Home | History | Annotate | Line # | Download | only in kern
uipc_socket2.c revision 1.97
      1 /*	$NetBSD: uipc_socket2.c,v 1.97 2008/08/04 03:55:47 tls Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     31  *	The Regents of the University of California.  All rights reserved.
     32  *
     33  * Redistribution and use in source and binary forms, with or without
     34  * modification, are permitted provided that the following conditions
     35  * are met:
     36  * 1. Redistributions of source code must retain the above copyright
     37  *    notice, this list of conditions and the following disclaimer.
     38  * 2. Redistributions in binary form must reproduce the above copyright
     39  *    notice, this list of conditions and the following disclaimer in the
     40  *    documentation and/or other materials provided with the distribution.
     41  * 3. Neither the name of the University nor the names of its contributors
     42  *    may be used to endorse or promote products derived from this software
     43  *    without specific prior written permission.
     44  *
     45  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55  * SUCH DAMAGE.
     56  *
     57  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
     58  */
     59 
     60 #include <sys/cdefs.h>
     61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.97 2008/08/04 03:55:47 tls Exp $");
     62 
     63 #include "opt_inet.h"
     64 #include "opt_mbuftrace.h"
     65 #include "opt_sb_max.h"
     66 
     67 #include <sys/param.h>
     68 #include <sys/systm.h>
     69 #include <sys/proc.h>
     70 #include <sys/file.h>
     71 #include <sys/buf.h>
     72 #include <sys/malloc.h>
     73 #include <sys/mbuf.h>
     74 #include <sys/protosw.h>
     75 #include <sys/domain.h>
     76 #include <sys/poll.h>
     77 #include <sys/socket.h>
     78 #include <sys/socketvar.h>
     79 #include <sys/signalvar.h>
     80 #include <sys/kauth.h>
     81 #include <sys/pool.h>
     82 
     83 /*
     84  * Primitive routines for operating on sockets and socket buffers.
     85  *
     86  * Locking rules and assumptions:
     87  *
     88  * o socket::so_lock can change on the fly.  The low level routines used
     89  *   to lock sockets are aware of this.  When so_lock is acquired, the
     90  *   routine locking must check to see if so_lock still points to the
     91  *   lock that was acquired.  If so_lock has changed in the meantime, the
     92  *   now irellevant lock that was acquired must be dropped and the lock
     93  *   operation retried.  Although not proven here, this is completely safe
     94  *   on a multiprocessor system, even with relaxed memory ordering, given
     95  *   the next two rules:
     96  *
     97  * o In order to mutate so_lock, the lock pointed to by the current value
     98  *   of so_lock must be held: i.e., the socket must be held locked by the
     99  *   changing thread.  The thread must issue membar_exit() to prevent
    100  *   memory accesses being reordered, and can set so_lock to the desired
    101  *   value.  If the lock pointed to by the new value of so_lock is not
    102  *   held by the changing thread, the socket must then be considered
    103  *   unlocked.
    104  *
    105  * o If so_lock is mutated, and the previous lock referred to by so_lock
    106  *   could still be visible to other threads in the system (e.g. via file
    107  *   descriptor or protocol-internal reference), then the old lock must
    108  *   remain valid until the socket and/or protocol control block has been
    109  *   torn down.
    110  *
    111  * o If a socket has a non-NULL so_head value (i.e. is in the process of
    112  *   connecting), then locking the socket must also lock the socket pointed
    113  *   to by so_head: their lock pointers must match.
    114  *
    115  * o If a socket has connections in progress (so_q, so_q0 not empty) then
    116  *   locking the socket must also lock the sockets attached to both queues.
    117  *   Again, their lock pointers must match.
    118  *
    119  * o Beyond the initial lock assigment in socreate(), assigning locks to
    120  *   sockets is the responsibility of the individual protocols / protocol
    121  *   domains.
    122  */
    123 
    124 static pool_cache_t socket_cache;
    125 
    126 u_long	sb_max = SB_MAX;	/* maximum socket buffer size */
    127 static u_long sb_max_adj;	/* adjusted sb_max */
    128 
    129 /*
    130  * Procedures to manipulate state flags of socket
    131  * and do appropriate wakeups.  Normal sequence from the
    132  * active (originating) side is that soisconnecting() is
    133  * called during processing of connect() call,
    134  * resulting in an eventual call to soisconnected() if/when the
    135  * connection is established.  When the connection is torn down
    136  * soisdisconnecting() is called during processing of disconnect() call,
    137  * and soisdisconnected() is called when the connection to the peer
    138  * is totally severed.  The semantics of these routines are such that
    139  * connectionless protocols can call soisconnected() and soisdisconnected()
    140  * only, bypassing the in-progress calls when setting up a ``connection''
    141  * takes no time.
    142  *
    143  * From the passive side, a socket is created with
    144  * two queues of sockets: so_q0 for connections in progress
    145  * and so_q for connections already made and awaiting user acceptance.
    146  * As a protocol is preparing incoming connections, it creates a socket
    147  * structure queued on so_q0 by calling sonewconn().  When the connection
    148  * is established, soisconnected() is called, and transfers the
    149  * socket structure to so_q, making it available to accept().
    150  *
    151  * If a socket is closed with sockets on either
    152  * so_q0 or so_q, these sockets are dropped.
    153  *
    154  * If higher level protocols are implemented in
    155  * the kernel, the wakeups done here will sometimes
    156  * cause software-interrupt process scheduling.
