Home | History | Annotate | Line # | Download | only in kern
uipc_socket2.c revision 1.96
      1 /*	$NetBSD: uipc_socket2.c,v 1.96 2008/06/18 09:06:27 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     31  *	The Regents of the University of California.  All rights reserved.
     32  *
     33  * Redistribution and use in source and binary forms, with or without
     34  * modification, are permitted provided that the following conditions
     35  * are met:
     36  * 1. Redistributions of source code must retain the above copyright
     37  *    notice, this list of conditions and the following disclaimer.
     38  * 2. Redistributions in binary form must reproduce the above copyright
     39  *    notice, this list of conditions and the following disclaimer in the
     40  *    documentation and/or other materials provided with the distribution.
     41  * 3. Neither the name of the University nor the names of its contributors
     42  *    may be used to endorse or promote products derived from this software
     43  *    without specific prior written permission.
     44  *
     45  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55  * SUCH DAMAGE.
     56  *
     57  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
     58  */
     59 
     60 #include <sys/cdefs.h>
     61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.96 2008/06/18 09:06:27 yamt Exp $");
     62 
     63 #include "opt_mbuftrace.h"
     64 #include "opt_sb_max.h"
     65 
     66 #include <sys/param.h>
     67 #include <sys/systm.h>
     68 #include <sys/proc.h>
     69 #include <sys/file.h>
     70 #include <sys/buf.h>
     71 #include <sys/malloc.h>
     72 #include <sys/mbuf.h>
     73 #include <sys/protosw.h>
     74 #include <sys/domain.h>
     75 #include <sys/poll.h>
     76 #include <sys/socket.h>
     77 #include <sys/socketvar.h>
     78 #include <sys/signalvar.h>
     79 #include <sys/kauth.h>
     80 #include <sys/pool.h>
     81 
     82 /*
     83  * Primitive routines for operating on sockets and socket buffers.
     84  *
     85  * Locking rules and assumptions:
     86  *
     87  * o socket::so_lock can change on the fly.  The low level routines used
     88  *   to lock sockets are aware of this.  When so_lock is acquired, the
     89  *   routine locking must check to see if so_lock still points to the
     90  *   lock that was acquired.  If so_lock has changed in the meantime, the
     91  *   now irellevant lock that was acquired must be dropped and the lock
     92  *   operation retried.  Although not proven here, this is completely safe
     93  *   on a multiprocessor system, even with relaxed memory ordering, given
     94  *   the next two rules:
     95  *
     96  * o In order to mutate so_lock, the lock pointed to by the current value
     97  *   of so_lock must be held: i.e., the socket must be held locked by the
     98  *   changing thread.  The thread must issue membar_exit() to prevent
     99  *   memory accesses being reordered, and can set so_lock to the desired
    100  *   value.  If the lock pointed to by the new value of so_lock is not
    101  *   held by the changing thread, the socket must then be considered
    102  *   unlocked.
    103  *
    104  * o If so_lock is mutated, and the previous lock referred to by so_lock
    105  *   could still be visible to other threads in the system (e.g. via file
    106  *   descriptor or protocol-internal reference), then the old lock must
    107  *   remain valid until the socket and/or protocol control block has been
    108  *   torn down.
    109  *
    110  * o If a socket has a non-NULL so_head value (i.e. is in the process of
    111  *   connecting), then locking the socket must also lock the socket pointed
    112  *   to by so_head: their lock pointers must match.
    113  *
    114  * o If a socket has connections in progress (so_q, so_q0 not empty) then
    115  *   locking the socket must also lock the sockets attached to both queues.
    116  *   Again, their lock pointers must match.
    117  *
    118  * o Beyond the initial lock assigment in socreate(), assigning locks to
    119  *   sockets is the responsibility of the individual protocols / protocol
    120  *   domains.
    121  */
    122 
    123 static pool_cache_t socket_cache;
    124 
    125 u_long	sb_max = SB_MAX;	/* maximum socket buffer size */
    126 static u_long sb_max_adj;	/* adjusted sb_max */
    127 
    128 /*
    129  * Procedures to manipulate state flags of socket
    130  * and do appropriate wakeups.  Normal sequence from the
    131  * active (originating) side is that soisconnecting() is
    132  * called during processing of connect() call,
    133  * resulting in an eventual call to soisconnected() if/when the
    134  * connection is established.  When the connection is torn down
    135  * soisdisconnecting() is called during processing of disconnect() call,
    136  * and soisdisconnected() is called when the connection to the peer
    137  * is totally severed.  The semantics of these routines are such that
    138  * connectionless protocols can call soisconnected() and soisdisconnected()
    139  * only, bypassing the in-progress calls when setting up a ``connection''
    140  * takes no time.
    141  *
    142  * From the passive side, a socket is created with
    143  * two queues of sockets: so_q0 for connections in progress
    144  * and so_q for connections already made and awaiting user acceptance.
    145  * As a protocol is preparing incoming connections, it creates a socket
    146  * structure queued on so_q0 by calling sonewconn().  When the connection
    147  * is established, soisconnected() is called, and transfers the
    148  * socket structure to so_q, making it available to accept().
    149  *
    150  * If a socket is closed with sockets on either
    151  * so_q0 or so_q, these sockets are dropped.
    152  *
    153  * If higher level protocols are implemented in
    154  * the kernel, the wakeups done here will sometimes
    155  * cause software-interrupt process scheduling.
