uipc_socket2.c revision 1.92.2.1 1 /* $NetBSD: uipc_socket2.c,v 1.92.2.1 2008/06/23 04:31:52 wrstuden Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the University nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
58 */
59
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.92.2.1 2008/06/23 04:31:52 wrstuden Exp $");
62
63 #include "opt_mbuftrace.h"
64 #include "opt_sb_max.h"
65
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/proc.h>
69 #include <sys/file.h>
70 #include <sys/buf.h>
71 #include <sys/malloc.h>
72 #include <sys/mbuf.h>
73 #include <sys/protosw.h>
74 #include <sys/domain.h>
75 #include <sys/poll.h>
76 #include <sys/socket.h>
77 #include <sys/socketvar.h>
78 #include <sys/signalvar.h>
79 #include <sys/kauth.h>
80 #include <sys/pool.h>
81
82 /*
83 * Primitive routines for operating on sockets and socket buffers.
84 *
85 * Locking rules and assumptions:
86 *
87 * o socket::so_lock can change on the fly. The low level routines used
88 * to lock sockets are aware of this. When so_lock is acquired, the
89 * routine locking must check to see if so_lock still points to the
90 * lock that was acquired. If so_lock has changed in the meantime, the
91 * now irellevant lock that was acquired must be dropped and the lock
92 * operation retried. Although not proven here, this is completely safe
93 * on a multiprocessor system, even with relaxed memory ordering, given
94 * the next two rules:
95 *
96 * o In order to mutate so_lock, the lock pointed to by the current value
97 * of so_lock must be held: i.e., the socket must be held locked by the
98 * changing thread. The thread must issue membar_exit() to prevent
99 * memory accesses being reordered, and can set so_lock to the desired
100 * value. If the lock pointed to by the new value of so_lock is not
101 * held by the changing thread, the socket must then be considered
102 * unlocked.
103 *
104 * o If so_lock is mutated, and the previous lock referred to by so_lock
105 * could still be visible to other threads in the system (e.g. via file
106 * descriptor or protocol-internal reference), then the old lock must
107 * remain valid until the socket and/or protocol control block has been
108 * torn down.
109 *
110 * o If a socket has a non-NULL so_head value (i.e. is in the process of
111 * connecting), then locking the socket must also lock the socket pointed
112 * to by so_head: their lock pointers must match.
113 *
114 * o If a socket has connections in progress (so_q, so_q0 not empty) then
115 * locking the socket must also lock the sockets attached to both queues.
116 * Again, their lock pointers must match.
117 *
118 * o Beyond the initial lock assigment in socreate(), assigning locks to
119 * sockets is the responsibility of the individual protocols / protocol
120 * domains.
121 */
122
123 static pool_cache_t socket_cache;
124
125 u_long sb_max = SB_MAX; /* maximum socket buffer size */
126 static u_long sb_max_adj; /* adjusted sb_max */
127
128 /*
129 * Procedures to manipulate state flags of socket
130 * and do appropriate wakeups. Normal sequence from the
131 * active (originating) side is that soisconnecting() is
132 * called during processing of connect() call,
133 * resulting in an eventual call to soisconnected() if/when the
134 * connection is established. When the connection is torn down
135 * soisdisconnecting() is called during processing of disconnect() call,
136 * and soisdisconnected() is called when the connection to the peer
137 * is totally severed. The semantics of these routines are such that
138 * connectionless protocols can call soisconnected() and soisdisconnected()
139 * only, bypassing the in-progress calls when setting up a ``connection''
140 * takes no time.
141 *
142 * From the passive side, a socket is created with
143 * two queues of sockets: so_q0 for connections in progress
144 * and so_q for connections already made and awaiting user acceptance.
145 * As a protocol is preparing incoming connections, it creates a socket
146 * structure queued on so_q0 by calling sonewconn(). When the connection
147 * is established, soisconnected() is called, and transfers the
148 * socket structure to so_q, making it available to accept().
149 *
150 * If a socket is closed with sockets on either
151 * so_q0 or so_q, these sockets are dropped.
152 *
153 * If higher level protocols are implemented in
154 * the kernel, the wakeups done here will sometimes
155 * cause software-interrupt process scheduling.
156 */
157
158 void
159 soisconnecting(struct socket *so)
160 {
161
162 KASSERT(solocked(so));
163
164 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
165 so->so_state |= SS_ISCONNECTING;
166 }
167
168 void
169 soisconnected(struct socket *so)
170 {
171 struct socket *head;
172
173 head = so->so_head;
174
175 KASSERT(solocked(so));
176 KASSERT(head == NULL || solocked2(so, head));
177
178 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
179 so->so_state |= SS_ISCONNECTED;
180 if (head && soqremque(so, 0)) {
181 soqinsque(head, so, 1);
182 sorwakeup(head);
183 cv_broadcast(&head->so_cv);
184 } else {
185 cv_broadcast(&so->so_cv);
186 sorwakeup(so);
187 sowwakeup(so);
188 }
189 }
190
191 void
192 soisdisconnecting(struct socket *so)
193 {
194
195 KASSERT(solocked(so));
196
197 so->so_state &= ~SS_ISCONNECTING;
198 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
199 cv_broadcast(&so->so_cv);
200 sowwakeup(so);
201 sorwakeup(so);
202 }
203
204 void
205 soisdisconnected(struct socket *so)
206 {
207
208 KASSERT(solocked(so));
209
210 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
211 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
212 cv_broadcast(&so->so_cv);
213 sowwakeup(so);
214 sorwakeup(so);
215 }
216
217 void
218 soinit2(void)
219 {
220
221 socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
222 "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
223 }
224
225 /*
226 * When an attempt at a new connection is noted on a socket
227 * which accepts connections, sonewconn is called. If the
228 * connection is possible (subject to space constraints, etc.)