    157  */
    158 
    159 void
    160 soisconnecting(struct socket *so)
    161 {
    162 
    163 	KASSERT(solocked(so));
    164 
    165 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
    166 	so->so_state |= SS_ISCONNECTING;
    167 }
    168 
    169 void
    170 soisconnected(struct socket *so)
    171 {
    172 	struct socket	*head;
    173 
    174 	head = so->so_head;
    175 
    176 	KASSERT(solocked(so));
    177 	KASSERT(head == NULL || solocked2(so, head));
    178 
    179 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
    180 	so->so_state |= SS_ISCONNECTED;
    181 	if (head && so->so_onq == &head->so_q0) {
    182 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
    183 			soqremque(so, 0);
    184 			soqinsque(head, so, 1);
    185 			sorwakeup(head);
    186 			cv_broadcast(&head->so_cv);
    187 		} else {
    188 			so->so_upcall =
    189 			    head->so_accf->so_accept_filter->accf_callback;
    190 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
    191 			so->so_rcv.sb_flags |= SB_UPCALL;
    192 			so->so_options &= ~SO_ACCEPTFILTER;
    193 			so->so_upcall(so, so->so_upcallarg, M_DONTWAIT);
    194 		}
    195 	} else {
    196 		cv_broadcast(&so->so_cv);
    197 		sorwakeup(so);
    198 		sowwakeup(so);
    199 	}
    200 }
    201 
    202 void
    203 soisdisconnecting(struct socket *so)
    204 {
    205 
    206 	KASSERT(solocked(so));
    207 
    208 	so->so_state &= ~SS_ISCONNECTING;
    209 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
    210 	cv_broadcast(&so->so_cv);
    211 	sowwakeup(so);
    212 	sorwakeup(so);
    213 }
    214 
    215 void
    216 soisdisconnected(struct socket *so)
    217 {
    218 
    219 	KASSERT(solocked(so));
    220 
    221 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
    222 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
    223 	cv_broadcast(&so->so_cv);
    224 	sowwakeup(so);
    225 	sorwakeup(so);
    226 }
    227 
    228 void
    229 soinit2(void)
    230 {
    231 
    232 	socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
    233 	    "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
    234 }
    235 
    236 /*
    237  * When an attempt at a new connection is noted on a socket
    238  * which accepts connections, sonewconn is called.  If the
    239  * connection is possible (subject to space constraints, etc.)
    240  * then we allocate a new structure, propoerly linked into the
    241  * data structure of the original socket, and return this.
    242  * Connstatus may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
    243  */
    244 struct socket *
    245 sonewconn(struct socket *head, int connstatus)
    246 {
    247 	struct socket	*so;
    248 	int		soqueue, error;
    249 
    250 	KASSERT(solocked(head));
    251 
    252 	if ((head->so_options & SO_ACCEPTFILTER) != 0)
    253 		connstatus = 0;
    254 	soqueue = connstatus ? 1 : 0;
    255 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
    256 		return ((struct socket *)0);
    257 	so = soget(false);
    258 	if (so == NULL)
    259 		return (NULL);
    260 	mutex_obj_hold(head->so_lock);
    261 	so->so_lock = head->so_lock;
    262 	so->so_type = head->so_type;
    263 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
    264 	so->so_linger = head->so_linger;
    265 	so->so_state = head->so_state | SS_NOFDREF;
    266 	so->so_nbio = head->so_nbio;
    267 	so->so_proto = head->so_proto;
    268 	so->so_timeo = head->so_timeo;
    269 	so->so_pgid = head->so_pgid;
    270 	so->so_send = head->so_send;
    271 	so->so_receive = head->so_receive;
    272 	so->so_uidinfo = head->so_uidinfo;
    273 	so->so_egid = head->so_egid;
    274 	so->so_cpid = head->so_cpid;
    275 #ifdef MBUFTRACE
    276 	so->so_mowner = head->so_mowner;
    277 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
    278 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
    279 #endif
    280 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
    281 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
    282 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
    283 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
    284 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
    285 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
    286 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
    287 	soqinsque(head, so, soqueue);
    288 	error = (*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL,
    289 	    NULL, NULL);
    290 	KASSERT(solocked(so));
    291 	if (error != 0) {
    292 		(void) soqremque(so, soqueue);
    293 
    294 #ifdef INET
    295 		/* remove acccept filter if one is present. */
    296 		if (so->so_accf != NULL)
    297 			do_setopt_accept_filter(so, NULL);
    298 #endif
    299 		soput(so);
    300 		return (NULL);
    301 	}
    302 	if (connstatus) {
    303 		sorwakeup(head);
    304 		cv_broadcast(&head->so_cv);
    305 		so->so_state |= connstatus;
    306 	}
    307 	return (so);
    308 }
    309 
    310 struct socket *
    311 soget(bool waitok)
    312 {
    313 	struct socket *so;
    314 
    315 	so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
    316 	if (__predict_false(so == NULL))
    317 		return (NULL);
    318 	memset(so, 0, sizeof(*so));
    319 	TAILQ_INIT(&so->so_q0);
    320 	TAILQ_INIT(&so->so_q);
    321 	cv_init(&so->so_cv, "socket");
    322 	cv_init(&so->so_rcv.sb_cv, "netio");
    323 	cv_init(&so->so_snd.sb_cv, "netio");
    324 	selinit(&so->so_rcv.sb_sel);
    325 	selinit(&so->so_snd.sb_sel);
    326 	so->so_rcv.sb_so = so;
    327 	so->so_snd.sb_so = so;
    328 	return so;
    329 }
    330 
    331 void
    332 soput(struct socket *so)
    333 {
    334 
    335 	KASSERT(!cv_has_waiters(&so->so_cv));
    336 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    337 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    338 	seldestroy(&so->so_rcv.sb_sel);
    339 	seldestroy(&so->so_snd.sb_sel);
    340 	mutex_obj_free(so->so_lock);
    341 	cv_destroy(&so->so_cv);
    342 	cv_destroy(&so->so_rcv.sb_cv);
    343 	cv_destroy(&so->so_snd.sb_cv);
    344 	pool_cache_put(socket_cache, so);
    345 }
    346 
    347 void
    348 soqinsque(struct socket *head, struct socket *so, int q)
    349 {
    350 
    351 	KASSERT(solocked2(head, so));
    352 
    353 #ifdef DIAGNOSTIC
    354 	if (so->so_onq != NULL)
    355 		panic("soqinsque");
    356 #endif
    357 
    358 	so->so_head = head;
    359 	if (q == 0) {
    360 		head->so_q0len++;
    361 		so->so_onq = &head->so_q0;
    362 	} else {
    363 		head->so_qlen++;
    364 		so->so_onq = &head->so_q;
    365 	}
    366 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
    367 }
    368 
    369 int
    370 soqremque(struct socket *so, int q)
    371 {
    372 	struct socket	*head;
    373 
    374 	head = so->so_head;
    375 
    376 	KASSERT(solocked(so));
    377 	if (q == 0) {
    378 		if (so->so_onq != &head->so_q0)
    379 			return (0);
    380 		head->so_q0len--;
    381 	} else {
    382 		if (so->so_onq != &head->so_q)
    383 			return (0);
    384 		head->so_qlen--;
    385 	}
    386 	KASSERT(solocked2(so, head));
    387 	TAILQ_REMOVE(so->so_onq, so, so_qe);
    388 	so->so_onq = NULL;
    389 	so->so_head = NULL;
    390 	return (1);
    391 }
    392 
    393 /*
    394  * Socantsendmore indicates that no more data will be sent on the
    395  * socket; it would normally be applied to a socket when the user
    396  * informs the system that no more data is to be sent, by the protocol
    397  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
    398  * will be received, and will normally be applied to the socket by a
    399  * protocol when it detects that the peer will send no more data.
