uipc_socket2.c revision 1.94 1 /* $NetBSD: uipc_socket2.c,v 1.94 2008/05/26 17:21:18 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the University nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
58 */
59
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.94 2008/05/26 17:21:18 ad Exp $");
62
63 #include "opt_mbuftrace.h"
64 #include "opt_sb_max.h"
65
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/proc.h>
69 #include <sys/file.h>
70 #include <sys/buf.h>
71 #include <sys/malloc.h>
72 #include <sys/mbuf.h>
73 #include <sys/protosw.h>
74 #include <sys/domain.h>
75 #include <sys/poll.h>
76 #include <sys/socket.h>
77 #include <sys/socketvar.h>
78 #include <sys/signalvar.h>
79 #include <sys/kauth.h>
80 #include <sys/pool.h>
81
82 /*
83 * Primitive routines for operating on sockets and socket buffers.
84 *
85 * Locking rules and assumptions:
86 *
87 * o socket::so_lock can change on the fly. The low level routines used
88 * to lock sockets are aware of this. When so_lock is acquired, the
89 * routine locking must check to see if so_lock still points to the
90 * lock that was acquired. If so_lock has changed in the meantime, the
91 * now irellevant lock that was acquired must be dropped and the lock
92 * operation retried. Although not proven here, this is completely safe
93 * on a multiprocessor system, even with relaxed memory ordering, given
94 * the next two rules:
95 *
96 * o In order to mutate so_lock, the lock pointed to by the current value
97 * of so_lock must be held: i.e., the socket must be held locked by the
98 * changing thread. The thread must issue membar_exit() to prevent
99 * memory accesses being reordered, and can set so_lock to the desired
100 * value. If the lock pointed to by the new value of so_lock is not
101 * held by the changing thread, the socket must then be considered
102 * unlocked.
103 *
104 * o If so_lock is mutated, and the previous lock referred to by so_lock
105 * could still be visible to other threads in the system (e.g. via file
106 * descriptor or protocol-internal reference), then the old lock must
107 * remain valid until the socket and/or protocol control block has been
108 * torn down.
109 *
110 * o If a socket has a non-NULL so_head value (i.e. is in the process of
111 * connecting), then locking the socket must also lock the socket pointed
112 * to by so_head: their lock pointers must match.
113 *
114 * o If a socket has connections in progress (so_q, so_q0 not empty) then
115 * locking the socket must also lock the sockets attached to both queues.
116 * Again, their lock pointers must match.
117 *
118 * o Beyond the initial lock assigment in socreate(), assigning locks to
119 * sockets is the responsibility of the individual protocols / protocol
120 * domains.
121 */
122
123 static pool_cache_t socket_cache;
124
125 u_long sb_max = SB_MAX; /* maximum socket buffer size */
126 static u_long sb_max_adj; /* adjusted sb_max */
127
128 /*
129 * Procedures to manipulate state flags of socket
130 * and do appropriate wakeups. Normal sequence from the
131 * active (originating) side is that soisconnecting() is
132 * called during processing of connect() call,
133 * resulting in an eventual call to soisconnected() if/when the
134 * connection is established. When the connection is torn down
135 * soisdisconnecting() is called during processing of disconnect() call,
136 * and soisdisconnected() is called when the connection to the peer
137 * is totally severed. The semantics of these routines are such that
138 * connectionless protocols can call soisconnected() and soisdisconnected()
139 * only, bypassing the in-progress calls when setting up a ``connection''
140 * takes no time.
141 *
142 * From the passive side, a socket is created with
143 * two queues of sockets: so_q0 for connections in progress
144 * and so_q for connections already made and awaiting user acceptance.
145 * As a protocol is preparing incoming connections, it creates a socket
146 * structure queued on so_q0 by calling sonewconn(). When the connection
147 * is established, soisconnected() is called, and transfers the
148 * socket structure to so_q, making it available to accept().
149 *
150 * If a socket is closed with sockets on either
151 * so_q0 or so_q, these sockets are dropped.
152 *
153 * If higher level protocols are implemented in
154 * the kernel, the wakeups done here will sometimes
155 * cause software-interrupt process scheduling.
156 */
157
158 void
159 soisconnecting(struct socket *so)
160 {
161
162 KASSERT(solocked(so));
163
164 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
165 so->so_state |= SS_ISCONNECTING;
166 }
167
168 void
169 soisconnected(struct socket *so)
170 {
171 struct socket *head;
172
173 head = so->so_head;
174
175 KASSERT(solocked(so));
176 KASSERT(head == NULL || solocked2(so, head));
177
178 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
179 so->so_state |= SS_ISCONNECTED;
180 if (head && soqremque(so, 0)) {
181 soqinsque(head, so, 1);
182 sorwakeup(head);
183 cv_broadcast(&head->so_cv);
184 } else {
185 cv_broadcast(&so->so_cv);
186 sorwakeup(so);
187 sowwakeup(so);
188 }
189 }
190
191 void
192 soisdisconnecting(struct socket *so)
193 {
194
195 KASSERT(solocked(so));
196
197 so->so_state &= ~SS_ISCONNECTING;
198 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
199 cv_broadcast(&so->so_cv);
200 sowwakeup(so);
201 sorwakeup(so);
202 }
203
204 void
205 soisdisconnected(struct socket *so)
206 {
207
208 KASSERT(solocked(so));
209
210 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
211 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
212 cv_broadcast(&so->so_cv);
213 sowwakeup(so);
214 sorwakeup(so);
215 }
216
217 void
218 soinit2(void)
219 {
220
221 socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
222 "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
223 }
224
225 /*
226 * When an attempt at a new connection is noted on a socket
227 * which accepts connections, sonewconn is called. If the
228 * connection is possible (subject to space constraints, etc.)