229 * then we allocate a new structure, propoerly linked into the
230 * data structure of the original socket, and return this.
231 * Connstatus may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
232 */
233 struct socket *
234 sonewconn(struct socket *head, int connstatus)
235 {
236 struct socket *so;
237 int soqueue, error;
238
239 KASSERT(solocked(head));
240
241 soqueue = connstatus ? 1 : 0;
242 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
243 return ((struct socket *)0);
244 so = soget(false);
245 if (so == NULL)
246 return (NULL);
247 mutex_obj_hold(head->so_lock);
248 so->so_lock = head->so_lock;
249 so->so_type = head->so_type;
250 so->so_options = head->so_options &~ SO_ACCEPTCONN;
251 so->so_linger = head->so_linger;
252 so->so_state = head->so_state | SS_NOFDREF;
253 so->so_nbio = head->so_nbio;
254 so->so_proto = head->so_proto;
255 so->so_timeo = head->so_timeo;
256 so->so_pgid = head->so_pgid;
257 so->so_send = head->so_send;
258 so->so_receive = head->so_receive;
259 so->so_uidinfo = head->so_uidinfo;
260 so->so_egid = head->so_egid;
261 so->so_cpid = head->so_cpid;
262 #ifdef MBUFTRACE
263 so->so_mowner = head->so_mowner;
264 so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
265 so->so_snd.sb_mowner = head->so_snd.sb_mowner;
266 #endif
267 (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
268 so->so_snd.sb_lowat = head->so_snd.sb_lowat;
269 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
270 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
271 so->so_snd.sb_timeo = head->so_snd.sb_timeo;
272 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
273 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
274 soqinsque(head, so, soqueue);
275 error = (*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL,
276 NULL, NULL);
277 KASSERT(solocked(so));
278 if (error != 0) {
279 (void) soqremque(so, soqueue);
280 soput(so);
281 return (NULL);
282 }
283 if (connstatus) {
284 sorwakeup(head);
285 cv_broadcast(&head->so_cv);
286 so->so_state |= connstatus;
287 }
288 return (so);
289 }
290
291 struct socket *
292 soget(bool waitok)
293 {
294 struct socket *so;
295
296 so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
297 if (__predict_false(so == NULL))
298 return (NULL);
299 memset(so, 0, sizeof(*so));
300 TAILQ_INIT(&so->so_q0);
301 TAILQ_INIT(&so->so_q);
302 cv_init(&so->so_cv, "socket");
303 cv_init(&so->so_rcv.sb_cv, "netio");
304 cv_init(&so->so_snd.sb_cv, "netio");
305 selinit(&so->so_rcv.sb_sel);
306 selinit(&so->so_snd.sb_sel);
307 so->so_rcv.sb_so = so;
308 so->so_snd.sb_so = so;
309 return so;
310 }
311
312 void
313 soput(struct socket *so)
314 {
315
316 KASSERT(!cv_has_waiters(&so->so_cv));
317 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
318 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
319 seldestroy(&so->so_rcv.sb_sel);
320 seldestroy(&so->so_snd.sb_sel);
321 mutex_obj_free(so->so_lock);
322 cv_destroy(&so->so_cv);
323 cv_destroy(&so->so_rcv.sb_cv);
324 cv_destroy(&so->so_snd.sb_cv);
325 pool_cache_put(socket_cache, so);
326 }
327
328 void
329 soqinsque(struct socket *head, struct socket *so, int q)
330 {
331
332 KASSERT(solocked2(head, so));
333
334 #ifdef DIAGNOSTIC
335 if (so->so_onq != NULL)
336 panic("soqinsque");
337 #endif
338
339 so->so_head = head;
340 if (q == 0) {
341 head->so_q0len++;
342 so->so_onq = &head->so_q0;
343 } else {
344 head->so_qlen++;
345 so->so_onq = &head->so_q;
346 }
347 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
348 }
349
350 int
351 soqremque(struct socket *so, int q)
352 {
353 struct socket *head;
354
355 head = so->so_head;
356
357 KASSERT(solocked(so));
358 if (q == 0) {
359 if (so->so_onq != &head->so_q0)
360 return (0);
361 head->so_q0len--;
362 } else {
363 if (so->so_onq != &head->so_q)
364 return (0);
365 head->so_qlen--;
366 }
367 KASSERT(solocked2(so, head));
368 TAILQ_REMOVE(so->so_onq, so, so_qe);
369 so->so_onq = NULL;
370 so->so_head = NULL;
371 return (1);
372 }
373
374 /*
375 * Socantsendmore indicates that no more data will be sent on the
376 * socket; it would normally be applied to a socket when the user
377 * informs the system that no more data is to be sent, by the protocol
378 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
379 * will be received, and will normally be applied to the socket by a
380 * protocol when it detects that the peer will send no more data.
381 * Data queued for reading in the socket may yet be read.
