uipc_socket2.c revision 1.91.2.3 1 /* $NetBSD: uipc_socket2.c,v 1.91.2.3 2009/08/19 18:48:17 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the University nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
58 */
59
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.91.2.3 2009/08/19 18:48:17 yamt Exp $");
62
63 #include "opt_mbuftrace.h"
64 #include "opt_sb_max.h"
65
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/proc.h>
69 #include <sys/file.h>
70 #include <sys/buf.h>
71 #include <sys/malloc.h>
72 #include <sys/mbuf.h>
73 #include <sys/protosw.h>
74 #include <sys/domain.h>
75 #include <sys/poll.h>
76 #include <sys/socket.h>
77 #include <sys/socketvar.h>
78 #include <sys/signalvar.h>
79 #include <sys/kauth.h>
80 #include <sys/pool.h>
81 #include <sys/uidinfo.h>
82
83 /*
84 * Primitive routines for operating on sockets and socket buffers.
85 *
86 * Locking rules and assumptions:
87 *
88 * o socket::so_lock can change on the fly. The low level routines used
89 * to lock sockets are aware of this. When so_lock is acquired, the
90 * routine locking must check to see if so_lock still points to the
91 * lock that was acquired. If so_lock has changed in the meantime, the
92 * now irellevant lock that was acquired must be dropped and the lock
93 * operation retried. Although not proven here, this is completely safe
94 * on a multiprocessor system, even with relaxed memory ordering, given
95 * the next two rules:
96 *
97 * o In order to mutate so_lock, the lock pointed to by the current value
98 * of so_lock must be held: i.e., the socket must be held locked by the
99 * changing thread. The thread must issue membar_exit() to prevent
100 * memory accesses being reordered, and can set so_lock to the desired
101 * value. If the lock pointed to by the new value of so_lock is not
102 * held by the changing thread, the socket must then be considered
103 * unlocked.
104 *
105 * o If so_lock is mutated, and the previous lock referred to by so_lock
106 * could still be visible to other threads in the system (e.g. via file
107 * descriptor or protocol-internal reference), then the old lock must
108 * remain valid until the socket and/or protocol control block has been
109 * torn down.
110 *
111 * o If a socket has a non-NULL so_head value (i.e. is in the process of
112 * connecting), then locking the socket must also lock the socket pointed
113 * to by so_head: their lock pointers must match.
114 *
115 * o If a socket has connections in progress (so_q, so_q0 not empty) then
116 * locking the socket must also lock the sockets attached to both queues.
117 * Again, their lock pointers must match.
118 *
119 * o Beyond the initial lock assigment in socreate(), assigning locks to
120 * sockets is the responsibility of the individual protocols / protocol
121 * domains.
122 */
123
124 static pool_cache_t socket_cache;
125
126 u_long sb_max = SB_MAX; /* maximum socket buffer size */
127 static u_long sb_max_adj; /* adjusted sb_max */
128
129 /*
130 * Procedures to manipulate state flags of socket
131 * and do appropriate wakeups. Normal sequence from the
132 * active (originating) side is that soisconnecting() is
133 * called during processing of connect() call,
134 * resulting in an eventual call to soisconnected() if/when the
135 * connection is established. When the connection is torn down
136 * soisdisconnecting() is called during processing of disconnect() call,
137 * and soisdisconnected() is called when the connection to the peer
138 * is totally severed. The semantics of these routines are such that
139 * connectionless protocols can call soisconnected() and soisdisconnected()
140 * only, bypassing the in-progress calls when setting up a ``connection''
141 * takes no time.
142 *
143 * From the passive side, a socket is created with
144 * two queues of sockets: so_q0 for connections in progress
145 * and so_q for connections already made and awaiting user acceptance.
146 * As a protocol is preparing incoming connections, it creates a socket
147 * structure queued on so_q0 by calling sonewconn(). When the connection
148 * is established, soisconnected() is called, and transfers the
149 * socket structure to so_q, making it available to accept().
150 *
151 * If a socket is closed with sockets on either
152 * so_q0 or so_q, these sockets are dropped.
153 *
154 * If higher level protocols are implemented in
155 * the kernel, the wakeups done here will sometimes
156 * cause software-interrupt process scheduling.
157 */
158
159 void
160 soisconnecting(struct socket *so)
161 {
162
163 KASSERT(solocked(so));
164
165 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
166 so->so_state |= SS_ISCONNECTING;
167 }
168
169 void
170 soisconnected(struct socket *so)
171 {
172 struct socket *head;
173
174 head = so->so_head;
175
176 KASSERT(solocked(so));
177 KASSERT(head == NULL || solocked2(so, head));
178
179 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
180 so->so_state |= SS_ISCONNECTED;
181 if (head && so->so_onq == &head->so_q0) {
182 if ((so->so_options & SO_ACCEPTFILTER) == 0) {
183 soqremque(so, 0);
184 soqinsque(head, so, 1);
185 sorwakeup(head);
186 cv_broadcast(&head->so_cv);
187 } else {
188 so->so_upcall =
189 head->so_accf->so_accept_filter->accf_callback;
190 so->so_upcallarg = head->so_accf->so_accept_filter_arg;
191 so->so_rcv.sb_flags |= SB_UPCALL;
192 so->so_options &= ~SO_ACCEPTFILTER;
193 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
194 }
195 } else {
196 cv_broadcast(&so->so_cv);
197 sorwakeup(so);
198 sowwakeup(so);
199 }
200 }
201
202 void
203 soisdisconnecting(struct socket *so)
204 {
205
206 KASSERT(solocked(so));
207
208 so->so_state &= ~SS_ISCONNECTING;
209 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
210 cv_broadcast(&so->so_cv);
211 sowwakeup(so);
212 sorwakeup(so);
213 }
214
215 void
216 soisdisconnected(struct socket *so)
217 {
218
219 KASSERT(solocked(so));
220
221 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
222 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
223 cv_broadcast(&so->so_cv);
224 sowwakeup(so);
225 sorwakeup(so);
226 }
227
228 void
229 soinit2(void)
230 {
231
232 socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
233 "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
234 }
235
236 /*
237 * When an attempt at a new connection is noted on a socket
238 * which accepts connections, sonewconn is called. If the
239 * connection is possible (subject to space constraints, etc.)