229 * then we allocate a new structure, propoerly linked into the
230 * data structure of the original socket, and return this.
231 * Connstatus may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
232 */
233 struct socket *
234 sonewconn(struct socket *head, int connstatus)
235 {
236 struct socket *so;
237 int soqueue, error;
238
239 KASSERT(solocked(head));
240
241 soqueue = connstatus ? 1 : 0;
242 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
243 return ((struct socket *)0);
244 so = soget(false);
245 if (so == NULL)
246 return (NULL);
247 mutex_obj_hold(head->so_lock);
248 so->so_lock = head->so_lock;
249 so->so_type = head->so_type;
250 so->so_options = head->so_options &~ SO_ACCEPTCONN;
251 so->so_linger = head->so_linger;
252 so->so_state = head->so_state | SS_NOFDREF;
253 so->so_nbio = head->so_nbio;
254 so->so_proto = head->so_proto;
255 so->so_timeo = head->so_timeo;
256 so->so_pgid = head->so_pgid;
257 so->so_send = head->so_send;
258 so->so_receive = head->so_receive;
259 so->so_uidinfo = head->so_uidinfo;
260 #ifdef MBUFTRACE
261 so->so_mowner = head->so_mowner;
262 so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
263 so->so_snd.sb_mowner = head->so_snd.sb_mowner;
264 #endif
265 (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
266 so->so_snd.sb_lowat = head->so_snd.sb_lowat;
267 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
268 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
269 so->so_snd.sb_timeo = head->so_snd.sb_timeo;
270 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
271 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
272 soqinsque(head, so, soqueue);
273 error = (*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL,
274 NULL, NULL);
275 KASSERT(solocked(so));
276 if (error != 0) {
277 (void) soqremque(so, soqueue);
278 soput(so);
279 return (NULL);
280 }
281 if (connstatus) {
282 sorwakeup(head);
283 cv_broadcast(&head->so_cv);
284 so->so_state |= connstatus;
285 }
286 return (so);
287 }
288
289 struct socket *
290 soget(bool waitok)
291 {
292 struct socket *so;
293
294 so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
295 if (__predict_false(so == NULL))
296 return (NULL);
297 memset(so, 0, sizeof(*so));
298 TAILQ_INIT(&so->so_q0);
299 TAILQ_INIT(&so->so_q);
300 cv_init(&so->so_cv, "socket");
301 cv_init(&so->so_rcv.sb_cv, "netio");
302 cv_init(&so->so_snd.sb_cv, "netio");
303 selinit(&so->so_rcv.sb_sel);
304 selinit(&so->so_snd.sb_sel);
305 so->so_rcv.sb_so = so;
306 so->so_snd.sb_so = so;
307 return so;
308 }
309
310 void
311 soput(struct socket *so)
312 {
313
314 KASSERT(!cv_has_waiters(&so->so_cv));
315 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
316 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
317 seldestroy(&so->so_rcv.sb_sel);
318 seldestroy(&so->so_snd.sb_sel);
319 mutex_obj_free(so->so_lock);
320 cv_destroy(&so->so_cv);
321 cv_destroy(&so->so_rcv.sb_cv);
322 cv_destroy(&so->so_snd.sb_cv);
323 pool_cache_put(socket_cache, so);
324 }
325
326 void
327 soqinsque(struct socket *head, struct socket *so, int q)
328 {
329
330 KASSERT(solocked2(head, so));
331
332 #ifdef DIAGNOSTIC
333 if (so->so_onq != NULL)
334 panic("soqinsque");
335 #endif
336
337 so->so_head = head;
338 if (q == 0) {
339 head->so_q0len++;
340 so->so_onq = &head->so_q0;
341 } else {
342 head->so_qlen++;
343 so->so_onq = &head->so_q;
344 }
345 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
346 }
347
348 int
349 soqremque(struct socket *so, int q)
350 {
351 struct socket *head;
352
353 head = so->so_head;
354
355 KASSERT(solocked(so));
356 if (q == 0) {
357 if (so->so_onq != &head->so_q0)
358 return (0);
359 head->so_q0len--;
360 } else {
361 if (so->so_onq != &head->so_q)
362 return (0);
363 head->so_qlen--;
364 }
365 KASSERT(solocked2(so, head));
366 TAILQ_REMOVE(so->so_onq, so, so_qe);
367 so->so_onq = NULL;
368 so->so_head = NULL;
369 return (1);
370 }
371
372 /*
373 * Socantsendmore indicates that no more data will be sent on the
374 * socket; it would normally be applied to a socket when the user
375 * informs the system that no more data is to be sent, by the protocol
376 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
377 * will be received, and will normally be applied to the socket by a
378 * protocol when it detects that the peer will send no more data.
379 * Data queued for reading in the socket may yet be read.