    156  */
    157 
    158 void
    159 soisconnecting(struct socket *so)
    160 {
    161 
    162 	KASSERT(solocked(so));
    163 
    164 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
    165 	so->so_state |= SS_ISCONNECTING;
    166 }
    167 
    168 void
    169 soisconnected(struct socket *so)
    170 {
    171 	struct socket	*head;
    172 
    173 	head = so->so_head;
    174 
    175 	KASSERT(solocked(so));
    176 	KASSERT(head == NULL || solocked2(so, head));
    177 
    178 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
    179 	so->so_state |= SS_ISCONNECTED;
    180 	if (head && soqremque(so, 0)) {
    181 		soqinsque(head, so, 1);
    182 		sorwakeup(head);
    183 		cv_broadcast(&head->so_cv);
    184 	} else {
    185 		cv_broadcast(&so->so_cv);
    186 		sorwakeup(so);
    187 		sowwakeup(so);
    188 	}
    189 }
    190 
    191 void
    192 soisdisconnecting(struct socket *so)
    193 {
    194 
    195 	KASSERT(solocked(so));
    196 
    197 	so->so_state &= ~SS_ISCONNECTING;
    198 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
    199 	cv_broadcast(&so->so_cv);
    200 	sowwakeup(so);
    201 	sorwakeup(so);
    202 }
    203 
    204 void
    205 soisdisconnected(struct socket *so)
    206 {
    207 
    208 	KASSERT(solocked(so));
    209 
    210 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
    211 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
    212 	cv_broadcast(&so->so_cv);
    213 	sowwakeup(so);
    214 	sorwakeup(so);
    215 }
    216 
    217 void
    218 soinit2(void)
    219 {
    220 
    221 	socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
    222 	    "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
    223 }
    224 
    225 /*
    226  * When an attempt at a new connection is noted on a socket
    227  * which accepts connections, sonewconn is called.  If the
    228  * connection is possible (subject to space constraints, etc.)
    229  * then we allocate a new structure, propoerly linked into the
    230  * data structure of the original socket, and return this.
    231  * Connstatus may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
    232  */
    233 struct socket *
    234 sonewconn(struct socket *head, int connstatus)
    235 {
    236 	struct socket	*so;
    237 	int		soqueue, error;
    238 
    239 	KASSERT(solocked(head));
    240 
    241 	soqueue = connstatus ? 1 : 0;
    242 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
    243 		return ((struct socket *)0);
    244 	so = soget(false);
    245 	if (so == NULL)
    246 		return (NULL);
    247 	mutex_obj_hold(head->so_lock);
    248 	so->so_lock = head->so_lock;
    249 	so->so_type = head->so_type;
    250 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
    251 	so->so_linger = head->so_linger;
    252 	so->so_state = head->so_state | SS_NOFDREF;
    253 	so->so_nbio = head->so_nbio;
    254 	so->so_proto = head->so_proto;
    255 	so->so_timeo = head->so_timeo;
    256 	so->so_pgid = head->so_pgid;
    257 	so->so_send = head->so_send;
    258 	so->so_receive = head->so_receive;
    259 	so->so_uidinfo = head->so_uidinfo;
    260 	so->so_egid = head->so_egid;
    261 	so->so_cpid = head->so_cpid;
    262 #ifdef MBUFTRACE
    263 	so->so_mowner = head->so_mowner;
    264 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
    265 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
    266 #endif
    267 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
    268 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
    269 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
    270 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
    271 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
    272 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
    273 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
    274 	soqinsque(head, so, soqueue);
    275 	error = (*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL,
    276 	    NULL, NULL);
    277 	KASSERT(solocked(so));
    278 	if (error != 0) {
    279 		(void) soqremque(so, soqueue);
    280 		soput(so);
    281 		return (NULL);
    282 	}
    283 	if (connstatus) {
    284 		sorwakeup(head);
    285 		cv_broadcast(&head->so_cv);
    286 		so->so_state |= connstatus;
    287 	}
    288 	return (so);
    289 }
    290 
    291 struct socket *
    292 soget(bool waitok)
    293 {
    294 	struct socket *so;
    295 
    296 	so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
    297 	if (__predict_false(so == NULL))
    298 		return (NULL);
    299 	memset(so, 0, sizeof(*so));
    300 	TAILQ_INIT(&so->so_q0);
    301 	TAILQ_INIT(&so->so_q);
    302 	cv_init(&so->so_cv, "socket");
    303 	cv_init(&so->so_rcv.sb_cv, "netio");
    304 	cv_init(&so->so_snd.sb_cv, "netio");
    305 	selinit(&so->so_rcv.sb_sel);
    306 	selinit(&so->so_snd.sb_sel);
    307 	so->so_rcv.sb_so = so;
    308 	so->so_snd.sb_so = so;
    309 	return so;
    310 }
    311 
    312 void
    313 soput(struct socket *so)
    314 {
    315 
    316 	KASSERT(!cv_has_waiters(&so->so_cv));
    317 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    318 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    319 	seldestroy(&so->so_rcv.sb_sel);
    320 	seldestroy(&so->so_snd.sb_sel);
    321 	mutex_obj_free(so->so_lock);
    322 	cv_destroy(&so->so_cv);
    323 	cv_destroy(&so->so_rcv.sb_cv);
    324 	cv_destroy(&so->so_snd.sb_cv);
    325 	pool_cache_put(socket_cache, so);
    326 }
    327 
    328 void
    329 soqinsque(struct socket *head, struct socket *so, int q)
    330 {
    331 
    332 	KASSERT(solocked2(head, so));
    333 
    334 #ifdef DIAGNOSTIC
    335 	if (so->so_onq != NULL)
    336 		panic("soqinsque");
    337 #endif
    338 
    339 	so->so_head = head;
    340 	if (q == 0) {
    341 		head->so_q0len++;
    342 		so->so_onq = &head->so_q0;
    343 	} else {
    344 		head->so_qlen++;
    345 		so->so_onq = &head->so_q;
    346 	}
    347 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
    348 }
    349 
    350 int
    351 soqremque(struct socket *so, int q)
    352 {
    353 	struct socket	*head;
    354 
    355 	head = so->so_head;
    356 
    357 	KASSERT(solocked(so));
    358 	if (q == 0) {
    359 		if (so->so_onq != &head->so_q0)
    360 			return (0);
    361 		head->so_q0len--;
    362 	} else {
    363 		if (so->so_onq != &head->so_q)
    364 			return (0);
    365 		head->so_qlen--;
    366 	}
    367 	KASSERT(solocked2(so, head));
    368 	TAILQ_REMOVE(so->so_onq, so, so_qe);
    369 	so->so_onq = NULL;
    370 	so->so_head = NULL;
    371 	return (1);
    372 }
    373 
    374 /*
    375  * Socantsendmore indicates that no more data will be sent on the
    376  * socket; it would normally be applied to a socket when the user
    377  * informs the system that no more data is to be sent, by the protocol
    378  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
    379  * will be received, and will normally be applied to the socket by a
    380  * protocol when it detects that the peer will send no more data.
