uipc_socket2.c revision 1.95 1 /* $NetBSD: uipc_socket2.c,v 1.95 2008/06/10 11:49:11 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the University nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
58 */
59
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.95 2008/06/10 11:49:11 ad Exp $");
62
63 #include "opt_mbuftrace.h"
64 #include "opt_sb_max.h"
65
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/proc.h>
69 #include <sys/file.h>
70 #include <sys/buf.h>
71 #include <sys/malloc.h>
72 #include <sys/mbuf.h>
73 #include <sys/protosw.h>
74 #include <sys/domain.h>
75 #include <sys/poll.h>
76 #include <sys/socket.h>
77 #include <sys/socketvar.h>
78 #include <sys/signalvar.h>
79 #include <sys/kauth.h>
80 #include <sys/pool.h>
81
82 /*
83 * Primitive routines for operating on sockets and socket buffers.
84 *
85 * Locking rules and assumptions:
86 *
87 * o socket::so_lock can change on the fly. The low level routines used
88 * to lock sockets are aware of this. When so_lock is acquired, the
89 * routine locking must check to see if so_lock still points to the
90 * lock that was acquired. If so_lock has changed in the meantime, the
91 * now irellevant lock that was acquired must be dropped and the lock
92 * operation retried. Although not proven here, this is completely safe
93 * on a multiprocessor system, even with relaxed memory ordering, given
94 * the next two rules:
95 *
96 * o In order to mutate so_lock, the lock pointed to by the current value
97 * of so_lock must be held: i.e., the socket must be held locked by the
98 * changing thread. The thread must issue membar_exit() to prevent
99 * memory accesses being reordered, and can set so_lock to the desired
100 * value. If the lock pointed to by the new value of so_lock is not
101 * held by the changing thread, the socket must then be considered
102 * unlocked.
103 *
104 * o If so_lock is mutated, and the previous lock referred to by so_lock
105 * could still be visible to other threads in the system (e.g. via file
106 * descriptor or protocol-internal reference), then the old lock must
107 * remain valid until the socket and/or protocol control block has been
108 * torn down.
109 *
110 * o If a socket has a non-NULL so_head value (i.e. is in the process of
111 * connecting), then locking the socket must also lock the socket pointed
112 * to by so_head: their lock pointers must match.
113 *
114 * o If a socket has connections in progress (so_q, so_q0 not empty) then
115 * locking the socket must also lock the sockets attached to both queues.
116 * Again, their lock pointers must match.
117 *
118 * o Beyond the initial lock assigment in socreate(), assigning locks to
119 * sockets is the responsibility of the individual protocols / protocol
120 * domains.
121 */
122
123 static pool_cache_t socket_cache;
124
125 u_long sb_max = SB_MAX; /* maximum socket buffer size */
126 static u_long sb_max_adj; /* adjusted sb_max */
127
128 /*
129 * Procedures to manipulate state flags of socket
130 * and do appropriate wakeups. Normal sequence from the
131 * active (originating) side is that soisconnecting() is
132 * called during processing of connect() call,
133 * resulting in an eventual call to soisconnected() if/when the
134 * connection is established. When the connection is torn down
135 * soisdisconnecting() is called during processing of disconnect() call,
136 * and soisdisconnected() is called when the connection to the peer
137 * is totally severed. The semantics of these routines are such that
138 * connectionless protocols can call soisconnected() and soisdisconnected()
139 * only, bypassing the in-progress calls when setting up a ``connection''
140 * takes no time.
141 *
142 * From the passive side, a socket is created with
143 * two queues of sockets: so_q0 for connections in progress
144 * and so_q for connections already made and awaiting user acceptance.
145 * As a protocol is preparing incoming connections, it creates a socket
146 * structure queued on so_q0 by calling sonewconn(). When the connection
147 * is established, soisconnected() is called, and transfers the
148 * socket structure to so_q, making it available to accept().
149 *
150 * If a socket is closed with sockets on either
151 * so_q0 or so_q, these sockets are dropped.
152 *
153 * If higher level protocols are implemented in
154 * the kernel, the wakeups done here will sometimes
155 * cause software-interrupt process scheduling.
156 */
157
158 void
159 soisconnecting(struct socket *so)
160 {
161
162 KASSERT(solocked(so));
163
164 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
165 so->so_state |= SS_ISCONNECTING;
166 }
167
168 void
169 soisconnected(struct socket *so)
170 {
171 struct socket *head;
172
173 head = so->so_head;
174
175 KASSERT(solocked(so));
176 KASSERT(head == NULL || solocked2(so, head));
177
178 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
179 so->so_state |= SS_ISCONNECTED;
180 if (head && soqremque(so, 0)) {
181 soqinsque(head, so, 1);
182 sorwakeup(head);
183 cv_broadcast(&head->so_cv);
184 } else {
185 cv_broadcast(&so->so_cv);
186 sorwakeup(so);
187 sowwakeup(so);
188 }
189 }
190
191 void
192 soisdisconnecting(struct socket *so)
193 {
194
195 KASSERT(solocked(so));
196
197 so->so_state &= ~SS_ISCONNECTING;
198 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
199 cv_broadcast(&so->so_cv);
200 sowwakeup(so);
201 sorwakeup(so);
202 }
203
204 void
205 soisdisconnected(struct socket *so)
206 {
207
208 KASSERT(solocked(so));
209
210 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
211 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
212 cv_broadcast(&so->so_cv);
213 sowwakeup(so);
214 sorwakeup(so);
215 }
216
217 void
218 soinit2(void)
219 {
220
221 socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
222 "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
223 }
224
225 /*
226 * When an attempt at a new connection is noted on a socket
227 * which accepts connections, sonewconn is called. If the
228 * connection is possible (subject to space constraints, etc.)