380 */
381
382 void
383 socantsendmore(struct socket *so)
384 {
385
386 KASSERT(solocked(so));
387
388 so->so_state |= SS_CANTSENDMORE;
389 sowwakeup(so);
390 }
391
392 void
393 socantrcvmore(struct socket *so)
394 {
395
396 KASSERT(solocked(so));
397
398 so->so_state |= SS_CANTRCVMORE;
399 sorwakeup(so);
400 }
401
402 /*
403 * Wait for data to arrive at/drain from a socket buffer.
404 */
405 int
406 sbwait(struct sockbuf *sb)
407 {
408 struct socket *so;
409 kmutex_t *lock;
410 int error;
411
412 so = sb->sb_so;
413
414 KASSERT(solocked(so));
415
416 sb->sb_flags |= SB_NOTIFY;
417 lock = so->so_lock;
418 if ((sb->sb_flags & SB_NOINTR) != 0)
419 error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
420 else
421 error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
422 if (__predict_false(lock != so->so_lock))
423 solockretry(so, lock);
424 return error;
425 }
426
427 /*
428 * Wakeup processes waiting on a socket buffer.
429 * Do asynchronous notification via SIGIO
430 * if the socket buffer has the SB_ASYNC flag set.
431 */
432 void
433 sowakeup(struct socket *so, struct sockbuf *sb, int code)
434 {
435 int band;
436
437 KASSERT(solocked(so));
438 KASSERT(sb->sb_so == so);
439
440 if (code == POLL_IN)
441 band = POLLIN|POLLRDNORM;
442 else
443 band = POLLOUT|POLLWRNORM;
444 sb->sb_flags &= ~SB_NOTIFY;
445 selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
446 cv_broadcast(&sb->sb_cv);
447 if (sb->sb_flags & SB_ASYNC)
448 fownsignal(so->so_pgid, SIGIO, code, band, so);
449 if (sb->sb_flags & SB_UPCALL)
450 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
451 }
452
453 /*
454 * Socket buffer (struct sockbuf) utility routines.
455 *
456 * Each socket contains two socket buffers: one for sending data and
457 * one for receiving data. Each buffer contains a queue of mbufs,
458 * information about the number of mbufs and amount of data in the
459 * queue, and other fields allowing poll() statements and notification
460 * on data availability to be implemented.
461 *
462 * Data stored in a socket buffer is maintained as a list of records.
463 * Each record is a list of mbufs chained together with the m_next
464 * field. Records are chained together with the m_nextpkt field. The upper
465 * level routine soreceive() expects the following conventions to be
466 * observed when placing information in the receive buffer:
467 *
468 * 1. If the protocol requires each message be preceded by the sender's
469 * name, then a record containing that name must be present before
470 * any associated data (mbuf's must be of type MT_SONAME).
471 * 2. If the protocol supports the exchange of ``access rights'' (really
472 * just additional data associated with the message), and there are
473 * ``rights'' to be received, then a record containing this data
474 * should be present (mbuf's must be of type MT_CONTROL).
475 * 3. If a name or rights record exists, then it must be followed by
476 * a data record, perhaps of zero length.
477 *
478 * Before using a new socket structure it is first necessary to reserve
479 * buffer space to the socket, by calling sbreserve(). This should commit
480 * some of the available buffer space in the system buffer pool for the
481 * socket (currently, it does nothing but enforce limits). The space
482 * should be released by calling sbrelease() when the socket is destroyed.
483 */
484
485 int
486 sb_max_set(u_long new_sbmax)
487 {
488 int s;
489
490 if (new_sbmax < (16 * 1024))
491 return (EINVAL);
492
493 s = splsoftnet();
494 sb_max = new_sbmax;
495 sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
496 splx(s);
497
498 return (0);
499 }
500
501 int
502 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
503 {
504
505 KASSERT(so->so_lock == NULL || solocked(so));
506
507 /*
508 * there's at least one application (a configure script of screen)
509 * which expects a fifo is writable even if it has "some" bytes
510 * in its buffer.
511 * so we want to make sure (hiwat - lowat) >= (some bytes).
512 *
513 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
514 * we expect it's large enough for such applications.
515 */
516 u_long lowat = MAX(sock_loan_thresh, MCLBYTES);
517 u_long hiwat = lowat + PIPE_BUF;
518
519 if (sndcc < hiwat)
520 sndcc = hiwat;
521 if (sbreserve(&so->so_snd, sndcc, so) == 0)
522 goto bad;
523 if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
524 goto bad2;
525 if (so->so_rcv.sb_lowat == 0)
526 so->so_rcv.sb_lowat = 1;
527 if (so->so_snd.sb_lowat == 0)
528 so->so_snd.sb_lowat = lowat;
529 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
530 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
531 return (0);
532 bad2:
533 sbrelease(&so->so_snd, so);
534 bad:
535 return (ENOBUFS);
536 }
537
538 /*
539 * Allot mbufs to a sockbuf.
540 * Attempt to scale mbmax so that mbcnt doesn't become limiting
541 * if buffering efficiency is near the normal case.