    381  * Data queued for reading in the socket may yet be read.
    382  */
    383 
    384 void
    385 socantsendmore(struct socket *so)
    386 {
    387 
    388 	KASSERT(solocked(so));
    389 
    390 	so->so_state |= SS_CANTSENDMORE;
    391 	sowwakeup(so);
    392 }
    393 
    394 void
    395 socantrcvmore(struct socket *so)
    396 {
    397 
    398 	KASSERT(solocked(so));
    399 
    400 	so->so_state |= SS_CANTRCVMORE;
    401 	sorwakeup(so);
    402 }
    403 
    404 /*
    405  * Wait for data to arrive at/drain from a socket buffer.
    406  */
    407 int
    408 sbwait(struct sockbuf *sb)
    409 {
    410 	struct socket *so;
    411 	kmutex_t *lock;
    412 	int error;
    413 
    414 	so = sb->sb_so;
    415 
    416 	KASSERT(solocked(so));
    417 
    418 	sb->sb_flags |= SB_NOTIFY;
    419 	lock = so->so_lock;
    420 	if ((sb->sb_flags & SB_NOINTR) != 0)
    421 		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
    422 	else
    423 		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
    424 	if (__predict_false(lock != so->so_lock))
    425 		solockretry(so, lock);
    426 	return error;
    427 }
    428 
    429 /*
    430  * Wakeup processes waiting on a socket buffer.
    431  * Do asynchronous notification via SIGIO
    432  * if the socket buffer has the SB_ASYNC flag set.
    433  */
    434 void
    435 sowakeup(struct socket *so, struct sockbuf *sb, int code)
    436 {
    437 	int band;
    438 
    439 	KASSERT(solocked(so));
    440 	KASSERT(sb->sb_so == so);
    441 
    442 	if (code == POLL_IN)
    443 		band = POLLIN|POLLRDNORM;
    444 	else
    445 		band = POLLOUT|POLLWRNORM;
    446 	sb->sb_flags &= ~SB_NOTIFY;
    447 	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
    448 	cv_broadcast(&sb->sb_cv);
    449 	if (sb->sb_flags & SB_ASYNC)
    450 		fownsignal(so->so_pgid, SIGIO, code, band, so);
    451 	if (sb->sb_flags & SB_UPCALL)
    452 		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
    453 }
    454 
    455 /*
    456  * Reset a socket's lock pointer.  Wake all threads waiting on the
    457  * socket's condition variables so that they can restart their waits
    458  * using the new lock.  The existing lock must be held.
    459  */
    460 void
    461 solockreset(struct socket *so, kmutex_t *lock)
    462 {
    463 
    464 	KASSERT(solocked(so));
    465 
    466 	so->so_lock = lock;
    467 	cv_broadcast(&so->so_snd.sb_cv);
    468 	cv_broadcast(&so->so_rcv.sb_cv);
    469 	cv_broadcast(&so->so_cv);
    470 }
    471 
    472 /*
    473  * Socket buffer (struct sockbuf) utility routines.
    474  *
    475  * Each socket contains two socket buffers: one for sending data and
    476  * one for receiving data.  Each buffer contains a queue of mbufs,
    477  * information about the number of mbufs and amount of data in the
    478  * queue, and other fields allowing poll() statements and notification
    479  * on data availability to be implemented.
    480  *
    481  * Data stored in a socket buffer is maintained as a list of records.
    482  * Each record is a list of mbufs chained together with the m_next
    483  * field.  Records are chained together with the m_nextpkt field. The upper
    484  * level routine soreceive() expects the following conventions to be
    485  * observed when placing information in the receive buffer:
    486  *
    487  * 1. If the protocol requires each message be preceded by the sender's
    488  *    name, then a record containing that name must be present before
    489  *    any associated data (mbuf's must be of type MT_SONAME).
    490  * 2. If the protocol supports the exchange of ``access rights'' (really
    491  *    just additional data associated with the message), and there are
    492  *    ``rights'' to be received, then a record containing this data
    493  *    should be present (mbuf's must be of type MT_CONTROL).
    494  * 3. If a name or rights record exists, then it must be followed by
    495  *    a data record, perhaps of zero length.
    496  *
    497  * Before using a new socket structure it is first necessary to reserve
    498  * buffer space to the socket, by calling sbreserve().  This should commit
    499  * some of the available buffer space in the system buffer pool for the
    500  * socket (currently, it does nothing but enforce limits).  The space
    501  * should be released by calling sbrelease() when the socket is destroyed.
    502  */
    503 
    504 int
    505 sb_max_set(u_long new_sbmax)
    506 {
    507 	int s;
    508 
    509 	if (new_sbmax < (16 * 1024))
    510 		return (EINVAL);
    511 
    512 	s = splsoftnet();
    513 	sb_max = new_sbmax;
    514 	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
    515 	splx(s);
    516 
    517 	return (0);
    518 }
    519 
    520 int
    521 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
    522 {
    523 
    524 	KASSERT(so->so_lock == NULL || solocked(so));
    525 
    526 	/*
    527 	 * there's at least one application (a configure script of screen)
    528 	 * which expects a fifo is writable even if it has "some" bytes
    529 	 * in its buffer.
    530 	 * so we want to make sure (hiwat - lowat) >= (some bytes).
    531 	 *
    532 	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
    533 	 * we expect it's large enough for such applications.
