uipc_usrreq.c revision 1.113 1 1.113 ad /* $NetBSD: uipc_usrreq.c,v 1.113 2008/04/27 11:29:12 ad Exp $ */
2 1.30 thorpej
3 1.30 thorpej /*-
4 1.106 ad * Copyright (c) 1998, 2000, 2004, 2008 The NetBSD Foundation, Inc.
5 1.30 thorpej * All rights reserved.
6 1.30 thorpej *
7 1.30 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.30 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.30 thorpej * NASA Ames Research Center.
10 1.30 thorpej *
11 1.30 thorpej * Redistribution and use in source and binary forms, with or without
12 1.30 thorpej * modification, are permitted provided that the following conditions
13 1.30 thorpej * are met:
14 1.30 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.30 thorpej * notice, this list of conditions and the following disclaimer.
16 1.30 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.30 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.30 thorpej * documentation and/or other materials provided with the distribution.
19 1.30 thorpej * 3. All advertising materials mentioning features or use of this software
20 1.30 thorpej * must display the following acknowledgement:
21 1.30 thorpej * This product includes software developed by the NetBSD
22 1.30 thorpej * Foundation, Inc. and its contributors.
23 1.30 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.30 thorpej * contributors may be used to endorse or promote products derived
25 1.30 thorpej * from this software without specific prior written permission.
26 1.30 thorpej *
27 1.30 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.30 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.30 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.30 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.30 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.30 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.30 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.30 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.30 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.30 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.30 thorpej * POSSIBILITY OF SUCH DAMAGE.
38 1.30 thorpej */
39 1.10 cgd
40 1.1 cgd /*
41 1.8 mycroft * Copyright (c) 1982, 1986, 1989, 1991, 1993
42 1.8 mycroft * The Regents of the University of California. All rights reserved.
43 1.1 cgd *
44 1.1 cgd * Redistribution and use in source and binary forms, with or without
45 1.1 cgd * modification, are permitted provided that the following conditions
46 1.1 cgd * are met:
47 1.1 cgd * 1. Redistributions of source code must retain the above copyright
48 1.1 cgd * notice, this list of conditions and the following disclaimer.
49 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
50 1.1 cgd * notice, this list of conditions and the following disclaimer in the
51 1.1 cgd * documentation and/or other materials provided with the distribution.
52 1.67 agc * 3. Neither the name of the University nor the names of its contributors
53 1.67 agc * may be used to endorse or promote products derived from this software
54 1.67 agc * without specific prior written permission.
55 1.67 agc *
56 1.67 agc * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 1.67 agc * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 1.67 agc * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 1.67 agc * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 1.67 agc * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 1.67 agc * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 1.67 agc * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 1.67 agc * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 1.67 agc * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 1.67 agc * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 1.67 agc * SUCH DAMAGE.
67 1.67 agc *
68 1.67 agc * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
69 1.67 agc */
70 1.67 agc
71 1.67 agc /*
72 1.67 agc * Copyright (c) 1997 Christopher G. Demetriou. All rights reserved.
73 1.67 agc *
74 1.67 agc * Redistribution and use in source and binary forms, with or without
75 1.67 agc * modification, are permitted provided that the following conditions
76 1.67 agc * are met:
77 1.67 agc * 1. Redistributions of source code must retain the above copyright
78 1.67 agc * notice, this list of conditions and the following disclaimer.
79 1.67 agc * 2. Redistributions in binary form must reproduce the above copyright
80 1.67 agc * notice, this list of conditions and the following disclaimer in the
81 1.67 agc * documentation and/or other materials provided with the distribution.
82 1.1 cgd * 3. All advertising materials mentioning features or use of this software
83 1.1 cgd * must display the following acknowledgement:
84 1.1 cgd * This product includes software developed by the University of
85 1.1 cgd * California, Berkeley and its contributors.
86 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
87 1.1 cgd * may be used to endorse or promote products derived from this software
88 1.1 cgd * without specific prior written permission.
89 1.1 cgd *
90 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
91 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
92 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
93 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
94 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
95 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
96 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
97 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
98 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
99 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
100 1.1 cgd * SUCH DAMAGE.