229 * then we allocate a new structure, propoerly linked into the
230 * data structure of the original socket, and return this.
231 * Connstatus may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
232 */
233 struct socket *
234 sonewconn(struct socket *head, int connstatus)
235 {
236 struct socket *so;
237 int soqueue, error;
238
239 KASSERT(solocked(head));
240
241 soqueue = connstatus ? 1 : 0;
242 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
243 return ((struct socket *)0);
244 so = soget(false);
245 if (so == NULL)
246 return (NULL);
247 mutex_obj_hold(head->so_lock);
248 so->so_lock = head->so_lock;
249 so->so_type = head->so_type;
250 so->so_options = head->so_options &~ SO_ACCEPTCONN;
251 so->so_linger = head->so_linger;
252 so->so_state = head->so_state | SS_NOFDREF;
253 so->so_nbio = head->so_nbio;
254 so->so_proto = head->so_proto;
255 so->so_timeo = head->so_timeo;
256 so->so_pgid = head->so_pgid;
257 so->so_send = head->so_send;
258 so->so_receive = head->so_receive;
259 so->so_uidinfo = head->so_uidinfo;
260 #ifdef MBUFTRACE
261 so->so_mowner = head->so_mowner;
262 so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
263 so->so_snd.sb_mowner = head->so_snd.sb_mowner;
264 #endif
265 (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
266 so->so_snd.sb_lowat = head->so_snd.sb_lowat;
267 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
268 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
269 so->so_snd.sb_timeo = head->so_snd.sb_timeo;
270 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
271 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
272 soqinsque(head, so, soqueue);
273 error = (*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL,
274 NULL, NULL);
275 KASSERT(solocked(so));
276 if (error != 0) {
277 (void) soqremque(so, soqueue);
278 soput(so);
279 return (NULL);
280 }
281 if (connstatus) {
282 sorwakeup(head);
283 cv_broadcast(&head->so_cv);
284 so->so_state |= connstatus;
285 }
286 return (so);
287 }
288
289 struct socket *
290 soget(bool waitok)
291 {
292 struct socket *so;
293
294 so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
295 if (__predict_false(so == NULL))
296 return (NULL);
297 memset(so, 0, sizeof(*so));
298 TAILQ_INIT(&so->so_q0);
299 TAILQ_INIT(&so->so_q);
300 cv_init(&so->so_cv, "socket");
301 cv_init(&so->so_rcv.sb_cv, "netio");
302 cv_init(&so->so_snd.sb_cv, "netio");
303 selinit(&so->so_rcv.sb_sel);
304 selinit(&so->so_snd.sb_sel);
305 so->so_rcv.sb_so = so;
306 so->so_snd.sb_so = so;
307 return so;
308 }
309
310 void
311 soput(struct socket *so)
312 {
313
314 KASSERT(!cv_has_waiters(&so->so_cv));
315 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
316 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
317 seldestroy(&so->so_rcv.sb_sel);
318 seldestroy(&so->so_snd.sb_sel);
319 mutex_obj_free(so->so_lock);
320 cv_destroy(&so->so_cv);
321 cv_destroy(&so->so_rcv.sb_cv);
322 cv_destroy(&so->so_snd.sb_cv);
323 pool_cache_put(socket_cache, so);
324 }
325
326 void
327 soqinsque(struct socket *head, struct socket *so, int q)
328 {
329
330 KASSERT(solocked2(head, so));
331
332 #ifdef DIAGNOSTIC
333 if (so->so_onq != NULL)
334 panic("soqinsque");
335 #endif
336
337 so->so_head = head;
338 if (q == 0) {
339 head->so_q0len++;
340 so->so_onq = &head->so_q0;
341 } else {
342 head->so_qlen++;
343 so->so_onq = &head->so_q;
344 }
345 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
346 }
347
348 int
349 soqremque(struct socket *so, int q)
350 {
351 struct socket *head;
352
353 head = so->so_head;
354
355 KASSERT(solocked(so));
356 if (q == 0) {
357 if (so->so_onq != &head->so_q0)
358 return (0);
359 head->so_q0len--;
360 } else {
361 if (so->so_onq != &head->so_q)
362 return (0);
363 head->so_qlen--;
364 }
365 KASSERT(solocked2(so, head));
366 TAILQ_REMOVE(so->so_onq, so, so_qe);
367 so->so_onq = NULL;
368 so->so_head = NULL;
369 return (1);
370 }
371
372 /*
373 * Socantsendmore indicates that no more data will be sent on the
374 * socket; it would normally be applied to a socket when the user
375 * informs the system that no more data is to be sent, by the protocol
376 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
377 * will be received, and will normally be applied to the socket by a
378 * protocol when it detects that the peer will send no more data.
379 * Data queued for reading in the socket may yet be read.