240 * then we allocate a new structure, propoerly linked into the
241 * data structure of the original socket, and return this.
242 * Connstatus may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
243 */
244 struct socket *
245 sonewconn(struct socket *head, int connstatus)
246 {
247 struct socket *so;
248 int soqueue, error;
249
250 KASSERT(connstatus == 0 || connstatus == SS_ISCONFIRMING ||
251 connstatus == SS_ISCONNECTED);
252 KASSERT(solocked(head));
253
254 if ((head->so_options & SO_ACCEPTFILTER) != 0)
255 connstatus = 0;
256 soqueue = connstatus ? 1 : 0;
257 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
258 return NULL;
259 so = soget(false);
260 if (so == NULL)
261 return NULL;
262 mutex_obj_hold(head->so_lock);
263 so->so_lock = head->so_lock;
264 so->so_type = head->so_type;
265 so->so_options = head->so_options &~ SO_ACCEPTCONN;
266 so->so_linger = head->so_linger;
267 so->so_state = head->so_state | SS_NOFDREF;
268 so->so_nbio = head->so_nbio;
269 so->so_proto = head->so_proto;
270 so->so_timeo = head->so_timeo;
271 so->so_pgid = head->so_pgid;
272 so->so_send = head->so_send;
273 so->so_receive = head->so_receive;
274 so->so_uidinfo = head->so_uidinfo;
275 so->so_egid = head->so_egid;
276 so->so_cpid = head->so_cpid;
277 #ifdef MBUFTRACE
278 so->so_mowner = head->so_mowner;
279 so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
280 so->so_snd.sb_mowner = head->so_snd.sb_mowner;
281 #endif
282 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) != 0)
283 goto out;
284 so->so_snd.sb_lowat = head->so_snd.sb_lowat;
285 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
286 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
287 so->so_snd.sb_timeo = head->so_snd.sb_timeo;
288 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
289 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
290 soqinsque(head, so, soqueue);
291 error = (*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL,
292 NULL, NULL);
293 KASSERT(solocked(so));
294 if (error != 0) {
295 (void) soqremque(so, soqueue);
296 out:
297 /*
298 * Remove acccept filter if one is present.
299 * XXX Is this really needed?
300 */
301 if (so->so_accf != NULL)
302 (void)accept_filt_clear(so);
303 soput(so);
304 return NULL;
305 }
306 if (connstatus) {
307 sorwakeup(head);
308 cv_broadcast(&head->so_cv);
309 so->so_state |= connstatus;
310 }
311 return so;
312 }
313
314 struct socket *
315 soget(bool waitok)
316 {
317 struct socket *so;
318
319 so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
320 if (__predict_false(so == NULL))
321 return (NULL);
322 memset(so, 0, sizeof(*so));
323 TAILQ_INIT(&so->so_q0);
324 TAILQ_INIT(&so->so_q);
325 cv_init(&so->so_cv, "socket");
326 cv_init(&so->so_rcv.sb_cv, "netio");
327 cv_init(&so->so_snd.sb_cv, "netio");
328 selinit(&so->so_rcv.sb_sel);
329 selinit(&so->so_snd.sb_sel);
330 so->so_rcv.sb_so = so;
331 so->so_snd.sb_so = so;
332 return so;
333 }
334
335 void
336 soput(struct socket *so)
337 {
338
339 KASSERT(!cv_has_waiters(&so->so_cv));
340 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
341 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
342 seldestroy(&so->so_rcv.sb_sel);
343 seldestroy(&so->so_snd.sb_sel);
344 mutex_obj_free(so->so_lock);
345 cv_destroy(&so->so_cv);
346 cv_destroy(&so->so_rcv.sb_cv);
347 cv_destroy(&so->so_snd.sb_cv);
348 pool_cache_put(socket_cache, so);
349 }
350
351 void
352 soqinsque(struct socket *head, struct socket *so, int q)
353 {
354
355 KASSERT(solocked2(head, so));
356
357 #ifdef DIAGNOSTIC
358 if (so->so_onq != NULL)
359 panic("soqinsque");
360 #endif
361
362 so->so_head = head;
363 if (q == 0) {
364 head->so_q0len++;
365 so->so_onq = &head->so_q0;
366 } else {
367 head->so_qlen++;
368 so->so_onq = &head->so_q;
369 }
370 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
371 }
372
373 int
374 soqremque(struct socket *so, int q)
375 {
376 struct socket *head;
377
378 head = so->so_head;
379
380 KASSERT(solocked(so));
381 if (q == 0) {
382 if (so->so_onq != &head->so_q0)
383 return (0);
384 head->so_q0len--;
385 } else {
386 if (so->so_onq != &head->so_q)
387 return (0);
388 head->so_qlen--;
389 }
390 KASSERT(solocked2(so, head));
391 TAILQ_REMOVE(so->so_onq, so, so_qe);
392 so->so_onq = NULL;
393 so->so_head = NULL;
394 return (1);
395 }
396
397 /*
398 * Socantsendmore indicates that no more data will be sent on the
399 * socket; it would normally be applied to a socket when the user
400 * informs the system that no more data is to be sent, by the protocol
401 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
402 * will be received, and will normally be applied to the socket by a
403 * protocol when it detects that the peer will send no more data.