382 */
383
384 void
385 socantsendmore(struct socket *so)
386 {
387
388 KASSERT(solocked(so));
389
390 so->so_state |= SS_CANTSENDMORE;
391 sowwakeup(so);
392 }
393
394 void
395 socantrcvmore(struct socket *so)
396 {
397
398 KASSERT(solocked(so));
399
400 so->so_state |= SS_CANTRCVMORE;
401 sorwakeup(so);
402 }
403
404 /*
405 * Wait for data to arrive at/drain from a socket buffer.
406 */
407 int
408 sbwait(struct sockbuf *sb)
409 {
410 struct socket *so;
411 kmutex_t *lock;
412 int error;
413
414 so = sb->sb_so;
415
416 KASSERT(solocked(so));
417
418 sb->sb_flags |= SB_NOTIFY;
419 lock = so->so_lock;
420 if ((sb->sb_flags & SB_NOINTR) != 0)
421 error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
422 else
423 error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
424 if (__predict_false(lock != so->so_lock))
425 solockretry(so, lock);
426 return error;
427 }
428
429 /*
430 * Wakeup processes waiting on a socket buffer.
431 * Do asynchronous notification via SIGIO
432 * if the socket buffer has the SB_ASYNC flag set.
433 */
434 void
435 sowakeup(struct socket *so, struct sockbuf *sb, int code)
436 {
437 int band;
438
439 KASSERT(solocked(so));
440 KASSERT(sb->sb_so == so);
441
442 if (code == POLL_IN)
443 band = POLLIN|POLLRDNORM;
444 else
445 band = POLLOUT|POLLWRNORM;
446 sb->sb_flags &= ~SB_NOTIFY;
447 selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
448 cv_broadcast(&sb->sb_cv);
449 if (sb->sb_flags & SB_ASYNC)
450 fownsignal(so->so_pgid, SIGIO, code, band, so);
451 if (sb->sb_flags & SB_UPCALL)
452 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
453 }
454
455 /*
456 * Reset a socket's lock pointer. Wake all threads waiting on the
457 * socket's condition variables so that they can restart their waits
458 * using the new lock. The existing lock must be held.
459 */
460 void
461 solockreset(struct socket *so, kmutex_t *lock)
462 {
463
464 KASSERT(solocked(so));
465
466 so->so_lock = lock;
467 cv_broadcast(&so->so_snd.sb_cv);
468 cv_broadcast(&so->so_rcv.sb_cv);
469 cv_broadcast(&so->so_cv);
470 }
471
472 /*
473 * Socket buffer (struct sockbuf) utility routines.
474 *
475 * Each socket contains two socket buffers: one for sending data and
476 * one for receiving data. Each buffer contains a queue of mbufs,
477 * information about the number of mbufs and amount of data in the
478 * queue, and other fields allowing poll() statements and notification
479 * on data availability to be implemented.
480 *
481 * Data stored in a socket buffer is maintained as a list of records.
482 * Each record is a list of mbufs chained together with the m_next
483 * field. Records are chained together with the m_nextpkt field. The upper
484 * level routine soreceive() expects the following conventions to be
485 * observed when placing information in the receive buffer:
486 *
487 * 1. If the protocol requires each message be preceded by the sender's
488 * name, then a record containing that name must be present before
489 * any associated data (mbuf's must be of type MT_SONAME).
490 * 2. If the protocol supports the exchange of ``access rights'' (really
491 * just additional data associated with the message), and there are
492 * ``rights'' to be received, then a record containing this data
493 * should be present (mbuf's must be of type MT_CONTROL).
494 * 3. If a name or rights record exists, then it must be followed by
495 * a data record, perhaps of zero length.
496 *
497 * Before using a new socket structure it is first necessary to reserve
498 * buffer space to the socket, by calling sbreserve(). This should commit
499 * some of the available buffer space in the system buffer pool for the
500 * socket (currently, it does nothing but enforce limits). The space
501 * should be released by calling sbrelease() when the socket is destroyed.
502 */
503
504 int
505 sb_max_set(u_long new_sbmax)
506 {
507 int s;
508
509 if (new_sbmax < (16 * 1024))
510 return (EINVAL);
511
512 s = splsoftnet();
513 sb_max = new_sbmax;
514 sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
515 splx(s);
516
517 return (0);
518 }
519
520 int
521 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
522 {
523
524 KASSERT(so->so_lock == NULL || solocked(so));
525
526 /*
527 * there's at least one application (a configure script of screen)
528 * which expects a fifo is writable even if it has "some" bytes
529 * in its buffer.
530 * so we want to make sure (hiwat - lowat) >= (some bytes).
531 *
532 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
533 * we expect it's large enough for such applications.
534 */
535 u_long lowat = MAX(sock_loan_thresh, MCLBYTES);
536 u_long hiwat = lowat + PIPE_BUF;
537
538 if (sndcc < hiwat)
539 sndcc = hiwat;
540 if (sbreserve(&so->so_snd, sndcc, so) == 0)
541 goto bad;
542 if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
543 goto bad2;
544 if (so->so_rcv.sb_lowat == 0)
545 so->so_rcv.sb_lowat = 1;
546 if (so->so_snd.sb_lowat == 0)
547 so->so_snd.sb_lowat = lowat;
548 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
549 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
550 return (0);
551 bad2:
552 sbrelease(&so->so_snd, so);
553 bad:
554 return (ENOBUFS);
555 }
556
557 /*
558 * Allot mbufs to a sockbuf.
559 * Attempt to scale mbmax so that mbcnt doesn't become limiting
560 * if buffering efficiency is near the normal case.
