uipc_socket2.c revision 1.98 1 /* $NetBSD: uipc_socket2.c,v 1.98 2008/10/11 13:40:57 pooka Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the University nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
58 */
59
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.98 2008/10/11 13:40:57 pooka Exp $");
62
63 #include "opt_inet.h"
64 #include "opt_mbuftrace.h"
65 #include "opt_sb_max.h"
66
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/proc.h>
70 #include <sys/file.h>
71 #include <sys/buf.h>
72 #include <sys/malloc.h>
73 #include <sys/mbuf.h>
74 #include <sys/protosw.h>
75 #include <sys/domain.h>
76 #include <sys/poll.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/signalvar.h>
80 #include <sys/kauth.h>
81 #include <sys/pool.h>
82 #include <sys/uidinfo.h>
83
84 /*
85 * Primitive routines for operating on sockets and socket buffers.
86 *
87 * Locking rules and assumptions:
88 *
89 * o socket::so_lock can change on the fly. The low level routines used
90 * to lock sockets are aware of this. When so_lock is acquired, the
91 * routine locking must check to see if so_lock still points to the
92 * lock that was acquired. If so_lock has changed in the meantime, the
93 * now irellevant lock that was acquired must be dropped and the lock
94 * operation retried. Although not proven here, this is completely safe
95 * on a multiprocessor system, even with relaxed memory ordering, given
96 * the next two rules:
97 *
98 * o In order to mutate so_lock, the lock pointed to by the current value
99 * of so_lock must be held: i.e., the socket must be held locked by the
100 * changing thread. The thread must issue membar_exit() to prevent
101 * memory accesses being reordered, and can set so_lock to the desired
102 * value. If the lock pointed to by the new value of so_lock is not
103 * held by the changing thread, the socket must then be considered
104 * unlocked.
105 *
106 * o If so_lock is mutated, and the previous lock referred to by so_lock
107 * could still be visible to other threads in the system (e.g. via file
108 * descriptor or protocol-internal reference), then the old lock must
109 * remain valid until the socket and/or protocol control block has been
110 * torn down.
111 *
112 * o If a socket has a non-NULL so_head value (i.e. is in the process of
113 * connecting), then locking the socket must also lock the socket pointed
114 * to by so_head: their lock pointers must match.
115 *
116 * o If a socket has connections in progress (so_q, so_q0 not empty) then
117 * locking the socket must also lock the sockets attached to both queues.
118 * Again, their lock pointers must match.
119 *
120 * o Beyond the initial lock assigment in socreate(), assigning locks to
121 * sockets is the responsibility of the individual protocols / protocol
122 * domains.
123 */
124
125 static pool_cache_t socket_cache;
126
127 u_long sb_max = SB_MAX; /* maximum socket buffer size */
128 static u_long sb_max_adj; /* adjusted sb_max */
129
130 /*
131 * Procedures to manipulate state flags of socket
132 * and do appropriate wakeups. Normal sequence from the
133 * active (originating) side is that soisconnecting() is
134 * called during processing of connect() call,
135 * resulting in an eventual call to soisconnected() if/when the
136 * connection is established. When the connection is torn down
137 * soisdisconnecting() is called during processing of disconnect() call,
138 * and soisdisconnected() is called when the connection to the peer
139 * is totally severed. The semantics of these routines are such that
140 * connectionless protocols can call soisconnected() and soisdisconnected()
141 * only, bypassing the in-progress calls when setting up a ``connection''
142 * takes no time.
143 *
144 * From the passive side, a socket is created with
145 * two queues of sockets: so_q0 for connections in progress
146 * and so_q for connections already made and awaiting user acceptance.
147 * As a protocol is preparing incoming connections, it creates a socket
148 * structure queued on so_q0 by calling sonewconn(). When the connection
149 * is established, soisconnected() is called, and transfers the
150 * socket structure to so_q, making it available to accept().
151 *
152 * If a socket is closed with sockets on either
153 * so_q0 or so_q, these sockets are dropped.
154 *
155 * If higher level protocols are implemented in
156 * the kernel, the wakeups done here will sometimes
157 * cause software-interrupt process scheduling.
158 */
159
160 void
161 soisconnecting(struct socket *so)
162 {
163
164 KASSERT(solocked(so));
165
166 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
167 so->so_state |= SS_ISCONNECTING;
168 }
169
170 void
171 soisconnected(struct socket *so)
172 {
173 struct socket *head;
174
175 head = so->so_head;
176
177 KASSERT(solocked(so));
178 KASSERT(head == NULL || solocked2(so, head));
179
180 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
181 so->so_state |= SS_ISCONNECTED;
182 if (head && so->so_onq == &head->so_q0) {
183 if ((so->so_options & SO_ACCEPTFILTER) == 0) {
184 soqremque(so, 0);
185 soqinsque(head, so, 1);
186 sorwakeup(head);
187 cv_broadcast(&head->so_cv);
188 } else {
189 so->so_upcall =
190 head->so_accf->so_accept_filter->accf_callback;
191 so->so_upcallarg = head->so_accf->so_accept_filter_arg;
192 so->so_rcv.sb_flags |= SB_UPCALL;
193 so->so_options &= ~SO_ACCEPTFILTER;
194 so->so_upcall(so, so->so_upcallarg, M_DONTWAIT);
195 }
196 } else {
197 cv_broadcast(&so->so_cv);
198 sorwakeup(so);
199 sowwakeup(so);
200 }
201 }
202
203 void
204 soisdisconnecting(struct socket *so)
205 {
206
207 KASSERT(solocked(so));
208
209 so->so_state &= ~SS_ISCONNECTING;
210 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
211 cv_broadcast(&so->so_cv);
212 sowwakeup(so);
213 sorwakeup(so);
214 }
215
216 void
217 soisdisconnected(struct socket *so)
218 {
219
220 KASSERT(solocked(so));
221
222 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
223 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
224 cv_broadcast(&so->so_cv);
225 sowwakeup(so);
226 sorwakeup(so);
227 }
228
229 void
230 soinit2(void)
231 {
232
233 socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
234 "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
235 }
236
237 /*
238 * When an attempt at a new connection is noted on a socket
239 * which accepts connections, sonewconn is called. If the
240 * connection is possible (subject to space constraints, etc.)