404 * Data queued for reading in the socket may yet be read.
405 */
406
407 void
408 socantsendmore(struct socket *so)
409 {
410
411 KASSERT(solocked(so));
412
413 so->so_state |= SS_CANTSENDMORE;
414 sowwakeup(so);
415 }
416
417 void
418 socantrcvmore(struct socket *so)
419 {
420
421 KASSERT(solocked(so));
422
423 so->so_state |= SS_CANTRCVMORE;
424 sorwakeup(so);
425 }
426
427 /*
428 * Wait for data to arrive at/drain from a socket buffer.
429 */
430 int
431 sbwait(struct sockbuf *sb)
432 {
433 struct socket *so;
434 kmutex_t *lock;
435 int error;
436
437 so = sb->sb_so;
438
439 KASSERT(solocked(so));
440
441 sb->sb_flags |= SB_NOTIFY;
442 lock = so->so_lock;
443 if ((sb->sb_flags & SB_NOINTR) != 0)
444 error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
445 else
446 error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
447 if (__predict_false(lock != so->so_lock))
448 solockretry(so, lock);
449 return error;
450 }
451
452 /*
453 * Wakeup processes waiting on a socket buffer.
454 * Do asynchronous notification via SIGIO
455 * if the socket buffer has the SB_ASYNC flag set.
456 */
457 void
458 sowakeup(struct socket *so, struct sockbuf *sb, int code)
459 {
460 int band;
461
462 KASSERT(solocked(so));
463 KASSERT(sb->sb_so == so);
464
465 if (code == POLL_IN)
466 band = POLLIN|POLLRDNORM;
467 else
468 band = POLLOUT|POLLWRNORM;
469 sb->sb_flags &= ~SB_NOTIFY;
470 selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
471 cv_broadcast(&sb->sb_cv);
472 if (sb->sb_flags & SB_ASYNC)
473 fownsignal(so->so_pgid, SIGIO, code, band, so);
474 if (sb->sb_flags & SB_UPCALL)
475 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
476 }
477
478 /*
479 * Reset a socket's lock pointer. Wake all threads waiting on the
480 * socket's condition variables so that they can restart their waits
481 * using the new lock. The existing lock must be held.
482 */
483 void
484 solockreset(struct socket *so, kmutex_t *lock)
485 {
486
487 KASSERT(solocked(so));
488
489 so->so_lock = lock;
490 cv_broadcast(&so->so_snd.sb_cv);
491 cv_broadcast(&so->so_rcv.sb_cv);
492 cv_broadcast(&so->so_cv);
493 }
494
495 /*
496 * Socket buffer (struct sockbuf) utility routines.
497 *
498 * Each socket contains two socket buffers: one for sending data and
499 * one for receiving data. Each buffer contains a queue of mbufs,
500 * information about the number of mbufs and amount of data in the
501 * queue, and other fields allowing poll() statements and notification
502 * on data availability to be implemented.
503 *
504 * Data stored in a socket buffer is maintained as a list of records.
505 * Each record is a list of mbufs chained together with the m_next
506 * field. Records are chained together with the m_nextpkt field. The upper
507 * level routine soreceive() expects the following conventions to be
508 * observed when placing information in the receive buffer:
509 *
510 * 1. If the protocol requires each message be preceded by the sender's
511 * name, then a record containing that name must be present before
512 * any associated data (mbuf's must be of type MT_SONAME).
513 * 2. If the protocol supports the exchange of ``access rights'' (really
514 * just additional data associated with the message), and there are
515 * ``rights'' to be received, then a record containing this data
516 * should be present (mbuf's must be of type MT_CONTROL).
517 * 3. If a name or rights record exists, then it must be followed by
518 * a data record, perhaps of zero length.
519 *
520 * Before using a new socket structure it is first necessary to reserve
521 * buffer space to the socket, by calling sbreserve(). This should commit
522 * some of the available buffer space in the system buffer pool for the
523 * socket (currently, it does nothing but enforce limits). The space
524 * should be released by calling sbrelease() when the socket is destroyed.
525 */
526
527 int
528 sb_max_set(u_long new_sbmax)
529 {
530 int s;
531
532 if (new_sbmax < (16 * 1024))
533 return (EINVAL);
534
535 s = splsoftnet();
536 sb_max = new_sbmax;
537 sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
538 splx(s);
539
540 return (0);
541 }
542
543 int
544 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
545 {
546
547 KASSERT(so->so_lock == NULL || solocked(so));
548
549 /*
550 * there's at least one application (a configure script of screen)
551 * which expects a fifo is writable even if it has "some" bytes
552 * in its buffer.
553 * so we want to make sure (hiwat - lowat) >= (some bytes).
554 *
555 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
556 * we expect it's large enough for such applications.