380 */
381
382 void
383 socantsendmore(struct socket *so)
384 {
385
386 KASSERT(solocked(so));
387
388 so->so_state |= SS_CANTSENDMORE;
389 sowwakeup(so);
390 }
391
392 void
393 socantrcvmore(struct socket *so)
394 {
395
396 KASSERT(solocked(so));
397
398 so->so_state |= SS_CANTRCVMORE;
399 sorwakeup(so);
400 }
401
402 /*
403 * Wait for data to arrive at/drain from a socket buffer.
404 */
405 int
406 sbwait(struct sockbuf *sb)
407 {
408 struct socket *so;
409 kmutex_t *lock;
410 int error;
411
412 so = sb->sb_so;
413
414 KASSERT(solocked(so));
415
416 sb->sb_flags |= SB_NOTIFY;
417 lock = so->so_lock;
418 if ((sb->sb_flags & SB_NOINTR) != 0)
419 error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
420 else
421 error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
422 if (__predict_false(lock != so->so_lock))
423 solockretry(so, lock);
424 return error;
425 }
426
427 /*
428 * Wakeup processes waiting on a socket buffer.
429 * Do asynchronous notification via SIGIO
430 * if the socket buffer has the SB_ASYNC flag set.
431 */
432 void
433 sowakeup(struct socket *so, struct sockbuf *sb, int code)
434 {
435 int band;
436
437 KASSERT(solocked(so));
438 KASSERT(sb->sb_so == so);
439
440 if (code == POLL_IN)
441 band = POLLIN|POLLRDNORM;
442 else
443 band = POLLOUT|POLLWRNORM;
444 sb->sb_flags &= ~SB_NOTIFY;
445 selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
446 cv_broadcast(&sb->sb_cv);
447 if (sb->sb_flags & SB_ASYNC)
448 fownsignal(so->so_pgid, SIGIO, code, band, so);
449 if (sb->sb_flags & SB_UPCALL)
450 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
451 }
452
453 /*
454 * Reset a socket's lock pointer. Wake all threads waiting on the
455 * socket's condition variables so that they can restart their waits
456 * using the new lock. The existing lock must be held.
457 */
458 void
459 solockreset(struct socket *so, kmutex_t *lock)
460 {
461
462 KASSERT(solocked(so));
463
464 so->so_lock = lock;
465 cv_broadcast(&so->so_snd.sb_cv);
466 cv_broadcast(&so->so_rcv.sb_cv);
467 cv_broadcast(&so->so_cv);
468 }
469
470 /*
471 * Socket buffer (struct sockbuf) utility routines.
472 *
473 * Each socket contains two socket buffers: one for sending data and
474 * one for receiving data. Each buffer contains a queue of mbufs,
475 * information about the number of mbufs and amount of data in the
476 * queue, and other fields allowing poll() statements and notification
477 * on data availability to be implemented.
478 *
479 * Data stored in a socket buffer is maintained as a list of records.
480 * Each record is a list of mbufs chained together with the m_next
481 * field. Records are chained together with the m_nextpkt field. The upper
482 * level routine soreceive() expects the following conventions to be
483 * observed when placing information in the receive buffer:
484 *
485 * 1. If the protocol requires each message be preceded by the sender's
486 * name, then a record containing that name must be present before
487 * any associated data (mbuf's must be of type MT_SONAME).
488 * 2. If the protocol supports the exchange of ``access rights'' (really
489 * just additional data associated with the message), and there are
490 * ``rights'' to be received, then a record containing this data
491 * should be present (mbuf's must be of type MT_CONTROL).
492 * 3. If a name or rights record exists, then it must be followed by
493 * a data record, perhaps of zero length.
494 *
495 * Before using a new socket structure it is first necessary to reserve
496 * buffer space to the socket, by calling sbreserve(). This should commit
497 * some of the available buffer space in the system buffer pool for the
498 * socket (currently, it does nothing but enforce limits). The space
499 * should be released by calling sbrelease() when the socket is destroyed.
500 */
501
502 int
503 sb_max_set(u_long new_sbmax)
504 {
505 int s;
506
507 if (new_sbmax < (16 * 1024))
508 return (EINVAL);
509
510 s = splsoftnet();
511 sb_max = new_sbmax;
512 sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
513 splx(s);
514
515 return (0);
516 }
517
518 int
519 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
520 {
521
522 KASSERT(so->so_lock == NULL || solocked(so));
523
524 /*
525 * there's at least one application (a configure script of screen)
526 * which expects a fifo is writable even if it has "some" bytes
527 * in its buffer.
528 * so we want to make sure (hiwat - lowat) >= (some bytes).
529 *
530 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
531 * we expect it's large enough for such applications.
532 */
533 u_long lowat = MAX(sock_loan_thresh, MCLBYTES);
534 u_long hiwat = lowat + PIPE_BUF;
535
536 if (sndcc < hiwat)
537 sndcc = hiwat;
538 if (sbreserve(&so->so_snd, sndcc, so) == 0)
539 goto bad;
540 if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
541 goto bad2;
542 if (so->so_rcv.sb_lowat == 0)
543 so->so_rcv.sb_lowat = 1;
544 if (so->so_snd.sb_lowat == 0)
545 so->so_snd.sb_lowat = lowat;
546 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
547 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
548 return (0);
549 bad2:
550 sbrelease(&so->so_snd, so);
551 bad:
552 return (ENOBUFS);
553 }
554
555 /*
556 * Allot mbufs to a sockbuf.
557 * Attempt to scale mbmax so that mbcnt doesn't become limiting
558 * if buffering efficiency is near the normal case.