101 1.1 cgd *
102 1.31 fvdl * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
103 1.1 cgd */
104 1.53 lukem
105 1.53 lukem #include <sys/cdefs.h>
106 1.113 ad __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.113 2008/04/27 11:29:12 ad Exp $");
107 1.1 cgd
108 1.7 mycroft #include <sys/param.h>
109 1.8 mycroft #include <sys/systm.h>
110 1.7 mycroft #include <sys/proc.h>
111 1.7 mycroft #include <sys/filedesc.h>
112 1.7 mycroft #include <sys/domain.h>
113 1.7 mycroft #include <sys/protosw.h>
114 1.7 mycroft #include <sys/socket.h>
115 1.7 mycroft #include <sys/socketvar.h>
116 1.7 mycroft #include <sys/unpcb.h>
117 1.7 mycroft #include <sys/un.h>
118 1.7 mycroft #include <sys/namei.h>
119 1.7 mycroft #include <sys/vnode.h>
120 1.7 mycroft #include <sys/file.h>
121 1.7 mycroft #include <sys/stat.h>
122 1.7 mycroft #include <sys/mbuf.h>
123 1.91 elad #include <sys/kauth.h>
124 1.101 ad #include <sys/kmem.h>
125 1.106 ad #include <sys/atomic.h>
126 1.1 cgd
127 1.1 cgd /*
128 1.1 cgd * Unix communications domain.
129 1.1 cgd *
130 1.1 cgd * TODO:
131 1.1 cgd * SEQPACKET, RDM
132 1.1 cgd * rethink name space problems
133 1.1 cgd * need a proper out-of-band
134 1.112 ad *
135 1.112 ad * Notes on locking:
136 1.112 ad *
137 1.112 ad * The generic rules noted in uipc_socket2.c apply. In addition:
138 1.112 ad *
139 1.112 ad * o We have a global lock, uipc_lock.
140 1.112 ad *
141 1.112 ad * o All datagram sockets are locked by uipc_lock.
142 1.112 ad *
143 1.112 ad * o For stream socketpairs, the two endpoints are created sharing the same
144 1.112 ad * independent lock. Sockets presented to PRU_CONNECT2 must already have
145 1.112 ad * matching locks.
146 1.112 ad *
147 1.112 ad * o Stream sockets created via socket() start life with their own
148 1.112 ad * independent lock.
149 1.112 ad *
150 1.112 ad * o Stream connections to a named endpoint are slightly more complicated.
151 1.112 ad * Sockets that have called listen() have their lock pointer mutated to
152 1.112 ad * the global uipc_lock. When establishing a connection, the connecting
153 1.112 ad * socket also has its lock mutated to uipc_lock, which matches the head
154 1.112 ad * (listening socket). We create a new socket for accept() to return, and
155 1.112 ad * that also shares the head's lock. Until the connection is completely
156 1.112 ad * done on both ends, all three sockets are locked by uipc_lock. Once the
157 1.112 ad * connection is complete, the association with the head's lock is broken.
158 1.112 ad * The connecting socket and the socket returned from accept() have their
159 1.112 ad * lock pointers mutated away from uipc_lock, and back to the connecting
160 1.112 ad * socket's original, independent lock. The head continues to be locked
161 1.112 ad * by uipc_lock.
162 1.112 ad *
163 1.112 ad * o If uipc_lock is determined to be a significant source of contention,
164 1.112 ad * it could easily be hashed out. It is difficult to simply make it an
165 1.112 ad * independent lock because of visibility / garbage collection issues:
166 1.112 ad * if a socket has been associated with a lock at any point, that lock
167 1.112 ad * must remain valid until the socket is no longer visible in the system.
168 1.112 ad * The lock must not be freed or otherwise destroyed until any sockets
169 1.112 ad * that had referenced it have also been destroyed.