557 */
558 u_long lowat = MAX(sock_loan_thresh, MCLBYTES);
559 u_long hiwat = lowat + PIPE_BUF;
560
561 if (sndcc < hiwat)
562 sndcc = hiwat;
563 if (sbreserve(&so->so_snd, sndcc, so) == 0)
564 goto bad;
565 if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
566 goto bad2;
567 if (so->so_rcv.sb_lowat == 0)
568 so->so_rcv.sb_lowat = 1;
569 if (so->so_snd.sb_lowat == 0)
570 so->so_snd.sb_lowat = lowat;
571 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
572 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
573 return (0);
574 bad2:
575 sbrelease(&so->so_snd, so);
576 bad:
577 return (ENOBUFS);
578 }
579
580 /*
581 * Allot mbufs to a sockbuf.
582 * Attempt to scale mbmax so that mbcnt doesn't become limiting
583 * if buffering efficiency is near the normal case.
584 */
585 int
586 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
587 {
588 struct lwp *l = curlwp; /* XXX */
589 rlim_t maxcc;
590 struct uidinfo *uidinfo;
591
592 KASSERT(so->so_lock == NULL || solocked(so));
593 KASSERT(sb->sb_so == so);
594 KASSERT(sb_max_adj != 0);
595
596 if (cc == 0 || cc > sb_max_adj)
597 return (0);
598
599 if (kauth_cred_geteuid(l->l_cred) == so->so_uidinfo->ui_uid)
600 maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
601 else
602 maxcc = RLIM_INFINITY;
603
604 uidinfo = so->so_uidinfo;
605 if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
606 return 0;
607 sb->sb_mbmax = min(cc * 2, sb_max);
608 if (sb->sb_lowat > sb->sb_hiwat)
609 sb->sb_lowat = sb->sb_hiwat;
610 return (1);
611 }
612
613 /*
614 * Free mbufs held by a socket, and reserved mbuf space. We do not assert
615 * that the socket is held locked here: see sorflush().
616 */
617 void
618 sbrelease(struct sockbuf *sb, struct socket *so)
619 {
620
621 KASSERT(sb->sb_so == so);
622
623 sbflush(sb);
624 (void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
625 sb->sb_mbmax = 0;
626 }
627
628 /*
629 * Routines to add and remove
630 * data from an mbuf queue.
631 *
632 * The routines sbappend() or sbappendrecord() are normally called to
633 * append new mbufs to a socket buffer, after checking that adequate
634 * space is available, comparing the function sbspace() with the amount
635 * of data to be added. sbappendrecord() differs from sbappend() in
636 * that data supplied is treated as the beginning of a new record.
637 * To place a sender's address, optional access rights, and data in a
638 * socket receive buffer, sbappendaddr() should be used. To place
639 * access rights and data in a socket receive buffer, sbappendrights()
640 * should be used. In either case, the new data begins a new record.
641 * Note that unlike sbappend() and sbappendrecord(), these routines check
642 * for the caller that there will be enough space to store the data.
643 * Each fails if there is not enough space, or if it cannot find mbufs
644 * to store additional information in.
645 *
646 * Reliable protocols may use the socket send buffer to hold data
647 * awaiting acknowledgement. Data is normally copied from a socket
648 * send buffer in a protocol with m_copy for output to a peer,
649 * and then removing the data from the socket buffer with sbdrop()
650 * or sbdroprecord() when the data is acknowledged by the peer.
651 */
652
653 #ifdef SOCKBUF_DEBUG
654 void
655 sblastrecordchk(struct sockbuf *sb, const char *where)
656 {
657 struct mbuf *m = sb->sb_mb;
658
659 KASSERT(solocked(sb->sb_so));
660
661 while (m && m->m_nextpkt)
662 m = m->m_nextpkt;
663
664 if (m != sb->sb_lastrecord) {
665 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
666 sb->sb_mb, sb->sb_lastrecord, m);
667 printf("packet chain:\n");
668 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
669 printf("\t%p\n", m);
670 panic("sblastrecordchk from %s", where);
671 }
672 }
673
674 void
675 sblastmbufchk(struct sockbuf *sb, const char *where)
676 {
677 struct mbuf *m = sb->sb_mb;
678 struct mbuf *n;
679
680 KASSERT(solocked(sb->sb_so));
681
682 while (m && m->m_nextpkt)
683 m = m->m_nextpkt;
684
685 while (m && m->m_next)
686 m = m->m_next;
687
688 if (m != sb->sb_mbtail) {
689 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
690 sb->sb_mb, sb->sb_mbtail, m);
691 printf("packet tree:\n");
692 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
693 printf("\t");
694 for (n = m; n != NULL; n = n->m_next)
695 printf("%p ", n);
696 printf("\n");
697 }
698 panic("sblastmbufchk from %s", where);
699 }
700 }
701 #endif /* SOCKBUF_DEBUG */
702
703 /*
704 * Link a chain of records onto a socket buffer
705 */
706 #define SBLINKRECORDCHAIN(sb, m0, mlast) \
707 do { \
708 if ((sb)->sb_lastrecord != NULL) \
709 (sb)->sb_lastrecord->m_nextpkt = (m0); \
710 else \
711 (sb)->sb_mb = (m0); \
712 (sb)->sb_lastrecord = (mlast); \
713 } while (/*CONSTCOND*/0)
714
715
716 #define SBLINKRECORD(sb, m0) \
717 SBLINKRECORDCHAIN(sb, m0, m0)
718
719 /*
720 * Append mbuf chain m to the last record in the
721 * socket buffer sb. The additional space associated
722 * the mbuf chain is recorded in sb. Empty mbufs are
723 * discarded and mbufs are compacted where possible.