241 * then we allocate a new structure, propoerly linked into the
242 * data structure of the original socket, and return this.
243 * Connstatus may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
244 */
245 struct socket *
246 sonewconn(struct socket *head, int connstatus)
247 {
248 struct socket *so;
249 int soqueue, error;
250
251 KASSERT(solocked(head));
252
253 if ((head->so_options & SO_ACCEPTFILTER) != 0)
254 connstatus = 0;
255 soqueue = connstatus ? 1 : 0;
256 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
257 return ((struct socket *)0);
258 so = soget(false);
259 if (so == NULL)
260 return (NULL);
261 mutex_obj_hold(head->so_lock);
262 so->so_lock = head->so_lock;
263 so->so_type = head->so_type;
264 so->so_options = head->so_options &~ SO_ACCEPTCONN;
265 so->so_linger = head->so_linger;
266 so->so_state = head->so_state | SS_NOFDREF;
267 so->so_nbio = head->so_nbio;
268 so->so_proto = head->so_proto;
269 so->so_timeo = head->so_timeo;
270 so->so_pgid = head->so_pgid;
271 so->so_send = head->so_send;
272 so->so_receive = head->so_receive;
273 so->so_uidinfo = head->so_uidinfo;
274 so->so_egid = head->so_egid;
275 so->so_cpid = head->so_cpid;
276 #ifdef MBUFTRACE
277 so->so_mowner = head->so_mowner;
278 so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
279 so->so_snd.sb_mowner = head->so_snd.sb_mowner;
280 #endif
281 (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
282 so->so_snd.sb_lowat = head->so_snd.sb_lowat;
283 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
284 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
285 so->so_snd.sb_timeo = head->so_snd.sb_timeo;
286 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
287 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
288 soqinsque(head, so, soqueue);
289 error = (*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL,
290 NULL, NULL);
291 KASSERT(solocked(so));
292 if (error != 0) {
293 (void) soqremque(so, soqueue);
294
295 #ifdef INET
296 /* remove acccept filter if one is present. */
297 if (so->so_accf != NULL)
298 do_setopt_accept_filter(so, NULL);
299 #endif
300 soput(so);
301 return (NULL);
302 }
303 if (connstatus) {
304 sorwakeup(head);
305 cv_broadcast(&head->so_cv);
306 so->so_state |= connstatus;
307 }
308 return (so);
309 }
310
311 struct socket *
312 soget(bool waitok)
313 {
314 struct socket *so;
315
316 so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
317 if (__predict_false(so == NULL))
318 return (NULL);
319 memset(so, 0, sizeof(*so));
320 TAILQ_INIT(&so->so_q0);
321 TAILQ_INIT(&so->so_q);
322 cv_init(&so->so_cv, "socket");
323 cv_init(&so->so_rcv.sb_cv, "netio");
324 cv_init(&so->so_snd.sb_cv, "netio");
325 selinit(&so->so_rcv.sb_sel);
326 selinit(&so->so_snd.sb_sel);
327 so->so_rcv.sb_so = so;
328 so->so_snd.sb_so = so;
329 return so;
330 }
331
332 void
333 soput(struct socket *so)
334 {
335
336 KASSERT(!cv_has_waiters(&so->so_cv));
337 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
338 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
339 seldestroy(&so->so_rcv.sb_sel);
340 seldestroy(&so->so_snd.sb_sel);
341 mutex_obj_free(so->so_lock);
342 cv_destroy(&so->so_cv);
343 cv_destroy(&so->so_rcv.sb_cv);
344 cv_destroy(&so->so_snd.sb_cv);
345 pool_cache_put(socket_cache, so);
346 }
347
348 void
349 soqinsque(struct socket *head, struct socket *so, int q)
350 {
351
352 KASSERT(solocked2(head, so));
353
354 #ifdef DIAGNOSTIC
355 if (so->so_onq != NULL)
356 panic("soqinsque");
357 #endif
358
359 so->so_head = head;
360 if (q == 0) {
361 head->so_q0len++;
362 so->so_onq = &head->so_q0;
363 } else {
364 head->so_qlen++;
365 so->so_onq = &head->so_q;
366 }
367 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
368 }
369
370 int
371 soqremque(struct socket *so, int q)
372 {
373 struct socket *head;
374
375 head = so->so_head;
376
377 KASSERT(solocked(so));
378 if (q == 0) {
379 if (so->so_onq != &head->so_q0)
380 return (0);
381 head->so_q0len--;
382 } else {
383 if (so->so_onq != &head->so_q)
384 return (0);
385 head->so_qlen--;
386 }
387 KASSERT(solocked2(so, head));
388 TAILQ_REMOVE(so->so_onq, so, so_qe);
389 so->so_onq = NULL;
390 so->so_head = NULL;
391 return (1);
392 }
393
394 /*
395 * Socantsendmore indicates that no more data will be sent on the
396 * socket; it would normally be applied to a socket when the user
397 * informs the system that no more data is to be sent, by the protocol
398 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
399 * will be received, and will normally be applied to the socket by a
400 * protocol when it detects that the peer will send no more data.
