Home | History | Annotate | Line # | Download | only in kern
uipc_socket2.c revision 1.91.2.3
      1 /*	$NetBSD: uipc_socket2.c,v 1.91.2.3 2009/08/19 18:48:17 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     31  *	The Regents of the University of California.  All rights reserved.
     32  *
     33  * Redistribution and use in source and binary forms, with or without
     34  * modification, are permitted provided that the following conditions
     35  * are met:
     36  * 1. Redistributions of source code must retain the above copyright
     37  *    notice, this list of conditions and the following disclaimer.
     38  * 2. Redistributions in binary form must reproduce the above copyright
     39  *    notice, this list of conditions and the following disclaimer in the
     40  *    documentation and/or other materials provided with the distribution.
     41  * 3. Neither the name of the University nor the names of its contributors
     42  *    may be used to endorse or promote products derived from this software
     43  *    without specific prior written permission.
     44  *
     45  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55  * SUCH DAMAGE.
     56  *
     57  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
     58  */
     59 
     60 #include <sys/cdefs.h>
     61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.91.2.3 2009/08/19 18:48:17 yamt Exp $");
     62 
     63 #include "opt_mbuftrace.h"
     64 #include "opt_sb_max.h"
     65 
     66 #include <sys/param.h>
     67 #include <sys/systm.h>
     68 #include <sys/proc.h>
     69 #include <sys/file.h>
     70 #include <sys/buf.h>
     71 #include <sys/malloc.h>
     72 #include <sys/mbuf.h>
     73 #include <sys/protosw.h>
     74 #include <sys/domain.h>
     75 #include <sys/poll.h>
     76 #include <sys/socket.h>
     77 #include <sys/socketvar.h>
     78 #include <sys/signalvar.h>
     79 #include <sys/kauth.h>
     80 #include <sys/pool.h>
     81 #include <sys/uidinfo.h>
     82 
     83 /*
     84  * Primitive routines for operating on sockets and socket buffers.
     85  *
     86  * Locking rules and assumptions:
     87  *
     88  * o socket::so_lock can change on the fly.  The low level routines used
     89  *   to lock sockets are aware of this.  When so_lock is acquired, the
     90  *   routine locking must check to see if so_lock still points to the
     91  *   lock that was acquired.  If so_lock has changed in the meantime, the
     92  *   now irellevant lock that was acquired must be dropped and the lock
     93  *   operation retried.  Although not proven here, this is completely safe
     94  *   on a multiprocessor system, even with relaxed memory ordering, given
     95  *   the next two rules:
     96  *
     97  * o In order to mutate so_lock, the lock pointed to by the current value
     98  *   of so_lock must be held: i.e., the socket must be held locked by the
     99  *   changing thread.  The thread must issue membar_exit() to prevent
    100  *   memory accesses being reordered, and can set so_lock to the desired
    101  *   value.  If the lock pointed to by the new value of so_lock is not
    102  *   held by the changing thread, the socket must then be considered
    103  *   unlocked.
    104  *
    105  * o If so_lock is mutated, and the previous lock referred to by so_lock
    106  *   could still be visible to other threads in the system (e.g. via file
    107  *   descriptor or protocol-internal reference), then the old lock must
    108  *   remain valid until the socket and/or protocol control block has been
    109  *   torn down.
    110  *
    111  * o If a socket has a non-NULL so_head value (i.e. is in the process of
    112  *   connecting), then locking the socket must also lock the socket pointed
    113  *   to by so_head: their lock pointers must match.
    114  *
    115  * o If a socket has connections in progress (so_q, so_q0 not empty) then
    116  *   locking the socket must also lock the sockets attached to both queues.
    117  *   Again, their lock pointers must match.
    118  *
    119  * o Beyond the initial lock assigment in socreate(), assigning locks to
    120  *   sockets is the responsibility of the individual protocols / protocol
    121  *   domains.
    122  */
    123 
    124 static pool_cache_t socket_cache;
    125 
    126 u_long	sb_max = SB_MAX;	/* maximum socket buffer size */
    127 static u_long sb_max_adj;	/* adjusted sb_max */
    128 
    129 /*
    130  * Procedures to manipulate state flags of socket
    131  * and do appropriate wakeups.  Normal sequence from the
    132  * active (originating) side is that soisconnecting() is
    133  * called during processing of connect() call,
    134  * resulting in an eventual call to soisconnected() if/when the
    135  * connection is established.  When the connection is torn down
    136  * soisdisconnecting() is called during processing of disconnect() call,
    137  * and soisdisconnected() is called when the connection to the peer
    138  * is totally severed.  The semantics of these routines are such that
    139  * connectionless protocols can call soisconnected() and soisdisconnected()
    140  * only, bypassing the in-progress calls when setting up a ``connection''
    141  * takes no time.
    142  *
    143  * From the passive side, a socket is created with
    144  * two queues of sockets: so_q0 for connections in progress
    145  * and so_q for connections already made and awaiting user acceptance.
    146  * As a protocol is preparing incoming connections, it creates a socket
    147  * structure queued on so_q0 by calling sonewconn().  When the connection
    148  * is established, soisconnected() is called, and transfers the
    149  * socket structure to so_q, making it available to accept().
    150  *
    151  * If a socket is closed with sockets on either
    152  * so_q0 or so_q, these sockets are dropped.
    153  *
    154  * If higher level protocols are implemented in
    155  * the kernel, the wakeups done here will sometimes
    156  * cause software-interrupt process scheduling.