724 */
725 void
726 sbappend(struct sockbuf *sb, struct mbuf *m)
727 {
728 struct mbuf *n;
729
730 KASSERT(solocked(sb->sb_so));
731
732 if (m == 0)
733 return;
734
735 #ifdef MBUFTRACE
736 m_claimm(m, sb->sb_mowner);
737 #endif
738
739 SBLASTRECORDCHK(sb, "sbappend 1");
740
741 if ((n = sb->sb_lastrecord) != NULL) {
742 /*
743 * XXX Would like to simply use sb_mbtail here, but
744 * XXX I need to verify that I won't miss an EOR that
745 * XXX way.
746 */
747 do {
748 if (n->m_flags & M_EOR) {
749 sbappendrecord(sb, m); /* XXXXXX!!!! */
750 return;
751 }
752 } while (n->m_next && (n = n->m_next));
753 } else {
754 /*
755 * If this is the first record in the socket buffer, it's
756 * also the last record.
757 */
758 sb->sb_lastrecord = m;
759 }
760 sbcompress(sb, m, n);
761 SBLASTRECORDCHK(sb, "sbappend 2");
762 }
763
764 /*
765 * This version of sbappend() should only be used when the caller
766 * absolutely knows that there will never be more than one record
767 * in the socket buffer, that is, a stream protocol (such as TCP).
768 */
769 void
770 sbappendstream(struct sockbuf *sb, struct mbuf *m)
771 {
772
773 KASSERT(solocked(sb->sb_so));
774 KDASSERT(m->m_nextpkt == NULL);
775 KASSERT(sb->sb_mb == sb->sb_lastrecord);
776
777 SBLASTMBUFCHK(sb, __func__);
778
779 #ifdef MBUFTRACE
780 m_claimm(m, sb->sb_mowner);
781 #endif
782
783 sbcompress(sb, m, sb->sb_mbtail);
784
785 sb->sb_lastrecord = sb->sb_mb;
786 SBLASTRECORDCHK(sb, __func__);
787 }
788
789 #ifdef SOCKBUF_DEBUG
790 void
791 sbcheck(struct sockbuf *sb)
792 {
793 struct mbuf *m, *m2;
794 u_long len, mbcnt;
795
796 KASSERT(solocked(sb->sb_so));
797
798 len = 0;
799 mbcnt = 0;
800 for (m = sb->sb_mb; m; m = m->m_nextpkt) {
801 for (m2 = m; m2 != NULL; m2 = m2->m_next) {
802 len += m2->m_len;
803 mbcnt += MSIZE;
804 if (m2->m_flags & M_EXT)
805 mbcnt += m2->m_ext.ext_size;
806 if (m2->m_nextpkt != NULL)
807 panic("sbcheck nextpkt");
808 }
809 }
810 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
811 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
812 mbcnt, sb->sb_mbcnt);
813 panic("sbcheck");
814 }
815 }
816 #endif
817
818 /*
819 * As above, except the mbuf chain
820 * begins a new record.
821 */
822 void
823 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
824 {
825 struct mbuf *m;
826
827 KASSERT(solocked(sb->sb_so));
828
829 if (m0 == 0)
830 return;
831
832 #ifdef MBUFTRACE
833 m_claimm(m0, sb->sb_mowner);
834 #endif
835 /*
836 * Put the first mbuf on the queue.
837 * Note this permits zero length records.
838 */
839 sballoc(sb, m0);
840 SBLASTRECORDCHK(sb, "sbappendrecord 1");
841 SBLINKRECORD(sb, m0);
842 m = m0->m_next;
843 m0->m_next = 0;
844 if (m && (m0->m_flags & M_EOR)) {
845 m0->m_flags &= ~M_EOR;
846 m->m_flags |= M_EOR;
847 }
848 sbcompress(sb, m, m0);
849 SBLASTRECORDCHK(sb, "sbappendrecord 2");
850 }
851
852 /*
853 * As above except that OOB data
854 * is inserted at the beginning of the sockbuf,
855 * but after any other OOB data.
856 */
857 void
858 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
859 {
860 struct mbuf *m, **mp;
861
862 KASSERT(solocked(sb->sb_so));
863
864 if (m0 == 0)
865 return;
866
867 SBLASTRECORDCHK(sb, "sbinsertoob 1");
868
869 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
870 again:
871 switch (m->m_type) {
872
873 case MT_OOBDATA:
874 continue; /* WANT next train */
875
876 case MT_CONTROL:
877 if ((m = m->m_next) != NULL)
878 goto again; /* inspect THIS train further */
879 }
880 break;
881 }
882 /*
883 * Put the first mbuf on the queue.
884 * Note this permits zero length records.
885 */
886 sballoc(sb, m0);
887 m0->m_nextpkt = *mp;
888 if (*mp == NULL) {
889 /* m0 is actually the new tail */
890 sb->sb_lastrecord = m0;
891 }
892 *mp = m0;
893 m = m0->m_next;
894 m0->m_next = 0;
895 if (m && (m0->m_flags & M_EOR)) {
896 m0->m_flags &= ~M_EOR;
897 m->m_flags |= M_EOR;
898 }
899 sbcompress(sb, m, m0);
900 SBLASTRECORDCHK(sb, "sbinsertoob 2");
901 }
902
903 /*
904 * Append address and data, and optionally, control (ancillary) data
905 * to the receive queue of a socket. If present,
906 * m0 must include a packet header with total length.
907 * Returns 0 if no space in sockbuf or insufficient mbufs.