    400  * Data queued for reading in the socket may yet be read.
    401  */
    402 
    403 void
    404 socantsendmore(struct socket *so)
    405 {
    406 
    407 	KASSERT(solocked(so));
    408 
    409 	so->so_state |= SS_CANTSENDMORE;
    410 	sowwakeup(so);
    411 }
    412 
    413 void
    414 socantrcvmore(struct socket *so)
    415 {
    416 
    417 	KASSERT(solocked(so));
    418 
    419 	so->so_state |= SS_CANTRCVMORE;
    420 	sorwakeup(so);
    421 }
    422 
    423 /*
    424  * Wait for data to arrive at/drain from a socket buffer.
    425  */
    426 int
    427 sbwait(struct sockbuf *sb)
    428 {
    429 	struct socket *so;
    430 	kmutex_t *lock;
    431 	int error;
    432 
    433 	so = sb->sb_so;
    434 
    435 	KASSERT(solocked(so));
    436 
    437 	sb->sb_flags |= SB_NOTIFY;
    438 	lock = so->so_lock;
    439 	if ((sb->sb_flags & SB_NOINTR) != 0)
    440 		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
    441 	else
    442 		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
    443 	if (__predict_false(lock != so->so_lock))
    444 		solockretry(so, lock);
    445 	return error;
    446 }
    447 
    448 /*
    449  * Wakeup processes waiting on a socket buffer.
    450  * Do asynchronous notification via SIGIO
    451  * if the socket buffer has the SB_ASYNC flag set.
    452  */
    453 void
    454 sowakeup(struct socket *so, struct sockbuf *sb, int code)
    455 {
    456 	int band;
    457 
    458 	KASSERT(solocked(so));
    459 	KASSERT(sb->sb_so == so);
    460 
    461 	if (code == POLL_IN)
    462 		band = POLLIN|POLLRDNORM;
    463 	else
    464 		band = POLLOUT|POLLWRNORM;
    465 	sb->sb_flags &= ~SB_NOTIFY;
    466 	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
    467 	cv_broadcast(&sb->sb_cv);
    468 	if (sb->sb_flags & SB_ASYNC)
    469 		fownsignal(so->so_pgid, SIGIO, code, band, so);
    470 	if (sb->sb_flags & SB_UPCALL)
    471 		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
    472 }
    473 
    474 /*
    475  * Reset a socket's lock pointer.  Wake all threads waiting on the
    476  * socket's condition variables so that they can restart their waits
    477  * using the new lock.  The existing lock must be held.
    478  */
    479 void
    480 solockreset(struct socket *so, kmutex_t *lock)
    481 {
    482 
    483 	KASSERT(solocked(so));
    484 
    485 	so->so_lock = lock;
    486 	cv_broadcast(&so->so_snd.sb_cv);
    487 	cv_broadcast(&so->so_rcv.sb_cv);
    488 	cv_broadcast(&so->so_cv);
    489 }
    490 
    491 /*
    492  * Socket buffer (struct sockbuf) utility routines.
    493  *
    494  * Each socket contains two socket buffers: one for sending data and
    495  * one for receiving data.  Each buffer contains a queue of mbufs,
    496  * information about the number of mbufs and amount of data in the
    497  * queue, and other fields allowing poll() statements and notification
    498  * on data availability to be implemented.
    499  *
    500  * Data stored in a socket buffer is maintained as a list of records.
    501  * Each record is a list of mbufs chained together with the m_next
    502  * field.  Records are chained together with the m_nextpkt field. The upper
    503  * level routine soreceive() expects the following conventions to be
    504  * observed when placing information in the receive buffer:
    505  *
    506  * 1. If the protocol requires each message be preceded by the sender's
    507  *    name, then a record containing that name must be present before
    508  *    any associated data (mbuf's must be of type MT_SONAME).
    509  * 2. If the protocol supports the exchange of ``access rights'' (really
    510  *    just additional data associated with the message), and there are
    511  *    ``rights'' to be received, then a record containing this data
    512  *    should be present (mbuf's must be of type MT_CONTROL).
    513  * 3. If a name or rights record exists, then it must be followed by
    514  *    a data record, perhaps of zero length.
    515  *
    516  * Before using a new socket structure it is first necessary to reserve
    517  * buffer space to the socket, by calling sbreserve().  This should commit
    518  * some of the available buffer space in the system buffer pool for the
    519  * socket (currently, it does nothing but enforce limits).  The space
    520  * should be released by calling sbrelease() when the socket is destroyed.
    521  */
    522 
    523 int
    524 sb_max_set(u_long new_sbmax)
    525 {
    526 	int s;
    527 
    528 	if (new_sbmax < (16 * 1024))
    529 		return (EINVAL);
    530 
    531 	s = splsoftnet();
    532 	sb_max = new_sbmax;
    533 	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
    534 	splx(s);
    535 
    536 	return (0);
    537 }
    538 
    539 int
    540 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
    541 {
    542 
    543 	KASSERT(so->so_lock == NULL || solocked(so));
    544 
    545 	/*
    546 	 * there's at least one application (a configure script of screen)
    547 	 * which expects a fifo is writable even if it has "some" bytes
    548 	 * in its buffer.
    549 	 * so we want to make sure (hiwat - lowat) >= (some bytes).