    157  */
    158 
    159 void
    160 soisconnecting(struct socket *so)
    161 {
    162 
    163 	KASSERT(solocked(so));
    164 
    165 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
    166 	so->so_state |= SS_ISCONNECTING;
    167 }
    168 
    169 void
    170 soisconnected(struct socket *so)
    171 {
    172 	struct socket	*head;
    173 
    174 	head = so->so_head;
    175 
    176 	KASSERT(solocked(so));
    177 	KASSERT(head == NULL || solocked2(so, head));
    178 
    179 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
    180 	so->so_state |= SS_ISCONNECTED;
    181 	if (head && so->so_onq == &head->so_q0) {
    182 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
    183 			soqremque(so, 0);
    184 			soqinsque(head, so, 1);
    185 			sorwakeup(head);
    186 			cv_broadcast(&head->so_cv);
    187 		} else {
    188 			so->so_upcall =
    189 			    head->so_accf->so_accept_filter->accf_callback;
    190 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
    191 			so->so_rcv.sb_flags |= SB_UPCALL;
    192 			so->so_options &= ~SO_ACCEPTFILTER;
    193 			(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
    194 		}
    195 	} else {
    196 		cv_broadcast(&so->so_cv);
    197 		sorwakeup(so);
    198 		sowwakeup(so);
    199 	}
    200 }
    201 
    202 void
    203 soisdisconnecting(struct socket *so)
    204 {
    205 
    206 	KASSERT(solocked(so));
    207 
    208 	so->so_state &= ~SS_ISCONNECTING;
    209 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
    210 	cv_broadcast(&so->so_cv);
    211 	sowwakeup(so);
    212 	sorwakeup(so);
    213 }
    214 
    215 void
    216 soisdisconnected(struct socket *so)
    217 {
    218 
    219 	KASSERT(solocked(so));
    220 
    221 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
    222 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
    223 	cv_broadcast(&so->so_cv);
    224 	sowwakeup(so);
    225 	sorwakeup(so);
    226 }
    227 
    228 void
    229 soinit2(void)
    230 {
    231 
    232 	socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
    233 	    "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
    234 }
    235 
    236 /*
    237  * When an attempt at a new connection is noted on a socket
    238  * which accepts connections, sonewconn is called.  If the
    239  * connection is possible (subject to space constraints, etc.)
    240  * then we allocate a new structure, propoerly linked into the
    241  * data structure of the original socket, and return this.
    242  * Connstatus may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
    243  */
    244 struct socket *
    245 sonewconn(struct socket *head, int connstatus)
    246 {
    247 	struct socket	*so;
    248 	int		soqueue, error;
    249 
    250 	KASSERT(connstatus == 0 || connstatus == SS_ISCONFIRMING ||
    251 	    connstatus == SS_ISCONNECTED);
    252 	KASSERT(solocked(head));
    253 
    254 	if ((head->so_options & SO_ACCEPTFILTER) != 0)
    255 		connstatus = 0;
    256 	soqueue = connstatus ? 1 : 0;
    257 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
    258 		return NULL;
    259 	so = soget(false);
    260 	if (so == NULL)
    261 		return NULL;
    262 	mutex_obj_hold(head->so_lock);
    263 	so->so_lock = head->so_lock;
    264 	so->so_type = head->so_type;
    265 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
    266 	so->so_linger = head->so_linger;
    267 	so->so_state = head->so_state | SS_NOFDREF;
    268 	so->so_nbio = head->so_nbio;
    269 	so->so_proto = head->so_proto;
    270 	so->so_timeo = head->so_timeo;
    271 	so->so_pgid = head->so_pgid;
    272 	so->so_send = head->so_send;
    273 	so->so_receive = head->so_receive;
    274 	so->so_uidinfo = head->so_uidinfo;
    275 	so->so_egid = head->so_egid;
    276 	so->so_cpid = head->so_cpid;
    277 #ifdef MBUFTRACE
    278 	so->so_mowner = head->so_mowner;
    279 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
    280 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
    281 #endif
    282 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) != 0)
    283 		goto out;
    284 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
    285 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
    286 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
    287 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
    288 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
    289 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
    290 	soqinsque(head, so, soqueue);
    291 	error = (*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL,
    292 	    NULL, NULL);
    293 	KASSERT(solocked(so));
    294 	if (error != 0) {
    295 		(void) soqremque(so, soqueue);
    296 out:
    297 		/*
    298 		 * Remove acccept filter if one is present.
    299 		 * XXX Is this really needed?
    300 		 */
    301 		if (so->so_accf != NULL)
    302 			(void)accept_filt_clear(so);
    303 		soput(so);
    304 		return NULL;
    305 	}
    306 	if (connstatus) {
    307 		sorwakeup(head);
    308 		cv_broadcast(&head->so_cv);
    309 		so->so_state |= connstatus;
    310 	}
    311 	return so;
    312 }
    313 
    314 struct socket *
    315 soget(bool waitok)
    316 {
    317 	struct socket *so;
    318 
    319 	so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
    320 	if (__predict_false(so == NULL))
    321 		return (NULL);
    322 	memset(so, 0, sizeof(*so));
    323 	TAILQ_INIT(&so->so_q0);
    324 	TAILQ_INIT(&so->so_q);
    325 	cv_init(&so->so_cv, "socket");
    326 	cv_init(&so->so_rcv.sb_cv, "netio");
    327 	cv_init(&so->so_snd.sb_cv, "netio");
    328 	selinit(&so->so_rcv.sb_sel);
    329 	selinit(&so->so_snd.sb_sel);
    330 	so->so_rcv.sb_so = so;
    331 	so->so_snd.sb_so = so;
    332 	return so;
    333 }
    334 
    335 void
    336 soput(struct socket *so)
    337 {
    338 
    339 	KASSERT(!cv_has_waiters(&so->so_cv));
    340 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    341 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    342 	seldestroy(&so->so_rcv.sb_sel);
    343 	seldestroy(&so->so_snd.sb_sel);
    344 	mutex_obj_free(so->so_lock);
    345 	cv_destroy(&so->so_cv);
    346 	cv_destroy(&so->so_rcv.sb_cv);
    347 	cv_destroy(&so->so_snd.sb_cv);
    348 	pool_cache_put(socket_cache, so);
    349 }
    350 
    351 void
    352 soqinsque(struct socket *head, struct socket *so, int q)
    353 {
    354 
    355 	KASSERT(solocked2(head, so));
    356 
    357 #ifdef DIAGNOSTIC
    358 	if (so->so_onq != NULL)
    359 		panic("soqinsque");
    360 #endif
    361 
    362 	so->so_head = head;
    363 	if (q == 0) {
    364 		head->so_q0len++;
    365 		so->so_onq = &head->so_q0;
    366 	} else {
    367 		head->so_qlen++;
    368 		so->so_onq = &head->so_q;
    369 	}
    370 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
    371 }
    372 
    373 int
    374 soqremque(struct socket *so, int q)
    375 {
    376 	struct socket	*head;
    377 
    378 	head = so->so_head;
    379 
    380 	KASSERT(solocked(so));
    381 	if (q == 0) {
    382 		if (so->so_onq != &head->so_q0)
    383 			return (0);
    384 		head->so_q0len--;
    385 	} else {
    386 		if (so->so_onq != &head->so_q)
    387 			return (0);
    388 		head->so_qlen--;
    389 	}
    390 	KASSERT(solocked2(so, head));
    391 	TAILQ_REMOVE(so->so_onq, so, so_qe);
    392 	so->so_onq = NULL;
    393 	so->so_head = NULL;
    394 	return (1);
    395 }
    396 
    397 /*
    398  * Socantsendmore indicates that no more data will be sent on the
    399  * socket; it would normally be applied to a socket when the user
    400  * informs the system that no more data is to be sent, by the protocol
    401  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
    402  * will be received, and will normally be applied to the socket by a
    403  * protocol when it detects that the peer will send no more data.