401 * Data queued for reading in the socket may yet be read.
402 */
403
404 void
405 socantsendmore(struct socket *so)
406 {
407
408 KASSERT(solocked(so));
409
410 so->so_state |= SS_CANTSENDMORE;
411 sowwakeup(so);
412 }
413
414 void
415 socantrcvmore(struct socket *so)
416 {
417
418 KASSERT(solocked(so));
419
420 so->so_state |= SS_CANTRCVMORE;
421 sorwakeup(so);
422 }
423
424 /*
425 * Wait for data to arrive at/drain from a socket buffer.
426 */
427 int
428 sbwait(struct sockbuf *sb)
429 {
430 struct socket *so;
431 kmutex_t *lock;
432 int error;
433
434 so = sb->sb_so;
435
436 KASSERT(solocked(so));
437
438 sb->sb_flags |= SB_NOTIFY;
439 lock = so->so_lock;
440 if ((sb->sb_flags & SB_NOINTR) != 0)
441 error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
442 else
443 error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
444 if (__predict_false(lock != so->so_lock))
445 solockretry(so, lock);
446 return error;
447 }
448
449 /*
450 * Wakeup processes waiting on a socket buffer.
451 * Do asynchronous notification via SIGIO
452 * if the socket buffer has the SB_ASYNC flag set.
453 */
454 void
455 sowakeup(struct socket *so, struct sockbuf *sb, int code)
456 {
457 int band;
458
459 KASSERT(solocked(so));
460 KASSERT(sb->sb_so == so);
461
462 if (code == POLL_IN)
463 band = POLLIN|POLLRDNORM;
464 else
465 band = POLLOUT|POLLWRNORM;
466 sb->sb_flags &= ~SB_NOTIFY;
467 selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
468 cv_broadcast(&sb->sb_cv);
469 if (sb->sb_flags & SB_ASYNC)
470 fownsignal(so->so_pgid, SIGIO, code, band, so);
471 if (sb->sb_flags & SB_UPCALL)
472 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
473 }
474
475 /*
476 * Reset a socket's lock pointer. Wake all threads waiting on the
477 * socket's condition variables so that they can restart their waits
478 * using the new lock. The existing lock must be held.
479 */
480 void
481 solockreset(struct socket *so, kmutex_t *lock)
482 {
483
484 KASSERT(solocked(so));
485
486 so->so_lock = lock;
487 cv_broadcast(&so->so_snd.sb_cv);
488 cv_broadcast(&so->so_rcv.sb_cv);
489 cv_broadcast(&so->so_cv);
490 }
491
492 /*
493 * Socket buffer (struct sockbuf) utility routines.
494 *
495 * Each socket contains two socket buffers: one for sending data and
496 * one for receiving data. Each buffer contains a queue of mbufs,
497 * information about the number of mbufs and amount of data in the
498 * queue, and other fields allowing poll() statements and notification
499 * on data availability to be implemented.
500 *
501 * Data stored in a socket buffer is maintained as a list of records.
502 * Each record is a list of mbufs chained together with the m_next
503 * field. Records are chained together with the m_nextpkt field. The upper
504 * level routine soreceive() expects the following conventions to be
505 * observed when placing information in the receive buffer:
506 *
507 * 1. If the protocol requires each message be preceded by the sender's
508 * name, then a record containing that name must be present before
509 * any associated data (mbuf's must be of type MT_SONAME).
510 * 2. If the protocol supports the exchange of ``access rights'' (really
511 * just additional data associated with the message), and there are
512 * ``rights'' to be received, then a record containing this data
513 * should be present (mbuf's must be of type MT_CONTROL).
514 * 3. If a name or rights record exists, then it must be followed by
515 * a data record, perhaps of zero length.
516 *
517 * Before using a new socket structure it is first necessary to reserve
518 * buffer space to the socket, by calling sbreserve(). This should commit
519 * some of the available buffer space in the system buffer pool for the
520 * socket (currently, it does nothing but enforce limits). The space
521 * should be released by calling sbrelease() when the socket is destroyed.
522 */
523
524 int
525 sb_max_set(u_long new_sbmax)
526 {
527 int s;
528
529 if (new_sbmax < (16 * 1024))
530 return (EINVAL);
531
532 s = splsoftnet();
533 sb_max = new_sbmax;
534 sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
535 splx(s);
536
537 return (0);
538 }
539
540 int
541 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
542 {
543
544 KASSERT(so->so_lock == NULL || solocked(so));
545
546 /*
547 * there's at least one application (a configure script of screen)
548 * which expects a fifo is writable even if it has "some" bytes
549 * in its buffer.
550 * so we want to make sure (hiwat - lowat) >= (some bytes).
551 *
552 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
553 * we expect it's large enough for such applications.