    550 	 *
    551 	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
    552 	 * we expect it's large enough for such applications.
    553 	 */
    554 	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
    555 	u_long  hiwat = lowat + PIPE_BUF;
    556 
    557 	if (sndcc < hiwat)
    558 		sndcc = hiwat;
    559 	if (sbreserve(&so->so_snd, sndcc, so) == 0)
    560 		goto bad;
    561 	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
    562 		goto bad2;
    563 	if (so->so_rcv.sb_lowat == 0)
    564 		so->so_rcv.sb_lowat = 1;
    565 	if (so->so_snd.sb_lowat == 0)
    566 		so->so_snd.sb_lowat = lowat;
    567 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
    568 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
    569 	return (0);
    570  bad2:
    571 	sbrelease(&so->so_snd, so);
    572  bad:
    573 	return (ENOBUFS);
    574 }
    575 
    576 /*
    577  * Allot mbufs to a sockbuf.
    578  * Attempt to scale mbmax so that mbcnt doesn't become limiting
    579  * if buffering efficiency is near the normal case.
    580  */
    581 int
    582 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
    583 {
    584 	struct lwp *l = curlwp; /* XXX */
    585 	rlim_t maxcc;
    586 	struct uidinfo *uidinfo;
    587 
    588 	KASSERT(so->so_lock == NULL || solocked(so));
    589 	KASSERT(sb->sb_so == so);
    590 	KASSERT(sb_max_adj != 0);
    591 
    592 	if (cc == 0 || cc > sb_max_adj)
    593 		return (0);
    594 
    595 	if (kauth_cred_geteuid(l->l_cred) == so->so_uidinfo->ui_uid)
    596 		maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
    597 	else
    598 		maxcc = RLIM_INFINITY;
    599 
    600 	uidinfo = so->so_uidinfo;
    601 	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
    602 		return 0;
    603 	sb->sb_mbmax = min(cc * 2, sb_max);
    604 	if (sb->sb_lowat > sb->sb_hiwat)
    605 		sb->sb_lowat = sb->sb_hiwat;
    606 	return (1);
    607 }
    608 
    609 /*
    610  * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
    611  * that the socket is held locked here: see sorflush().
    612  */
    613 void
    614 sbrelease(struct sockbuf *sb, struct socket *so)
    615 {
    616 
    617 	KASSERT(sb->sb_so == so);
    618 
    619 	sbflush(sb);
    620 	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
    621 	sb->sb_mbmax = 0;
    622 }
    623 
    624 /*
    625  * Routines to add and remove
    626  * data from an mbuf queue.
    627  *
    628  * The routines sbappend() or sbappendrecord() are normally called to
    629  * append new mbufs to a socket buffer, after checking that adequate
    630  * space is available, comparing the function sbspace() with the amount
    631  * of data to be added.  sbappendrecord() differs from sbappend() in
    632  * that data supplied is treated as the beginning of a new record.
    633  * To place a sender's address, optional access rights, and data in a
    634  * socket receive buffer, sbappendaddr() should be used.  To place
    635  * access rights and data in a socket receive buffer, sbappendrights()
    636  * should be used.  In either case, the new data begins a new record.
    637  * Note that unlike sbappend() and sbappendrecord(), these routines check
    638  * for the caller that there will be enough space to store the data.
    639  * Each fails if there is not enough space, or if it cannot find mbufs
    640  * to store additional information in.
    641  *
    642  * Reliable protocols may use the socket send buffer to hold data
    643  * awaiting acknowledgement.  Data is normally copied from a socket
    644  * send buffer in a protocol with m_copy for output to a peer,
    645  * and then removing the data from the socket buffer with sbdrop()
    646  * or sbdroprecord() when the data is acknowledged by the peer.
    647  */
    648 
    649 #ifdef SOCKBUF_DEBUG
    650 void
    651 sblastrecordchk(struct sockbuf *sb, const char *where)
    652 {
    653 	struct mbuf *m = sb->sb_mb;
    654 
    655 	KASSERT(solocked(sb->sb_so));
    656 
    657 	while (m && m->m_nextpkt)
    658 		m = m->m_nextpkt;
    659 
    660 	if (m != sb->sb_lastrecord) {
    661 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
    662 		    sb->sb_mb, sb->sb_lastrecord, m);
    663 		printf("packet chain:\n");
    664 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
    665 			printf("\t%p\n", m);
    666 		panic("sblastrecordchk from %s", where);
    667 	}
    668 }
    669 
    670 void
    671 sblastmbufchk(struct sockbuf *sb, const char *where)
    672 {
    673 	struct mbuf *m = sb->sb_mb;
    674 	struct mbuf *n;
    675 
    676 	KASSERT(solocked(sb->sb_so));
    677 
    678 	while (m && m->m_nextpkt)
    679 		m = m->m_nextpkt;
    680 
    681 	while (m && m->m_next)
    682 		m = m->m_next;
    683 
    684 	if (m != sb->sb_mbtail) {
    685 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
    686 		    sb->sb_mb, sb->sb_mbtail, m);
    687 		printf("packet tree:\n");
    688 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
    689 			printf("\t");
    690 			for (n = m; n != NULL; n = n->m_next)
    691 				printf("%p ", n);
    692 			printf("\n");
    693 		}
    694 		panic("sblastmbufchk from %s", where);
    695 	}
    696 }
    697 #endif /* SOCKBUF_DEBUG */
    698 
    699 /*
    700  * Link a chain of records onto a socket buffer
    701  */
    702 #define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
    703 do {									\
    704 	if ((sb)->sb_lastrecord != NULL)				\
    705 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
    706 	else								\
    707 		(sb)->sb_mb = (m0);					\
    708 	(sb)->sb_lastrecord = (mlast);					\
    709 } while (/*CONSTCOND*/0)
    710 
    711 
    712 #define	SBLINKRECORD(sb, m0)						\
    713     SBLINKRECORDCHAIN(sb, m0, m0)
    714 
    715 /*
    716  * Append mbuf chain m to the last record in the
    717  * socket buffer sb.  The additional space associated
    718  * the mbuf chain is recorded in sb.  Empty mbufs are
    719  * discarded and mbufs are compacted where possible.