    534 	 */
    535 	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
    536 	u_long  hiwat = lowat + PIPE_BUF;
    537 
    538 	if (sndcc < hiwat)
    539 		sndcc = hiwat;
    540 	if (sbreserve(&so->so_snd, sndcc, so) == 0)
    541 		goto bad;
    542 	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
    543 		goto bad2;
    544 	if (so->so_rcv.sb_lowat == 0)
    545 		so->so_rcv.sb_lowat = 1;
    546 	if (so->so_snd.sb_lowat == 0)
    547 		so->so_snd.sb_lowat = lowat;
    548 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
    549 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
    550 	return (0);
    551  bad2:
    552 	sbrelease(&so->so_snd, so);
    553  bad:
    554 	return (ENOBUFS);
    555 }
    556 
    557 /*
    558  * Allot mbufs to a sockbuf.
    559  * Attempt to scale mbmax so that mbcnt doesn't become limiting
    560  * if buffering efficiency is near the normal case.
    561  */
    562 int
    563 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
    564 {
    565 	struct lwp *l = curlwp; /* XXX */
    566 	rlim_t maxcc;
    567 	struct uidinfo *uidinfo;
    568 
    569 	KASSERT(so->so_lock == NULL || solocked(so));
    570 	KASSERT(sb->sb_so == so);
    571 	KASSERT(sb_max_adj != 0);
    572 
    573 	if (cc == 0 || cc > sb_max_adj)
    574 		return (0);
    575 
    576 	if (kauth_cred_geteuid(l->l_cred) == so->so_uidinfo->ui_uid)
    577 		maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
    578 	else
    579 		maxcc = RLIM_INFINITY;
    580 
    581 	uidinfo = so->so_uidinfo;
    582 	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
    583 		return 0;
    584 	sb->sb_mbmax = min(cc * 2, sb_max);
    585 	if (sb->sb_lowat > sb->sb_hiwat)
    586 		sb->sb_lowat = sb->sb_hiwat;
    587 	return (1);
    588 }
    589 
    590 /*
    591  * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
    592  * that the socket is held locked here: see sorflush().
    593  */
    594 void
    595 sbrelease(struct sockbuf *sb, struct socket *so)
    596 {
    597 
    598 	KASSERT(sb->sb_so == so);
    599 
    600 	sbflush(sb);
    601 	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
    602 	sb->sb_mbmax = 0;
    603 }
    604 
    605 /*
    606  * Routines to add and remove
    607  * data from an mbuf queue.
    608  *
    609  * The routines sbappend() or sbappendrecord() are normally called to
    610  * append new mbufs to a socket buffer, after checking that adequate
    611  * space is available, comparing the function sbspace() with the amount
    612  * of data to be added.  sbappendrecord() differs from sbappend() in
    613  * that data supplied is treated as the beginning of a new record.
    614  * To place a sender's address, optional access rights, and data in a
    615  * socket receive buffer, sbappendaddr() should be used.  To place
    616  * access rights and data in a socket receive buffer, sbappendrights()
    617  * should be used.  In either case, the new data begins a new record.
    618  * Note that unlike sbappend() and sbappendrecord(), these routines check
    619  * for the caller that there will be enough space to store the data.
    620  * Each fails if there is not enough space, or if it cannot find mbufs
    621  * to store additional information in.
    622  *
    623  * Reliable protocols may use the socket send buffer to hold data
    624  * awaiting acknowledgement.  Data is normally copied from a socket
    625  * send buffer in a protocol with m_copy for output to a peer,
    626  * and then removing the data from the socket buffer with sbdrop()
    627  * or sbdroprecord() when the data is acknowledged by the peer.
    628  */
    629 
    630 #ifdef SOCKBUF_DEBUG
    631 void
    632 sblastrecordchk(struct sockbuf *sb, const char *where)
    633 {
    634 	struct mbuf *m = sb->sb_mb;
    635 
    636 	KASSERT(solocked(sb->sb_so));
    637 
    638 	while (m && m->m_nextpkt)
    639 		m = m->m_nextpkt;
    640 
    641 	if (m != sb->sb_lastrecord) {
    642 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
    643 		    sb->sb_mb, sb->sb_lastrecord, m);
    644 		printf("packet chain:\n");
    645 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
    646 			printf("\t%p\n", m);
    647 		panic("sblastrecordchk from %s", where);
    648 	}
    649 }
    650 
    651 void
    652 sblastmbufchk(struct sockbuf *sb, const char *where)
    653 {
    654 	struct mbuf *m = sb->sb_mb;
    655 	struct mbuf *n;
    656 
    657 	KASSERT(solocked(sb->sb_so));
    658 
    659 	while (m && m->m_nextpkt)
    660 		m = m->m_nextpkt;
    661 
    662 	while (m && m->m_next)
    663 		m = m->m_next;
    664 
    665 	if (m != sb->sb_mbtail) {
    666 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
    667 		    sb->sb_mb, sb->sb_mbtail, m);
    668 		printf("packet tree:\n");
    669 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
    670 			printf("\t");
    671 			for (n = m; n != NULL; n = n->m_next)
    672 				printf("%p ", n);
    673 			printf("\n");
    674 		}
    675 		panic("sblastmbufchk from %s", where);
    676 	}
    677 }
    678 #endif /* SOCKBUF_DEBUG */
    679 
    680 /*
    681  * Link a chain of records onto a socket buffer
    682  */
    683 #define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
    684 do {									\
    685 	if ((sb)->sb_lastrecord != NULL)				\
    686 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
    687 	else								\
    688 		(sb)->sb_mb = (m0);					\
    689 	(sb)->sb_lastrecord = (mlast);					\
    690 } while (/*CONSTCOND*/0)
    691 
    692 
    693 #define	SBLINKRECORD(sb, m0)						\
    694     SBLINKRECORDCHAIN(sb, m0, m0)
    695 
    696 /*
    697  * Append mbuf chain m to the last record in the
    698  * socket buffer sb.  The additional space associated
    699  * the mbuf chain is recorded in sb.  Empty mbufs are
    700  * discarded and mbufs are compacted where possible.
    701  */
    702 void
    703 sbappend(struct sockbuf *sb, struct mbuf *m)
    704 {
    705 	struct mbuf	*n;
    706 
    707 	KASSERT(solocked(sb->sb_so));
    708 
    709 	if (m == 0)
    710 		return;
    711 
    712 #ifdef MBUFTRACE
    713 	m_claimm(m, sb->sb_mowner);
    714 #endif
    715 
    716 	SBLASTRECORDCHK(sb, "sbappend 1");
    717 
    718 	if ((n = sb->sb_lastrecord) != NULL) {
    719 		/*
    720 		 * XXX Would like to simply use sb_mbtail here, but
    721 		 * XXX I need to verify that I won't miss an EOR that
    722 		 * XXX way.