561 */
562 int
563 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
564 {
565 struct lwp *l = curlwp; /* XXX */
566 rlim_t maxcc;
567 struct uidinfo *uidinfo;
568
569 KASSERT(so->so_lock == NULL || solocked(so));
570 KASSERT(sb->sb_so == so);
571 KASSERT(sb_max_adj != 0);
572
573 if (cc == 0 || cc > sb_max_adj)
574 return (0);
575
576 if (kauth_cred_geteuid(l->l_cred) == so->so_uidinfo->ui_uid)
577 maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
578 else
579 maxcc = RLIM_INFINITY;
580
581 uidinfo = so->so_uidinfo;
582 if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
583 return 0;
584 sb->sb_mbmax = min(cc * 2, sb_max);
585 if (sb->sb_lowat > sb->sb_hiwat)
586 sb->sb_lowat = sb->sb_hiwat;
587 return (1);
588 }
589
590 /*
591 * Free mbufs held by a socket, and reserved mbuf space. We do not assert
592 * that the socket is held locked here: see sorflush().
593 */
594 void
595 sbrelease(struct sockbuf *sb, struct socket *so)
596 {
597
598 KASSERT(sb->sb_so == so);
599
600 sbflush(sb);
601 (void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
602 sb->sb_mbmax = 0;
603 }
604
605 /*
606 * Routines to add and remove
607 * data from an mbuf queue.
608 *
609 * The routines sbappend() or sbappendrecord() are normally called to
610 * append new mbufs to a socket buffer, after checking that adequate
611 * space is available, comparing the function sbspace() with the amount
612 * of data to be added. sbappendrecord() differs from sbappend() in
613 * that data supplied is treated as the beginning of a new record.
614 * To place a sender's address, optional access rights, and data in a
615 * socket receive buffer, sbappendaddr() should be used. To place
616 * access rights and data in a socket receive buffer, sbappendrights()
617 * should be used. In either case, the new data begins a new record.
618 * Note that unlike sbappend() and sbappendrecord(), these routines check
619 * for the caller that there will be enough space to store the data.
620 * Each fails if there is not enough space, or if it cannot find mbufs
621 * to store additional information in.
622 *
623 * Reliable protocols may use the socket send buffer to hold data
624 * awaiting acknowledgement. Data is normally copied from a socket
625 * send buffer in a protocol with m_copy for output to a peer,
626 * and then removing the data from the socket buffer with sbdrop()
627 * or sbdroprecord() when the data is acknowledged by the peer.
628 */
629
630 #ifdef SOCKBUF_DEBUG
631 void
632 sblastrecordchk(struct sockbuf *sb, const char *where)
633 {
634 struct mbuf *m = sb->sb_mb;
635
636 KASSERT(solocked(sb->sb_so));
637
638 while (m && m->m_nextpkt)
639 m = m->m_nextpkt;
640
641 if (m != sb->sb_lastrecord) {
642 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
643 sb->sb_mb, sb->sb_lastrecord, m);
644 printf("packet chain:\n");
645 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
646 printf("\t%p\n", m);
647 panic("sblastrecordchk from %s", where);
648 }
649 }
650
651 void
652 sblastmbufchk(struct sockbuf *sb, const char *where)
653 {
654 struct mbuf *m = sb->sb_mb;
655 struct mbuf *n;
656
657 KASSERT(solocked(sb->sb_so));
658
659 while (m && m->m_nextpkt)
660 m = m->m_nextpkt;
661
662 while (m && m->m_next)
663 m = m->m_next;
664
665 if (m != sb->sb_mbtail) {
666 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
667 sb->sb_mb, sb->sb_mbtail, m);
668 printf("packet tree:\n");
669 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
670 printf("\t");
671 for (n = m; n != NULL; n = n->m_next)
672 printf("%p ", n);
673 printf("\n");
674 }
675 panic("sblastmbufchk from %s", where);
676 }
677 }
678 #endif /* SOCKBUF_DEBUG */
679
680 /*
681 * Link a chain of records onto a socket buffer
682 */
683 #define SBLINKRECORDCHAIN(sb, m0, mlast) \
684 do { \
685 if ((sb)->sb_lastrecord != NULL) \
686 (sb)->sb_lastrecord->m_nextpkt = (m0); \
687 else \
688 (sb)->sb_mb = (m0); \
689 (sb)->sb_lastrecord = (mlast); \
690 } while (/*CONSTCOND*/0)
691
692
693 #define SBLINKRECORD(sb, m0) \
694 SBLINKRECORDCHAIN(sb, m0, m0)
695
696 /*
697 * Append mbuf chain m to the last record in the
698 * socket buffer sb. The additional space associated
699 * the mbuf chain is recorded in sb. Empty mbufs are
700 * discarded and mbufs are compacted where possible.
701 */
702 void
703 sbappend(struct sockbuf *sb, struct mbuf *m)
704 {
705 struct mbuf *n;
706
707 KASSERT(solocked(sb->sb_so));
708
709 if (m == 0)
710 return;
711
712 #ifdef MBUFTRACE
713 m_claimm(m, sb->sb_mowner);
714 #endif
715
716 SBLASTRECORDCHK(sb, "sbappend 1");
717
718 if ((n = sb->sb_lastrecord) != NULL) {
719 /*
720 * XXX Would like to simply use sb_mbtail here, but
721 * XXX I need to verify that I won't miss an EOR that
722 * XXX way.