    720  */
    721 void
    722 sbappend(struct sockbuf *sb, struct mbuf *m)
    723 {
    724 	struct mbuf	*n;
    725 
    726 	KASSERT(solocked(sb->sb_so));
    727 
    728 	if (m == 0)
    729 		return;
    730 
    731 #ifdef MBUFTRACE
    732 	m_claimm(m, sb->sb_mowner);
    733 #endif
    734 
    735 	SBLASTRECORDCHK(sb, "sbappend 1");
    736 
    737 	if ((n = sb->sb_lastrecord) != NULL) {
    738 		/*
    739 		 * XXX Would like to simply use sb_mbtail here, but
    740 		 * XXX I need to verify that I won't miss an EOR that
    741 		 * XXX way.
    742 		 */
    743 		do {
    744 			if (n->m_flags & M_EOR) {
    745 				sbappendrecord(sb, m); /* XXXXXX!!!! */
    746 				return;
    747 			}
    748 		} while (n->m_next && (n = n->m_next));
    749 	} else {
    750 		/*
    751 		 * If this is the first record in the socket buffer, it's
    752 		 * also the last record.
    753 		 */
    754 		sb->sb_lastrecord = m;
    755 	}
    756 	sbcompress(sb, m, n);
    757 	SBLASTRECORDCHK(sb, "sbappend 2");
    758 }
    759 
    760 /*
    761  * This version of sbappend() should only be used when the caller
    762  * absolutely knows that there will never be more than one record
    763  * in the socket buffer, that is, a stream protocol (such as TCP).
    764  */
    765 void
    766 sbappendstream(struct sockbuf *sb, struct mbuf *m)
    767 {
    768 
    769 	KASSERT(solocked(sb->sb_so));
    770 	KDASSERT(m->m_nextpkt == NULL);
    771 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
    772 
    773 	SBLASTMBUFCHK(sb, __func__);
    774 
    775 #ifdef MBUFTRACE
    776 	m_claimm(m, sb->sb_mowner);
    777 #endif
    778 
    779 	sbcompress(sb, m, sb->sb_mbtail);
    780 
    781 	sb->sb_lastrecord = sb->sb_mb;
    782 	SBLASTRECORDCHK(sb, __func__);
    783 }
    784 
    785 #ifdef SOCKBUF_DEBUG
    786 void
    787 sbcheck(struct sockbuf *sb)
    788 {
    789 	struct mbuf	*m, *m2;
    790 	u_long		len, mbcnt;
    791 
    792 	KASSERT(solocked(sb->sb_so));
    793 
    794 	len = 0;
    795 	mbcnt = 0;
    796 	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
    797 		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
    798 			len += m2->m_len;
    799 			mbcnt += MSIZE;
    800 			if (m2->m_flags & M_EXT)
    801 				mbcnt += m2->m_ext.ext_size;
    802 			if (m2->m_nextpkt != NULL)
    803 				panic("sbcheck nextpkt");
    804 		}
    805 	}
    806 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
    807 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
    808 		    mbcnt, sb->sb_mbcnt);
    809 		panic("sbcheck");
    810 	}
    811 }
    812 #endif
    813 
    814 /*
    815  * As above, except the mbuf chain
    816  * begins a new record.
    817  */
    818 void
    819 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
    820 {
    821 	struct mbuf	*m;
    822 
    823 	KASSERT(solocked(sb->sb_so));
    824 
    825 	if (m0 == 0)
    826 		return;
    827 
    828 #ifdef MBUFTRACE
    829 	m_claimm(m0, sb->sb_mowner);
    830 #endif
    831 	/*
    832 	 * Put the first mbuf on the queue.
    833 	 * Note this permits zero length records.
    834 	 */
    835 	sballoc(sb, m0);
    836 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
    837 	SBLINKRECORD(sb, m0);
    838 	m = m0->m_next;
    839 	m0->m_next = 0;
    840 	if (m && (m0->m_flags & M_EOR)) {
    841 		m0->m_flags &= ~M_EOR;
    842 		m->m_flags |= M_EOR;
    843 	}
    844 	sbcompress(sb, m, m0);
    845 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
    846 }
    847 
    848 /*
    849  * As above except that OOB data
    850  * is inserted at the beginning of the sockbuf,
    851  * but after any other OOB data.
    852  */
    853 void
    854 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
    855 {
    856 	struct mbuf	*m, **mp;
    857 
    858 	KASSERT(solocked(sb->sb_so));
    859 
    860 	if (m0 == 0)
    861 		return;
    862 
    863 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
    864 
    865 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
    866 	    again:
    867 		switch (m->m_type) {
    868 
    869 		case MT_OOBDATA:
    870 			continue;		/* WANT next train */
    871 
    872 		case MT_CONTROL:
    873 			if ((m = m->m_next) != NULL)
    874 				goto again;	/* inspect THIS train further */
    875 		}
    876 		break;
    877 	}
    878 	/*
    879 	 * Put the first mbuf on the queue.
    880 	 * Note this permits zero length records.
    881 	 */
    882 	sballoc(sb, m0);
    883 	m0->m_nextpkt = *mp;
    884 	if (*mp == NULL) {
    885 		/* m0 is actually the new tail */
    886 		sb->sb_lastrecord = m0;
    887 	}
    888 	*mp = m0;
    889 	m = m0->m_next;
    890 	m0->m_next = 0;
    891 	if (m && (m0->m_flags & M_EOR)) {
    892 		m0->m_flags &= ~M_EOR;
    893 		m->m_flags |= M_EOR;
    894 	}
    895 	sbcompress(sb, m, m0);
    896 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
    897 }
    898 
    899 /*
    900  * Append address and data, and optionally, control (ancillary) data
    901  * to the receive queue of a socket.  If present,
    902  * m0 must include a packet header with total length.
    903  * Returns 0 if no space in sockbuf or insufficient mbufs.