170 1.1 cgd */
171 1.93 christos const struct sockaddr_un sun_noname = {
172 1.93 christos .sun_len = sizeof(sun_noname),
173 1.93 christos .sun_family = AF_LOCAL,
174 1.93 christos };
175 1.1 cgd ino_t unp_ino; /* prototype for fake inode numbers */
176 1.1 cgd
177 1.92 ad struct mbuf *unp_addsockcred(struct lwp *, struct mbuf *);
178 1.112 ad static kmutex_t *uipc_lock;
179 1.112 ad
180 1.112 ad /*
181 1.112 ad * Initialize Unix protocols.
182 1.112 ad */
183 1.112 ad void
184 1.112 ad uipc_init(void)
185 1.112 ad {
186 1.112 ad
187 1.112 ad uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
188 1.112 ad }
189 1.112 ad
190 1.112 ad /*
191 1.112 ad * A connection succeeded: disassociate both endpoints from the head's
192 1.112 ad * lock, and make them share their own lock. There is a race here: for
193 1.112 ad * a very brief time one endpoint will be locked by a different lock
194 1.112 ad * than the other end. However, since the current thread holds the old
195 1.112 ad * lock (the listening socket's lock, the head) access can still only be
196 1.112 ad * made to one side of the connection.
197 1.112 ad */
198 1.112 ad static void
199 1.112 ad unp_setpeerlocks(struct socket *so, struct socket *so2)
200 1.112 ad {
201 1.112 ad struct unpcb *unp;
202 1.112 ad kmutex_t *lock;
203 1.112 ad
204 1.112 ad KASSERT(solocked2(so, so2));
205 1.112 ad
206 1.112 ad /*
207 1.112 ad * Bail out if either end of the socket is not yet fully
208 1.112 ad * connected or accepted. We only break the lock association
209 1.112 ad * with the head when the pair of sockets stand completely
210 1.112 ad * on their own.
211 1.112 ad */
212 1.112 ad if (so->so_head != NULL || so2->so_head != NULL)
213 1.112 ad return;
214 1.112 ad
215 1.112 ad /*
216 1.112 ad * Drop references to old lock. A third reference (from the
217 1.112 ad * queue head) must be held as we still hold its lock. Bonus:
218 1.112 ad * we don't need to worry about garbage collecting the lock.
219 1.112 ad */
220 1.112 ad lock = so->so_lock;
221 1.112 ad KASSERT(lock == uipc_lock);
222 1.112 ad mutex_obj_free(lock);
223 1.112 ad mutex_obj_free(lock);
224 1.112 ad
225 1.112 ad /*
226 1.112 ad * Grab stream lock from the initiator and share between the two
227 1.112 ad * endpoints. Issue memory barrier to ensure all modifications
228 1.112 ad * become globally visible before the lock change. so2 is
229 1.112 ad * assumed not to have a stream lock, because it was created
230 1.112 ad * purely for the server side to accept this connection and
231 1.112 ad * started out life using the domain-wide lock.
232 1.112 ad */
233 1.112 ad unp = sotounpcb(so);
234 1.112 ad KASSERT(unp->unp_streamlock != NULL);
235 1.112 ad KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
236 1.112 ad lock = unp->unp_streamlock;
237 1.112 ad unp->unp_streamlock = NULL;
238 1.112 ad mutex_obj_hold(lock);
239 1.112 ad membar_exit();
240 1.112 ad so->so_lock = lock;
241 1.112 ad so2->so_lock = lock;
242 1.112 ad }
243 1.112 ad
244 1.112 ad /*
245 1.112 ad * Reset a socket's lock back to the domain-wide lock.