908 */
909 int
910 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
911 struct mbuf *control)
912 {
913 struct mbuf *m, *n, *nlast;
914 int space, len;
915
916 KASSERT(solocked(sb->sb_so));
917
918 space = asa->sa_len;
919
920 if (m0 != NULL) {
921 if ((m0->m_flags & M_PKTHDR) == 0)
922 panic("sbappendaddr");
923 space += m0->m_pkthdr.len;
924 #ifdef MBUFTRACE
925 m_claimm(m0, sb->sb_mowner);
926 #endif
927 }
928 for (n = control; n; n = n->m_next) {
929 space += n->m_len;
930 MCLAIM(n, sb->sb_mowner);
931 if (n->m_next == 0) /* keep pointer to last control buf */
932 break;
933 }
934 if (space > sbspace(sb))
935 return (0);
936 MGET(m, M_DONTWAIT, MT_SONAME);
937 if (m == 0)
938 return (0);
939 MCLAIM(m, sb->sb_mowner);
940 /*
941 * XXX avoid 'comparison always true' warning which isn't easily
942 * avoided.
943 */
944 len = asa->sa_len;
945 if (len > MLEN) {
946 MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
947 if ((m->m_flags & M_EXT) == 0) {
948 m_free(m);
949 return (0);
950 }
951 }
952 m->m_len = asa->sa_len;
953 memcpy(mtod(m, void *), asa, asa->sa_len);
954 if (n)
955 n->m_next = m0; /* concatenate data to control */
956 else
957 control = m0;
958 m->m_next = control;
959
960 SBLASTRECORDCHK(sb, "sbappendaddr 1");
961
962 for (n = m; n->m_next != NULL; n = n->m_next)
963 sballoc(sb, n);
964 sballoc(sb, n);
965 nlast = n;
966 SBLINKRECORD(sb, m);
967
968 sb->sb_mbtail = nlast;
969 SBLASTMBUFCHK(sb, "sbappendaddr");
970 SBLASTRECORDCHK(sb, "sbappendaddr 2");
971
972 return (1);
973 }
974
975 /*
976 * Helper for sbappendchainaddr: prepend a struct sockaddr* to
977 * an mbuf chain.
978 */
979 static inline struct mbuf *
980 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
981 const struct sockaddr *asa)
982 {
983 struct mbuf *m;
984 const int salen = asa->sa_len;
985
986 KASSERT(solocked(sb->sb_so));
987
988 /* only the first in each chain need be a pkthdr */
989 MGETHDR(m, M_DONTWAIT, MT_SONAME);
990 if (m == 0)
991 return (0);
992 MCLAIM(m, sb->sb_mowner);
993 #ifdef notyet
994 if (salen > MHLEN) {
995 MEXTMALLOC(m, salen, M_NOWAIT);
996 if ((m->m_flags & M_EXT) == 0) {
997 m_free(m);
998 return (0);
999 }
1000 }
1001 #else
1002 KASSERT(salen <= MHLEN);
1003 #endif
1004 m->m_len = salen;
1005 memcpy(mtod(m, void *), asa, salen);
1006 m->m_next = m0;
1007 m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1008
1009 return m;
1010 }
1011
1012 int
1013 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1014 struct mbuf *m0, int sbprio)
1015 {
1016 int space;
1017 struct mbuf *m, *n, *n0, *nlast;
1018 int error;
1019
1020 KASSERT(solocked(sb->sb_so));
1021
1022 /*
1023 * XXX sbprio reserved for encoding priority of this* request:
1024 * SB_PRIO_NONE --> honour normal sb limits
1025 * SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1026 * take whole chain. Intended for large requests
1027 * that should be delivered atomically (all, or none).
1028 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1029 * over normal socket limits, for messages indicating
1030 * buffer overflow in earlier normal/lower-priority messages
1031 * SB_PRIO_BESTEFFORT --> ignore limits entirely.
1032 * Intended for kernel-generated messages only.
1033 * Up to generator to avoid total mbuf resource exhaustion.
1034 */
1035 (void)sbprio;
1036
1037 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1038 panic("sbappendaddrchain");
1039
1040 space = sbspace(sb);
1041
1042 #ifdef notyet
1043 /*
1044 * Enforce SB_PRIO_* limits as described above.
1045 */
1046 #endif
1047
1048 n0 = NULL;
1049 nlast = NULL;
1050 for (m = m0; m; m = m->m_nextpkt) {
1051 struct mbuf *np;
1052
1053 #ifdef MBUFTRACE
1054 m_claimm(m, sb->sb_mowner);
1055 #endif
1056
1057 /* Prepend sockaddr to this record (m) of input chain m0 */
1058 n = m_prepend_sockaddr(sb, m, asa);
1059 if (n == NULL) {
1060 error = ENOBUFS;
1061 goto bad;
1062 }
1063
1064 /* Append record (asa+m) to end of new chain n0 */
1065 if (n0 == NULL) {
1066 n0 = n;
1067 } else {
1068 nlast->m_nextpkt = n;
1069 }
1070 /* Keep track of last record on new chain */
1071 nlast = n;
1072
1073 for (np = n; np; np = np->m_next)
1074 sballoc(sb, np);
1075 }
1076
1077 SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1078
1079 /* Drop the entire chain of (asa+m) records onto the socket */
1080 SBLINKRECORDCHAIN(sb, n0, nlast);
1081
1082 SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1083
1084 for (m = nlast; m->m_next; m = m->m_next)
1085 ;
1086 sb->sb_mbtail = m;
1087 SBLASTMBUFCHK(sb, "sbappendaddrchain");
1088
1089 return (1);
1090
1091 bad:
1092 /*
1093 * On error, free the prepended addreseses. For consistency
1094 * with sbappendaddr(), leave it to our caller to free
1095 * the input record chain passed to us as m0.
