->m_next = control;
913
914 SBLASTRECORDCHK(sb, "sbappendaddr 1");
915
916 for (n = m; n->m_next != NULL; n = n->m_next)
917 sballoc(sb, n);
918 sballoc(sb, n);
919 nlast = n;
920 SBLINKRECORD(sb, m);
921
922 sb->sb_mbtail = nlast;
923 SBLASTMBUFCHK(sb, "sbappendaddr");
924 SBLASTRECORDCHK(sb, "sbappendaddr 2");
925
926 return (1);
927 }
928
929 /*
930 * Helper for sbappendchainaddr: prepend a struct sockaddr* to
931 * an mbuf chain.
932 */
933 static inline struct mbuf *
934 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
935 const struct sockaddr *asa)
936 {
937 struct mbuf *m;
938 const int salen = asa->sa_len;
939
940 KASSERT(solocked(sb->sb_so));
941
942 /* only the first in each chain need be a pkthdr */
943 MGETHDR(m, M_DONTWAIT, MT_SONAME);
944 if (m == 0)
945 return (0);
946 MCLAIM(m, sb->sb_mowner);
947 #ifdef notyet
948 if (salen > MHLEN) {
949 MEXTMALLOC(m, salen, M_NOWAIT);
950 if ((m->m_flags & M_EXT) == 0) {
951 m_free(m);
952 return (0);
953 }
954 }
955 #else
956 KASSERT(salen <= MHLEN);
957 #endif
958 m->m_len = salen;
959 memcpy(mtod(m, void *), asa, salen);
960 m->m_next = m0;
961 m->m_pkthdr.len = salen + m0->m_pkthdr.len;
962
963 return m;
964 }
965
966 int
967 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
968 struct mbuf *m0, int sbprio)
969 {
970 int space;
971 struct mbuf *m, *n, *n0, *nlast;
972 int error;
973
974 KASSERT(solocked(sb->sb_so));
975
976 /*
977 * XXX sbprio reserved for encoding priority of this* request:
978 * SB_PRIO_NONE --> honour normal sb limits
979 * SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
980 * take whole chain. Intended for large requests
981 * that should be delivered atomically (all, or none).
982 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
983 * over normal socket limits, for messages indicating
984 * buffer overflow in earlier normal/lower-priority messages
985 * SB_PRIO_BESTEFFORT --> ignore limits entirely.
986 * Intended for kernel-generated messages only.
987 * Up to generator to avoid total mbuf resource exhaustion.
988 */
989 (void)sbprio;
990
991 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
992 panic("sbappendaddrchain");
993
994 space = sbspace(sb);
995
996 #ifdef notyet
997 /*
998 * Enforce SB_PRIO_* limits as described above.
999 */
1000 #endif
1001
1002 n0 = NULL;
1003 nlast = NULL;
1004 for (m = m0; m; m = m->m_nextpkt) {
1005 struct mbuf *np;
1006
1007 #ifdef MBUFTRACE
1008 m_claimm(m, sb->sb_mowner);
1009 #endif
1010
1011 /* Prepend sockaddr to this record (m) of input chain m0 */
1012 n = m_prepend_sockaddr(sb, m, asa);
1013 if (n == NULL) {
1014 error = ENOBUFS;
1015 goto bad;
1016 }
1017
1018 /* Append record (asa+m) to end of new chain n0 */
1019 if (n0 == NULL) {
1020 n0 = n;
1021 } else {
1022 nlast->m_nextpkt = n;
1023 }
1024 /* Keep track of last record on new chain */
1025 nlast = n;
1026
1027 for (np = n; np; np = np->m_next)
1028 sballoc(sb, np);
1029 }
1030
1031 SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1032
1033 /* Drop the entire chain of (asa+m) records onto the socket */
1034 SBLINKRECORDCHAIN(sb, n0, nlast);
1035
1036 SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1037
1038 for (m = nlast; m->m_next; m = m->m_next)
1039 ;
1040 sb->sb_mbtail = m;
1041 SBLASTMBUFCHK(sb, "sbappendaddrchain");
1042
1043 return (1);
1044
1045 bad:
1046 /*
1047 * On error, free the prepended addreseses. For consistency
1048 * with sbappendaddr(), leave it to our caller to free
1049 * the input record chain passed to us as m0.