246 1.112 ad */
247 1.112 ad static void
248 1.112 ad unp_resetlock(struct socket *so)
249 1.112 ad {
250 1.112 ad kmutex_t *olock, *nlock;
251 1.112 ad struct unpcb *unp;
252 1.112 ad
253 1.112 ad KASSERT(solocked(so));
254 1.112 ad
255 1.112 ad olock = so->so_lock;
256 1.112 ad nlock = uipc_lock;
257 1.112 ad if (olock == nlock)
258 1.112 ad return;
259 1.112 ad unp = sotounpcb(so);
260 1.112 ad KASSERT(unp->unp_streamlock == NULL);
261 1.112 ad unp->unp_streamlock = olock;
262 1.112 ad mutex_obj_hold(nlock);
263 1.112 ad mutex_enter(nlock);
264 1.112 ad so->so_lock = nlock;
265 1.112 ad mutex_exit(olock);
266 1.112 ad }
267 1.112 ad
268 1.112 ad static void
269 1.112 ad unp_free(struct unpcb *unp)
270 1.112 ad {
271 1.112 ad
272 1.112 ad if (unp->unp_addr)
273 1.112 ad free(unp->unp_addr, M_SONAME);
274 1.112 ad if (unp->unp_streamlock != NULL)
275 1.112 ad mutex_obj_free(unp->unp_streamlock);
276 1.112 ad free(unp, M_PCB);
277 1.112 ad }
278 1.30 thorpej
279 1.20 mycroft int
280 1.76 matt unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp,
281 1.92 ad struct lwp *l)
282 1.20 mycroft {
283 1.20 mycroft struct socket *so2;
284 1.77 matt const struct sockaddr_un *sun;
285 1.20 mycroft
286 1.20 mycroft so2 = unp->unp_conn->unp_socket;
287 1.112 ad
288 1.112 ad KASSERT(solocked(so2));
289 1.112 ad
290 1.20 mycroft if (unp->unp_addr)
291 1.20 mycroft sun = unp->unp_addr;
292 1.20 mycroft else
293 1.20 mycroft sun = &sun_noname;
294 1.30 thorpej if (unp->unp_conn->unp_flags & UNP_WANTCRED)
295 1.92 ad control = unp_addsockcred(l, control);
296 1.82 christos if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
297 1.20 mycroft control) == 0) {
298 1.112 ad so2->so_rcv.sb_overflowed++;
299 1.112 ad sounlock(so2);
300 1.98 martin unp_dispose(control);
301 1.20 mycroft m_freem(control);
302 1.20 mycroft m_freem(m);
303 1.112 ad solock(so2);
304 1.60 christos return (ENOBUFS);
305 1.20 mycroft } else {
306 1.20 mycroft sorwakeup(so2);
307 1.20 mycroft return (0);
308 1.20 mycroft }
309 1.20 mycroft }
310 1.20 mycroft
311 1.20 mycroft void
312 1.112 ad unp_setaddr(struct socket *so, struct mbuf *nam, bool peeraddr)
313 1.20 mycroft {
314 1.77 matt const struct sockaddr_un *sun;
315 1.112 ad struct unpcb *unp;
316 1.112 ad bool ext;
317 1.20 mycroft
318 1.112 ad unp = sotounpcb(so);
319 1.112 ad ext = false;
320 1.20 mycroft
321 1.112 ad for (;;) {
322 1.112 ad sun = NULL;
323 1.112 ad if (peeraddr) {
324 1.112 ad if (unp->unp_conn && unp->unp_conn->unp_addr)
325 1.112 ad sun = unp->unp_conn->unp_addr;
326 1.112 ad } else {
327 1.112 ad if (unp->unp_addr)
328 1.112 ad sun = unp->unp_addr;
329 1.112 ad }
330 1.112 ad if (sun == NULL)
331 1.112 ad sun = &sun_noname;
332 1.112 ad nam->m_len = sun->sun_len;
333 1.112 ad if (nam->m_len > MLEN && !ext) {
334 1.112 ad sounlock(so);
335 1.112 ad MEXTMALLOC(nam, MAXPATHLEN * 2, M_WAITOK);
336 1.112 ad solock(so);
337 1.112 ad ext = true;
338 1.112 ad } else {
339 1.112 ad KASSERT(nam->m_len <= MAXPATHLEN * 2);