    904  */
    905 int
    906 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
    907 	struct mbuf *control)
    908 {
    909 	struct mbuf	*m, *n, *nlast;
    910 	int		space, len;
    911 
    912 	KASSERT(solocked(sb->sb_so));
    913 
    914 	space = asa->sa_len;
    915 
    916 	if (m0 != NULL) {
    917 		if ((m0->m_flags & M_PKTHDR) == 0)
    918 			panic("sbappendaddr");
    919 		space += m0->m_pkthdr.len;
    920 #ifdef MBUFTRACE
    921 		m_claimm(m0, sb->sb_mowner);
    922 #endif
    923 	}
    924 	for (n = control; n; n = n->m_next) {
    925 		space += n->m_len;
    926 		MCLAIM(n, sb->sb_mowner);
    927 		if (n->m_next == 0)	/* keep pointer to last control buf */
    928 			break;
    929 	}
    930 	if (space > sbspace(sb))
    931 		return (0);
    932 	MGET(m, M_DONTWAIT, MT_SONAME);
    933 	if (m == 0)
    934 		return (0);
    935 	MCLAIM(m, sb->sb_mowner);
    936 	/*
    937 	 * XXX avoid 'comparison always true' warning which isn't easily
    938 	 * avoided.
    939 	 */
    940 	len = asa->sa_len;
    941 	if (len > MLEN) {
    942 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
    943 		if ((m->m_flags & M_EXT) == 0) {
    944 			m_free(m);
    945 			return (0);
    946 		}
    947 	}
    948 	m->m_len = asa->sa_len;
    949 	memcpy(mtod(m, void *), asa, asa->sa_len);
    950 	if (n)
    951 		n->m_next = m0;		/* concatenate data to control */
    952 	else
    953 		control = m0;
    954 	m->m_next = control;
    955 
    956 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
    957 
    958 	for (n = m; n->m_next != NULL; n = n->m_next)
    959 		sballoc(sb, n);
    960 	sballoc(sb, n);
    961 	nlast = n;
    962 	SBLINKRECORD(sb, m);
    963 
    964 	sb->sb_mbtail = nlast;
    965 	SBLASTMBUFCHK(sb, "sbappendaddr");
    966 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
    967 
    968 	return (1);
    969 }
    970 
    971 /*
    972  * Helper for sbappendchainaddr: prepend a struct sockaddr* to
    973  * an mbuf chain.
    974  */
    975 static inline struct mbuf *
    976 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
    977 		   const struct sockaddr *asa)
    978 {
    979 	struct mbuf *m;
    980 	const int salen = asa->sa_len;
    981 
    982 	KASSERT(solocked(sb->sb_so));
    983 
    984 	/* only the first in each chain need be a pkthdr */
    985 	MGETHDR(m, M_DONTWAIT, MT_SONAME);
    986 	if (m == 0)
    987 		return (0);
    988 	MCLAIM(m, sb->sb_mowner);
    989 #ifdef notyet
    990 	if (salen > MHLEN) {
    991 		MEXTMALLOC(m, salen, M_NOWAIT);
    992 		if ((m->m_flags & M_EXT) == 0) {
    993 			m_free(m);
    994 			return (0);
    995 		}
    996 	}
    997 #else
    998 	KASSERT(salen <= MHLEN);
    999 #endif
   1000 	m->m_len = salen;
   1001 	memcpy(mtod(m, void *), asa, salen);
   1002 	m->m_next = m0;
   1003 	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
   1004 
   1005 	return m;
   1006 }
   1007 
   1008 int
   1009 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
   1010 		  struct mbuf *m0, int sbprio)
   1011 {
   1012 	int space;
   1013 	struct mbuf *m, *n, *n0, *nlast;
   1014 	int error;
   1015 
   1016 	KASSERT(solocked(sb->sb_so));
   1017 
   1018 	/*
   1019 	 * XXX sbprio reserved for encoding priority of this* request:
   1020 	 *  SB_PRIO_NONE --> honour normal sb limits
   1021 	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
   1022 	 *	take whole chain. Intended for large requests
   1023 	 *      that should be delivered atomically (all, or none).
   1024 	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
   1025 	 *       over normal socket limits, for messages indicating
   1026 	 *       buffer overflow in earlier normal/lower-priority messages
   1027 	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
   1028 	 *       Intended for  kernel-generated messages only.
   1029 	 *        Up to generator to avoid total mbuf resource exhaustion.
   1030 	 */
   1031 	(void)sbprio;
   1032 
   1033 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
   1034 		panic("sbappendaddrchain");
   1035 
   1036 	space = sbspace(sb);
   1037 
   1038 #ifdef notyet
   1039 	/*
   1040 	 * Enforce SB_PRIO_* limits as described above.
   1041 	 */
   1042 #endif
   1043 
   1044 	n0 = NULL;
   1045 	nlast = NULL;
   1046 	for (m = m0; m; m = m->m_nextpkt) {
   1047 		struct mbuf *np;
   1048 
   1049 #ifdef MBUFTRACE
   1050 		m_claimm(m, sb->sb_mowner);
   1051 #endif
   1052 
   1053 		/* Prepend sockaddr to this record (m) of input chain m0 */
   1054 	  	n = m_prepend_sockaddr(sb, m, asa);
   1055 		if (n == NULL) {
   1056 			error = ENOBUFS;
   1057 			goto bad;
   1058 		}
   1059 
   1060 		/* Append record (asa+m) to end of new chain n0 */
   1061 		if (n0 == NULL) {
   1062 			n0 = n;
   1063 		} else {
   1064 			nlast->m_nextpkt = n;
   1065 		}
   1066 		/* Keep track of last record on new chain */
   1067 		nlast = n;
   1068 
   1069 		for (np = n; np; np = np->m_next)
   1070 			sballoc(sb, np);
   1071 	}
   1072 
   1073 	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
   1074 
   1075 	/* Drop the entire chain of (asa+m) records onto the socket */
   1076 	SBLINKRECORDCHAIN(sb, n0, nlast);
   1077 
   1078 	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
   1079 
   1080 	for (m = nlast; m->m_next; m = m->m_next)
   1081 		;
   1082 	sb->sb_mbtail = m;
   1083 	SBLASTMBUFCHK(sb, "sbappendaddrchain");
   1084 
   1085 	return (1);
   1086 
   1087 bad:
   1088 	/*
   1089 	 * On error, free the prepended addreseses. For consistency
   1090 	 * with sbappendaddr(), leave it to our caller to free
   1091 	 * the input record chain passed to us as m0.