554 */
555 u_long lowat = MAX(sock_loan_thresh, MCLBYTES);
556 u_long hiwat = lowat + PIPE_BUF;
557
558 if (sndcc < hiwat)
559 sndcc = hiwat;
560 if (sbreserve(&so->so_snd, sndcc, so) == 0)
561 goto bad;
562 if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
563 goto bad2;
564 if (so->so_rcv.sb_lowat == 0)
565 so->so_rcv.sb_lowat = 1;
566 if (so->so_snd.sb_lowat == 0)
567 so->so_snd.sb_lowat = lowat;
568 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
569 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
570 return (0);
571 bad2:
572 sbrelease(&so->so_snd, so);
573 bad:
574 return (ENOBUFS);
575 }
576
577 /*
578 * Allot mbufs to a sockbuf.
579 * Attempt to scale mbmax so that mbcnt doesn't become limiting
580 * if buffering efficiency is near the normal case.
581 */
582 int
583 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
584 {
585 struct lwp *l = curlwp; /* XXX */
586 rlim_t maxcc;
587 struct uidinfo *uidinfo;
588
589 KASSERT(so->so_lock == NULL || solocked(so));
590 KASSERT(sb->sb_so == so);
591 KASSERT(sb_max_adj != 0);
592
593 if (cc == 0 || cc > sb_max_adj)
594 return (0);
595
596 if (kauth_cred_geteuid(l->l_cred) == so->so_uidinfo->ui_uid)
597 maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
598 else
599 maxcc = RLIM_INFINITY;
600
601 uidinfo = so->so_uidinfo;
602 if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
603 return 0;
604 sb->sb_mbmax = min(cc * 2, sb_max);
605 if (sb->sb_lowat > sb->sb_hiwat)
606 sb->sb_lowat = sb->sb_hiwat;
607 return (1);
608 }
609
610 /*
611 * Free mbufs held by a socket, and reserved mbuf space. We do not assert
612 * that the socket is held locked here: see sorflush().
613 */
614 void
615 sbrelease(struct sockbuf *sb, struct socket *so)
616 {
617
618 KASSERT(sb->sb_so == so);
619
620 sbflush(sb);
621 (void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
622 sb->sb_mbmax = 0;
623 }
624
625 /*
626 * Routines to add and remove
627 * data from an mbuf queue.
628 *
629 * The routines sbappend() or sbappendrecord() are normally called to
630 * append new mbufs to a socket buffer, after checking that adequate
631 * space is available, comparing the function sbspace() with the amount
632 * of data to be added. sbappendrecord() differs from sbappend() in
633 * that data supplied is treated as the beginning of a new record.
634 * To place a sender's address, optional access rights, and data in a
635 * socket receive buffer, sbappendaddr() should be used. To place
636 * access rights and data in a socket receive buffer, sbappendrights()
637 * should be used. In either case, the new data begins a new record.
638 * Note that unlike sbappend() and sbappendrecord(), these routines check
639 * for the caller that there will be enough space to store the data.
640 * Each fails if there is not enough space, or if it cannot find mbufs
641 * to store additional information in.
642 *
643 * Reliable protocols may use the socket send buffer to hold data
644 * awaiting acknowledgement. Data is normally copied from a socket
645 * send buffer in a protocol with m_copy for output to a peer,
646 * and then removing the data from the socket buffer with sbdrop()
647 * or sbdroprecord() when the data is acknowledged by the peer.
648 */
649
650 #ifdef SOCKBUF_DEBUG
651 void
652 sblastrecordchk(struct sockbuf *sb, const char *where)
653 {
654 struct mbuf *m = sb->sb_mb;
655
656 KASSERT(solocked(sb->sb_so));
657
658 while (m && m->m_nextpkt)
659 m = m->m_nextpkt;
660
661 if (m != sb->sb_lastrecord) {
662 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
663 sb->sb_mb, sb->sb_lastrecord, m);
664 printf("packet chain:\n");
665 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
666 printf("\t%p\n", m);
667 panic("sblastrecordchk from %s", where);
668 }
669 }
670
671 void
672 sblastmbufchk(struct sockbuf *sb, const char *where)
673 {
674 struct mbuf *m = sb->sb_mb;
675 struct mbuf *n;
676
677 KASSERT(solocked(sb->sb_so));
678
679 while (m && m->m_nextpkt)
680 m = m->m_nextpkt;
681
682 while (m && m->m_next)
683 m = m->m_next;
684
685 if (m != sb->sb_mbtail) {
686 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
687 sb->sb_mb, sb->sb_mbtail, m);
688 printf("packet tree:\n");
689 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
690 printf("\t");
691 for (n = m; n != NULL; n = n->m_next)
692 printf("%p ", n);
693 printf("\n");
694 }
695 panic("sblastmbufchk from %s", where);
696 }
697 }
698 #endif /* SOCKBUF_DEBUG */
699
700 /*
701 * Link a chain of records onto a socket buffer
702 */
703 #define SBLINKRECORDCHAIN(sb, m0, mlast) \
704 do { \
705 if ((sb)->sb_lastrecord != NULL) \
706 (sb)->sb_lastrecord->m_nextpkt = (m0); \
707 else \
708 (sb)->sb_mb = (m0); \
709 (sb)->sb_lastrecord = (mlast); \
710 } while (/*CONSTCOND*/0)
711
712
713 #define SBLINKRECORD(sb, m0) \
714 SBLINKRECORDCHAIN(sb, m0, m0)
715
716 /*
717 * Append mbuf chain m to the last record in the
718 * socket buffer sb. The additional space associated
719 * the mbuf chain is recorded in sb. Empty mbufs are
720 * discarded and mbufs are compacted where possible.