340 1.112 ad memcpy(mtod(nam, void *), sun, (size_t)nam->m_len);
341 1.112 ad break;
342 1.112 ad }
343 1.112 ad }
344 1.20 mycroft }
345 1.20 mycroft
346 1.1 cgd /*ARGSUSED*/
347 1.5 andrew int
348 1.76 matt uipc_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
349 1.86 christos struct mbuf *control, struct lwp *l)
350 1.1 cgd {
351 1.1 cgd struct unpcb *unp = sotounpcb(so);
352 1.46 augustss struct socket *so2;
353 1.86 christos struct proc *p;
354 1.75 christos u_int newhiwat;
355 1.46 augustss int error = 0;
356 1.1 cgd
357 1.1 cgd if (req == PRU_CONTROL)
358 1.1 cgd return (EOPNOTSUPP);
359 1.20 mycroft
360 1.22 mycroft #ifdef DIAGNOSTIC
361 1.22 mycroft if (req != PRU_SEND && req != PRU_SENDOOB && control)
362 1.22 mycroft panic("uipc_usrreq: unexpected control mbuf");
363 1.22 mycroft #endif
364 1.86 christos p = l ? l->l_proc : NULL;
365 1.112 ad if (req != PRU_ATTACH) {
366 1.112 ad if (unp == 0) {
367 1.112 ad error = EINVAL;
368 1.112 ad goto release;
369 1.112 ad }
370 1.112 ad KASSERT(solocked(so));
371 1.1 cgd }
372 1.20 mycroft
373 1.1 cgd switch (req) {
374 1.1 cgd
375 1.1 cgd case PRU_ATTACH:
376 1.20 mycroft if (unp != 0) {
377 1.1 cgd error = EISCONN;
378 1.1 cgd break;
379 1.1 cgd }
380 1.1 cgd error = unp_attach(so);
381 1.1 cgd break;
382 1.1 cgd
383 1.1 cgd case PRU_DETACH:
384 1.1 cgd unp_detach(unp);
385 1.1 cgd break;
386 1.1 cgd
387 1.1 cgd case PRU_BIND:
388 1.90 christos KASSERT(l != NULL);
389 1.112 ad error = unp_bind(so, nam, l);
390 1.1 cgd break;
391 1.1 cgd
392 1.1 cgd case PRU_LISTEN:
393 1.112 ad /*
394 1.112 ad * If the socket can accept a connection, it must be
395 1.112 ad * locked by uipc_lock.
396 1.112 ad */
397 1.112 ad unp_resetlock(so);
398 1.1 cgd if (unp->unp_vnode == 0)
399 1.1 cgd error = EINVAL;
400 1.1 cgd break;
401 1.1 cgd
402 1.1 cgd case PRU_CONNECT:
403 1.90 christos KASSERT(l != NULL);
404 1.86 christos error = unp_connect(so, nam, l);
405 1.1 cgd break;
406 1.1 cgd
407 1.1 cgd case PRU_CONNECT2:
408 1.72 matt error = unp_connect2(so, (struct socket *)nam, PRU_CONNECT2);
409 1.1 cgd break;
410 1.1 cgd
411 1.1 cgd case PRU_DISCONNECT:
412 1.1 cgd unp_disconnect(unp);
413 1.1 cgd break;
414 1.1 cgd
415 1.1 cgd case PRU_ACCEPT:
416 1.112 ad KASSERT(so->so_lock == uipc_lock);
417 1.72 matt /*
418 1.72 matt * Mark the initiating STREAM socket as connected *ONLY*
419 1.72 matt * after it's been accepted. This prevents a client from
420 1.72 matt * overrunning a server and receiving ECONNREFUSED.
421 1.72 matt */
422 1.112 ad if (unp->unp_conn == NULL)
423 1.112 ad break;
424 1.112 ad so2 = unp->unp_conn->unp_socket;
425 1.112 ad if (so2->so_state & SS_ISCONNECTING) {
426 1.112 ad KASSERT(solocked2(so, so->so_head));
427 1.112 ad KASSERT(solocked2(so2, so->so_head));
428 1.112 ad soisconnected(so2);
429 1.112 ad }
430 1.112 ad /*
431 1.112 ad * If the connection is fully established, break the
432 1.112 ad * association with uipc_lock and give the connected
433 1.112 ad * pair a seperate lock to share.