    723 		 */
    724 		do {
    725 			if (n->m_flags & M_EOR) {
    726 				sbappendrecord(sb, m); /* XXXXXX!!!! */
    727 				return;
    728 			}
    729 		} while (n->m_next && (n = n->m_next));
    730 	} else {
    731 		/*
    732 		 * If this is the first record in the socket buffer, it's
    733 		 * also the last record.
    734 		 */
    735 		sb->sb_lastrecord = m;
    736 	}
    737 	sbcompress(sb, m, n);
    738 	SBLASTRECORDCHK(sb, "sbappend 2");
    739 }
    740 
    741 /*
    742  * This version of sbappend() should only be used when the caller
    743  * absolutely knows that there will never be more than one record
    744  * in the socket buffer, that is, a stream protocol (such as TCP).
    745  */
    746 void
    747 sbappendstream(struct sockbuf *sb, struct mbuf *m)
    748 {
    749 
    750 	KASSERT(solocked(sb->sb_so));
    751 	KDASSERT(m->m_nextpkt == NULL);
    752 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
    753 
    754 	SBLASTMBUFCHK(sb, __func__);
    755 
    756 #ifdef MBUFTRACE
    757 	m_claimm(m, sb->sb_mowner);
    758 #endif
    759 
    760 	sbcompress(sb, m, sb->sb_mbtail);
    761 
    762 	sb->sb_lastrecord = sb->sb_mb;
    763 	SBLASTRECORDCHK(sb, __func__);
    764 }
    765 
    766 #ifdef SOCKBUF_DEBUG
    767 void
    768 sbcheck(struct sockbuf *sb)
    769 {
    770 	struct mbuf	*m, *m2;
    771 	u_long		len, mbcnt;
    772 
    773 	KASSERT(solocked(sb->sb_so));
    774 
    775 	len = 0;
    776 	mbcnt = 0;
    777 	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
    778 		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
    779 			len += m2->m_len;
    780 			mbcnt += MSIZE;
    781 			if (m2->m_flags & M_EXT)
    782 				mbcnt += m2->m_ext.ext_size;
    783 			if (m2->m_nextpkt != NULL)
    784 				panic("sbcheck nextpkt");
    785 		}
    786 	}
    787 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
    788 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
    789 		    mbcnt, sb->sb_mbcnt);
    790 		panic("sbcheck");
    791 	}
    792 }
    793 #endif
    794 
    795 /*
    796  * As above, except the mbuf chain
    797  * begins a new record.
    798  */
    799 void
    800 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
    801 {
    802 	struct mbuf	*m;
    803 
    804 	KASSERT(solocked(sb->sb_so));
    805 
    806 	if (m0 == 0)
    807 		return;
    808 
    809 #ifdef MBUFTRACE
    810 	m_claimm(m0, sb->sb_mowner);
    811 #endif
    812 	/*
    813 	 * Put the first mbuf on the queue.
    814 	 * Note this permits zero length records.
    815 	 */
    816 	sballoc(sb, m0);
    817 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
    818 	SBLINKRECORD(sb, m0);
    819 	m = m0->m_next;
    820 	m0->m_next = 0;
    821 	if (m && (m0->m_flags & M_EOR)) {
    822 		m0->m_flags &= ~M_EOR;
    823 		m->m_flags |= M_EOR;
    824 	}
    825 	sbcompress(sb, m, m0);
    826 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
    827 }
    828 
    829 /*
    830  * As above except that OOB data
    831  * is inserted at the beginning of the sockbuf,
    832  * but after any other OOB data.
    833  */
    834 void
    835 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
    836 {
    837 	struct mbuf	*m, **mp;
    838 
    839 	KASSERT(solocked(sb->sb_so));
    840 
    841 	if (m0 == 0)
    842 		return;
    843 
    844 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
    845 
    846 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
    847 	    again:
    848 		switch (m->m_type) {
    849 
    850 		case MT_OOBDATA:
    851 			continue;		/* WANT next train */
    852 
    853 		case MT_CONTROL:
    854 			if ((m = m->m_next) != NULL)
    855 				goto again;	/* inspect THIS train further */
    856 		}
    857 		break;
    858 	}
    859 	/*
    860 	 * Put the first mbuf on the queue.
    861 	 * Note this permits zero length records.
    862 	 */
    863 	sballoc(sb, m0);
    864 	m0->m_nextpkt = *mp;
    865 	if (*mp == NULL) {
    866 		/* m0 is actually the new tail */
    867 		sb->sb_lastrecord = m0;
    868 	}
    869 	*mp = m0;
    870 	m = m0->m_next;
    871 	m0->m_next = 0;
    872 	if (m && (m0->m_flags & M_EOR)) {
    873 		m0->m_flags &= ~M_EOR;
    874 		m->m_flags |= M_EOR;
    875 	}
    876 	sbcompress(sb, m, m0);
    877 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
    878 }
    879 
    880 /*
    881  * Append address and data, and optionally, control (ancillary) data
    882  * to the receive queue of a socket.  If present,
    883  * m0 must include a packet header with total length.
    884  * Returns 0 if no space in sockbuf or insufficient mbufs.