721 */
722 void
723 sbappend(struct sockbuf *sb, struct mbuf *m)
724 {
725 struct mbuf *n;
726
727 KASSERT(solocked(sb->sb_so));
728
729 if (m == 0)
730 return;
731
732 #ifdef MBUFTRACE
733 m_claimm(m, sb->sb_mowner);
734 #endif
735
736 SBLASTRECORDCHK(sb, "sbappend 1");
737
738 if ((n = sb->sb_lastrecord) != NULL) {
739 /*
740 * XXX Would like to simply use sb_mbtail here, but
741 * XXX I need to verify that I won't miss an EOR that
742 * XXX way.
743 */
744 do {
745 if (n->m_flags & M_EOR) {
746 sbappendrecord(sb, m); /* XXXXXX!!!! */
747 return;
748 }
749 } while (n->m_next && (n = n->m_next));
750 } else {
751 /*
752 * If this is the first record in the socket buffer, it's
753 * also the last record.
754 */
755 sb->sb_lastrecord = m;
756 }
757 sbcompress(sb, m, n);
758 SBLASTRECORDCHK(sb, "sbappend 2");
759 }
760
761 /*
762 * This version of sbappend() should only be used when the caller
763 * absolutely knows that there will never be more than one record
764 * in the socket buffer, that is, a stream protocol (such as TCP).
765 */
766 void
767 sbappendstream(struct sockbuf *sb, struct mbuf *m)
768 {
769
770 KASSERT(solocked(sb->sb_so));
771 KDASSERT(m->m_nextpkt == NULL);
772 KASSERT(sb->sb_mb == sb->sb_lastrecord);
773
774 SBLASTMBUFCHK(sb, __func__);
775
776 #ifdef MBUFTRACE
777 m_claimm(m, sb->sb_mowner);
778 #endif
779
780 sbcompress(sb, m, sb->sb_mbtail);
781
782 sb->sb_lastrecord = sb->sb_mb;
783 SBLASTRECORDCHK(sb, __func__);
784 }
785
786 #ifdef SOCKBUF_DEBUG
787 void
788 sbcheck(struct sockbuf *sb)
789 {
790 struct mbuf *m, *m2;
791 u_long len, mbcnt;
792
793 KASSERT(solocked(sb->sb_so));
794
795 len = 0;
796 mbcnt = 0;
797 for (m = sb->sb_mb; m; m = m->m_nextpkt) {
798 for (m2 = m; m2 != NULL; m2 = m2->m_next) {
799 len += m2->m_len;
800 mbcnt += MSIZE;
801 if (m2->m_flags & M_EXT)
802 mbcnt += m2->m_ext.ext_size;
803 if (m2->m_nextpkt != NULL)
804 panic("sbcheck nextpkt");
805 }
806 }
807 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
808 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
809 mbcnt, sb->sb_mbcnt);
810 panic("sbcheck");
811 }
812 }
813 #endif
814
815 /*
816 * As above, except the mbuf chain
817 * begins a new record.
818 */
819 void
820 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
821 {
822 struct mbuf *m;
823
824 KASSERT(solocked(sb->sb_so));
825
826 if (m0 == 0)
827 return;
828
829 #ifdef MBUFTRACE
830 m_claimm(m0, sb->sb_mowner);
831 #endif
832 /*
833 * Put the first mbuf on the queue.
834 * Note this permits zero length records.
835 */
836 sballoc(sb, m0);
837 SBLASTRECORDCHK(sb, "sbappendrecord 1");
838 SBLINKRECORD(sb, m0);
839 m = m0->m_next;
840 m0->m_next = 0;
841 if (m && (m0->m_flags & M_EOR)) {
842 m0->m_flags &= ~M_EOR;
843 m->m_flags |= M_EOR;
844 }
845 sbcompress(sb, m, m0);
846 SBLASTRECORDCHK(sb, "sbappendrecord 2");
847 }
848
849 /*
850 * As above except that OOB data
851 * is inserted at the beginning of the sockbuf,
852 * but after any other OOB data.
853 */
854 void
855 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
856 {
857 struct mbuf *m, **mp;
858
859 KASSERT(solocked(sb->sb_so));
860
861 if (m0 == 0)
862 return;
863
864 SBLASTRECORDCHK(sb, "sbinsertoob 1");
865
866 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
867 again:
868 switch (m->m_type) {
869
870 case MT_OOBDATA:
871 continue; /* WANT next train */
872
873 case MT_CONTROL:
874 if ((m = m->m_next) != NULL)
875 goto again; /* inspect THIS train further */
876 }
877 break;
878 }
879 /*
880 * Put the first mbuf on the queue.
881 * Note this permits zero length records.
882 */
883 sballoc(sb, m0);
884 m0->m_nextpkt = *mp;
885 if (*mp == NULL) {
886 /* m0 is actually the new tail */
887 sb->sb_lastrecord = m0;
888 }
889 *mp = m0;
890 m = m0->m_next;
891 m0->m_next = 0;
892 if (m && (m0->m_flags & M_EOR)) {
893 m0->m_flags &= ~M_EOR;
894 m->m_flags |= M_EOR;
895 }
896 sbcompress(sb, m, m0);
897 SBLASTRECORDCHK(sb, "sbinsertoob 2");
898 }
899
900 /*
901 * Append address and data, and optionally, control (ancillary) data
902 * to the receive queue of a socket. If present,
903 * m0 must include a packet header with total length.
904 * Returns 0 if no space in sockbuf or insufficient mbufs.