559 */
560 int
561 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
562 {
563 struct lwp *l = curlwp; /* XXX */
564 rlim_t maxcc;
565 struct uidinfo *uidinfo;
566
567 KASSERT(so->so_lock == NULL || solocked(so));
568 KASSERT(sb->sb_so == so);
569 KASSERT(sb_max_adj != 0);
570
571 if (cc == 0 || cc > sb_max_adj)
572 return (0);
573
574 if (kauth_cred_geteuid(l->l_cred) == so->so_uidinfo->ui_uid)
575 maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
576 else
577 maxcc = RLIM_INFINITY;
578
579 uidinfo = so->so_uidinfo;
580 if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
581 return 0;
582 sb->sb_mbmax = min(cc * 2, sb_max);
583 if (sb->sb_lowat > sb->sb_hiwat)
584 sb->sb_lowat = sb->sb_hiwat;
585 return (1);
586 }
587
588 /*
589 * Free mbufs held by a socket, and reserved mbuf space. We do not assert
590 * that the socket is held locked here: see sorflush().
591 */
592 void
593 sbrelease(struct sockbuf *sb, struct socket *so)
594 {
595
596 KASSERT(sb->sb_so == so);
597
598 sbflush(sb);
599 (void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
600 sb->sb_mbmax = 0;
601 }
602
603 /*
604 * Routines to add and remove
605 * data from an mbuf queue.
606 *
607 * The routines sbappend() or sbappendrecord() are normally called to
608 * append new mbufs to a socket buffer, after checking that adequate
609 * space is available, comparing the function sbspace() with the amount
610 * of data to be added. sbappendrecord() differs from sbappend() in
611 * that data supplied is treated as the beginning of a new record.
612 * To place a sender's address, optional access rights, and data in a
613 * socket receive buffer, sbappendaddr() should be used. To place
614 * access rights and data in a socket receive buffer, sbappendrights()
615 * should be used. In either case, the new data begins a new record.
616 * Note that unlike sbappend() and sbappendrecord(), these routines check
617 * for the caller that there will be enough space to store the data.
618 * Each fails if there is not enough space, or if it cannot find mbufs
619 * to store additional information in.
620 *
621 * Reliable protocols may use the socket send buffer to hold data
622 * awaiting acknowledgement. Data is normally copied from a socket
623 * send buffer in a protocol with m_copy for output to a peer,
624 * and then removing the data from the socket buffer with sbdrop()
625 * or sbdroprecord() when the data is acknowledged by the peer.
626 */
627
628 #ifdef SOCKBUF_DEBUG
629 void
630 sblastrecordchk(struct sockbuf *sb, const char *where)
631 {
632 struct mbuf *m = sb->sb_mb;
633
634 KASSERT(solocked(sb->sb_so));
635
636 while (m && m->m_nextpkt)
637 m = m->m_nextpkt;
638
639 if (m != sb->sb_lastrecord) {
640 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
641 sb->sb_mb, sb->sb_lastrecord, m);
642 printf("packet chain:\n");
643 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
644 printf("\t%p\n", m);
645 panic("sblastrecordchk from %s", where);
646 }
647 }
648
649 void
650 sblastmbufchk(struct sockbuf *sb, const char *where)
651 {
652 struct mbuf *m = sb->sb_mb;
653 struct mbuf *n;
654
655 KASSERT(solocked(sb->sb_so));
656
657 while (m && m->m_nextpkt)
658 m = m->m_nextpkt;
659
660 while (m && m->m_next)
661 m = m->m_next;
662
663 if (m != sb->sb_mbtail) {
664 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
665 sb->sb_mb, sb->sb_mbtail, m);
666 printf("packet tree:\n");
667 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
668 printf("\t");
669 for (n = m; n != NULL; n = n->m_next)
670 printf("%p ", n);
671 printf("\n");
672 }
673 panic("sblastmbufchk from %s", where);
674 }
675 }
676 #endif /* SOCKBUF_DEBUG */
677
678 /*
679 * Link a chain of records onto a socket buffer
680 */
681 #define SBLINKRECORDCHAIN(sb, m0, mlast) \
682 do { \
683 if ((sb)->sb_lastrecord != NULL) \
684 (sb)->sb_lastrecord->m_nextpkt = (m0); \
685 else \
686 (sb)->sb_mb = (m0); \
687 (sb)->sb_lastrecord = (mlast); \
688 } while (/*CONSTCOND*/0)
689
690
691 #define SBLINKRECORD(sb, m0) \
692 SBLINKRECORDCHAIN(sb, m0, m0)
693
694 /*
695 * Append mbuf chain m to the last record in the
696 * socket buffer sb. The additional space associated
697 * the mbuf chain is recorded in sb. Empty mbufs are
698 * discarded and mbufs are compacted where possible.
699 */
700 void
701 sbappend(struct sockbuf *sb, struct mbuf *m)
702 {
703 struct mbuf *n;
704
705 KASSERT(solocked(sb->sb_so));
706
707 if (m == 0)
708 return;
709
710 #ifdef MBUFTRACE
711 m_claimm(m, sb->sb_mowner);
712 #endif
713
714 SBLASTRECORDCHK(sb, "sbappend 1");
715
716 if ((n = sb->sb_lastrecord) != NULL) {
717 /*
718 * XXX Would like to simply use sb_mbtail here, but
719 * XXX I need to verify that I won't miss an EOR that
720 * XXX way.