542 */
543 int
544 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
545 {
546 struct lwp *l = curlwp; /* XXX */
547 rlim_t maxcc;
548 struct uidinfo *uidinfo;
549
550 KASSERT(so->so_lock == NULL || solocked(so));
551 KASSERT(sb->sb_so == so);
552 KASSERT(sb_max_adj != 0);
553
554 if (cc == 0 || cc > sb_max_adj)
555 return (0);
556
557 if (kauth_cred_geteuid(l->l_cred) == so->so_uidinfo->ui_uid)
558 maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
559 else
560 maxcc = RLIM_INFINITY;
561
562 uidinfo = so->so_uidinfo;
563 if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
564 return 0;
565 sb->sb_mbmax = min(cc * 2, sb_max);
566 if (sb->sb_lowat > sb->sb_hiwat)
567 sb->sb_lowat = sb->sb_hiwat;
568 return (1);
569 }
570
571 /*
572 * Free mbufs held by a socket, and reserved mbuf space. We do not assert
573 * that the socket is held locked here: see sorflush().
574 */
575 void
576 sbrelease(struct sockbuf *sb, struct socket *so)
577 {
578
579 KASSERT(sb->sb_so == so);
580
581 sbflush(sb);
582 (void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
583 sb->sb_mbmax = 0;
584 }
585
586 /*
587 * Routines to add and remove
588 * data from an mbuf queue.
589 *
590 * The routines sbappend() or sbappendrecord() are normally called to
591 * append new mbufs to a socket buffer, after checking that adequate
592 * space is available, comparing the function sbspace() with the amount
593 * of data to be added. sbappendrecord() differs from sbappend() in
594 * that data supplied is treated as the beginning of a new record.
595 * To place a sender's address, optional access rights, and data in a
596 * socket receive buffer, sbappendaddr() should be used. To place
597 * access rights and data in a socket receive buffer, sbappendrights()
598 * should be used. In either case, the new data begins a new record.
599 * Note that unlike sbappend() and sbappendrecord(), these routines check
600 * for the caller that there will be enough space to store the data.
601 * Each fails if there is not enough space, or if it cannot find mbufs
602 * to store additional information in.
603 *
604 * Reliable protocols may use the socket send buffer to hold data
605 * awaiting acknowledgement. Data is normally copied from a socket
606 * send buffer in a protocol with m_copy for output to a peer,
607 * and then removing the data from the socket buffer with sbdrop()
608 * or sbdroprecord() when the data is acknowledged by the peer.
609 */
610
611 #ifdef SOCKBUF_DEBUG
612 void
613 sblastrecordchk(struct sockbuf *sb, const char *where)
614 {
615 struct mbuf *m = sb->sb_mb;
616
617 KASSERT(solocked(sb->sb_so));
618
619 while (m && m->m_nextpkt)
620 m = m->m_nextpkt;
621
622 if (m != sb->sb_lastrecord) {
623 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
624 sb->sb_mb, sb->sb_lastrecord, m);
625 printf("packet chain:\n");
626 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
627 printf("\t%p\n", m);
628 panic("sblastrecordchk from %s", where);
629 }
630 }
631
632 void
633 sblastmbufchk(struct sockbuf *sb, const char *where)
634 {
635 struct mbuf *m = sb->sb_mb;
636 struct mbuf *n;
637
638 KASSERT(solocked(sb->sb_so));
639
640 while (m && m->m_nextpkt)
641 m = m->m_nextpkt;
642
643 while (m && m->m_next)
644 m = m->m_next;
645
646 if (m != sb->sb_mbtail) {
647 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
648 sb->sb_mb, sb->sb_mbtail, m);
649 printf("packet tree:\n");
650 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
651 printf("\t");
652 for (n = m; n != NULL; n = n->m_next)
653 printf("%p ", n);
654 printf("\n");
655 }
656 panic("sblastmbufchk from %s", where);
657 }
658 }
659 #endif /* SOCKBUF_DEBUG */
660
661 /*
662 * Link a chain of records onto a socket buffer
663 */
664 #define SBLINKRECORDCHAIN(sb, m0, mlast) \
665 do { \
666 if ((sb)->sb_lastrecord != NULL) \
667 (sb)->sb_lastrecord->m_nextpkt = (m0); \
668 else \
669 (sb)->sb_mb = (m0); \
670 (sb)->sb_lastrecord = (mlast); \
671 } while (/*CONSTCOND*/0)
672
673
674 #define SBLINKRECORD(sb, m0) \
675 SBLINKRECORDCHAIN(sb, m0, m0)
676
677 /*
678 * Append mbuf chain m to the last record in the
679 * socket buffer sb. The additional space associated
680 * the mbuf chain is recorded in sb. Empty mbufs are
681 * discarded and mbufs are compacted where possible.
682 */
683 void
684 sbappend(struct sockbuf *sb, struct mbuf *m)
685 {
686 struct mbuf *n;
687
688 KASSERT(solocked(sb->sb_so));
689
690 if (m == 0)
691 return;
692
693 #ifdef MBUFTRACE
694 m_claimm(m, sb->sb_mowner);
695 #endif
696
697 SBLASTRECORDCHK(sb, "sbappend 1");
698
699 if ((n = sb->sb_lastrecord) != NULL) {
700 /*
701 * XXX Would like to simply use sb_mbtail here, but
702 * XXX I need to verify that I won't miss an EOR that
703 * XXX way.
704 */
705 do {
706 if (n->m_flags & M_EOR) {
707 sbappendrecord(sb, m); /* XXXXXX!!!! */
708 return;
709 }
710 } while (n->m_next && (n = n->m_next));
711 } else {
712 /*
713 * If this is the first record in the socket buffer, it's
714 * also the last record.