905 */
906 int
907 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
908 struct mbuf *control)
909 {
910 struct mbuf *m, *n, *nlast;
911 int space, len;
912
913 KASSERT(solocked(sb->sb_so));
914
915 space = asa->sa_len;
916
917 if (m0 != NULL) {
918 if ((m0->m_flags & M_PKTHDR) == 0)
919 panic("sbappendaddr");
920 space += m0->m_pkthdr.len;
921 #ifdef MBUFTRACE
922 m_claimm(m0, sb->sb_mowner);
923 #endif
924 }
925 for (n = control; n; n = n->m_next) {
926 space += n->m_len;
927 MCLAIM(n, sb->sb_mowner);
928 if (n->m_next == 0) /* keep pointer to last control buf */
929 break;
930 }
931 if (space > sbspace(sb))
932 return (0);
933 MGET(m, M_DONTWAIT, MT_SONAME);
934 if (m == 0)
935 return (0);
936 MCLAIM(m, sb->sb_mowner);
937 /*
938 * XXX avoid 'comparison always true' warning which isn't easily
939 * avoided.
940 */
941 len = asa->sa_len;
942 if (len > MLEN) {
943 MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
944 if ((m->m_flags & M_EXT) == 0) {
945 m_free(m);
946 return (0);
947 }
948 }
949 m->m_len = asa->sa_len;
950 memcpy(mtod(m, void *), asa, asa->sa_len);
951 if (n)
952 n->m_next = m0; /* concatenate data to control */
953 else
954 control = m0;
955 m->m_next = control;
956
957 SBLASTRECORDCHK(sb, "sbappendaddr 1");
958
959 for (n = m; n->m_next != NULL; n = n->m_next)
960 sballoc(sb, n);
961 sballoc(sb, n);
962 nlast = n;
963 SBLINKRECORD(sb, m);
964
965 sb->sb_mbtail = nlast;
966 SBLASTMBUFCHK(sb, "sbappendaddr");
967 SBLASTRECORDCHK(sb, "sbappendaddr 2");
968
969 return (1);
970 }
971
972 /*
973 * Helper for sbappendchainaddr: prepend a struct sockaddr* to
974 * an mbuf chain.
975 */
976 static inline struct mbuf *
977 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
978 const struct sockaddr *asa)
979 {
980 struct mbuf *m;
981 const int salen = asa->sa_len;
982
983 KASSERT(solocked(sb->sb_so));
984
985 /* only the first in each chain need be a pkthdr */
986 MGETHDR(m, M_DONTWAIT, MT_SONAME);
987 if (m == 0)
988 return (0);
989 MCLAIM(m, sb->sb_mowner);
990 #ifdef notyet
991 if (salen > MHLEN) {
992 MEXTMALLOC(m, salen, M_NOWAIT);
993 if ((m->m_flags & M_EXT) == 0) {
994 m_free(m);
995 return (0);
996 }
997 }
998 #else
999 KASSERT(salen <= MHLEN);
1000 #endif
1001 m->m_len = salen;
1002 memcpy(mtod(m, void *), asa, salen);
1003 m->m_next = m0;
1004 m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1005
1006 return m;
1007 }
1008
1009 int
1010 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1011 struct mbuf *m0, int sbprio)
1012 {
1013 int space;
1014 struct mbuf *m, *n, *n0, *nlast;
1015 int error;
1016
1017 KASSERT(solocked(sb->sb_so));
1018
1019 /*
1020 * XXX sbprio reserved for encoding priority of this* request:
1021 * SB_PRIO_NONE --> honour normal sb limits
1022 * SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1023 * take whole chain. Intended for large requests
1024 * that should be delivered atomically (all, or none).
1025 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1026 * over normal socket limits, for messages indicating
1027 * buffer overflow in earlier normal/lower-priority messages
1028 * SB_PRIO_BESTEFFORT --> ignore limits entirely.
1029 * Intended for kernel-generated messages only.
1030 * Up to generator to avoid total mbuf resource exhaustion.
1031 */
1032 (void)sbprio;
1033
1034 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1035 panic("sbappendaddrchain");
1036
1037 space = sbspace(sb);
1038
1039 #ifdef notyet
1040 /*
1041 * Enforce SB_PRIO_* limits as described above.
1042 */
1043 #endif
1044
1045 n0 = NULL;
1046 nlast = NULL;
1047 for (m = m0; m; m = m->m_nextpkt) {
1048 struct mbuf *np;
1049
1050 #ifdef MBUFTRACE
1051 m_claimm(m, sb->sb_mowner);
1052 #endif
1053
1054 /* Prepend sockaddr to this record (m) of input chain m0 */
1055 n = m_prepend_sockaddr(sb, m, asa);
1056 if (n == NULL) {
1057 error = ENOBUFS;
1058 goto bad;
1059 }
1060
1061 /* Append record (asa+m) to end of new chain n0 */
1062 if (n0 == NULL) {
1063 n0 = n;
1064 } else {
1065 nlast->m_nextpkt = n;
1066 }
1067 /* Keep track of last record on new chain */
1068 nlast = n;
1069
1070 for (np = n; np; np = np->m_next)
1071 sballoc(sb, np);
1072 }
1073
1074 SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1075
1076 /* Drop the entire chain of (asa+m) records onto the socket */
1077 SBLINKRECORDCHAIN(sb, n0, nlast);
1078
1079 SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1080
1081 for (m = nlast; m->m_next; m = m->m_next)
1082 ;
1083 sb->sb_mbtail = m;
1084 SBLASTMBUFCHK(sb, "sbappendaddrchain");
1085
1086 return (1);
1087
1088 bad:
1089 /*
1090 * On error, free the prepended addreseses. For consistency
1091 * with sbappendaddr(), leave it to our caller to free
1092 * the input record chain passed to us as m0.