721 */
722 do {
723 if (n->m_flags & M_EOR) {
724 sbappendrecord(sb, m); /* XXXXXX!!!! */
725 return;
726 }
727 } while (n->m_next && (n = n->m_next));
728 } else {
729 /*
730 * If this is the first record in the socket buffer, it's
731 * also the last record.
732 */
733 sb->sb_lastrecord = m;
734 }
735 sbcompress(sb, m, n);
736 SBLASTRECORDCHK(sb, "sbappend 2");
737 }
738
739 /*
740 * This version of sbappend() should only be used when the caller
741 * absolutely knows that there will never be more than one record
742 * in the socket buffer, that is, a stream protocol (such as TCP).
743 */
744 void
745 sbappendstream(struct sockbuf *sb, struct mbuf *m)
746 {
747
748 KASSERT(solocked(sb->sb_so));
749 KDASSERT(m->m_nextpkt == NULL);
750 KASSERT(sb->sb_mb == sb->sb_lastrecord);
751
752 SBLASTMBUFCHK(sb, __func__);
753
754 #ifdef MBUFTRACE
755 m_claimm(m, sb->sb_mowner);
756 #endif
757
758 sbcompress(sb, m, sb->sb_mbtail);
759
760 sb->sb_lastrecord = sb->sb_mb;
761 SBLASTRECORDCHK(sb, __func__);
762 }
763
764 #ifdef SOCKBUF_DEBUG
765 void
766 sbcheck(struct sockbuf *sb)
767 {
768 struct mbuf *m, *m2;
769 u_long len, mbcnt;
770
771 KASSERT(solocked(sb->sb_so));
772
773 len = 0;
774 mbcnt = 0;
775 for (m = sb->sb_mb; m; m = m->m_nextpkt) {
776 for (m2 = m; m2 != NULL; m2 = m2->m_next) {
777 len += m2->m_len;
778 mbcnt += MSIZE;
779 if (m2->m_flags & M_EXT)
780 mbcnt += m2->m_ext.ext_size;
781 if (m2->m_nextpkt != NULL)
782 panic("sbcheck nextpkt");
783 }
784 }
785 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
786 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
787 mbcnt, sb->sb_mbcnt);
788 panic("sbcheck");
789 }
790 }
791 #endif
792
793 /*
794 * As above, except the mbuf chain
795 * begins a new record.
796 */
797 void
798 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
799 {
800 struct mbuf *m;
801
802 KASSERT(solocked(sb->sb_so));
803
804 if (m0 == 0)
805 return;
806
807 #ifdef MBUFTRACE
808 m_claimm(m0, sb->sb_mowner);
809 #endif
810 /*
811 * Put the first mbuf on the queue.
812 * Note this permits zero length records.
813 */
814 sballoc(sb, m0);
815 SBLASTRECORDCHK(sb, "sbappendrecord 1");
816 SBLINKRECORD(sb, m0);
817 m = m0->m_next;
818 m0->m_next = 0;
819 if (m && (m0->m_flags & M_EOR)) {
820 m0->m_flags &= ~M_EOR;
821 m->m_flags |= M_EOR;
822 }
823 sbcompress(sb, m, m0);
824 SBLASTRECORDCHK(sb, "sbappendrecord 2");
825 }
826
827 /*
828 * As above except that OOB data
829 * is inserted at the beginning of the sockbuf,
830 * but after any other OOB data.
831 */
832 void
833 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
834 {
835 struct mbuf *m, **mp;
836
837 KASSERT(solocked(sb->sb_so));
838
839 if (m0 == 0)
840 return;
841
842 SBLASTRECORDCHK(sb, "sbinsertoob 1");
843
844 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
845 again:
846 switch (m->m_type) {
847
848 case MT_OOBDATA:
849 continue; /* WANT next train */
850
851 case MT_CONTROL:
852 if ((m = m->m_next) != NULL)
853 goto again; /* inspect THIS train further */
854 }
855 break;
856 }
857 /*
858 * Put the first mbuf on the queue.
859 * Note this permits zero length records.
860 */
861 sballoc(sb, m0);
862 m0->m_nextpkt = *mp;
863 if (*mp == NULL) {
864 /* m0 is actually the new tail */
865 sb->sb_lastrecord = m0;
866 }
867 *mp = m0;
868 m = m0->m_next;
869 m0->m_next = 0;
870 if (m && (m0->m_flags & M_EOR)) {
871 m0->m_flags &= ~M_EOR;
872 m->m_flags |= M_EOR;
873 }
874 sbcompress(sb, m, m0);
875 SBLASTRECORDCHK(sb, "sbinsertoob 2");
876 }
877
878 /*
879 * Append address and data, and optionally, control (ancillary) data
880 * to the receive queue of a socket. If present,
881 * m0 must include a packet header with total length.
882 * Returns 0 if no space in sockbuf or insufficient mbufs.