    404  * Data queued for reading in the socket may yet be read.
    405  */
    406 
    407 void
    408 socantsendmore(struct socket *so)
    409 {
    410 
    411 	KASSERT(solocked(so));
    412 
    413 	so->so_state |= SS_CANTSENDMORE;
    414 	sowwakeup(so);
    415 }
    416 
    417 void
    418 socantrcvmore(struct socket *so)
    419 {
    420 
    421 	KASSERT(solocked(so));
    422 
    423 	so->so_state |= SS_CANTRCVMORE;
    424 	sorwakeup(so);
    425 }
    426 
    427 /*
    428  * Wait for data to arrive at/drain from a socket buffer.
    429  */
    430 int
    431 sbwait(struct sockbuf *sb)
    432 {
    433 	struct socket *so;
    434 	kmutex_t *lock;
    435 	int error;
    436 
    437 	so = sb->sb_so;
    438 
    439 	KASSERT(solocked(so));
    440 
    441 	sb->sb_flags |= SB_NOTIFY;
    442 	lock = so->so_lock;
    443 	if ((sb->sb_flags & SB_NOINTR) != 0)
    444 		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
    445 	else
    446 		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
    447 	if (__predict_false(lock != so->so_lock))
    448 		solockretry(so, lock);
    449 	return error;
    450 }
    451 
    452 /*
    453  * Wakeup processes waiting on a socket buffer.
    454  * Do asynchronous notification via SIGIO
    455  * if the socket buffer has the SB_ASYNC flag set.
    456  */
    457 void
    458 sowakeup(struct socket *so, struct sockbuf *sb, int code)
    459 {
    460 	int band;
    461 
    462 	KASSERT(solocked(so));
    463 	KASSERT(sb->sb_so == so);
    464 
    465 	if (code == POLL_IN)
    466 		band = POLLIN|POLLRDNORM;
    467 	else
    468 		band = POLLOUT|POLLWRNORM;
    469 	sb->sb_flags &= ~SB_NOTIFY;
    470 	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
    471 	cv_broadcast(&sb->sb_cv);
    472 	if (sb->sb_flags & SB_ASYNC)
    473 		fownsignal(so->so_pgid, SIGIO, code, band, so);
    474 	if (sb->sb_flags & SB_UPCALL)
    475 		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
    476 }
    477 
    478 /*
    479  * Reset a socket's lock pointer.  Wake all threads waiting on the
    480  * socket's condition variables so that they can restart their waits
    481  * using the new lock.  The existing lock must be held.
    482  */
    483 void
    484 solockreset(struct socket *so, kmutex_t *lock)
    485 {
    486 
    487 	KASSERT(solocked(so));
    488 
    489 	so->so_lock = lock;
    490 	cv_broadcast(&so->so_snd.sb_cv);
    491 	cv_broadcast(&so->so_rcv.sb_cv);
    492 	cv_broadcast(&so->so_cv);
    493 }
    494 
    495 /*
    496  * Socket buffer (struct sockbuf) utility routines.
    497  *
    498  * Each socket contains two socket buffers: one for sending data and
    499  * one for receiving data.  Each buffer contains a queue of mbufs,
    500  * information about the number of mbufs and amount of data in the
    501  * queue, and other fields allowing poll() statements and notification
    502  * on data availability to be implemented.
    503  *
    504  * Data stored in a socket buffer is maintained as a list of records.
    505  * Each record is a list of mbufs chained together with the m_next
    506  * field.  Records are chained together with the m_nextpkt field. The upper
    507  * level routine soreceive() expects the following conventions to be
    508  * observed when placing information in the receive buffer:
    509  *
    510  * 1. If the protocol requires each message be preceded by the sender's
    511  *    name, then a record containing that name must be present before
    512  *    any associated data (mbuf's must be of type MT_SONAME).
    513  * 2. If the protocol supports the exchange of ``access rights'' (really
    514  *    just additional data associated with the message), and there are
    515  *    ``rights'' to be received, then a record containing this data
    516  *    should be present (mbuf's must be of type MT_CONTROL).
    517  * 3. If a name or rights record exists, then it must be followed by
    518  *    a data record, perhaps of zero length.
    519  *
    520  * Before using a new socket structure it is first necessary to reserve
    521  * buffer space to the socket, by calling sbreserve().  This should commit
    522  * some of the available buffer space in the system buffer pool for the
    523  * socket (currently, it does nothing but enforce limits).  The space
    524  * should be released by calling sbrelease() when the socket is destroyed.
    525  */
    526 
    527 int
    528 sb_max_set(u_long new_sbmax)
    529 {
    530 	int s;
    531 
    532 	if (new_sbmax < (16 * 1024))
    533 		return (EINVAL);
    534 
    535 	s = splsoftnet();
    536 	sb_max = new_sbmax;
    537 	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
    538 	splx(s);
    539 
    540 	return (0);
    541 }
    542 
    543 int
    544 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
    545 {
    546 
    547 	KASSERT(so->so_lock == NULL || solocked(so));
    548 
    549 	/*
    550 	 * there's at least one application (a configure script of screen)
    551 	 * which expects a fifo is writable even if it has "some" bytes
    552 	 * in its buffer.
    553 	 * so we want to make sure (hiwat - lowat) >= (some bytes).