    885  */
    886 int
    887 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
    888 	struct mbuf *control)
    889 {
    890 	struct mbuf	*m, *n, *nlast;
    891 	int		space, len;
    892 
    893 	KASSERT(solocked(sb->sb_so));
    894 
    895 	space = asa->sa_len;
    896 
    897 	if (m0 != NULL) {
    898 		if ((m0->m_flags & M_PKTHDR) == 0)
    899 			panic("sbappendaddr");
    900 		space += m0->m_pkthdr.len;
    901 #ifdef MBUFTRACE
    902 		m_claimm(m0, sb->sb_mowner);
    903 #endif
    904 	}
    905 	for (n = control; n; n = n->m_next) {
    906 		space += n->m_len;
    907 		MCLAIM(n, sb->sb_mowner);
    908 		if (n->m_next == 0)	/* keep pointer to last control buf */
    909 			break;
    910 	}
    911 	if (space > sbspace(sb))
    912 		return (0);
    913 	MGET(m, M_DONTWAIT, MT_SONAME);
    914 	if (m == 0)
    915 		return (0);
    916 	MCLAIM(m, sb->sb_mowner);
    917 	/*
    918 	 * XXX avoid 'comparison always true' warning which isn't easily
    919 	 * avoided.
    920 	 */
    921 	len = asa->sa_len;
    922 	if (len > MLEN) {
    923 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
    924 		if ((m->m_flags & M_EXT) == 0) {
    925 			m_free(m);
    926 			return (0);
    927 		}
    928 	}
    929 	m->m_len = asa->sa_len;
    930 	memcpy(mtod(m, void *), asa, asa->sa_len);
    931 	if (n)
    932 		n->m_next = m0;		/* concatenate data to control */
    933 	else
    934 		control = m0;
    935 	m->m_next = control;
    936 
    937 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
    938 
    939 	for (n = m; n->m_next != NULL; n = n->m_next)
    940 		sballoc(sb, n);
    941 	sballoc(sb, n);
    942 	nlast = n;
    943 	SBLINKRECORD(sb, m);
    944 
    945 	sb->sb_mbtail = nlast;
    946 	SBLASTMBUFCHK(sb, "sbappendaddr");
    947 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
    948 
    949 	return (1);
    950 }
    951 
    952 /*
    953  * Helper for sbappendchainaddr: prepend a struct sockaddr* to
    954  * an mbuf chain.
    955  */
    956 static inline struct mbuf *
    957 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
    958 		   const struct sockaddr *asa)
    959 {
    960 	struct mbuf *m;
    961 	const int salen = asa->sa_len;
    962 
    963 	KASSERT(solocked(sb->sb_so));
    964 
    965 	/* only the first in each chain need be a pkthdr */
    966 	MGETHDR(m, M_DONTWAIT, MT_SONAME);
    967 	if (m == 0)
    968 		return (0);
    969 	MCLAIM(m, sb->sb_mowner);
    970 #ifdef notyet
    971 	if (salen > MHLEN) {
    972 		MEXTMALLOC(m, salen, M_NOWAIT);
    973 		if ((m->m_flags & M_EXT) == 0) {
    974 			m_free(m);
    975 			return (0);
    976 		}
    977 	}
    978 #else
    979 	KASSERT(salen <= MHLEN);
    980 #endif
    981 	m->m_len = salen;
    982 	memcpy(mtod(m, void *), asa, salen);
    983 	m->m_next = m0;
    984 	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
    985 
    986 	return m;
    987 }
    988 
    989 int
    990 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
    991 		  struct mbuf *m0, int sbprio)
    992 {
    993 	int space;
    994 	struct mbuf *m, *n, *n0, *nlast;
    995 	int error;
    996 
    997 	KASSERT(solocked(sb->sb_so));
    998 
    999 	/*
   1000 	 * XXX sbprio reserved for encoding priority of this* request:
   1001 	 *  SB_PRIO_NONE --> honour normal sb limits
   1002 	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
   1003 	 *	take whole chain. Intended for large requests
   1004 	 *      that should be delivered atomically (all, or none).
   1005 	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
   1006 	 *       over normal socket limits, for messages indicating
   1007 	 *       buffer overflow in earlier normal/lower-priority messages
   1008 	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
   1009 	 *       Intended for  kernel-generated messages only.
   1010 	 *        Up to generator to avoid total mbuf resource exhaustion.
   1011 	 */
   1012 	(void)sbprio;
   1013 
   1014 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
   1015 		panic("sbappendaddrchain");
   1016 
   1017 	space = sbspace(sb);
   1018 
   1019 #ifdef notyet
   1020 	/*
   1021 	 * Enforce SB_PRIO_* limits as described above.
   1022 	 */
   1023 #endif
   1024 
   1025 	n0 = NULL;
   1026 	nlast = NULL;
   1027 	for (m = m0; m; m = m->m_nextpkt) {
   1028 		struct mbuf *np;
   1029 
   1030 #ifdef MBUFTRACE
   1031 		m_claimm(m, sb->sb_mowner);
   1032 #endif
   1033 
   1034 		/* Prepend sockaddr to this record (m) of input chain m0 */
   1035 	  	n = m_prepend_sockaddr(sb, m, asa);
   1036 		if (n == NULL) {
   1037 			error = ENOBUFS;
   1038 			goto bad;
   1039 		}
   1040 
   1041 		/* Append record (asa+m) to end of new chain n0 */
   1042 		if (n0 == NULL) {
   1043 			n0 = n;
   1044 		} else {
   1045 			nlast->m_nextpkt = n;
   1046 		}
   1047 		/* Keep track of last record on new chain */
   1048 		nlast = n;
   1049 
   1050 		for (np = n; np; np = np->m_next)
   1051 			sballoc(sb, np);
   1052 	}
   1053 
   1054 	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
   1055 
   1056 	/* Drop the entire chain of (asa+m) records onto the socket */
   1057 	SBLINKRECORDCHAIN(sb, n0, nlast);
   1058 
   1059 	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
   1060 
   1061 	for (m = nlast; m->m_next; m = m->m_next)
   1062 		;
   1063 	sb->sb_mbtail = m;
   1064 	SBLASTMBUFCHK(sb, "sbappendaddrchain");
   1065 
   1066 	return (1);
   1067 
   1068 bad:
   1069 	/*
   1070 	 * On error, free the prepended addreseses. For consistency
   1071 	 * with sbappendaddr(), leave it to our caller to free
   1072 	 * the input record chain passed to us as m0.