1050 */
1051 while ((n = n0) != NULL) {
1052 struct mbuf *np;
1053
1054 /* Undo the sballoc() of this record */
1055 for (np = n; np; np = np->m_next)
1056 sbfree(sb, np);
1057
1058 n0 = n->m_nextpkt; /* iterate at next prepended address */
1059 MFREE(n, np); /* free prepended address (not data) */
1060 }
1061 return 0;
1062 }
1063
1064
1065 int
1066 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1067 {
1068 struct mbuf *m, *mlast, *n;
1069 int space;
1070
1071 KASSERT(solocked(sb->sb_so));
1072
1073 space = 0;
1074 if (control == 0)
1075 panic("sbappendcontrol");
1076 for (m = control; ; m = m->m_next) {
1077 space += m->m_len;
1078 MCLAIM(m, sb->sb_mowner);
1079 if (m->m_next == 0)
1080 break;
1081 }
1082 n = m; /* save pointer to last control buffer */
1083 for (m = m0; m; m = m->m_next) {
1084 MCLAIM(m, sb->sb_mowner);
1085 space += m->m_len;
1086 }
1087 if (space > sbspace(sb))
1088 return (0);
1089 n->m_next = m0; /* concatenate data to control */
1090
1091 SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1092
1093 for (m = control; m->m_next != NULL; m = m->m_next)
1094 sballoc(sb, m);
1095 sballoc(sb, m);
1096 mlast = m;
1097 SBLINKRECORD(sb, control);
1098
1099 sb->sb_mbtail = mlast;
1100 SBLASTMBUFCHK(sb, "sbappendcontrol");
1101 SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1102
1103 return (1);
1104 }
1105
1106 /*
1107 * Compress mbuf chain m into the socket
1108 * buffer sb following mbuf n. If n
1109 * is null, the buffer is presumed empty.
1110 */
1111 void
1112 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1113 {
1114 int eor;
1115 struct mbuf *o;
1116
1117 KASSERT(solocked(sb->sb_so));
1118
1119 eor = 0;
1120 while (m) {
1121 eor |= m->m_flags & M_EOR;
1122 if (m->m_len == 0 &&
1123 (eor == 0 ||
1124 (((o = m->m_next) || (o = n)) &&
1125 o->m_type == m->m_type))) {
1126 if (sb->sb_lastrecord == m)
1127 sb->sb_lastrecord = m->m_next;
1128 m = m_free(m);
1129 continue;
1130 }
1131 if (n && (n->m_flags & M_EOR) == 0 &&
1132 /* M_TRAILINGSPACE() checks buffer writeability */
1133 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1134 m->m_len <= M_TRAILINGSPACE(n) &&
1135 n->m_type == m->m_type) {
1136 memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1137 (unsigned)m->m_len);
1138 n->m_len += m->m_len;
1139 sb->sb_cc += m->m_len;
1140 m = m_free(m);
1141 continue;
1142 }
1143 if (n)
1144 n->m_next = m;
1145 else
1146 sb->sb_mb = m;
1147 sb->sb_mbtail = m;
1148 sballoc(sb, m);
1149 n = m;
1150 m->m_flags &= ~M_EOR;
1151 m = m->m_next;
1152 n->m_next = 0;
1153 }
1154 if (eor) {
1155 if (n)
1156 n->m_flags |= eor;
1157 else
1158 printf("semi-panic: sbcompress\n");
1159 }
1160 SBLASTMBUFCHK(sb, __func__);
1161 }
1162
1163 /*
1164 * Free all mbufs in a sockbuf.
1165 * Check that all resources are reclaimed.
1166 */
1167 void
1168 sbflush(struct sockbuf *sb)
1169 {
1170
1171 KASSERT(solocked(sb->sb_so));
1172 KASSERT((sb->sb_flags & SB_LOCK) == 0);
1173
1174 while (sb->sb_mbcnt)
1175 sbdrop(sb, (int)sb->sb_cc);
1176
1177 KASSERT(sb->sb_cc == 0);
1178 KASSERT(sb->sb_mb == NULL);
1179 KASSERT(sb->sb_mbtail == NULL);
1180 KASSERT(sb->sb_lastrecord == NULL);
1181 }
1182
1183 /*
1184 * Drop data from (the front of) a sockbuf.
1185 */
1186 void
1187 sbdrop(struct sockbuf *sb, int len)
1188 {
1189 struct mbuf *m, *mn, *next;
1190
1191 KASSERT(solocked(sb->sb_so));
1192
1193 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1194 while (len > 0) {
1195 if (m == 0) {
1196 if (next == 0)
1197 panic("sbdrop");
1198 m = next;
1199 next = m->m_nextpkt;
1200 continue;
1201 }
1202 if (m->m_len > len) {
1203 m->m_len -= len;
1204 m->m_data += len;
1205 sb->sb_cc -= len;
1206 break;
1207 }
1208 len -= m->m_len;
1209 sbfree(sb, m);
1210 MFREE(m, mn);
1211 m = mn;
1212 }
1213 while (m && m->m_len == 0) {
1214 sbfree(sb, m);
1215 MFREE(m, mn);
1216 m = mn;
1217 }
1218 if (m) {
1219 sb->sb_mb = m;
1220 m->m_nextpkt = next;
1221 } else
1222 sb->sb_mb = next;
1223 /*
1224 * First part is an inline SB_EMPTY_FIXUP(). Second part
1225 * makes sure sb_lastrecord is up-to-date if we dropped
1226 * part of the last record.
1227 */
1228 m = sb->sb_mb;
1229 if (m == NULL) {
1230 sb->sb_mbtail = NULL;
1231 sb->sb_lastrecord = NULL;
1232 } else if (m->m_nextpkt == NULL)
1233 sb->sb_lastrecord = m;
1234 }
1235
1236 /*
1237 * Drop a record off the front of a sockbuf
1238 * and move the next record to the front.