723 */
724 do {
725 if (n->m_flags & M_EOR) {
726 sbappendrecord(sb, m); /* XXXXXX!!!! */
727 return;
728 }
729 } while (n->m_next && (n = n->m_next));
730 } else {
731 /*
732 * If this is the first record in the socket buffer, it's
733 * also the last record.
734 */
735 sb->sb_lastrecord = m;
736 }
737 sbcompress(sb, m, n);
738 SBLASTRECORDCHK(sb, "sbappend 2");
739 }
740
741 /*
742 * This version of sbappend() should only be used when the caller
743 * absolutely knows that there will never be more than one record
744 * in the socket buffer, that is, a stream protocol (such as TCP).
745 */
746 void
747 sbappendstream(struct sockbuf *sb, struct mbuf *m)
748 {
749
750 KASSERT(solocked(sb->sb_so));
751 KDASSERT(m->m_nextpkt == NULL);
752 KASSERT(sb->sb_mb == sb->sb_lastrecord);
753
754 SBLASTMBUFCHK(sb, __func__);
755
756 #ifdef MBUFTRACE
757 m_claimm(m, sb->sb_mowner);
758 #endif
759
760 sbcompress(sb, m, sb->sb_mbtail);
761
762 sb->sb_lastrecord = sb->sb_mb;
763 SBLASTRECORDCHK(sb, __func__);
764 }
765
766 #ifdef SOCKBUF_DEBUG
767 void
768 sbcheck(struct sockbuf *sb)
769 {
770 struct mbuf *m, *m2;
771 u_long len, mbcnt;
772
773 KASSERT(solocked(sb->sb_so));
774
775 len = 0;
776 mbcnt = 0;
777 for (m = sb->sb_mb; m; m = m->m_nextpkt) {
778 for (m2 = m; m2 != NULL; m2 = m2->m_next) {
779 len += m2->m_len;
780 mbcnt += MSIZE;
781 if (m2->m_flags & M_EXT)
782 mbcnt += m2->m_ext.ext_size;
783 if (m2->m_nextpkt != NULL)
784 panic("sbcheck nextpkt");
785 }
786 }
787 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
788 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
789 mbcnt, sb->sb_mbcnt);
790 panic("sbcheck");
791 }
792 }
793 #endif
794
795 /*
796 * As above, except the mbuf chain
797 * begins a new record.
798 */
799 void
800 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
801 {
802 struct mbuf *m;
803
804 KASSERT(solocked(sb->sb_so));
805
806 if (m0 == 0)
807 return;
808
809 #ifdef MBUFTRACE
810 m_claimm(m0, sb->sb_mowner);
811 #endif
812 /*
813 * Put the first mbuf on the queue.
814 * Note this permits zero length records.
815 */
816 sballoc(sb, m0);
817 SBLASTRECORDCHK(sb, "sbappendrecord 1");
818 SBLINKRECORD(sb, m0);
819 m = m0->m_next;
820 m0->m_next = 0;
821 if (m && (m0->m_flags & M_EOR)) {
822 m0->m_flags &= ~M_EOR;
823 m->m_flags |= M_EOR;
824 }
825 sbcompress(sb, m, m0);
826 SBLASTRECORDCHK(sb, "sbappendrecord 2");
827 }
828
829 /*
830 * As above except that OOB data
831 * is inserted at the beginning of the sockbuf,
832 * but after any other OOB data.
833 */
834 void
835 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
836 {
837 struct mbuf *m, **mp;
838
839 KASSERT(solocked(sb->sb_so));
840
841 if (m0 == 0)
842 return;
843
844 SBLASTRECORDCHK(sb, "sbinsertoob 1");
845
846 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
847 again:
848 switch (m->m_type) {
849
850 case MT_OOBDATA:
851 continue; /* WANT next train */
852
853 case MT_CONTROL:
854 if ((m = m->m_next) != NULL)
855 goto again; /* inspect THIS train further */
856 }
857 break;
858 }
859 /*
860 * Put the first mbuf on the queue.
861 * Note this permits zero length records.
862 */
863 sballoc(sb, m0);
864 m0->m_nextpkt = *mp;
865 if (*mp == NULL) {
866 /* m0 is actually the new tail */
867 sb->sb_lastrecord = m0;
868 }
869 *mp = m0;
870 m = m0->m_next;
871 m0->m_next = 0;
872 if (m && (m0->m_flags & M_EOR)) {
873 m0->m_flags &= ~M_EOR;
874 m->m_flags |= M_EOR;
875 }
876 sbcompress(sb, m, m0);
877 SBLASTRECORDCHK(sb, "sbinsertoob 2");
878 }
879
880 /*
881 * Append address and data, and optionally, control (ancillary) data
882 * to the receive queue of a socket. If present,
883 * m0 must include a packet header with total length.
884 * Returns 0 if no space in sockbuf or insufficient mbufs.