883 */
884 int
885 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
886 struct mbuf *control)
887 {
888 struct mbuf *m, *n, *nlast;
889 int space, len;
890
891 KASSERT(solocked(sb->sb_so));
892
893 space = asa->sa_len;
894
895 if (m0 != NULL) {
896 if ((m0->m_flags & M_PKTHDR) == 0)
897 panic("sbappendaddr");
898 space += m0->m_pkthdr.len;
899 #ifdef MBUFTRACE
900 m_claimm(m0, sb->sb_mowner);
901 #endif
902 }
903 for (n = control; n; n = n->m_next) {
904 space += n->m_len;
905 MCLAIM(n, sb->sb_mowner);
906 if (n->m_next == 0) /* keep pointer to last control buf */
907 break;
908 }
909 if (space > sbspace(sb))
910 return (0);
911 MGET(m, M_DONTWAIT, MT_SONAME);
912 if (m == 0)
913 return (0);
914 MCLAIM(m, sb->sb_mowner);
915 /*
916 * XXX avoid 'comparison always true' warning which isn't easily
917 * avoided.
918 */
919 len = asa->sa_len;
920 if (len > MLEN) {
921 MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
922 if ((m->m_flags & M_EXT) == 0) {
923 m_free(m);
924 return (0);
925 }
926 }
927 m->m_len = asa->sa_len;
928 memcpy(mtod(m, void *), asa, asa->sa_len);
929 if (n)
930 n->m_next = m0; /* concatenate data to control */
931 else
932 control = m0;
933 m->m_next = control;
934
935 SBLASTRECORDCHK(sb, "sbappendaddr 1");
936
937 for (n = m; n->m_next != NULL; n = n->m_next)
938 sballoc(sb, n);
939 sballoc(sb, n);
940 nlast = n;
941 SBLINKRECORD(sb, m);
942
943 sb->sb_mbtail = nlast;
944 SBLASTMBUFCHK(sb, "sbappendaddr");
945 SBLASTRECORDCHK(sb, "sbappendaddr 2");
946
947 return (1);
948 }
949
950 /*
951 * Helper for sbappendchainaddr: prepend a struct sockaddr* to
952 * an mbuf chain.
953 */
954 static inline struct mbuf *
955 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
956 const struct sockaddr *asa)
957 {
958 struct mbuf *m;
959 const int salen = asa->sa_len;
960
961 KASSERT(solocked(sb->sb_so));
962
963 /* only the first in each chain need be a pkthdr */
964 MGETHDR(m, M_DONTWAIT, MT_SONAME);
965 if (m == 0)
966 return (0);
967 MCLAIM(m, sb->sb_mowner);
968 #ifdef notyet
969 if (salen > MHLEN) {
970 MEXTMALLOC(m, salen, M_NOWAIT);
971 if ((m->m_flags & M_EXT) == 0) {
972 m_free(m);
973 return (0);
974 }
975 }
976 #else
977 KASSERT(salen <= MHLEN);
978 #endif
979 m->m_len = salen;
980 memcpy(mtod(m, void *), asa, salen);
981 m->m_next = m0;
982 m->m_pkthdr.len = salen + m0->m_pkthdr.len;
983
984 return m;
985 }
986
987 int
988 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
989 struct mbuf *m0, int sbprio)
990 {
991 int space;
992 struct mbuf *m, *n, *n0, *nlast;
993 int error;
994
995 KASSERT(solocked(sb->sb_so));
996
997 /*
998 * XXX sbprio reserved for encoding priority of this* request:
999 * SB_PRIO_NONE --> honour normal sb limits
1000 * SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1001 * take whole chain. Intended for large requests
1002 * that should be delivered atomically (all, or none).
1003 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1004 * over normal socket limits, for messages indicating
1005 * buffer overflow in earlier normal/lower-priority messages
1006 * SB_PRIO_BESTEFFORT --> ignore limits entirely.
1007 * Intended for kernel-generated messages only.
1008 * Up to generator to avoid total mbuf resource exhaustion.
1009 */
1010 (void)sbprio;
1011
1012 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1013 panic("sbappendaddrchain");
1014
1015 space = sbspace(sb);
1016
1017 #ifdef notyet
1018 /*
1019 * Enforce SB_PRIO_* limits as described above.
1020 */
1021 #endif
1022
1023 n0 = NULL;
1024 nlast = NULL;
1025 for (m = m0; m; m = m->m_nextpkt) {
1026 struct mbuf *np;
1027
1028 #ifdef MBUFTRACE
1029 m_claimm(m, sb->sb_mowner);
1030 #endif
1031
1032 /* Prepend sockaddr to this record (m) of input chain m0 */
1033 n = m_prepend_sockaddr(sb, m, asa);
1034 if (n == NULL) {
1035 error = ENOBUFS;
1036 goto bad;
1037 }
1038
1039 /* Append record (asa+m) to end of new chain n0 */
1040 if (n0 == NULL) {
1041 n0 = n;
1042 } else {
1043 nlast->m_nextpkt = n;
1044 }
1045 /* Keep track of last record on new chain */
1046 nlast = n;
1047
1048 for (np = n; np; np = np->m_next)
1049 sballoc(sb, np);
1050 }
1051
1052 SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1053
1054 /* Drop the entire chain of (asa+m) records onto the socket */
1055 SBLINKRECORDCHAIN(sb, n0, nlast);
1056
1057 SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1058
1059 for (m = nlast; m->m_next; m = m->m_next)
1060 ;
1061 sb->sb_mbtail = m;
1062 SBLASTMBUFCHK(sb, "sbappendaddrchain");
1063
1064 return (1);
1065
1066 bad:
1067 /*
1068 * On error, free the prepended addreseses. For consistency
1069 * with sbappendaddr(), leave it to our caller to free
1070 * the input record chain passed to us as m0.