   1092 	 */
   1093 	while ((n = n0) != NULL) {
   1094 	  	struct mbuf *np;
   1095 
   1096 		/* Undo the sballoc() of this record */
   1097 		for (np = n; np; np = np->m_next)
   1098 			sbfree(sb, np);
   1099 
   1100 		n0 = n->m_nextpkt;	/* iterate at next prepended address */
   1101 		MFREE(n, np);		/* free prepended address (not data) */
   1102 	}
   1103 	return 0;
   1104 }
   1105 
   1106 
   1107 int
   1108 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
   1109 {
   1110 	struct mbuf	*m, *mlast, *n;
   1111 	int		space;
   1112 
   1113 	KASSERT(solocked(sb->sb_so));
   1114 
   1115 	space = 0;
   1116 	if (control == 0)
   1117 		panic("sbappendcontrol");
   1118 	for (m = control; ; m = m->m_next) {
   1119 		space += m->m_len;
   1120 		MCLAIM(m, sb->sb_mowner);
   1121 		if (m->m_next == 0)
   1122 			break;
   1123 	}
   1124 	n = m;			/* save pointer to last control buffer */
   1125 	for (m = m0; m; m = m->m_next) {
   1126 		MCLAIM(m, sb->sb_mowner);
   1127 		space += m->m_len;
   1128 	}
   1129 	if (space > sbspace(sb))
   1130 		return (0);
   1131 	n->m_next = m0;			/* concatenate data to control */
   1132 
   1133 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
   1134 
   1135 	for (m = control; m->m_next != NULL; m = m->m_next)
   1136 		sballoc(sb, m);
   1137 	sballoc(sb, m);
   1138 	mlast = m;
   1139 	SBLINKRECORD(sb, control);
   1140 
   1141 	sb->sb_mbtail = mlast;
   1142 	SBLASTMBUFCHK(sb, "sbappendcontrol");
   1143 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
   1144 
   1145 	return (1);
   1146 }
   1147 
   1148 /*
   1149  * Compress mbuf chain m into the socket
   1150  * buffer sb following mbuf n.  If n
   1151  * is null, the buffer is presumed empty.
   1152  */
   1153 void
   1154 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
   1155 {
   1156 	int		eor;
   1157 	struct mbuf	*o;
   1158 
   1159 	KASSERT(solocked(sb->sb_so));
   1160 
   1161 	eor = 0;
   1162 	while (m) {
   1163 		eor |= m->m_flags & M_EOR;
   1164 		if (m->m_len == 0 &&
   1165 		    (eor == 0 ||
   1166 		     (((o = m->m_next) || (o = n)) &&
   1167 		      o->m_type == m->m_type))) {
   1168 			if (sb->sb_lastrecord == m)
   1169 				sb->sb_lastrecord = m->m_next;
   1170 			m = m_free(m);
   1171 			continue;
   1172 		}
   1173 		if (n && (n->m_flags & M_EOR) == 0 &&
   1174 		    /* M_TRAILINGSPACE() checks buffer writeability */
   1175 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
   1176 		    m->m_len <= M_TRAILINGSPACE(n) &&
   1177 		    n->m_type == m->m_type) {
   1178 			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
   1179 			    (unsigned)m->m_len);
   1180 			n->m_len += m->m_len;
   1181 			sb->sb_cc += m->m_len;
   1182 			m = m_free(m);
   1183 			continue;
   1184 		}
   1185 		if (n)
   1186 			n->m_next = m;
   1187 		else
   1188 			sb->sb_mb = m;
   1189 		sb->sb_mbtail = m;
   1190 		sballoc(sb, m);
   1191 		n = m;
   1192 		m->m_flags &= ~M_EOR;
   1193 		m = m->m_next;
   1194 		n->m_next = 0;
   1195 	}
   1196 	if (eor) {
   1197 		if (n)
   1198 			n->m_flags |= eor;
   1199 		else
   1200 			printf("semi-panic: sbcompress\n");
   1201 	}
   1202 	SBLASTMBUFCHK(sb, __func__);
   1203 }
   1204 
   1205 /*
   1206  * Free all mbufs in a sockbuf.
   1207  * Check that all resources are reclaimed.
   1208  */
   1209 void
   1210 sbflush(struct sockbuf *sb)
   1211 {
   1212 
   1213 	KASSERT(solocked(sb->sb_so));
   1214 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
   1215 
   1216 	while (sb->sb_mbcnt)
   1217 		sbdrop(sb, (int)sb->sb_cc);
   1218 
   1219 	KASSERT(sb->sb_cc == 0);
   1220 	KASSERT(sb->sb_mb == NULL);
   1221 	KASSERT(sb->sb_mbtail == NULL);
   1222 	KASSERT(sb->sb_lastrecord == NULL);
   1223 }
   1224 
   1225 /*
   1226  * Drop data from (the front of) a sockbuf.
   1227  */
   1228 void
   1229 sbdrop(struct sockbuf *sb, int len)
   1230 {
   1231 	struct mbuf	*m, *mn, *next;
   1232 
   1233 	KASSERT(solocked(sb->sb_so));
   1234 
   1235 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
   1236 	while (len > 0) {
   1237 		if (m == 0) {
   1238 			if (next == 0)
   1239 				panic("sbdrop");
   1240 			m = next;
   1241 			next = m->m_nextpkt;
   1242 			continue;
   1243 		}
   1244 		if (m->m_len > len) {
   1245 			m->m_len -= len;
   1246 			m->m_data += len;
   1247 			sb->sb_cc -= len;
   1248 			break;
   1249 		}
   1250 		len -= m->m_len;
   1251 		sbfree(sb, m);
   1252 		MFREE(m, mn);
   1253 		m = mn;
   1254 	}
   1255 	while (m && m->m_len == 0) {
   1256 		sbfree(sb, m);
   1257 		MFREE(m, mn);
   1258 		m = mn;
   1259 	}
   1260 	if (m) {
   1261 		sb->sb_mb = m;
   1262 		m->m_nextpkt = next;
   1263 	} else
   1264 		sb->sb_mb = next;
   1265 	/*
   1266 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
   1267 	 * makes sure sb_lastrecord is up-to-date if we dropped
   1268 	 * part of the last record.