885 */
886 int
887 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
888 struct mbuf *control)
889 {
890 struct mbuf *m, *n, *nlast;
891 int space, len;
892
893 KASSERT(solocked(sb->sb_so));
894
895 space = asa->sa_len;
896
897 if (m0 != NULL) {
898 if ((m0->m_flags & M_PKTHDR) == 0)
899 panic("sbappendaddr");
900 space += m0->m_pkthdr.len;
901 #ifdef MBUFTRACE
902 m_claimm(m0, sb->sb_mowner);
903 #endif
904 }
905 for (n = control; n; n = n->m_next) {
906 space += n->m_len;
907 MCLAIM(n, sb->sb_mowner);
908 if (n->m_next == 0) /* keep pointer to last control buf */
909 break;
910 }
911 if (space > sbspace(sb))
912 return (0);
913 MGET(m, M_DONTWAIT, MT_SONAME);
914 if (m == 0)
915 return (0);
916 MCLAIM(m, sb->sb_mowner);
917 /*
918 * XXX avoid 'comparison always true' warning which isn't easily
919 * avoided.
920 */
921 len = asa->sa_len;
922 if (len > MLEN) {
923 MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
924 if ((m->m_flags & M_EXT) == 0) {
925 m_free(m);
926 return (0);
927 }
928 }
929 m->m_len = asa->sa_len;
930 memcpy(mtod(m, void *), asa, asa->sa_len);
931 if (n)
932 n->m_next = m0; /* concatenate data to control */
933 else
934 control = m0;
935 m->m_next = control;
936
937 SBLASTRECORDCHK(sb, "sbappendaddr 1");
938
939 for (n = m; n->m_next != NULL; n = n->m_next)
940 sballoc(sb, n);
941 sballoc(sb, n);
942 nlast = n;
943 SBLINKRECORD(sb, m);
944
945 sb->sb_mbtail = nlast;
946 SBLASTMBUFCHK(sb, "sbappendaddr");
947 SBLASTRECORDCHK(sb, "sbappendaddr 2");
948
949 return (1);
950 }
951
952 /*
953 * Helper for sbappendchainaddr: prepend a struct sockaddr* to
954 * an mbuf chain.
955 */
956 static inline struct mbuf *
957 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
958 const struct sockaddr *asa)
959 {
960 struct mbuf *m;
961 const int salen = asa->sa_len;
962
963 KASSERT(solocked(sb->sb_so));
964
965 /* only the first in each chain need be a pkthdr */
966 MGETHDR(m, M_DONTWAIT, MT_SONAME);
967 if (m == 0)
968 return (0);
969 MCLAIM(m, sb->sb_mowner);
970 #ifdef notyet
971 if (salen > MHLEN) {
972 MEXTMALLOC(m, salen, M_NOWAIT);
973 if ((m->m_flags & M_EXT) == 0) {
974 m_free(m);
975 return (0);
976 }
977 }
978 #else
979 KASSERT(salen <= MHLEN);
980 #endif
981 m->m_len = salen;
982 memcpy(mtod(m, void *), asa, salen);
983 m->m_next = m0;
984 m->m_pkthdr.len = salen + m0->m_pkthdr.len;
985
986 return m;
987 }
988
989 int
990 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
991 struct mbuf *m0, int sbprio)
992 {
993 int space;
994 struct mbuf *m, *n, *n0, *nlast;
995 int error;
996
997 KASSERT(solocked(sb->sb_so));
998
999 /*
1000 * XXX sbprio reserved for encoding priority of this* request:
1001 * SB_PRIO_NONE --> honour normal sb limits
1002 * SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1003 * take whole chain. Intended for large requests
1004 * that should be delivered atomically (all, or none).
1005 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1006 * over normal socket limits, for messages indicating
1007 * buffer overflow in earlier normal/lower-priority messages
1008 * SB_PRIO_BESTEFFORT --> ignore limits entirely.
1009 * Intended for kernel-generated messages only.
1010 * Up to generator to avoid total mbuf resource exhaustion.
1011 */
1012 (void)sbprio;
1013
1014 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1015 panic("sbappendaddrchain");
1016
1017 space = sbspace(sb);
1018
1019 #ifdef notyet
1020 /*
1021 * Enforce SB_PRIO_* limits as described above.
1022 */
1023 #endif
1024
1025 n0 = NULL;
1026 nlast = NULL;
1027 for (m = m0; m; m = m->m_nextpkt) {
1028 struct mbuf *np;
1029
1030 #ifdef MBUFTRACE
1031 m_claimm(m, sb->sb_mowner);
1032 #endif
1033
1034 /* Prepend sockaddr to this record (m) of input chain m0 */
1035 n = m_prepend_sockaddr(sb, m, asa);
1036 if (n == NULL) {
1037 error = ENOBUFS;
1038 goto bad;
1039 }
1040
1041 /* Append record (asa+m) to end of new chain n0 */
1042 if (n0 == NULL) {
1043 n0 = n;
1044 } else {
1045 nlast->m_nextpkt = n;
1046 }
1047 /* Keep track of last record on new chain */
1048 nlast = n;
1049
1050 for (np = n; np; np = np->m_next)
1051 sballoc(sb, np);
1052 }
1053
1054 SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1055
1056 /* Drop the entire chain of (asa+m) records onto the socket */
1057 SBLINKRECORDCHAIN(sb, n0, nlast);
1058
1059 SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1060
1061 for (m = nlast; m->m_next; m = m->m_next)
1062 ;
1063 sb->sb_mbtail = m;
1064 SBLASTMBUFCHK(sb, "sbappendaddrchain");
1065
1066 return (1);
1067
1068 bad:
1069 /*
1070 * On error, free the prepended addreseses. For consistency
1071 * with sbappendaddr(), leave it to our caller to free
1072 * the input record chain passed to us as m0.