1071 */
1072 while ((n = n0) != NULL) {
1073 struct mbuf *np;
1074
1075 /* Undo the sballoc() of this record */
1076 for (np = n; np; np = np->m_next)
1077 sbfree(sb, np);
1078
1079 n0 = n->m_nextpkt; /* iterate at next prepended address */
1080 MFREE(n, np); /* free prepended address (not data) */
1081 }
1082 return 0;
1083 }
1084
1085
1086 int
1087 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1088 {
1089 struct mbuf *m, *mlast, *n;
1090 int space;
1091
1092 KASSERT(solocked(sb->sb_so));
1093
1094 space = 0;
1095 if (control == 0)
1096 panic("sbappendcontrol");
1097 for (m = control; ; m = m->m_next) {
1098 space += m->m_len;
1099 MCLAIM(m, sb->sb_mowner);
1100 if (m->m_next == 0)
1101 break;
1102 }
1103 n = m; /* save pointer to last control buffer */
1104 for (m = m0; m; m = m->m_next) {
1105 MCLAIM(m, sb->sb_mowner);
1106 space += m->m_len;
1107 }
1108 if (space > sbspace(sb))
1109 return (0);
1110 n->m_next = m0; /* concatenate data to control */
1111
1112 SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1113
1114 for (m = control; m->m_next != NULL; m = m->m_next)
1115 sballoc(sb, m);
1116 sballoc(sb, m);
1117 mlast = m;
1118 SBLINKRECORD(sb, control);
1119
1120 sb->sb_mbtail = mlast;
1121 SBLASTMBUFCHK(sb, "sbappendcontrol");
1122 SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1123
1124 return (1);
1125 }
1126
1127 /*
1128 * Compress mbuf chain m into the socket
1129 * buffer sb following mbuf n. If n
1130 * is null, the buffer is presumed empty.
1131 */
1132 void
1133 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1134 {
1135 int eor;
1136 struct mbuf *o;
1137
1138 KASSERT(solocked(sb->sb_so));
1139
1140 eor = 0;
1141 while (m) {
1142 eor |= m->m_flags & M_EOR;
1143 if (m->m_len == 0 &&
1144 (eor == 0 ||
1145 (((o = m->m_next) || (o = n)) &&
1146 o->m_type == m->m_type))) {
1147 if (sb->sb_lastrecord == m)
1148 sb->sb_lastrecord = m->m_next;
1149 m = m_free(m);
1150 continue;
1151 }
1152 if (n && (n->m_flags & M_EOR) == 0 &&
1153 /* M_TRAILINGSPACE() checks buffer writeability */
1154 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1155 m->m_len <= M_TRAILINGSPACE(n) &&
1156 n->m_type == m->m_type) {
1157 memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1158 (unsigned)m->m_len);
1159 n->m_len += m->m_len;
1160 sb->sb_cc += m->m_len;
1161 m = m_free(m);
1162 continue;
1163 }
1164 if (n)
1165 n->m_next = m;
1166 else
1167 sb->sb_mb = m;
1168 sb->sb_mbtail = m;
1169 sballoc(sb, m);
1170 n = m;
1171 m->m_flags &= ~M_EOR;
1172 m = m->m_next;
1173 n->m_next = 0;
1174 }
1175 if (eor) {
1176 if (n)
1177 n->m_flags |= eor;
1178 else
1179 printf("semi-panic: sbcompress\n");
1180 }
1181 SBLASTMBUFCHK(sb, __func__);
1182 }
1183
1184 /*
1185 * Free all mbufs in a sockbuf.
1186 * Check that all resources are reclaimed.
1187 */
1188 void
1189 sbflush(struct sockbuf *sb)
1190 {
1191
1192 KASSERT(solocked(sb->sb_so));
1193 KASSERT((sb->sb_flags & SB_LOCK) == 0);
1194
1195 while (sb->sb_mbcnt)
1196 sbdrop(sb, (int)sb->sb_cc);
1197
1198 KASSERT(sb->sb_cc == 0);
1199 KASSERT(sb->sb_mb == NULL);
1200 KASSERT(sb->sb_mbtail == NULL);
1201 KASSERT(sb->sb_lastrecord == NULL);
1202 }
1203
1204 /*
1205 * Drop data from (the front of) a sockbuf.
1206 */
1207 void
1208 sbdrop(struct sockbuf *sb, int len)
1209 {
1210 struct mbuf *m, *mn, *next;
1211
1212 KASSERT(solocked(sb->sb_so));
1213
1214 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1215 while (len > 0) {
1216 if (m == 0) {
1217 if (next == 0)
1218 panic("sbdrop");
1219 m = next;
1220 next = m->m_nextpkt;
1221 continue;
1222 }
1223 if (m->m_len > len) {
1224 m->m_len -= len;
1225 m->m_data += len;
1226 sb->sb_cc -= len;
1227 break;
1228 }
1229 len -= m->m_len;
1230 sbfree(sb, m);
1231 MFREE(m, mn);
1232 m = mn;
1233 }
1234 while (m && m->m_len == 0) {
1235 sbfree(sb, m);
1236 MFREE(m, mn);
1237 m = mn;
1238 }
1239 if (m) {
1240 sb->sb_mb = m;
1241 m->m_nextpkt = next;
1242 } else
1243 sb->sb_mb = next;
1244 /*
1245 * First part is an inline SB_EMPTY_FIXUP(). Second part
1246 * makes sure sb_lastrecord is up-to-date if we dropped
1247 * part of the last record.