715 */
716 sb->sb_lastrecord = m;
717 }
718 sbcompress(sb, m, n);
719 SBLASTRECORDCHK(sb, "sbappend 2");
720 }
721
722 /*
723 * This version of sbappend() should only be used when the caller
724 * absolutely knows that there will never be more than one record
725 * in the socket buffer, that is, a stream protocol (such as TCP).
726 */
727 void
728 sbappendstream(struct sockbuf *sb, struct mbuf *m)
729 {
730
731 KASSERT(solocked(sb->sb_so));
732 KDASSERT(m->m_nextpkt == NULL);
733 KASSERT(sb->sb_mb == sb->sb_lastrecord);
734
735 SBLASTMBUFCHK(sb, __func__);
736
737 #ifdef MBUFTRACE
738 m_claimm(m, sb->sb_mowner);
739 #endif
740
741 sbcompress(sb, m, sb->sb_mbtail);
742
743 sb->sb_lastrecord = sb->sb_mb;
744 SBLASTRECORDCHK(sb, __func__);
745 }
746
747 #ifdef SOCKBUF_DEBUG
748 void
749 sbcheck(struct sockbuf *sb)
750 {
751 struct mbuf *m, *m2;
752 u_long len, mbcnt;
753
754 KASSERT(solocked(sb->sb_so));
755
756 len = 0;
757 mbcnt = 0;
758 for (m = sb->sb_mb; m; m = m->m_nextpkt) {
759 for (m2 = m; m2 != NULL; m2 = m2->m_next) {
760 len += m2->m_len;
761 mbcnt += MSIZE;
762 if (m2->m_flags & M_EXT)
763 mbcnt += m2->m_ext.ext_size;
764 if (m2->m_nextpkt != NULL)
765 panic("sbcheck nextpkt");
766 }
767 }
768 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
769 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
770 mbcnt, sb->sb_mbcnt);
771 panic("sbcheck");
772 }
773 }
774 #endif
775
776 /*
777 * As above, except the mbuf chain
778 * begins a new record.
779 */
780 void
781 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
782 {
783 struct mbuf *m;
784
785 KASSERT(solocked(sb->sb_so));
786
787 if (m0 == 0)
788 return;
789
790 #ifdef MBUFTRACE
791 m_claimm(m0, sb->sb_mowner);
792 #endif
793 /*
794 * Put the first mbuf on the queue.
795 * Note this permits zero length records.
796 */
797 sballoc(sb, m0);
798 SBLASTRECORDCHK(sb, "sbappendrecord 1");
799 SBLINKRECORD(sb, m0);
800 m = m0->m_next;
801 m0->m_next = 0;
802 if (m && (m0->m_flags & M_EOR)) {
803 m0->m_flags &= ~M_EOR;
804 m->m_flags |= M_EOR;
805 }
806 sbcompress(sb, m, m0);
807 SBLASTRECORDCHK(sb, "sbappendrecord 2");
808 }
809
810 /*
811 * As above except that OOB data
812 * is inserted at the beginning of the sockbuf,
813 * but after any other OOB data.
814 */
815 void
816 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
817 {
818 struct mbuf *m, **mp;
819
820 KASSERT(solocked(sb->sb_so));
821
822 if (m0 == 0)
823 return;
824
825 SBLASTRECORDCHK(sb, "sbinsertoob 1");
826
827 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
828 again:
829 switch (m->m_type) {
830
831 case MT_OOBDATA:
832 continue; /* WANT next train */
833
834 case MT_CONTROL:
835 if ((m = m->m_next) != NULL)
836 goto again; /* inspect THIS train further */
837 }
838 break;
839 }
840 /*
841 * Put the first mbuf on the queue.
842 * Note this permits zero length records.
843 */
844 sballoc(sb, m0);
845 m0->m_nextpkt = *mp;
846 if (*mp == NULL) {
847 /* m0 is actually the new tail */
848 sb->sb_lastrecord = m0;
849 }
850 *mp = m0;
851 m = m0->m_next;
852 m0->m_next = 0;
853 if (m && (m0->m_flags & M_EOR)) {
854 m0->m_flags &= ~M_EOR;
855 m->m_flags |= M_EOR;
856 }
857 sbcompress(sb, m, m0);
858 SBLASTRECORDCHK(sb, "sbinsertoob 2");
859 }
860
861 /*
862 * Append address and data, and optionally, control (ancillary) data
863 * to the receive queue of a socket. If present,
864 * m0 must include a packet header with total length.
865 * Returns 0 if no space in sockbuf or insufficient mbufs.
866 */
867 int
868 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
869 struct mbuf *control)
870 {
871 struct mbuf *m, *n, *nlast;
872 int space, len;
873
874 KASSERT(solocked(sb->sb_so));
875
876 space = asa->sa_len;
877
878 if (m0 != NULL) {
879 if ((m0->m_flags & M_PKTHDR) == 0)
880 panic("sbappendaddr");
881 space += m0->m_pkthdr.len;
882 #ifdef MBUFTRACE
883 m_claimm(m0, sb->sb_mowner);
884 #endif
885 }
886 for (n = control; n; n = n->m_next) {
887 space += n->m_len;
888 MCLAIM(n, sb->sb_mowner);
889 if (n->m_next == 0) /* keep pointer to last control buf */
890 break;
891 }
892 if (space > sbspace(sb))
893 return (0);
894 MGET(m, M_DONTWAIT, MT_SONAME);
895 if (m == 0)
896 return (0);
897 MCLAIM(m, sb->sb_mowner);
898 /*
899 * XXX avoid 'comparison always true' warning which isn't easily
900 * avoided.