   1073 	 */
   1074 	while ((n = n0) != NULL) {
   1075 	  	struct mbuf *np;
   1076 
   1077 		/* Undo the sballoc() of this record */
   1078 		for (np = n; np; np = np->m_next)
   1079 			sbfree(sb, np);
   1080 
   1081 		n0 = n->m_nextpkt;	/* iterate at next prepended address */
   1082 		MFREE(n, np);		/* free prepended address (not data) */
   1083 	}
   1084 	return 0;
   1085 }
   1086 
   1087 
   1088 int
   1089 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
   1090 {
   1091 	struct mbuf	*m, *mlast, *n;
   1092 	int		space;
   1093 
   1094 	KASSERT(solocked(sb->sb_so));
   1095 
   1096 	space = 0;
   1097 	if (control == 0)
   1098 		panic("sbappendcontrol");
   1099 	for (m = control; ; m = m->m_next) {
   1100 		space += m->m_len;
   1101 		MCLAIM(m, sb->sb_mowner);
   1102 		if (m->m_next == 0)
   1103 			break;
   1104 	}
   1105 	n = m;			/* save pointer to last control buffer */
   1106 	for (m = m0; m; m = m->m_next) {
   1107 		MCLAIM(m, sb->sb_mowner);
   1108 		space += m->m_len;
   1109 	}
   1110 	if (space > sbspace(sb))
   1111 		return (0);
   1112 	n->m_next = m0;			/* concatenate data to control */
   1113 
   1114 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
   1115 
   1116 	for (m = control; m->m_next != NULL; m = m->m_next)
   1117 		sballoc(sb, m);
   1118 	sballoc(sb, m);
   1119 	mlast = m;
   1120 	SBLINKRECORD(sb, control);
   1121 
   1122 	sb->sb_mbtail = mlast;
   1123 	SBLASTMBUFCHK(sb, "sbappendcontrol");
   1124 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
   1125 
   1126 	return (1);
   1127 }
   1128 
   1129 /*
   1130  * Compress mbuf chain m into the socket
   1131  * buffer sb following mbuf n.  If n
   1132  * is null, the buffer is presumed empty.
   1133  */
   1134 void
   1135 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
   1136 {
   1137 	int		eor;
   1138 	struct mbuf	*o;
   1139 
   1140 	KASSERT(solocked(sb->sb_so));
   1141 
   1142 	eor = 0;
   1143 	while (m) {
   1144 		eor |= m->m_flags & M_EOR;
   1145 		if (m->m_len == 0 &&
   1146 		    (eor == 0 ||
   1147 		     (((o = m->m_next) || (o = n)) &&
   1148 		      o->m_type == m->m_type))) {
   1149 			if (sb->sb_lastrecord == m)
   1150 				sb->sb_lastrecord = m->m_next;
   1151 			m = m_free(m);
   1152 			continue;
   1153 		}
   1154 		if (n && (n->m_flags & M_EOR) == 0 &&
   1155 		    /* M_TRAILINGSPACE() checks buffer writeability */
   1156 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
   1157 		    m->m_len <= M_TRAILINGSPACE(n) &&
   1158 		    n->m_type == m->m_type) {
   1159 			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
   1160 			    (unsigned)m->m_len);
   1161 			n->m_len += m->m_len;
   1162 			sb->sb_cc += m->m_len;
   1163 			m = m_free(m);
   1164 			continue;
   1165 		}
   1166 		if (n)
   1167 			n->m_next = m;
   1168 		else
   1169 			sb->sb_mb = m;
   1170 		sb->sb_mbtail = m;
   1171 		sballoc(sb, m);
   1172 		n = m;
   1173 		m->m_flags &= ~M_EOR;
   1174 		m = m->m_next;
   1175 		n->m_next = 0;
   1176 	}
   1177 	if (eor) {
   1178 		if (n)
   1179 			n->m_flags |= eor;
   1180 		else
   1181 			printf("semi-panic: sbcompress\n");
   1182 	}
   1183 	SBLASTMBUFCHK(sb, __func__);
   1184 }
   1185 
   1186 /*
   1187  * Free all mbufs in a sockbuf.
   1188  * Check that all resources are reclaimed.
   1189  */
   1190 void
   1191 sbflush(struct sockbuf *sb)
   1192 {
   1193 
   1194 	KASSERT(solocked(sb->sb_so));
   1195 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
   1196 
   1197 	while (sb->sb_mbcnt)
   1198 		sbdrop(sb, (int)sb->sb_cc);
   1199 
   1200 	KASSERT(sb->sb_cc == 0);
   1201 	KASSERT(sb->sb_mb == NULL);
   1202 	KASSERT(sb->sb_mbtail == NULL);
   1203 	KASSERT(sb->sb_lastrecord == NULL);
   1204 }
   1205 
   1206 /*
   1207  * Drop data from (the front of) a sockbuf.
   1208  */
   1209 void
   1210 sbdrop(struct sockbuf *sb, int len)
   1211 {
   1212 	struct mbuf	*m, *mn, *next;
   1213 
   1214 	KASSERT(solocked(sb->sb_so));
   1215 
   1216 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
   1217 	while (len > 0) {
   1218 		if (m == 0) {
   1219 			if (next == 0)
   1220 				panic("sbdrop");
   1221 			m = next;
   1222 			next = m->m_nextpkt;
   1223 			continue;
   1224 		}
   1225 		if (m->m_len > len) {
   1226 			m->m_len -= len;
   1227 			m->m_data += len;
   1228 			sb->sb_cc -= len;
   1229 			break;
   1230 		}
   1231 		len -= m->m_len;
   1232 		sbfree(sb, m);
   1233 		MFREE(m, mn);
   1234 		m = mn;
   1235 	}
   1236 	while (m && m->m_len == 0) {
   1237 		sbfree(sb, m);
   1238 		MFREE(m, mn);
   1239 		m = mn;
   1240 	}
   1241 	if (m) {
   1242 		sb->sb_mb = m;
   1243 		m->m_nextpkt = next;
   1244 	} else
   1245 		sb->sb_mb = next;
   1246 	/*
   1247 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
   1248 	 * makes sure sb_lastrecord is up-to-date if we dropped
   1249 	 * part of the last record.