1248 */
1249 m = sb->sb_mb;
1250 if (m == NULL) {
1251 sb->sb_mbtail = NULL;
1252 sb->sb_lastrecord = NULL;
1253 } else if (m->m_nextpkt == NULL)
1254 sb->sb_lastrecord = m;
1255 }
1256
1257 /*
1258 * Drop a record off the front of a sockbuf
1259 * and move the next record to the front.
1260 */
1261 void
1262 sbdroprecord(struct sockbuf *sb)
1263 {
1264 struct mbuf *m, *mn;
1265
1266 KASSERT(solocked(sb->sb_so));
1267
1268 m = sb->sb_mb;
1269 if (m) {
1270 sb->sb_mb = m->m_nextpkt;
1271 do {
1272 sbfree(sb, m);
1273 MFREE(m, mn);
1274 } while ((m = mn) != NULL);
1275 }
1276 SB_EMPTY_FIXUP(sb);
1277 }
1278
1279 /*
1280 * Create a "control" mbuf containing the specified data
1281 * with the specified type for presentation on a socket buffer.
1282 */
1283 struct mbuf *
1284 sbcreatecontrol(void *p, int size, int type, int level)
1285 {
1286 struct cmsghdr *cp;
1287 struct mbuf *m;
1288
1289 if (CMSG_SPACE(size) > MCLBYTES) {
1290 printf("sbcreatecontrol: message too large %d\n", size);
1291 return NULL;
1292 }
1293
1294 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
1295 return ((struct mbuf *) NULL);
1296 if (CMSG_SPACE(size) > MLEN) {
1297 MCLGET(m, M_DONTWAIT);
1298 if ((m->m_flags & M_EXT) == 0) {
1299 m_free(m);
1300 return NULL;
1301 }
1302 }
1303 cp = mtod(m, struct cmsghdr *);
1304 memcpy(CMSG_DATA(cp), p, size);
1305 m->m_len = CMSG_SPACE(size);
1306 cp->cmsg_len = CMSG_LEN(size);
1307 cp->cmsg_level = level;
1308 cp->cmsg_type = type;
1309 return (m);
1310 }
1311
1312 void
1313 solockretry(struct socket *so, kmutex_t *lock)
1314 {
1315
1316 while (lock != so->so_lock) {
1317 mutex_exit(lock);
1318 lock = so->so_lock;
1319 mutex_enter(lock);
1320 }
1321 }
1322
1323 bool
1324 solocked(struct socket *so)
1325 {
1326
1327 return mutex_owned(so->so_lock);
1328 }
1329
1330 bool
1331 solocked2(struct socket *so1, struct socket *so2)
1332 {
1333 kmutex_t *lock;
1334
1335 lock = so1->so_lock;
1336 if (lock != so2->so_lock)
1337 return false;
1338 return mutex_owned(lock);
1339 }
1340
1341 /*
1342 * Assign a default lock to a new socket. For PRU_ATTACH, and done by
1343 * protocols that do not have special locking requirements.
1344 */
1345 void
1346 sosetlock(struct socket *so)
1347 {
1348 kmutex_t *lock;
1349
1350 if (so->so_lock == NULL) {
1351 lock = softnet_lock;
1352 so->so_lock = lock;
1353 mutex_obj_hold(lock);
1354 mutex_enter(lock);
1355 }
1356
1357 /* In all cases, lock must be held on return from PRU_ATTACH. */
1358 KASSERT(solocked(so));
1359 }
1360
1361 /*
1362 * Set lock on sockbuf sb; sleep if lock is already held.
1363 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1364 * Returns error without lock if sleep is interrupted.
1365 */
1366 int
1367 sblock(struct sockbuf *sb, int wf)
1368 {
1369 struct socket *so;
1370 kmutex_t *lock;
1371 int error;
1372
1373 KASSERT(solocked(sb->sb_so));
1374
1375 for (;;) {
1376 if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1377 sb->sb_flags |= SB_LOCK;
1378 return 0;
1379 }
1380 if (wf != M_WAITOK)
1381 return EWOULDBLOCK;
1382 so = sb->sb_so;
1383 lock = so->so_lock;
1384 if ((sb->sb_flags & SB_NOINTR) != 0) {
1385 cv_wait(&so->so_cv, lock);
1386 error = 0;
1387 } else
1388 error = cv_wait_sig(&so->so_cv, lock);
1389 if (__predict_false(lock != so->so_lock))
1390 solockretry(so, lock);
1391 if (error != 0)
1392 return error;
1393 }
1394 }
1395
1396 void
1397 sbunlock(struct sockbuf *sb)
1398 {
1399 struct socket *so;
1400
1401 so = sb->sb_so;
1402
1403 KASSERT(solocked(so));
1404 KASSERT((sb->sb_flags & SB_LOCK) != 0);
1405
1406 sb->sb_flags &= ~SB_LOCK;
1407 cv_broadcast(&so->so_cv);
1408 }
1409
1410 int
1411 sowait(struct socket *so, int timo)
1412 {
1413 kmutex_t *lock;
1414 int error;
1415
1416 KASSERT(solocked(so));
1417
1418 lock = so->so_lock;
1419 error = cv_timedwait_sig(&so->so_cv, lock, timo);
1420 if (__predict_false(lock != so->so_lock))
1421 solockretry(so, lock);
1422 return error;
1423 }
1424