901 */
902 len = asa->sa_len;
903 if (len > MLEN) {
904 MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
905 if ((m->m_flags & M_EXT) == 0) {
906 m_free(m);
907 return (0);
908 }
909 }
910 m->m_len = asa->sa_len;
911 memcpy(mtod(m, void *), asa, asa->sa_len);
912 if (n)
913 n->m_next = m0; /* concatenate data to control */
914 else
915 control = m0;
916 m->m_next = control;
917
918 SBLASTRECORDCHK(sb, "sbappendaddr 1");
919
920 for (n = m; n->m_next != NULL; n = n->m_next)
921 sballoc(sb, n);
922 sballoc(sb, n);
923 nlast = n;
924 SBLINKRECORD(sb, m);
925
926 sb->sb_mbtail = nlast;
927 SBLASTMBUFCHK(sb, "sbappendaddr");
928 SBLASTRECORDCHK(sb, "sbappendaddr 2");
929
930 return (1);
931 }
932
933 /*
934 * Helper for sbappendchainaddr: prepend a struct sockaddr* to
935 * an mbuf chain.
936 */
937 static inline struct mbuf *
938 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
939 const struct sockaddr *asa)
940 {
941 struct mbuf *m;
942 const int salen = asa->sa_len;
943
944 KASSERT(solocked(sb->sb_so));
945
946 /* only the first in each chain need be a pkthdr */
947 MGETHDR(m, M_DONTWAIT, MT_SONAME);
948 if (m == 0)
949 return (0);
950 MCLAIM(m, sb->sb_mowner);
951 #ifdef notyet
952 if (salen > MHLEN) {
953 MEXTMALLOC(m, salen, M_NOWAIT);
954 if ((m->m_flags & M_EXT) == 0) {
955 m_free(m);
956 return (0);
957 }
958 }
959 #else
960 KASSERT(salen <= MHLEN);
961 #endif
962 m->m_len = salen;
963 memcpy(mtod(m, void *), asa, salen);
964 m->m_next = m0;
965 m->m_pkthdr.len = salen + m0->m_pkthdr.len;
966
967 return m;
968 }
969
970 int
971 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
972 struct mbuf *m0, int sbprio)
973 {
974 int space;
975 struct mbuf *m, *n, *n0, *nlast;
976 int error;
977
978 KASSERT(solocked(sb->sb_so));
979
980 /*
981 * XXX sbprio reserved for encoding priority of this* request:
982 * SB_PRIO_NONE --> honour normal sb limits
983 * SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
984 * take whole chain. Intended for large requests
985 * that should be delivered atomically (all, or none).
986 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
987 * over normal socket limits, for messages indicating
988 * buffer overflow in earlier normal/lower-priority messages
989 * SB_PRIO_BESTEFFORT --> ignore limits entirely.
990 * Intended for kernel-generated messages only.
991 * Up to generator to avoid total mbuf resource exhaustion.
992 */
993 (void)sbprio;
994
995 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
996 panic("sbappendaddrchain");
997
998 space = sbspace(sb);
999
1000 #ifdef notyet
1001 /*
1002 * Enforce SB_PRIO_* limits as described above.
1003 */
1004 #endif
1005
1006 n0 = NULL;
1007 nlast = NULL;
1008 for (m = m0; m; m = m->m_nextpkt) {
1009 struct mbuf *np;
1010
1011 #ifdef MBUFTRACE
1012 m_claimm(m, sb->sb_mowner);
1013 #endif
1014
1015 /* Prepend sockaddr to this record (m) of input chain m0 */
1016 n = m_prepend_sockaddr(sb, m, asa);
1017 if (n == NULL) {
1018 error = ENOBUFS;
1019 goto bad;
1020 }
1021
1022 /* Append record (asa+m) to end of new chain n0 */
1023 if (n0 == NULL) {
1024 n0 = n;
1025 } else {
1026 nlast->m_nextpkt = n;
1027 }
1028 /* Keep track of last record on new chain */
1029 nlast = n;
1030
1031 for (np = n; np; np = np->m_next)
1032 sballoc(sb, np);
1033 }
1034
1035 SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1036
1037 /* Drop the entire chain of (asa+m) records onto the socket */
1038 SBLINKRECORDCHAIN(sb, n0, nlast);
1039
1040 SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1041
1042 for (m = nlast; m->m_next; m = m->m_next)
1043 ;
1044 sb->sb_mbtail = m;
1045 SBLASTMBUFCHK(sb, "sbappendaddrchain");
1046
1047 return (1);
1048
1049 bad:
1050 /*
1051 * On error, free the prepended addreseses. For consistency
1052 * with sbappendaddr(), leave it to our caller to free
1053 * the input record chain passed to us as m0.