1093 */
1094 while ((n = n0) != NULL) {
1095 struct mbuf *np;
1096
1097 /* Undo the sballoc() of this record */
1098 for (np = n; np; np = np->m_next)
1099 sbfree(sb, np);
1100
1101 n0 = n->m_nextpkt; /* iterate at next prepended address */
1102 MFREE(n, np); /* free prepended address (not data) */
1103 }
1104 return 0;
1105 }
1106
1107
1108 int
1109 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1110 {
1111 struct mbuf *m, *mlast, *n;
1112 int space;
1113
1114 KASSERT(solocked(sb->sb_so));
1115
1116 space = 0;
1117 if (control == 0)
1118 panic("sbappendcontrol");
1119 for (m = control; ; m = m->m_next) {
1120 space += m->m_len;
1121 MCLAIM(m, sb->sb_mowner);
1122 if (m->m_next == 0)
1123 break;
1124 }
1125 n = m; /* save pointer to last control buffer */
1126 for (m = m0; m; m = m->m_next) {
1127 MCLAIM(m, sb->sb_mowner);
1128 space += m->m_len;
1129 }
1130 if (space > sbspace(sb))
1131 return (0);
1132 n->m_next = m0; /* concatenate data to control */
1133
1134 SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1135
1136 for (m = control; m->m_next != NULL; m = m->m_next)
1137 sballoc(sb, m);
1138 sballoc(sb, m);
1139 mlast = m;
1140 SBLINKRECORD(sb, control);
1141
1142 sb->sb_mbtail = mlast;
1143 SBLASTMBUFCHK(sb, "sbappendcontrol");
1144 SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1145
1146 return (1);
1147 }
1148
1149 /*
1150 * Compress mbuf chain m into the socket
1151 * buffer sb following mbuf n. If n
1152 * is null, the buffer is presumed empty.
1153 */
1154 void
1155 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1156 {
1157 int eor;
1158 struct mbuf *o;
1159
1160 KASSERT(solocked(sb->sb_so));
1161
1162 eor = 0;
1163 while (m) {
1164 eor |= m->m_flags & M_EOR;
1165 if (m->m_len == 0 &&
1166 (eor == 0 ||
1167 (((o = m->m_next) || (o = n)) &&
1168 o->m_type == m->m_type))) {
1169 if (sb->sb_lastrecord == m)
1170 sb->sb_lastrecord = m->m_next;
1171 m = m_free(m);
1172 continue;
1173 }
1174 if (n && (n->m_flags & M_EOR) == 0 &&
1175 /* M_TRAILINGSPACE() checks buffer writeability */
1176 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1177 m->m_len <= M_TRAILINGSPACE(n) &&
1178 n->m_type == m->m_type) {
1179 memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1180 (unsigned)m->m_len);
1181 n->m_len += m->m_len;
1182 sb->sb_cc += m->m_len;
1183 m = m_free(m);
1184 continue;
1185 }
1186 if (n)
1187 n->m_next = m;
1188 else
1189 sb->sb_mb = m;
1190 sb->sb_mbtail = m;
1191 sballoc(sb, m);
1192 n = m;
1193 m->m_flags &= ~M_EOR;
1194 m = m->m_next;
1195 n->m_next = 0;
1196 }
1197 if (eor) {
1198 if (n)
1199 n->m_flags |= eor;
1200 else
1201 printf("semi-panic: sbcompress\n");
1202 }
1203 SBLASTMBUFCHK(sb, __func__);
1204 }
1205
1206 /*
1207 * Free all mbufs in a sockbuf.
1208 * Check that all resources are reclaimed.
1209 */
1210 void
1211 sbflush(struct sockbuf *sb)
1212 {
1213
1214 KASSERT(solocked(sb->sb_so));
1215 KASSERT((sb->sb_flags & SB_LOCK) == 0);
1216
1217 while (sb->sb_mbcnt)
1218 sbdrop(sb, (int)sb->sb_cc);
1219
1220 KASSERT(sb->sb_cc == 0);
1221 KASSERT(sb->sb_mb == NULL);
1222 KASSERT(sb->sb_mbtail == NULL);
1223 KASSERT(sb->sb_lastrecord == NULL);
1224 }
1225
1226 /*
1227 * Drop data from (the front of) a sockbuf.
1228 */
1229 void
1230 sbdrop(struct sockbuf *sb, int len)
1231 {
1232 struct mbuf *m, *mn, *next;
1233
1234 KASSERT(solocked(sb->sb_so));
1235
1236 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1237 while (len > 0) {
1238 if (m == 0) {
1239 if (next == 0)
1240 panic("sbdrop");
1241 m = next;
1242 next = m->m_nextpkt;
1243 continue;
1244 }
1245 if (m->m_len > len) {
1246 m->m_len -= len;
1247 m->m_data += len;
1248 sb->sb_cc -= len;
1249 break;
1250 }
1251 len -= m->m_len;
1252 sbfree(sb, m);
1253 MFREE(m, mn);
1254 m = mn;
1255 }
1256 while (m && m->m_len == 0) {
1257 sbfree(sb, m);
1258 MFREE(m, mn);
1259 m = mn;
1260 }
1261 if (m) {
1262 sb->sb_mb = m;
1263 m->m_nextpkt = next;
1264 } else
1265 sb->sb_mb = next;
1266 /*
1267 * First part is an inline SB_EMPTY_FIXUP(). Second part
1268 * makes sure sb_lastrecord is up-to-date if we dropped
1269 * part of the last record.