1239 */
1240 void
1241 sbdroprecord(struct sockbuf *sb)
1242 {
1243 struct mbuf *m, *mn;
1244
1245 KASSERT(solocked(sb->sb_so));
1246
1247 m = sb->sb_mb;
1248 if (m) {
1249 sb->sb_mb = m->m_nextpkt;
1250 do {
1251 sbfree(sb, m);
1252 MFREE(m, mn);
1253 } while ((m = mn) != NULL);
1254 }
1255 SB_EMPTY_FIXUP(sb);
1256 }
1257
1258 /*
1259 * Create a "control" mbuf containing the specified data
1260 * with the specified type for presentation on a socket buffer.
1261 */
1262 struct mbuf *
1263 sbcreatecontrol(void *p, int size, int type, int level)
1264 {
1265 struct cmsghdr *cp;
1266 struct mbuf *m;
1267
1268 if (CMSG_SPACE(size) > MCLBYTES) {
1269 printf("sbcreatecontrol: message too large %d\n", size);
1270 return NULL;
1271 }
1272
1273 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
1274 return ((struct mbuf *) NULL);
1275 if (CMSG_SPACE(size) > MLEN) {
1276 MCLGET(m, M_DONTWAIT);
1277 if ((m->m_flags & M_EXT) == 0) {
1278 m_free(m);
1279 return NULL;
1280 }
1281 }
1282 cp = mtod(m, struct cmsghdr *);
1283 memcpy(CMSG_DATA(cp), p, size);
1284 m->m_len = CMSG_SPACE(size);
1285 cp->cmsg_len = CMSG_LEN(size);
1286 cp->cmsg_level = level;
1287 cp->cmsg_type = type;
1288 return (m);
1289 }
1290
1291 void
1292 solockretry(struct socket *so, kmutex_t *lock)
1293 {
1294
1295 while (lock != so->so_lock) {
1296 mutex_exit(lock);
1297 lock = so->so_lock;
1298 mutex_enter(lock);
1299 }
1300 }
1301
1302 bool
1303 solocked(struct socket *so)
1304 {
1305
1306 return mutex_owned(so->so_lock);
1307 }
1308
1309 bool
1310 solocked2(struct socket *so1, struct socket *so2)
1311 {
1312 kmutex_t *lock;
1313
1314 lock = so1->so_lock;
1315 if (lock != so2->so_lock)
1316 return false;
1317 return mutex_owned(lock);
1318 }
1319
1320 /*
1321 * Assign a default lock to a new socket. For PRU_ATTACH, and done by
1322 * protocols that do not have special locking requirements.
1323 */
1324 void
1325 sosetlock(struct socket *so)
1326 {
1327 kmutex_t *lock;
1328
1329 if (so->so_lock == NULL) {
1330 lock = softnet_lock;
1331 so->so_lock = lock;
1332 mutex_obj_hold(lock);
1333 mutex_enter(lock);
1334 }
1335
1336 /* In all cases, lock must be held on return from PRU_ATTACH. */
1337 KASSERT(solocked(so));
1338 }
1339
1340 /*
1341 * Set lock on sockbuf sb; sleep if lock is already held.
1342 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1343 * Returns error without lock if sleep is interrupted.
1344 */
1345 int
1346 sblock(struct sockbuf *sb, int wf)
1347 {
1348 struct socket *so;
1349 kmutex_t *lock;
1350 int error;
1351
1352 KASSERT(solocked(sb->sb_so));
1353
1354 for (;;) {
1355 if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1356 sb->sb_flags |= SB_LOCK;
1357 return 0;
1358 }
1359 if (wf != M_WAITOK)
1360 return EWOULDBLOCK;
1361 so = sb->sb_so;
1362 lock = so->so_lock;
1363 if ((sb->sb_flags & SB_NOINTR) != 0) {
1364 cv_wait(&so->so_cv, lock);
1365 error = 0;
1366 } else
1367 error = cv_wait_sig(&so->so_cv, lock);
1368 if (__predict_false(lock != so->so_lock))
1369 solockretry(so, lock);
1370 if (error != 0)
1371 return error;
1372 }
1373 }
1374
1375 void
1376 sbunlock(struct sockbuf *sb)
1377 {
1378 struct socket *so;
1379
1380 so = sb->sb_so;
1381
1382 KASSERT(solocked(so));
1383 KASSERT((sb->sb_flags & SB_LOCK) != 0);
1384
1385 sb->sb_flags &= ~SB_LOCK;
1386 cv_broadcast(&so->so_cv);
1387 }
1388
1389 int
1390 sowait(struct socket *so, int timo)
1391 {
1392 kmutex_t *lock;
1393 int error;
1394
1395 KASSERT(solocked(so));
1396
1397 lock = so->so_lock;
1398 error = cv_timedwait_sig(&so->so_cv, lock, timo);
1399 if (__predict_false(lock != so->so_lock))
1400 solockretry(so, lock);
1401 return error;
1402 }
1403