    554 	 *
    555 	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
    556 	 * we expect it's large enough for such applications.
    557 	 */
    558 	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
    559 	u_long  hiwat = lowat + PIPE_BUF;
    560 
    561 	if (sndcc < hiwat)
    562 		sndcc = hiwat;
    563 	if (sbreserve(&so->so_snd, sndcc, so) == 0)
    564 		goto bad;
    565 	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
    566 		goto bad2;
    567 	if (so->so_rcv.sb_lowat == 0)
    568 		so->so_rcv.sb_lowat = 1;
    569 	if (so->so_snd.sb_lowat == 0)
    570 		so->so_snd.sb_lowat = lowat;
    571 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
    572 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
    573 	return (0);
    574  bad2:
    575 	sbrelease(&so->so_snd, so);
    576  bad:
    577 	return (ENOBUFS);
    578 }
    579 
    580 /*
    581  * Allot mbufs to a sockbuf.
    582  * Attempt to scale mbmax so that mbcnt doesn't become limiting
    583  * if buffering efficiency is near the normal case.
    584  */
    585 int
    586 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
    587 {
    588 	struct lwp *l = curlwp; /* XXX */
    589 	rlim_t maxcc;
    590 	struct uidinfo *uidinfo;
    591 
    592 	KASSERT(so->so_lock == NULL || solocked(so));
    593 	KASSERT(sb->sb_so == so);
    594 	KASSERT(sb_max_adj != 0);
    595 
    596 	if (cc == 0 || cc > sb_max_adj)
    597 		return (0);
    598 
    599 	if (kauth_cred_geteuid(l->l_cred) == so->so_uidinfo->ui_uid)
    600 		maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
    601 	else
    602 		maxcc = RLIM_INFINITY;
    603 
    604 	uidinfo = so->so_uidinfo;
    605 	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
    606 		return 0;
    607 	sb->sb_mbmax = min(cc * 2, sb_max);
    608 	if (sb->sb_lowat > sb->sb_hiwat)
    609 		sb->sb_lowat = sb->sb_hiwat;
    610 	return (1);
    611 }
    612 
    613 /*
    614  * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
    615  * that the socket is held locked here: see sorflush().
    616  */
    617 void
    618 sbrelease(struct sockbuf *sb, struct socket *so)
    619 {
    620 
    621 	KASSERT(sb->sb_so == so);
    622 
    623 	sbflush(sb);
    624 	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
    625 	sb->sb_mbmax = 0;
    626 }
    627 
    628 /*
    629  * Routines to add and remove
    630  * data from an mbuf queue.
    631  *
    632  * The routines sbappend() or sbappendrecord() are normally called to
    633  * append new mbufs to a socket buffer, after checking that adequate
    634  * space is available, comparing the function sbspace() with the amount
    635  * of data to be added.  sbappendrecord() differs from sbappend() in
    636  * that data supplied is treated as the beginning of a new record.
    637  * To place a sender's address, optional access rights, and data in a
    638  * socket receive buffer, sbappendaddr() should be used.  To place
    639  * access rights and data in a socket receive buffer, sbappendrights()
    640  * should be used.  In either case, the new data begins a new record.
    641  * Note that unlike sbappend() and sbappendrecord(), these routines check
    642  * for the caller that there will be enough space to store the data.
    643  * Each fails if there is not enough space, or if it cannot find mbufs
    644  * to store additional information in.
    645  *
    646  * Reliable protocols may use the socket send buffer to hold data
    647  * awaiting acknowledgement.  Data is normally copied from a socket
    648  * send buffer in a protocol with m_copy for output to a peer,
    649  * and then removing the data from the socket buffer with sbdrop()
    650  * or sbdroprecord() when the data is acknowledged by the peer.
    651  */
    652 
    653 #ifdef SOCKBUF_DEBUG
    654 void
    655 sblastrecordchk(struct sockbuf *sb, const char *where)
    656 {
    657 	struct mbuf *m = sb->sb_mb;
    658 
    659 	KASSERT(solocked(sb->sb_so));
    660 
    661 	while (m && m->m_nextpkt)
    662 		m = m->m_nextpkt;
    663 
    664 	if (m != sb->sb_lastrecord) {
    665 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
    666 		    sb->sb_mb, sb->sb_lastrecord, m);
    667 		printf("packet chain:\n");
    668 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
    669 			printf("\t%p\n", m);
    670 		panic("sblastrecordchk from %s", where);
    671 	}
    672 }
    673 
    674 void
    675 sblastmbufchk(struct sockbuf *sb, const char *where)
    676 {
    677 	struct mbuf *m = sb->sb_mb;
    678 	struct mbuf *n;
    679 
    680 	KASSERT(solocked(sb->sb_so));
    681 
    682 	while (m && m->m_nextpkt)
    683 		m = m->m_nextpkt;
    684 
    685 	while (m && m->m_next)
    686 		m = m->m_next;
    687 
    688 	if (m != sb->sb_mbtail) {
    689 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
    690 		    sb->sb_mb, sb->sb_mbtail, m);
    691 		printf("packet tree:\n");
    692 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
    693 			printf("\t");
    694 			for (n = m; n != NULL; n = n->m_next)
    695 				printf("%p ", n);
    696 			printf("\n");
    697 		}
    698 		panic("sblastmbufchk from %s", where);
    699 	}
    700 }
    701 #endif /* SOCKBUF_DEBUG */
    702 
    703 /*
    704  * Link a chain of records onto a socket buffer
    705  */
    706 #define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
    707 do {									\
    708 	if ((sb)->sb_lastrecord != NULL)				\
    709 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
    710 	else								\
    711 		(sb)->sb_mb = (m0);					\
    712 	(sb)->sb_lastrecord = (mlast);					\
    713 } while (/*CONSTCOND*/0)
    714 
    715 
    716 #define	SBLINKRECORD(sb, m0)						\
    717     SBLINKRECORDCHAIN(sb, m0, m0)
    718 
    719 /*
    720  * Append mbuf chain m to the last record in the
    721  * socket buffer sb.  The additional space associated
    722  * the mbuf chain is recorded in sb.  Empty mbufs are
    723  * discarded and mbufs are compacted where possible.