   1269 	 */
   1270 	m = sb->sb_mb;
   1271 	if (m == NULL) {
   1272 		sb->sb_mbtail = NULL;
   1273 		sb->sb_lastrecord = NULL;
   1274 	} else if (m->m_nextpkt == NULL)
   1275 		sb->sb_lastrecord = m;
   1276 }
   1277 
   1278 /*
   1279  * Drop a record off the front of a sockbuf
   1280  * and move the next record to the front.
   1281  */
   1282 void
   1283 sbdroprecord(struct sockbuf *sb)
   1284 {
   1285 	struct mbuf	*m, *mn;
   1286 
   1287 	KASSERT(solocked(sb->sb_so));
   1288 
   1289 	m = sb->sb_mb;
   1290 	if (m) {
   1291 		sb->sb_mb = m->m_nextpkt;
   1292 		do {
   1293 			sbfree(sb, m);
   1294 			MFREE(m, mn);
   1295 		} while ((m = mn) != NULL);
   1296 	}
   1297 	SB_EMPTY_FIXUP(sb);
   1298 }
   1299 
   1300 /*
   1301  * Create a "control" mbuf containing the specified data
   1302  * with the specified type for presentation on a socket buffer.
   1303  */
   1304 struct mbuf *
   1305 sbcreatecontrol(void *p, int size, int type, int level)
   1306 {
   1307 	struct cmsghdr	*cp;
   1308 	struct mbuf	*m;
   1309 
   1310 	if (CMSG_SPACE(size) > MCLBYTES) {
   1311 		printf("sbcreatecontrol: message too large %d\n", size);
   1312 		return NULL;
   1313 	}
   1314 
   1315 	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
   1316 		return ((struct mbuf *) NULL);
   1317 	if (CMSG_SPACE(size) > MLEN) {
   1318 		MCLGET(m, M_DONTWAIT);
   1319 		if ((m->m_flags & M_EXT) == 0) {
   1320 			m_free(m);
   1321 			return NULL;
   1322 		}
   1323 	}
   1324 	cp = mtod(m, struct cmsghdr *);
   1325 	memcpy(CMSG_DATA(cp), p, size);
   1326 	m->m_len = CMSG_SPACE(size);
   1327 	cp->cmsg_len = CMSG_LEN(size);
   1328 	cp->cmsg_level = level;
   1329 	cp->cmsg_type = type;
   1330 	return (m);
   1331 }
   1332 
   1333 void
   1334 solockretry(struct socket *so, kmutex_t *lock)
   1335 {
   1336 
   1337 	while (lock != so->so_lock) {
   1338 		mutex_exit(lock);
   1339 		lock = so->so_lock;
   1340 		mutex_enter(lock);
   1341 	}
   1342 }
   1343 
   1344 bool
   1345 solocked(struct socket *so)
   1346 {
   1347 
   1348 	return mutex_owned(so->so_lock);
   1349 }
   1350 
   1351 bool
   1352 solocked2(struct socket *so1, struct socket *so2)
   1353 {
   1354 	kmutex_t *lock;
   1355 
   1356 	lock = so1->so_lock;
   1357 	if (lock != so2->so_lock)
   1358 		return false;
   1359 	return mutex_owned(lock);
   1360 }
   1361 
   1362 /*
   1363  * Assign a default lock to a new socket.  For PRU_ATTACH, and done by
   1364  * protocols that do not have special locking requirements.
   1365  */
   1366 void
   1367 sosetlock(struct socket *so)
   1368 {
   1369 	kmutex_t *lock;
   1370 
   1371 	if (so->so_lock == NULL) {
   1372 		lock = softnet_lock;
   1373 		so->so_lock = lock;
   1374 		mutex_obj_hold(lock);
   1375 		mutex_enter(lock);
   1376 	}
   1377 
   1378 	/* In all cases, lock must be held on return from PRU_ATTACH. */
   1379 	KASSERT(solocked(so));
   1380 }
   1381 
   1382 /*
   1383  * Set lock on sockbuf sb; sleep if lock is already held.
   1384  * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
   1385  * Returns error without lock if sleep is interrupted.
   1386  */
   1387 int
   1388 sblock(struct sockbuf *sb, int wf)
   1389 {
   1390 	struct socket *so;
   1391 	kmutex_t *lock;
   1392 	int error;
   1393 
   1394 	KASSERT(solocked(sb->sb_so));
   1395 
   1396 	for (;;) {
   1397 		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
   1398 			sb->sb_flags |= SB_LOCK;
   1399 			return 0;
   1400 		}
   1401 		if (wf != M_WAITOK)
   1402 			return EWOULDBLOCK;
   1403 		so = sb->sb_so;
   1404 		lock = so->so_lock;
   1405 		if ((sb->sb_flags & SB_NOINTR) != 0) {
   1406 			cv_wait(&so->so_cv, lock);
   1407 			error = 0;
   1408 		} else
   1409 			error = cv_wait_sig(&so->so_cv, lock);
   1410 		if (__predict_false(lock != so->so_lock))
   1411 			solockretry(so, lock);
   1412 		if (error != 0)
   1413 			return error;
   1414 	}
   1415 }
   1416 
   1417 void
   1418 sbunlock(struct sockbuf *sb)
   1419 {
   1420 	struct socket *so;
   1421 
   1422 	so = sb->sb_so;
   1423 
   1424 	KASSERT(solocked(so));
   1425 	KASSERT((sb->sb_flags & SB_LOCK) != 0);
   1426 
   1427 	sb->sb_flags &= ~SB_LOCK;
   1428 	cv_broadcast(&so->so_cv);
   1429 }
   1430 
   1431 int
   1432 sowait(struct socket *so, int timo)
   1433 {
   1434 	kmutex_t *lock;
   1435 	int error;
   1436 
   1437 	KASSERT(solocked(so));
   1438 
   1439 	lock = so->so_lock;
   1440 	error = cv_timedwait_sig(&so->so_cv, lock, timo);
   1441 	if (__predict_false(lock != so->so_lock))
   1442 		solockretry(so, lock);
   1443 	return error;
   1444 }
   1445