1096 */
1097 while ((n = n0) != NULL) {
1098 struct mbuf *np;
1099
1100 /* Undo the sballoc() of this record */
1101 for (np = n; np; np = np->m_next)
1102 sbfree(sb, np);
1103
1104 n0 = n->m_nextpkt; /* iterate at next prepended address */
1105 MFREE(n, np); /* free prepended address (not data) */
1106 }
1107 return 0;
1108 }
1109
1110
1111 int
1112 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1113 {
1114 struct mbuf *m, *mlast, *n;
1115 int space;
1116
1117 KASSERT(solocked(sb->sb_so));
1118
1119 space = 0;
1120 if (control == 0)
1121 panic("sbappendcontrol");
1122 for (m = control; ; m = m->m_next) {
1123 space += m->m_len;
1124 MCLAIM(m, sb->sb_mowner);
1125 if (m->m_next == 0)
1126 break;
1127 }
1128 n = m; /* save pointer to last control buffer */
1129 for (m = m0; m; m = m->m_next) {
1130 MCLAIM(m, sb->sb_mowner);
1131 space += m->m_len;
1132 }
1133 if (space > sbspace(sb))
1134 return (0);
1135 n->m_next = m0; /* concatenate data to control */
1136
1137 SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1138
1139 for (m = control; m->m_next != NULL; m = m->m_next)
1140 sballoc(sb, m);
1141 sballoc(sb, m);
1142 mlast = m;
1143 SBLINKRECORD(sb, control);
1144
1145 sb->sb_mbtail = mlast;
1146 SBLASTMBUFCHK(sb, "sbappendcontrol");
1147 SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1148
1149 return (1);
1150 }
1151
1152 /*
1153 * Compress mbuf chain m into the socket
1154 * buffer sb following mbuf n. If n
1155 * is null, the buffer is presumed empty.
1156 */
1157 void
1158 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1159 {
1160 int eor;
1161 struct mbuf *o;
1162
1163 KASSERT(solocked(sb->sb_so));
1164
1165 eor = 0;
1166 while (m) {
1167 eor |= m->m_flags & M_EOR;
1168 if (m->m_len == 0 &&
1169 (eor == 0 ||
1170 (((o = m->m_next) || (o = n)) &&
1171 o->m_type == m->m_type))) {
1172 if (sb->sb_lastrecord == m)
1173 sb->sb_lastrecord = m->m_next;
1174 m = m_free(m);
1175 continue;
1176 }
1177 if (n && (n->m_flags & M_EOR) == 0 &&
1178 /* M_TRAILINGSPACE() checks buffer writeability */
1179 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1180 m->m_len <= M_TRAILINGSPACE(n) &&
1181 n->m_type == m->m_type) {
1182 memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1183 (unsigned)m->m_len);
1184 n->m_len += m->m_len;
1185 sb->sb_cc += m->m_len;
1186 m = m_free(m);
1187 continue;
1188 }
1189 if (n)
1190 n->m_next = m;
1191 else
1192 sb->sb_mb = m;
1193 sb->sb_mbtail = m;
1194 sballoc(sb, m);
1195 n = m;
1196 m->m_flags &= ~M_EOR;
1197 m = m->m_next;
1198 n->m_next = 0;
1199 }
1200 if (eor) {
1201 if (n)
1202 n->m_flags |= eor;
1203 else
1204 printf("semi-panic: sbcompress\n");
1205 }
1206 SBLASTMBUFCHK(sb, __func__);
1207 }
1208
1209 /*
1210 * Free all mbufs in a sockbuf.
1211 * Check that all resources are reclaimed.
1212 */
1213 void
1214 sbflush(struct sockbuf *sb)
1215 {
1216
1217 KASSERT(solocked(sb->sb_so));
1218 KASSERT((sb->sb_flags & SB_LOCK) == 0);
1219
1220 while (sb->sb_mbcnt)
1221 sbdrop(sb, (int)sb->sb_cc);
1222
1223 KASSERT(sb->sb_cc == 0);
1224 KASSERT(sb->sb_mb == NULL);
1225 KASSERT(sb->sb_mbtail == NULL);
1226 KASSERT(sb->sb_lastrecord == NULL);
1227 }
1228
1229 /*
1230 * Drop data from (the front of) a sockbuf.
1231 */
1232 void
1233 sbdrop(struct sockbuf *sb, int len)
1234 {
1235 struct mbuf *m, *mn, *next;
1236
1237 KASSERT(solocked(sb->sb_so));
1238
1239 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1240 while (len > 0) {
1241 if (m == 0) {
1242 if (next == 0)
1243 panic("sbdrop");
1244 m = next;
1245 next = m->m_nextpkt;
1246 continue;
1247 }
1248 if (m->m_len > len) {
1249 m->m_len -= len;
1250 m->m_data += len;
1251 sb->sb_cc -= len;
1252 break;
1253 }
1254 len -= m->m_len;
1255 sbfree(sb, m);
1256 MFREE(m, mn);
1257 m = mn;
1258 }
1259 while (m && m->m_len == 0) {
1260 sbfree(sb, m);
1261 MFREE(m, mn);
1262 m = mn;
1263 }
1264 if (m) {
1265 sb->sb_mb = m;
1266 m->m_nextpkt = next;
1267 } else
1268 sb->sb_mb = next;
1269 /*
1270 * First part is an inline SB_EMPTY_FIXUP(). Second part
1271 * makes sure sb_lastrecord is up-to-date if we dropped
1272 * part of the last record.