    724  */
    725 void
    726 sbappend(struct sockbuf *sb, struct mbuf *m)
    727 {
    728 	struct mbuf	*n;
    729 
    730 	KASSERT(solocked(sb->sb_so));
    731 
    732 	if (m == 0)
    733 		return;
    734 
    735 #ifdef MBUFTRACE
    736 	m_claimm(m, sb->sb_mowner);
    737 #endif
    738 
    739 	SBLASTRECORDCHK(sb, "sbappend 1");
    740 
    741 	if ((n = sb->sb_lastrecord) != NULL) {
    742 		/*
    743 		 * XXX Would like to simply use sb_mbtail here, but
    744 		 * XXX I need to verify that I won't miss an EOR that
    745 		 * XXX way.
    746 		 */
    747 		do {
    748 			if (n->m_flags & M_EOR) {
    749 				sbappendrecord(sb, m); /* XXXXXX!!!! */
    750 				return;
    751 			}
    752 		} while (n->m_next && (n = n->m_next));
    753 	} else {
    754 		/*
    755 		 * If this is the first record in the socket buffer, it's
    756 		 * also the last record.
    757 		 */
    758 		sb->sb_lastrecord = m;
    759 	}
    760 	sbcompress(sb, m, n);
    761 	SBLASTRECORDCHK(sb, "sbappend 2");
    762 }
    763 
    764 /*
    765  * This version of sbappend() should only be used when the caller
    766  * absolutely knows that there will never be more than one record
    767  * in the socket buffer, that is, a stream protocol (such as TCP).
    768  */
    769 void
    770 sbappendstream(struct sockbuf *sb, struct mbuf *m)
    771 {
    772 
    773 	KASSERT(solocked(sb->sb_so));
    774 	KDASSERT(m->m_nextpkt == NULL);
    775 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
    776 
    777 	SBLASTMBUFCHK(sb, __func__);
    778 
    779 #ifdef MBUFTRACE
    780 	m_claimm(m, sb->sb_mowner);
    781 #endif
    782 
    783 	sbcompress(sb, m, sb->sb_mbtail);
    784 
    785 	sb->sb_lastrecord = sb->sb_mb;
    786 	SBLASTRECORDCHK(sb, __func__);
    787 }
    788 
    789 #ifdef SOCKBUF_DEBUG
    790 void
    791 sbcheck(struct sockbuf *sb)
    792 {
    793 	struct mbuf	*m, *m2;
    794 	u_long		len, mbcnt;
    795 
    796 	KASSERT(solocked(sb->sb_so));
    797 
    798 	len = 0;
    799 	mbcnt = 0;
    800 	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
    801 		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
    802 			len += m2->m_len;
    803 			mbcnt += MSIZE;
    804 			if (m2->m_flags & M_EXT)
    805 				mbcnt += m2->m_ext.ext_size;
    806 			if (m2->m_nextpkt != NULL)
    807 				panic("sbcheck nextpkt");
    808 		}
    809 	}
    810 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
    811 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
    812 		    mbcnt, sb->sb_mbcnt);
    813 		panic("sbcheck");
    814 	}
    815 }
    816 #endif
    817 
    818 /*
    819  * As above, except the mbuf chain
    820  * begins a new record.
    821  */
    822 void
    823 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
    824 {
    825 	struct mbuf	*m;
    826 
    827 	KASSERT(solocked(sb->sb_so));
    828 
    829 	if (m0 == 0)
    830 		return;
    831 
    832 #ifdef MBUFTRACE
    833 	m_claimm(m0, sb->sb_mowner);
    834 #endif
    835 	/*
    836 	 * Put the first mbuf on the queue.
    837 	 * Note this permits zero length records.
    838 	 */
    839 	sballoc(sb, m0);
    840 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
    841 	SBLINKRECORD(sb, m0);
    842 	m = m0->m_next;
    843 	m0->m_next = 0;
    844 	if (m && (m0->m_flags & M_EOR)) {
    845 		m0->m_flags &= ~M_EOR;
    846 		m->m_flags |= M_EOR;
    847 	}
    848 	sbcompress(sb, m, m0);
    849 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
    850 }
    851 
    852 /*
    853  * As above except that OOB data
    854  * is inserted at the beginning of the sockbuf,
    855  * but after any other OOB data.
    856  */
    857 void
    858 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
    859 {
    860 	struct mbuf	*m, **mp;
    861 
    862 	KASSERT(solocked(sb->sb_so));
    863 
    864 	if (m0 == 0)
    865 		return;
    866 
    867 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
    868 
    869 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
    870 	    again:
    871 		switch (m->m_type) {
    872 
    873 		case MT_OOBDATA:
    874 			continue;		/* WANT next train */
    875 
    876 		case MT_CONTROL:
    877 			if ((m = m->m_next) != NULL)
    878 				goto again;	/* inspect THIS train further */
    879 		}
    880 		break;
    881 	}
    882 	/*
    883 	 * Put the first mbuf on the queue.
    884 	 * Note this permits zero length records.
    885 	 */
    886 	sballoc(sb, m0);
    887 	m0->m_nextpkt = *mp;
    888 	if (*mp == NULL) {
    889 		/* m0 is actually the new tail */
    890 		sb->sb_lastrecord = m0;
    891 	}
    892 	*mp = m0;
    893 	m = m0->m_next;
    894 	m0->m_next = 0;
    895 	if (m && (m0->m_flags & M_EOR)) {
    896 		m0->m_flags &= ~M_EOR;
    897 		m->m_flags |= M_EOR;
    898 	}
    899 	sbcompress(sb, m, m0);
    900 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
    901 }
    902 
    903 /*
    904  * Append address and data, and optionally, control (ancillary) data
    905  * to the receive queue of a socket.  If present,
    906  * m0 must include a packet header with total length.
    907  * Returns 0 if no space in sockbuf or insufficient mbufs.