1073 */
1074 while ((n = n0) != NULL) {
1075 struct mbuf *np;
1076
1077 /* Undo the sballoc() of this record */
1078 for (np = n; np; np = np->m_next)
1079 sbfree(sb, np);
1080
1081 n0 = n->m_nextpkt; /* iterate at next prepended address */
1082 MFREE(n, np); /* free prepended address (not data) */
1083 }
1084 return 0;
1085 }
1086
1087
1088 int
1089 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1090 {
1091 struct mbuf *m, *mlast, *n;
1092 int space;
1093
1094 KASSERT(solocked(sb->sb_so));
1095
1096 space = 0;
1097 if (control == 0)
1098 panic("sbappendcontrol");
1099 for (m = control; ; m = m->m_next) {
1100 space += m->m_len;
1101 MCLAIM(m, sb->sb_mowner);
1102 if (m->m_next == 0)
1103 break;
1104 }
1105 n = m; /* save pointer to last control buffer */
1106 for (m = m0; m; m = m->m_next) {
1107 MCLAIM(m, sb->sb_mowner);
1108 space += m->m_len;
1109 }
1110 if (space > sbspace(sb))
1111 return (0);
1112 n->m_next = m0; /* concatenate data to control */
1113
1114 SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1115
1116 for (m = control; m->m_next != NULL; m = m->m_next)
1117 sballoc(sb, m);
1118 sballoc(sb, m);
1119 mlast = m;
1120 SBLINKRECORD(sb, control);
1121
1122 sb->sb_mbtail = mlast;
1123 SBLASTMBUFCHK(sb, "sbappendcontrol");
1124 SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1125
1126 return (1);
1127 }
1128
1129 /*
1130 * Compress mbuf chain m into the socket
1131 * buffer sb following mbuf n. If n
1132 * is null, the buffer is presumed empty.
1133 */
1134 void
1135 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1136 {
1137 int eor;
1138 struct mbuf *o;
1139
1140 KASSERT(solocked(sb->sb_so));
1141
1142 eor = 0;
1143 while (m) {
1144 eor |= m->m_flags & M_EOR;
1145 if (m->m_len == 0 &&
1146 (eor == 0 ||
1147 (((o = m->m_next) || (o = n)) &&
1148 o->m_type == m->m_type))) {
1149 if (sb->sb_lastrecord == m)
1150 sb->sb_lastrecord = m->m_next;
1151 m = m_free(m);
1152 continue;
1153 }
1154 if (n && (n->m_flags & M_EOR) == 0 &&
1155 /* M_TRAILINGSPACE() checks buffer writeability */
1156 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1157 m->m_len <= M_TRAILINGSPACE(n) &&
1158 n->m_type == m->m_type) {
1159 memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1160 (unsigned)m->m_len);
1161 n->m_len += m->m_len;
1162 sb->sb_cc += m->m_len;
1163 m = m_free(m);
1164 continue;
1165 }
1166 if (n)
1167 n->m_next = m;
1168 else
1169 sb->sb_mb = m;
1170 sb->sb_mbtail = m;
1171 sballoc(sb, m);
1172 n = m;
1173 m->m_flags &= ~M_EOR;
1174 m = m->m_next;
1175 n->m_next = 0;
1176 }
1177 if (eor) {
1178 if (n)
1179 n->m_flags |= eor;
1180 else
1181 printf("semi-panic: sbcompress\n");
1182 }
1183 SBLASTMBUFCHK(sb, __func__);
1184 }
1185
1186 /*
1187 * Free all mbufs in a sockbuf.
1188 * Check that all resources are reclaimed.
1189 */
1190 void
1191 sbflush(struct sockbuf *sb)
1192 {
1193
1194 KASSERT(solocked(sb->sb_so));
1195 KASSERT((sb->sb_flags & SB_LOCK) == 0);
1196
1197 while (sb->sb_mbcnt)
1198 sbdrop(sb, (int)sb->sb_cc);
1199
1200 KASSERT(sb->sb_cc == 0);
1201 KASSERT(sb->sb_mb == NULL);
1202 KASSERT(sb->sb_mbtail == NULL);
1203 KASSERT(sb->sb_lastrecord == NULL);
1204 }
1205
1206 /*
1207 * Drop data from (the front of) a sockbuf.
1208 */
1209 void
1210 sbdrop(struct sockbuf *sb, int len)
1211 {
1212 struct mbuf *m, *mn, *next;
1213
1214 KASSERT(solocked(sb->sb_so));
1215
1216 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1217 while (len > 0) {
1218 if (m == 0) {
1219 if (next == 0)
1220 panic("sbdrop");
1221 m = next;
1222 next = m->m_nextpkt;
1223 continue;
1224 }
1225 if (m->m_len > len) {
1226 m->m_len -= len;
1227 m->m_data += len;
1228 sb->sb_cc -= len;
1229 break;
1230 }
1231 len -= m->m_len;
1232 sbfree(sb, m);
1233 MFREE(m, mn);
1234 m = mn;
1235 }
1236 while (m && m->m_len == 0) {
1237 sbfree(sb, m);
1238 MFREE(m, mn);
1239 m = mn;
1240 }
1241 if (m) {
1242 sb->sb_mb = m;
1243 m->m_nextpkt = next;
1244 } else
1245 sb->sb_mb = next;
1246 /*
1247 * First part is an inline SB_EMPTY_FIXUP(). Second part
1248 * makes sure sb_lastrecord is up-to-date if we dropped
1249 * part of the last record.