1273 */
1274 m = sb->sb_mb;
1275 if (m == NULL) {
1276 sb->sb_mbtail = NULL;
1277 sb->sb_lastrecord = NULL;
1278 } else if (m->m_nextpkt == NULL)
1279 sb->sb_lastrecord = m;
1280 }
1281
1282 /*
1283 * Drop a record off the front of a sockbuf
1284 * and move the next record to the front.
1285 */
1286 void
1287 sbdroprecord(struct sockbuf *sb)
1288 {
1289 struct mbuf *m, *mn;
1290
1291 KASSERT(solocked(sb->sb_so));
1292
1293 m = sb->sb_mb;
1294 if (m) {
1295 sb->sb_mb = m->m_nextpkt;
1296 do {
1297 sbfree(sb, m);
1298 MFREE(m, mn);
1299 } while ((m = mn) != NULL);
1300 }
1301 SB_EMPTY_FIXUP(sb);
1302 }
1303
1304 /*
1305 * Create a "control" mbuf containing the specified data
1306 * with the specified type for presentation on a socket buffer.
1307 */
1308 struct mbuf *
1309 sbcreatecontrol(void *p, int size, int type, int level)
1310 {
1311 struct cmsghdr *cp;
1312 struct mbuf *m;
1313
1314 if (CMSG_SPACE(size) > MCLBYTES) {
1315 printf("sbcreatecontrol: message too large %d\n", size);
1316 return NULL;
1317 }
1318
1319 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
1320 return ((struct mbuf *) NULL);
1321 if (CMSG_SPACE(size) > MLEN) {
1322 MCLGET(m, M_DONTWAIT);
1323 if ((m->m_flags & M_EXT) == 0) {
1324 m_free(m);
1325 return NULL;
1326 }
1327 }
1328 cp = mtod(m, struct cmsghdr *);
1329 memcpy(CMSG_DATA(cp), p, size);
1330 m->m_len = CMSG_SPACE(size);
1331 cp->cmsg_len = CMSG_LEN(size);
1332 cp->cmsg_level = level;
1333 cp->cmsg_type = type;
1334 return (m);
1335 }
1336
1337 void
1338 solockretry(struct socket *so, kmutex_t *lock)
1339 {
1340
1341 while (lock != so->so_lock) {
1342 mutex_exit(lock);
1343 lock = so->so_lock;
1344 mutex_enter(lock);
1345 }
1346 }
1347
1348 bool
1349 solocked(struct socket *so)
1350 {
1351
1352 return mutex_owned(so->so_lock);
1353 }
1354
1355 bool
1356 solocked2(struct socket *so1, struct socket *so2)
1357 {
1358 kmutex_t *lock;
1359
1360 lock = so1->so_lock;
1361 if (lock != so2->so_lock)
1362 return false;
1363 return mutex_owned(lock);
1364 }
1365
1366 /*
1367 * Assign a default lock to a new socket. For PRU_ATTACH, and done by
1368 * protocols that do not have special locking requirements.
1369 */
1370 void
1371 sosetlock(struct socket *so)
1372 {
1373 kmutex_t *lock;
1374
1375 if (so->so_lock == NULL) {
1376 lock = softnet_lock;
1377 so->so_lock = lock;
1378 mutex_obj_hold(lock);
1379 mutex_enter(lock);
1380 }
1381
1382 /* In all cases, lock must be held on return from PRU_ATTACH. */
1383 KASSERT(solocked(so));
1384 }
1385
1386 /*
1387 * Set lock on sockbuf sb; sleep if lock is already held.
1388 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1389 * Returns error without lock if sleep is interrupted.
1390 */
1391 int
1392 sblock(struct sockbuf *sb, int wf)
1393 {
1394 struct socket *so;
1395 kmutex_t *lock;
1396 int error;
1397
1398 KASSERT(solocked(sb->sb_so));
1399
1400 for (;;) {
1401 if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1402 sb->sb_flags |= SB_LOCK;
1403 return 0;
1404 }
1405 if (wf != M_WAITOK)
1406 return EWOULDBLOCK;
1407 so = sb->sb_so;
1408 lock = so->so_lock;
1409 if ((sb->sb_flags & SB_NOINTR) != 0) {
1410 cv_wait(&so->so_cv, lock);
1411 error = 0;
1412 } else
1413 error = cv_wait_sig(&so->so_cv, lock);
1414 if (__predict_false(lock != so->so_lock))
1415 solockretry(so, lock);
1416 if (error != 0)
1417 return error;
1418 }
1419 }
1420
1421 void
1422 sbunlock(struct sockbuf *sb)
1423 {
1424 struct socket *so;
1425
1426 so = sb->sb_so;
1427
1428 KASSERT(solocked(so));
1429 KASSERT((sb->sb_flags & SB_LOCK) != 0);
1430
1431 sb->sb_flags &= ~SB_LOCK;
1432 cv_broadcast(&so->so_cv);
1433 }
1434
1435 int
1436 sowait(struct socket *so, bool catch, int timo)
1437 {
1438 kmutex_t *lock;
1439 int error;
1440
1441 KASSERT(solocked(so));
1442 KASSERT(catch || timo != 0);
1443
1444 lock = so->so_lock;
1445 if (catch)
1446 error = cv_timedwait_sig(&so->so_cv, lock, timo);
1447 else
1448 error = cv_timedwait(&so->so_cv, lock, timo);
1449 if (__predict_false(lock != so->so_lock))
1450 solockretry(so, lock);
1451 return error;
1452 }
1453