    908  */
    909 int
    910 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
    911 	struct mbuf *control)
    912 {
    913 	struct mbuf	*m, *n, *nlast;
    914 	int		space, len;
    915 
    916 	KASSERT(solocked(sb->sb_so));
    917 
    918 	space = asa->sa_len;
    919 
    920 	if (m0 != NULL) {
    921 		if ((m0->m_flags & M_PKTHDR) == 0)
    922 			panic("sbappendaddr");
    923 		space += m0->m_pkthdr.len;
    924 #ifdef MBUFTRACE
    925 		m_claimm(m0, sb->sb_mowner);
    926 #endif
    927 	}
    928 	for (n = control; n; n = n->m_next) {
    929 		space += n->m_len;
    930 		MCLAIM(n, sb->sb_mowner);
    931 		if (n->m_next == 0)	/* keep pointer to last control buf */
    932 			break;
    933 	}
    934 	if (space > sbspace(sb))
    935 		return (0);
    936 	MGET(m, M_DONTWAIT, MT_SONAME);
    937 	if (m == 0)
    938 		return (0);
    939 	MCLAIM(m, sb->sb_mowner);
    940 	/*
    941 	 * XXX avoid 'comparison always true' warning which isn't easily
    942 	 * avoided.
    943 	 */
    944 	len = asa->sa_len;
    945 	if (len > MLEN) {
    946 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
    947 		if ((m->m_flags & M_EXT) == 0) {
    948 			m_free(m);
    949 			return (0);
    950 		}
    951 	}
    952 	m->m_len = asa->sa_len;
    953 	memcpy(mtod(m, void *), asa, asa->sa_len);
    954 	if (n)
    955 		n->m_next = m0;		/* concatenate data to control */
    956 	else
    957 		control = m0;
    958 	m->m_next = control;
    959 
    960 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
    961 
    962 	for (n = m; n->m_next != NULL; n = n->m_next)
    963 		sballoc(sb, n);
    964 	sballoc(sb, n);
    965 	nlast = n;
    966 	SBLINKRECORD(sb, m);
    967 
    968 	sb->sb_mbtail = nlast;
    969 	SBLASTMBUFCHK(sb, "sbappendaddr");
    970 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
    971 
    972 	return (1);
    973 }
    974 
    975 /*
    976  * Helper for sbappendchainaddr: prepend a struct sockaddr* to
    977  * an mbuf chain.
    978  */
    979 static inline struct mbuf *
    980 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
    981 		   const struct sockaddr *asa)
    982 {
    983 	struct mbuf *m;
    984 	const int salen = asa->sa_len;
    985 
    986 	KASSERT(solocked(sb->sb_so));
    987 
    988 	/* only the first in each chain need be a pkthdr */
    989 	MGETHDR(m, M_DONTWAIT, MT_SONAME);
    990 	if (m == 0)
    991 		return (0);
    992 	MCLAIM(m, sb->sb_mowner);
    993 #ifdef notyet
    994 	if (salen > MHLEN) {
    995 		MEXTMALLOC(m, salen, M_NOWAIT);
    996 		if ((m->m_flags & M_EXT) == 0) {
    997 			m_free(m);
    998 			return (0);
    999 		}
   1000 	}
   1001 #else
   1002 	KASSERT(salen <= MHLEN);
   1003 #endif
   1004 	m->m_len = salen;
   1005 	memcpy(mtod(m, void *), asa, salen);
   1006 	m->m_next = m0;
   1007 	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
   1008 
   1009 	return m;
   1010 }
   1011 
   1012 int
   1013 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
   1014 		  struct mbuf *m0, int sbprio)
   1015 {
   1016 	int space;
   1017 	struct mbuf *m, *n, *n0, *nlast;
   1018 	int error;
   1019 
   1020 	KASSERT(solocked(sb->sb_so));
   1021 
   1022 	/*
   1023 	 * XXX sbprio reserved for encoding priority of this* request:
   1024 	 *  SB_PRIO_NONE --> honour normal sb limits
   1025 	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
   1026 	 *	take whole chain. Intended for large requests
   1027 	 *      that should be delivered atomically (all, or none).
   1028 	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
   1029 	 *       over normal socket limits, for messages indicating
   1030 	 *       buffer overflow in earlier normal/lower-priority messages
   1031 	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
   1032 	 *       Intended for  kernel-generated messages only.
   1033 	 *        Up to generator to avoid total mbuf resource exhaustion.
   1034 	 */
   1035 	(void)sbprio;
   1036 
   1037 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
   1038 		panic("sbappendaddrchain");
   1039 
   1040 	space = sbspace(sb);
   1041 
   1042 #ifdef notyet
   1043 	/*
   1044 	 * Enforce SB_PRIO_* limits as described above.
   1045 	 */
   1046 #endif
   1047 
   1048 	n0 = NULL;
   1049 	nlast = NULL;
   1050 	for (m = m0; m; m = m->m_nextpkt) {
   1051 		struct mbuf *np;
   1052 
   1053 #ifdef MBUFTRACE
   1054 		m_claimm(m, sb->sb_mowner);
   1055 #endif
   1056 
   1057 		/* Prepend sockaddr to this record (m) of input chain m0 */
   1058 	  	n = m_prepend_sockaddr(sb, m, asa);
   1059 		if (n == NULL) {
   1060 			error = ENOBUFS;
   1061 			goto bad;
   1062 		}
   1063 
   1064 		/* Append record (asa+m) to end of new chain n0 */
   1065 		if (n0 == NULL) {
   1066 			n0 = n;
   1067 		} else {
   1068 			nlast->m_nextpkt = n;
   1069 		}
   1070 		/* Keep track of last record on new chain */
   1071 		nlast = n;
   1072 
   1073 		for (np = n; np; np = np->m_next)
   1074 			sballoc(sb, np);
   1075 	}
   1076 
   1077 	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
   1078 
   1079 	/* Drop the entire chain of (asa+m) records onto the socket */
   1080 	SBLINKRECORDCHAIN(sb, n0, nlast);
   1081 
   1082 	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
   1083 
   1084 	for (m = nlast; m->m_next; m = m->m_next)
   1085 		;
   1086 	sb->sb_mbtail = m;
   1087 	SBLASTMBUFCHK(sb, "sbappendaddrchain");
   1088 
   1089 	return (1);
   1090 
   1091 bad:
   1092 	/*
   1093 	 * On error, free the prepended addreseses. For consistency
   1094 	 * with sbappendaddr(), leave it to our caller to free
   1095 	 * the input record chain passed to us as m0.