1054 */
1055 while ((n = n0) != NULL) {
1056 struct mbuf *np;
1057
1058 /* Undo the sballoc() of this record */
1059 for (np = n; np; np = np->m_next)
1060 sbfree(sb, np);
1061
1062 n0 = n->m_nextpkt; /* iterate at next prepended address */
1063 MFREE(n, np); /* free prepended address (not data) */
1064 }
1065 return 0;
1066 }
1067
1068
1069 int
1070 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1071 {
1072 struct mbuf *m, *mlast, *n;
1073 int space;
1074
1075 KASSERT(solocked(sb->sb_so));
1076
1077 space = 0;
1078 if (control == 0)
1079 panic("sbappendcontrol");
1080 for (m = control; ; m = m->m_next) {
1081 space += m->m_len;
1082 MCLAIM(m, sb->sb_mowner);
1083 if (m->m_next == 0)
1084 break;
1085 }
1086 n = m; /* save pointer to last control buffer */
1087 for (m = m0; m; m = m->m_next) {
1088 MCLAIM(m, sb->sb_mowner);
1089 space += m->m_len;
1090 }
1091 if (space > sbspace(sb))
1092 return (0);
1093 n->m_next = m0; /* concatenate data to control */
1094
1095 SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1096
1097 for (m = control; m->m_next != NULL; m = m->m_next)
1098 sballoc(sb, m);
1099 sballoc(sb, m);
1100 mlast = m;
1101 SBLINKRECORD(sb, control);
1102
1103 sb->sb_mbtail = mlast;
1104 SBLASTMBUFCHK(sb, "sbappendcontrol");
1105 SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1106
1107 return (1);
1108 }
1109
1110 /*
1111 * Compress mbuf chain m into the socket
1112 * buffer sb following mbuf n. If n
1113 * is null, the buffer is presumed empty.
1114 */
1115 void
1116 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1117 {
1118 int eor;
1119 struct mbuf *o;
1120
1121 KASSERT(solocked(sb->sb_so));
1122
1123 eor = 0;
1124 while (m) {
1125 eor |= m->m_flags & M_EOR;
1126 if (m->m_len == 0 &&
1127 (eor == 0 ||
1128 (((o = m->m_next) || (o = n)) &&
1129 o->m_type == m->m_type))) {
1130 if (sb->sb_lastrecord == m)
1131 sb->sb_lastrecord = m->m_next;
1132 m = m_free(m);
1133 continue;
1134 }
1135 if (n && (n->m_flags & M_EOR) == 0 &&
1136 /* M_TRAILINGSPACE() checks buffer writeability */
1137 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1138 m->m_len <= M_TRAILINGSPACE(n) &&
1139 n->m_type == m->m_type) {
1140 memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1141 (unsigned)m->m_len);
1142 n->m_len += m->m_len;
1143 sb->sb_cc += m->m_len;
1144 m = m_free(m);
1145 continue;
1146 }
1147 if (n)
1148 n->m_next = m;
1149 else
1150 sb->sb_mb = m;
1151 sb->sb_mbtail = m;
1152 sballoc(sb, m);
1153 n = m;
1154 m->m_flags &= ~M_EOR;
1155 m = m->m_next;
1156 n->m_next = 0;
1157 }
1158 if (eor) {
1159 if (n)
1160 n->m_flags |= eor;
1161 else
1162 printf("semi-panic: sbcompress\n");
1163 }
1164 SBLASTMBUFCHK(sb, __func__);
1165 }
1166
1167 /*
1168 * Free all mbufs in a sockbuf.
1169 * Check that all resources are reclaimed.
1170 */
1171 void
1172 sbflush(struct sockbuf *sb)
1173 {
1174
1175 KASSERT(solocked(sb->sb_so));
1176 KASSERT((sb->sb_flags & SB_LOCK) == 0);
1177
1178 while (sb->sb_mbcnt)
1179 sbdrop(sb, (int)sb->sb_cc);
1180
1181 KASSERT(sb->sb_cc == 0);
1182 KASSERT(sb->sb_mb == NULL);
1183 KASSERT(sb->sb_mbtail == NULL);
1184 KASSERT(sb->sb_lastrecord == NULL);
1185 }
1186
1187 /*
1188 * Drop data from (the front of) a sockbuf.
1189 */
1190 void
1191 sbdrop(struct sockbuf *sb, int len)
1192 {
1193 struct mbuf *m, *mn, *next;
1194
1195 KASSERT(solocked(sb->sb_so));
1196
1197 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1198 while (len > 0) {
1199 if (m == 0) {
1200 if (next == 0)
1201 panic("sbdrop");
1202 m = next;
1203 next = m->m_nextpkt;
1204 continue;
1205 }
1206 if (m->m_len > len) {
1207 m->m_len -= len;
1208 m->m_data += len;
1209 sb->sb_cc -= len;
1210 break;
1211 }
1212 len -= m->m_len;
1213 sbfree(sb, m);
1214 MFREE(m, mn);
1215 m = mn;
1216 }
1217 while (m && m->m_len == 0) {
1218 sbfree(sb, m);
1219 MFREE(m, mn);
1220 m = mn;
1221 }
1222 if (m) {
1223 sb->sb_mb = m;
1224 m->m_nextpkt = next;
1225 } else
1226 sb->sb_mb = next;
1227 /*
1228 * First part is an inline SB_EMPTY_FIXUP(). Second part
1229 * makes sure sb_lastrecord is up-to-date if we dropped
1230 * part of the last record.