   1250 	 */
   1251 	m = sb->sb_mb;
   1252 	if (m == NULL) {
   1253 		sb->sb_mbtail = NULL;
   1254 		sb->sb_lastrecord = NULL;
   1255 	} else if (m->m_nextpkt == NULL)
   1256 		sb->sb_lastrecord = m;
   1257 }
   1258 
   1259 /*
   1260  * Drop a record off the front of a sockbuf
   1261  * and move the next record to the front.
   1262  */
   1263 void
   1264 sbdroprecord(struct sockbuf *sb)
   1265 {
   1266 	struct mbuf	*m, *mn;
   1267 
   1268 	KASSERT(solocked(sb->sb_so));
   1269 
   1270 	m = sb->sb_mb;
   1271 	if (m) {
   1272 		sb->sb_mb = m->m_nextpkt;
   1273 		do {
   1274 			sbfree(sb, m);
   1275 			MFREE(m, mn);
   1276 		} while ((m = mn) != NULL);
   1277 	}
   1278 	SB_EMPTY_FIXUP(sb);
   1279 }
   1280 
   1281 /*
   1282  * Create a "control" mbuf containing the specified data
   1283  * with the specified type for presentation on a socket buffer.
   1284  */
   1285 struct mbuf *
   1286 sbcreatecontrol(void *p, int size, int type, int level)
   1287 {
   1288 	struct cmsghdr	*cp;
   1289 	struct mbuf	*m;
   1290 
   1291 	if (CMSG_SPACE(size) > MCLBYTES) {
   1292 		printf("sbcreatecontrol: message too large %d\n", size);
   1293 		return NULL;
   1294 	}
   1295 
   1296 	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
   1297 		return ((struct mbuf *) NULL);
   1298 	if (CMSG_SPACE(size) > MLEN) {
   1299 		MCLGET(m, M_DONTWAIT);
   1300 		if ((m->m_flags & M_EXT) == 0) {
   1301 			m_free(m);
   1302 			return NULL;
   1303 		}
   1304 	}
   1305 	cp = mtod(m, struct cmsghdr *);
   1306 	memcpy(CMSG_DATA(cp), p, size);
   1307 	m->m_len = CMSG_SPACE(size);
   1308 	cp->cmsg_len = CMSG_LEN(size);
   1309 	cp->cmsg_level = level;
   1310 	cp->cmsg_type = type;
   1311 	return (m);
   1312 }
   1313 
   1314 void
   1315 solockretry(struct socket *so, kmutex_t *lock)
   1316 {
   1317 
   1318 	while (lock != so->so_lock) {
   1319 		mutex_exit(lock);
   1320 		lock = so->so_lock;
   1321 		mutex_enter(lock);
   1322 	}
   1323 }
   1324 
   1325 bool
   1326 solocked(struct socket *so)
   1327 {
   1328 
   1329 	return mutex_owned(so->so_lock);
   1330 }
   1331 
   1332 bool
   1333 solocked2(struct socket *so1, struct socket *so2)
   1334 {
   1335 	kmutex_t *lock;
   1336 
   1337 	lock = so1->so_lock;
   1338 	if (lock != so2->so_lock)
   1339 		return false;
   1340 	return mutex_owned(lock);
   1341 }
   1342 
   1343 /*
   1344  * Assign a default lock to a new socket.  For PRU_ATTACH, and done by
   1345  * protocols that do not have special locking requirements.
   1346  */
   1347 void
   1348 sosetlock(struct socket *so)
   1349 {
   1350 	kmutex_t *lock;
   1351 
   1352 	if (so->so_lock == NULL) {
   1353 		lock = softnet_lock;
   1354 		so->so_lock = lock;
   1355 		mutex_obj_hold(lock);
   1356 		mutex_enter(lock);
   1357 	}
   1358 
   1359 	/* In all cases, lock must be held on return from PRU_ATTACH. */
   1360 	KASSERT(solocked(so));
   1361 }
   1362 
   1363 /*
   1364  * Set lock on sockbuf sb; sleep if lock is already held.
   1365  * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
   1366  * Returns error without lock if sleep is interrupted.
   1367  */
   1368 int
   1369 sblock(struct sockbuf *sb, int wf)
   1370 {
   1371 	struct socket *so;
   1372 	kmutex_t *lock;
   1373 	int error;
   1374 
   1375 	KASSERT(solocked(sb->sb_so));
   1376 
   1377 	for (;;) {
   1378 		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
   1379 			sb->sb_flags |= SB_LOCK;
   1380 			return 0;
   1381 		}
   1382 		if (wf != M_WAITOK)
   1383 			return EWOULDBLOCK;
   1384 		so = sb->sb_so;
   1385 		lock = so->so_lock;
   1386 		if ((sb->sb_flags & SB_NOINTR) != 0) {
   1387 			cv_wait(&so->so_cv, lock);
   1388 			error = 0;
   1389 		} else
   1390 			error = cv_wait_sig(&so->so_cv, lock);
   1391 		if (__predict_false(lock != so->so_lock))
   1392 			solockretry(so, lock);
   1393 		if (error != 0)
   1394 			return error;
   1395 	}
   1396 }
   1397 
   1398 void
   1399 sbunlock(struct sockbuf *sb)
   1400 {
   1401 	struct socket *so;
   1402 
   1403 	so = sb->sb_so;
   1404 
   1405 	KASSERT(solocked(so));
   1406 	KASSERT((sb->sb_flags & SB_LOCK) != 0);
   1407 
   1408 	sb->sb_flags &= ~SB_LOCK;
   1409 	cv_broadcast(&so->so_cv);
   1410 }
   1411 
   1412 int
   1413 sowait(struct socket *so, int timo)
   1414 {
   1415 	kmutex_t *lock;
   1416 	int error;
   1417 
   1418 	KASSERT(solocked(so));
   1419 
   1420 	lock = so->so_lock;
   1421 	error = cv_timedwait_sig(&so->so_cv, lock, timo);
   1422 	if (__predict_false(lock != so->so_lock))
   1423 		solockretry(so, lock);
   1424 	return error;
   1425 }
   1426