   1096 	 */
   1097 	while ((n = n0) != NULL) {
   1098 	  	struct mbuf *np;
   1099 
   1100 		/* Undo the sballoc() of this record */
   1101 		for (np = n; np; np = np->m_next)
   1102 			sbfree(sb, np);
   1103 
   1104 		n0 = n->m_nextpkt;	/* iterate at next prepended address */
   1105 		MFREE(n, np);		/* free prepended address (not data) */
   1106 	}
   1107 	return 0;
   1108 }
   1109 
   1110 
   1111 int
   1112 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
   1113 {
   1114 	struct mbuf	*m, *mlast, *n;
   1115 	int		space;
   1116 
   1117 	KASSERT(solocked(sb->sb_so));
   1118 
   1119 	space = 0;
   1120 	if (control == 0)
   1121 		panic("sbappendcontrol");
   1122 	for (m = control; ; m = m->m_next) {
   1123 		space += m->m_len;
   1124 		MCLAIM(m, sb->sb_mowner);
   1125 		if (m->m_next == 0)
   1126 			break;
   1127 	}
   1128 	n = m;			/* save pointer to last control buffer */
   1129 	for (m = m0; m; m = m->m_next) {
   1130 		MCLAIM(m, sb->sb_mowner);
   1131 		space += m->m_len;
   1132 	}
   1133 	if (space > sbspace(sb))
   1134 		return (0);
   1135 	n->m_next = m0;			/* concatenate data to control */
   1136 
   1137 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
   1138 
   1139 	for (m = control; m->m_next != NULL; m = m->m_next)
   1140 		sballoc(sb, m);
   1141 	sballoc(sb, m);
   1142 	mlast = m;
   1143 	SBLINKRECORD(sb, control);
   1144 
   1145 	sb->sb_mbtail = mlast;
   1146 	SBLASTMBUFCHK(sb, "sbappendcontrol");
   1147 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
   1148 
   1149 	return (1);
   1150 }
   1151 
   1152 /*
   1153  * Compress mbuf chain m into the socket
   1154  * buffer sb following mbuf n.  If n
   1155  * is null, the buffer is presumed empty.
   1156  */
   1157 void
   1158 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
   1159 {
   1160 	int		eor;
   1161 	struct mbuf	*o;
   1162 
   1163 	KASSERT(solocked(sb->sb_so));
   1164 
   1165 	eor = 0;
   1166 	while (m) {
   1167 		eor |= m->m_flags & M_EOR;
   1168 		if (m->m_len == 0 &&
   1169 		    (eor == 0 ||
   1170 		     (((o = m->m_next) || (o = n)) &&
   1171 		      o->m_type == m->m_type))) {
   1172 			if (sb->sb_lastrecord == m)
   1173 				sb->sb_lastrecord = m->m_next;
   1174 			m = m_free(m);
   1175 			continue;
   1176 		}
   1177 		if (n && (n->m_flags & M_EOR) == 0 &&
   1178 		    /* M_TRAILINGSPACE() checks buffer writeability */
   1179 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
   1180 		    m->m_len <= M_TRAILINGSPACE(n) &&
   1181 		    n->m_type == m->m_type) {
   1182 			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
   1183 			    (unsigned)m->m_len);
   1184 			n->m_len += m->m_len;
   1185 			sb->sb_cc += m->m_len;
   1186 			m = m_free(m);
   1187 			continue;
   1188 		}
   1189 		if (n)
   1190 			n->m_next = m;
   1191 		else
   1192 			sb->sb_mb = m;
   1193 		sb->sb_mbtail = m;
   1194 		sballoc(sb, m);
   1195 		n = m;
   1196 		m->m_flags &= ~M_EOR;
   1197 		m = m->m_next;
   1198 		n->m_next = 0;
   1199 	}
   1200 	if (eor) {
   1201 		if (n)
   1202 			n->m_flags |= eor;
   1203 		else
   1204 			printf("semi-panic: sbcompress\n");
   1205 	}
   1206 	SBLASTMBUFCHK(sb, __func__);
   1207 }
   1208 
   1209 /*
   1210  * Free all mbufs in a sockbuf.
   1211  * Check that all resources are reclaimed.
   1212  */
   1213 void
   1214 sbflush(struct sockbuf *sb)
   1215 {
   1216 
   1217 	KASSERT(solocked(sb->sb_so));
   1218 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
   1219 
   1220 	while (sb->sb_mbcnt)
   1221 		sbdrop(sb, (int)sb->sb_cc);
   1222 
   1223 	KASSERT(sb->sb_cc == 0);
   1224 	KASSERT(sb->sb_mb == NULL);
   1225 	KASSERT(sb->sb_mbtail == NULL);
   1226 	KASSERT(sb->sb_lastrecord == NULL);
   1227 }
   1228 
   1229 /*
   1230  * Drop data from (the front of) a sockbuf.
   1231  */
   1232 void
   1233 sbdrop(struct sockbuf *sb, int len)
   1234 {
   1235 	struct mbuf	*m, *mn, *next;
   1236 
   1237 	KASSERT(solocked(sb->sb_so));
   1238 
   1239 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
   1240 	while (len > 0) {
   1241 		if (m == 0) {
   1242 			if (next == 0)
   1243 				panic("sbdrop");
   1244 			m = next;
   1245 			next = m->m_nextpkt;
   1246 			continue;
   1247 		}
   1248 		if (m->m_len > len) {
   1249 			m->m_len -= len;
   1250 			m->m_data += len;
   1251 			sb->sb_cc -= len;
   1252 			break;
   1253 		}
   1254 		len -= m->m_len;
   1255 		sbfree(sb, m);
   1256 		MFREE(m, mn);
   1257 		m = mn;
   1258 	}
   1259 	while (m && m->m_len == 0) {
   1260 		sbfree(sb, m);
   1261 		MFREE(m, mn);
   1262 		m = mn;
   1263 	}
   1264 	if (m) {
   1265 		sb->sb_mb = m;
   1266 		m->m_nextpkt = next;
   1267 	} else
   1268 		sb->sb_mb = next;
   1269 	/*
   1270 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
   1271 	 * makes sure sb_lastrecord is up-to-date if we dropped
   1272 	 * part of the last record.