1270 */
1271 m = sb->sb_mb;
1272 if (m == NULL) {
1273 sb->sb_mbtail = NULL;
1274 sb->sb_lastrecord = NULL;
1275 } else if (m->m_nextpkt == NULL)
1276 sb->sb_lastrecord = m;
1277 }
1278
1279 /*
1280 * Drop a record off the front of a sockbuf
1281 * and move the next record to the front.
1282 */
1283 void
1284 sbdroprecord(struct sockbuf *sb)
1285 {
1286 struct mbuf *m, *mn;
1287
1288 KASSERT(solocked(sb->sb_so));
1289
1290 m = sb->sb_mb;
1291 if (m) {
1292 sb->sb_mb = m->m_nextpkt;
1293 do {
1294 sbfree(sb, m);
1295 MFREE(m, mn);
1296 } while ((m = mn) != NULL);
1297 }
1298 SB_EMPTY_FIXUP(sb);
1299 }
1300
1301 /*
1302 * Create a "control" mbuf containing the specified data
1303 * with the specified type for presentation on a socket buffer.
1304 */
1305 struct mbuf *
1306 sbcreatecontrol(void *p, int size, int type, int level)
1307 {
1308 struct cmsghdr *cp;
1309 struct mbuf *m;
1310
1311 if (CMSG_SPACE(size) > MCLBYTES) {
1312 printf("sbcreatecontrol: message too large %d\n", size);
1313 return NULL;
1314 }
1315
1316 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
1317 return ((struct mbuf *) NULL);
1318 if (CMSG_SPACE(size) > MLEN) {
1319 MCLGET(m, M_DONTWAIT);
1320 if ((m->m_flags & M_EXT) == 0) {
1321 m_free(m);
1322 return NULL;
1323 }
1324 }
1325 cp = mtod(m, struct cmsghdr *);
1326 memcpy(CMSG_DATA(cp), p, size);
1327 m->m_len = CMSG_SPACE(size);
1328 cp->cmsg_len = CMSG_LEN(size);
1329 cp->cmsg_level = level;
1330 cp->cmsg_type = type;
1331 return (m);
1332 }
1333
1334 void
1335 solockretry(struct socket *so, kmutex_t *lock)
1336 {
1337
1338 while (lock != so->so_lock) {
1339 mutex_exit(lock);
1340 lock = so->so_lock;
1341 mutex_enter(lock);
1342 }
1343 }
1344
1345 bool
1346 solocked(struct socket *so)
1347 {
1348
1349 return mutex_owned(so->so_lock);
1350 }
1351
1352 bool
1353 solocked2(struct socket *so1, struct socket *so2)
1354 {
1355 kmutex_t *lock;
1356
1357 lock = so1->so_lock;
1358 if (lock != so2->so_lock)
1359 return false;
1360 return mutex_owned(lock);
1361 }
1362
1363 /*
1364 * Assign a default lock to a new socket. For PRU_ATTACH, and done by
1365 * protocols that do not have special locking requirements.
1366 */
1367 void
1368 sosetlock(struct socket *so)
1369 {
1370 kmutex_t *lock;
1371
1372 if (so->so_lock == NULL) {
1373 lock = softnet_lock;
1374 so->so_lock = lock;
1375 mutex_obj_hold(lock);
1376 mutex_enter(lock);
1377 }
1378
1379 /* In all cases, lock must be held on return from PRU_ATTACH. */
1380 KASSERT(solocked(so));
1381 }
1382
1383 /*
1384 * Set lock on sockbuf sb; sleep if lock is already held.
1385 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1386 * Returns error without lock if sleep is interrupted.
1387 */
1388 int
1389 sblock(struct sockbuf *sb, int wf)
1390 {
1391 struct socket *so;
1392 kmutex_t *lock;
1393 int error;
1394
1395 KASSERT(solocked(sb->sb_so));
1396
1397 for (;;) {
1398 if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1399 sb->sb_flags |= SB_LOCK;
1400 return 0;
1401 }
1402 if (wf != M_WAITOK)
1403 return EWOULDBLOCK;
1404 so = sb->sb_so;
1405 lock = so->so_lock;
1406 if ((sb->sb_flags & SB_NOINTR) != 0) {
1407 cv_wait(&so->so_cv, lock);
1408 error = 0;
1409 } else
1410 error = cv_wait_sig(&so->so_cv, lock);
1411 if (__predict_false(lock != so->so_lock))
1412 solockretry(so, lock);
1413 if (error != 0)
1414 return error;
1415 }
1416 }
1417
1418 void
1419 sbunlock(struct sockbuf *sb)
1420 {
1421 struct socket *so;
1422
1423 so = sb->sb_so;
1424
1425 KASSERT(solocked(so));
1426 KASSERT((sb->sb_flags & SB_LOCK) != 0);
1427
1428 sb->sb_flags &= ~SB_LOCK;
1429 cv_broadcast(&so->so_cv);
1430 }
1431
1432 int
1433 sowait(struct socket *so, int timo)
1434 {
1435 kmutex_t *lock;
1436 int error;
1437
1438 KASSERT(solocked(so));
1439
1440 lock = so->so_lock;
1441 error = cv_timedwait_sig(&so->so_cv, lock, timo);
1442 if (__predict_false(lock != so->so_lock))
1443 solockretry(so, lock);
1444 return error;
1445 }
1446