1250 */
1251 m = sb->sb_mb;
1252 if (m == NULL) {
1253 sb->sb_mbtail = NULL;
1254 sb->sb_lastrecord = NULL;
1255 } else if (m->m_nextpkt == NULL)
1256 sb->sb_lastrecord = m;
1257 }
1258
1259 /*
1260 * Drop a record off the front of a sockbuf
1261 * and move the next record to the front.
1262 */
1263 void
1264 sbdroprecord(struct sockbuf *sb)
1265 {
1266 struct mbuf *m, *mn;
1267
1268 KASSERT(solocked(sb->sb_so));
1269
1270 m = sb->sb_mb;
1271 if (m) {
1272 sb->sb_mb = m->m_nextpkt;
1273 do {
1274 sbfree(sb, m);
1275 MFREE(m, mn);
1276 } while ((m = mn) != NULL);
1277 }
1278 SB_EMPTY_FIXUP(sb);
1279 }
1280
1281 /*
1282 * Create a "control" mbuf containing the specified data
1283 * with the specified type for presentation on a socket buffer.
1284 */
1285 struct mbuf *
1286 sbcreatecontrol(void *p, int size, int type, int level)
1287 {
1288 struct cmsghdr *cp;
1289 struct mbuf *m;
1290
1291 if (CMSG_SPACE(size) > MCLBYTES) {
1292 printf("sbcreatecontrol: message too large %d\n", size);
1293 return NULL;
1294 }
1295
1296 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
1297 return ((struct mbuf *) NULL);
1298 if (CMSG_SPACE(size) > MLEN) {
1299 MCLGET(m, M_DONTWAIT);
1300 if ((m->m_flags & M_EXT) == 0) {
1301 m_free(m);
1302 return NULL;
1303 }
1304 }
1305 cp = mtod(m, struct cmsghdr *);
1306 memcpy(CMSG_DATA(cp), p, size);
1307 m->m_len = CMSG_SPACE(size);
1308 cp->cmsg_len = CMSG_LEN(size);
1309 cp->cmsg_level = level;
1310 cp->cmsg_type = type;
1311 return (m);
1312 }
1313
1314 void
1315 solockretry(struct socket *so, kmutex_t *lock)
1316 {
1317
1318 while (lock != so->so_lock) {
1319 mutex_exit(lock);
1320 lock = so->so_lock;
1321 mutex_enter(lock);
1322 }
1323 }
1324
1325 bool
1326 solocked(struct socket *so)
1327 {
1328
1329 return mutex_owned(so->so_lock);
1330 }
1331
1332 bool
1333 solocked2(struct socket *so1, struct socket *so2)
1334 {
1335 kmutex_t *lock;
1336
1337 lock = so1->so_lock;
1338 if (lock != so2->so_lock)
1339 return false;
1340 return mutex_owned(lock);
1341 }
1342
1343 /*
1344 * Assign a default lock to a new socket. For PRU_ATTACH, and done by
1345 * protocols that do not have special locking requirements.
1346 */
1347 void
1348 sosetlock(struct socket *so)
1349 {
1350 kmutex_t *lock;
1351
1352 if (so->so_lock == NULL) {
1353 lock = softnet_lock;
1354 so->so_lock = lock;
1355 mutex_obj_hold(lock);
1356 mutex_enter(lock);
1357 }
1358
1359 /* In all cases, lock must be held on return from PRU_ATTACH. */
1360 KASSERT(solocked(so));
1361 }
1362
1363 /*
1364 * Set lock on sockbuf sb; sleep if lock is already held.
1365 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1366 * Returns error without lock if sleep is interrupted.
1367 */
1368 int
1369 sblock(struct sockbuf *sb, int wf)
1370 {
1371 struct socket *so;
1372 kmutex_t *lock;
1373 int error;
1374
1375 KASSERT(solocked(sb->sb_so));
1376
1377 for (;;) {
1378 if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1379 sb->sb_flags |= SB_LOCK;
1380 return 0;
1381 }
1382 if (wf != M_WAITOK)
1383 return EWOULDBLOCK;
1384 so = sb->sb_so;
1385 lock = so->so_lock;
1386 if ((sb->sb_flags & SB_NOINTR) != 0) {
1387 cv_wait(&so->so_cv, lock);
1388 error = 0;
1389 } else
1390 error = cv_wait_sig(&so->so_cv, lock);
1391 if (__predict_false(lock != so->so_lock))
1392 solockretry(so, lock);
1393 if (error != 0)
1394 return error;
1395 }
1396 }
1397
1398 void
1399 sbunlock(struct sockbuf *sb)
1400 {
1401 struct socket *so;
1402
1403 so = sb->sb_so;
1404
1405 KASSERT(solocked(so));
1406 KASSERT((sb->sb_flags & SB_LOCK) != 0);
1407
1408 sb->sb_flags &= ~SB_LOCK;
1409 cv_broadcast(&so->so_cv);
1410 }
1411
1412 int
1413 sowait(struct socket *so, int timo)
1414 {
1415 kmutex_t *lock;
1416 int error;
1417
1418 KASSERT(solocked(so));
1419
1420 lock = so->so_lock;
1421 error = cv_timedwait_sig(&so->so_cv, lock, timo);
1422 if (__predict_false(lock != so->so_lock))
1423 solockretry(so, lock);
1424 return error;
1425 }
1426