   1273 	 */
   1274 	m = sb->sb_mb;
   1275 	if (m == NULL) {
   1276 		sb->sb_mbtail = NULL;
   1277 		sb->sb_lastrecord = NULL;
   1278 	} else if (m->m_nextpkt == NULL)
   1279 		sb->sb_lastrecord = m;
   1280 }
   1281 
   1282 /*
   1283  * Drop a record off the front of a sockbuf
   1284  * and move the next record to the front.
   1285  */
   1286 void
   1287 sbdroprecord(struct sockbuf *sb)
   1288 {
   1289 	struct mbuf	*m, *mn;
   1290 
   1291 	KASSERT(solocked(sb->sb_so));
   1292 
   1293 	m = sb->sb_mb;
   1294 	if (m) {
   1295 		sb->sb_mb = m->m_nextpkt;
   1296 		do {
   1297 			sbfree(sb, m);
   1298 			MFREE(m, mn);
   1299 		} while ((m = mn) != NULL);
   1300 	}
   1301 	SB_EMPTY_FIXUP(sb);
   1302 }
   1303 
   1304 /*
   1305  * Create a "control" mbuf containing the specified data
   1306  * with the specified type for presentation on a socket buffer.
   1307  */
   1308 struct mbuf *
   1309 sbcreatecontrol(void *p, int size, int type, int level)
   1310 {
   1311 	struct cmsghdr	*cp;
   1312 	struct mbuf	*m;
   1313 
   1314 	if (CMSG_SPACE(size) > MCLBYTES) {
   1315 		printf("sbcreatecontrol: message too large %d\n", size);
   1316 		return NULL;
   1317 	}
   1318 
   1319 	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
   1320 		return ((struct mbuf *) NULL);
   1321 	if (CMSG_SPACE(size) > MLEN) {
   1322 		MCLGET(m, M_DONTWAIT);
   1323 		if ((m->m_flags & M_EXT) == 0) {
   1324 			m_free(m);
   1325 			return NULL;
   1326 		}
   1327 	}
   1328 	cp = mtod(m, struct cmsghdr *);
   1329 	memcpy(CMSG_DATA(cp), p, size);
   1330 	m->m_len = CMSG_SPACE(size);
   1331 	cp->cmsg_len = CMSG_LEN(size);
   1332 	cp->cmsg_level = level;
   1333 	cp->cmsg_type = type;
   1334 	return (m);
   1335 }
   1336 
   1337 void
   1338 solockretry(struct socket *so, kmutex_t *lock)
   1339 {
   1340 
   1341 	while (lock != so->so_lock) {
   1342 		mutex_exit(lock);
   1343 		lock = so->so_lock;
   1344 		mutex_enter(lock);
   1345 	}
   1346 }
   1347 
   1348 bool
   1349 solocked(struct socket *so)
   1350 {
   1351 
   1352 	return mutex_owned(so->so_lock);
   1353 }
   1354 
   1355 bool
   1356 solocked2(struct socket *so1, struct socket *so2)
   1357 {
   1358 	kmutex_t *lock;
   1359 
   1360 	lock = so1->so_lock;
   1361 	if (lock != so2->so_lock)
   1362 		return false;
   1363 	return mutex_owned(lock);
   1364 }
   1365 
   1366 /*
   1367  * Assign a default lock to a new socket.  For PRU_ATTACH, and done by
   1368  * protocols that do not have special locking requirements.
   1369  */
   1370 void
   1371 sosetlock(struct socket *so)
   1372 {
   1373 	kmutex_t *lock;
   1374 
   1375 	if (so->so_lock == NULL) {
   1376 		lock = softnet_lock;
   1377 		so->so_lock = lock;
   1378 		mutex_obj_hold(lock);
   1379 		mutex_enter(lock);
   1380 	}
   1381 
   1382 	/* In all cases, lock must be held on return from PRU_ATTACH. */
   1383 	KASSERT(solocked(so));
   1384 }
   1385 
   1386 /*
   1387  * Set lock on sockbuf sb; sleep if lock is already held.
   1388  * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
   1389  * Returns error without lock if sleep is interrupted.
   1390  */
   1391 int
   1392 sblock(struct sockbuf *sb, int wf)
   1393 {
   1394 	struct socket *so;
   1395 	kmutex_t *lock;
   1396 	int error;
   1397 
   1398 	KASSERT(solocked(sb->sb_so));
   1399 
   1400 	for (;;) {
   1401 		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
   1402 			sb->sb_flags |= SB_LOCK;
   1403 			return 0;
   1404 		}
   1405 		if (wf != M_WAITOK)
   1406 			return EWOULDBLOCK;
   1407 		so = sb->sb_so;
   1408 		lock = so->so_lock;
   1409 		if ((sb->sb_flags & SB_NOINTR) != 0) {
   1410 			cv_wait(&so->so_cv, lock);
   1411 			error = 0;
   1412 		} else
   1413 			error = cv_wait_sig(&so->so_cv, lock);
   1414 		if (__predict_false(lock != so->so_lock))
   1415 			solockretry(so, lock);
   1416 		if (error != 0)
   1417 			return error;
   1418 	}
   1419 }
   1420 
   1421 void
   1422 sbunlock(struct sockbuf *sb)
   1423 {
   1424 	struct socket *so;
   1425 
   1426 	so = sb->sb_so;
   1427 
   1428 	KASSERT(solocked(so));
   1429 	KASSERT((sb->sb_flags & SB_LOCK) != 0);
   1430 
   1431 	sb->sb_flags &= ~SB_LOCK;
   1432 	cv_broadcast(&so->so_cv);
   1433 }
   1434 
   1435 int
   1436 sowait(struct socket *so, bool catch, int timo)
   1437 {
   1438 	kmutex_t *lock;
   1439 	int error;
   1440 
   1441 	KASSERT(solocked(so));
   1442 	KASSERT(catch || timo != 0);
   1443 
   1444 	lock = so->so_lock;
   1445 	if (catch)
   1446 		error = cv_timedwait_sig(&so->so_cv, lock, timo);
   1447 	else
   1448 		error = cv_timedwait(&so->so_cv, lock, timo);
   1449 	if (__predict_false(lock != so->so_lock))
   1450 		solockretry(so, lock);
   1451 	return error;
   1452 }
   1453