1231 */
1232 m = sb->sb_mb;
1233 if (m == NULL) {
1234 sb->sb_mbtail = NULL;
1235 sb->sb_lastrecord = NULL;
1236 } else if (m->m_nextpkt == NULL)
1237 sb->sb_lastrecord = m;
1238 }
1239
1240 /*
1241 * Drop a record off the front of a sockbuf
1242 * and move the next record to the front.
1243 */
1244 void
1245 sbdroprecord(struct sockbuf *sb)
1246 {
1247 struct mbuf *m, *mn;
1248
1249 KASSERT(solocked(sb->sb_so));
1250
1251 m = sb->sb_mb;
1252 if (m) {
1253 sb->sb_mb = m->m_nextpkt;
1254 do {
1255 sbfree(sb, m);
1256 MFREE(m, mn);
1257 } while ((m = mn) != NULL);
1258 }
1259 SB_EMPTY_FIXUP(sb);
1260 }
1261
1262 /*
1263 * Create a "control" mbuf containing the specified data
1264 * with the specified type for presentation on a socket buffer.
1265 */
1266 struct mbuf *
1267 sbcreatecontrol(void *p, int size, int type, int level)
1268 {
1269 struct cmsghdr *cp;
1270 struct mbuf *m;
1271
1272 if (CMSG_SPACE(size) > MCLBYTES) {
1273 printf("sbcreatecontrol: message too large %d\n", size);
1274 return NULL;
1275 }
1276
1277 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
1278 return ((struct mbuf *) NULL);
1279 if (CMSG_SPACE(size) > MLEN) {
1280 MCLGET(m, M_DONTWAIT);
1281 if ((m->m_flags & M_EXT) == 0) {
1282 m_free(m);
1283 return NULL;
1284 }
1285 }
1286 cp = mtod(m, struct cmsghdr *);
1287 memcpy(CMSG_DATA(cp), p, size);
1288 m->m_len = CMSG_SPACE(size);
1289 cp->cmsg_len = CMSG_LEN(size);
1290 cp->cmsg_level = level;
1291 cp->cmsg_type = type;
1292 return (m);
1293 }
1294
1295 void
1296 solockretry(struct socket *so, kmutex_t *lock)
1297 {
1298
1299 while (lock != so->so_lock) {
1300 mutex_exit(lock);
1301 lock = so->so_lock;
1302 mutex_enter(lock);
1303 }
1304 }
1305
1306 bool
1307 solocked(struct socket *so)
1308 {
1309
1310 return mutex_owned(so->so_lock);
1311 }
1312
1313 bool
1314 solocked2(struct socket *so1, struct socket *so2)
1315 {
1316 kmutex_t *lock;
1317
1318 lock = so1->so_lock;
1319 if (lock != so2->so_lock)
1320 return false;
1321 return mutex_owned(lock);
1322 }
1323
1324 /*
1325 * Assign a default lock to a new socket. For PRU_ATTACH, and done by
1326 * protocols that do not have special locking requirements.
1327 */
1328 void
1329 sosetlock(struct socket *so)
1330 {
1331 kmutex_t *lock;
1332
1333 if (so->so_lock == NULL) {
1334 lock = softnet_lock;
1335 so->so_lock = lock;
1336 mutex_obj_hold(lock);
1337 mutex_enter(lock);
1338 }
1339
1340 /* In all cases, lock must be held on return from PRU_ATTACH. */
1341 KASSERT(solocked(so));
1342 }
1343
1344 /*
1345 * Set lock on sockbuf sb; sleep if lock is already held.
1346 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1347 * Returns error without lock if sleep is interrupted.
1348 */
1349 int
1350 sblock(struct sockbuf *sb, int wf)
1351 {
1352 struct socket *so;
1353 kmutex_t *lock;
1354 int error;
1355
1356 KASSERT(solocked(sb->sb_so));
1357
1358 for (;;) {
1359 if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1360 sb->sb_flags |= SB_LOCK;
1361 return 0;
1362 }
1363 if (wf != M_WAITOK)
1364 return EWOULDBLOCK;
1365 so = sb->sb_so;
1366 lock = so->so_lock;
1367 if ((sb->sb_flags & SB_NOINTR) != 0) {
1368 cv_wait(&so->so_cv, lock);
1369 error = 0;
1370 } else
1371 error = cv_wait_sig(&so->so_cv, lock);
1372 if (__predict_false(lock != so->so_lock))
1373 solockretry(so, lock);
1374 if (error != 0)
1375 return error;
1376 }
1377 }
1378
1379 void
1380 sbunlock(struct sockbuf *sb)
1381 {
1382 struct socket *so;
1383
1384 so = sb->sb_so;
1385
1386 KASSERT(solocked(so));
1387 KASSERT((sb->sb_flags & SB_LOCK) != 0);
1388
1389 sb->sb_flags &= ~SB_LOCK;
1390 cv_broadcast(&so->so_cv);
1391 }
1392
1393 int
1394 sowait(struct socket *so, int timo)
1395 {
1396 kmutex_t *lock;
1397 int error;
1398
1399 KASSERT(solocked(so));
1400
1401 lock = so->so_lock;
1402 error = cv_timedwait_sig(&so->so_cv, lock, timo);
1403 if (__predict_false(lock != so->so_lock))
1404 solockretry(so, lock);
1405 return error;
1406 }
1407