434 1.112 ad */
435 1.112 ad unp_setpeerlocks(so2, so);
436 1.112 ad /*
437 1.112 ad * Only now return peer's address, as we may need to
438 1.112 ad * block in order to allocate memory.
439 1.112 ad *
440 1.112 ad * XXX Minor race: connection can be broken while
441 1.112 ad * lock is dropped in unp_setaddr(). We will return
442 1.112 ad * error == 0 and sun_noname as the peer address.
443 1.112 ad */
444 1.112 ad unp_setaddr(so, nam, true);
445 1.1 cgd break;
446 1.1 cgd
447 1.1 cgd case PRU_SHUTDOWN:
448 1.1 cgd socantsendmore(so);
449 1.1 cgd unp_shutdown(unp);
450 1.1 cgd break;
451 1.1 cgd
452 1.1 cgd case PRU_RCVD:
453 1.1 cgd switch (so->so_type) {
454 1.1 cgd
455 1.1 cgd case SOCK_DGRAM:
456 1.1 cgd panic("uipc 1");
457 1.1 cgd /*NOTREACHED*/
458 1.1 cgd
459 1.1 cgd case SOCK_STREAM:
460 1.1 cgd #define rcv (&so->so_rcv)
461 1.1 cgd #define snd (&so2->so_snd)
462 1.1 cgd if (unp->unp_conn == 0)
463 1.1 cgd break;
464 1.1 cgd so2 = unp->unp_conn->unp_socket;
465 1.112 ad KASSERT(solocked2(so, so2));
466 1.1 cgd /*
467 1.1 cgd * Adjust backpressure on sender
468 1.1 cgd * and wakeup any waiting to write.
469 1.1 cgd */
470 1.1 cgd snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
471 1.1 cgd unp->unp_mbcnt = rcv->sb_mbcnt;
472 1.75 christos newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
473 1.81 christos (void)chgsbsize(so2->so_uidinfo,
474 1.75 christos &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
475 1.1 cgd unp->unp_cc = rcv->sb_cc;
476 1.1 cgd sowwakeup(so2);
477 1.1 cgd #undef snd
478 1.1 cgd #undef rcv
479 1.1 cgd break;
480 1.1 cgd
481 1.1 cgd default:
482 1.1 cgd panic("uipc 2");
483 1.1 cgd }
484 1.1 cgd break;
485 1.1 cgd
486 1.1 cgd case PRU_SEND:
487 1.30 thorpej /*
488 1.30 thorpej * Note: unp_internalize() rejects any control message
489 1.30 thorpej * other than SCM_RIGHTS, and only allows one. This
490 1.30 thorpej * has the side-effect of preventing a caller from
491 1.30 thorpej * forging SCM_CREDS.
492 1.30 thorpej */
493 1.90 christos if (control) {
494 1.112 ad sounlock(so);
495 1.112 ad error = unp_internalize(&control);
496 1.112 ad solock(so);
497 1.112 ad if (error != 0) {
498 1.111 mlelstv m_freem(control);
499 1.111 mlelstv m_freem(m);
500 1.111 mlelstv break;
501 1.111 mlelstv }
502 1.83 yamt }
503 1.1 cgd switch (so->so_type) {
504 1.1 cgd
505 1.1 cgd case SOCK_DGRAM: {
506 1.112 ad KASSERT(so->so_lock == uipc_lock);
507 1.1 cgd if (nam) {
508 1.111 mlelstv if ((so->so_state & SS_ISCONNECTED) != 0)
509 1.1 cgd error = EISCONN;
510 1.111 mlelstv else {
511 1.112 ad /*
512 1.112 ad * Note: once connected, the
513 1.112 ad * socket's lock must not be
514 1.112 ad * dropped until we have sent
515 1.112 ad * the message and disconnected.
516 1.112 ad * This is necessary to prevent
517 1.112 ad * intervening control ops, like
518 1.112 ad * another connection.
519 1.112 ad */
520 1.111 mlelstv error = unp_connect(so, nam, l);
521 1.20 mycroft }
522 1.1 cgd } else {
523 1.111 mlelstv if ((so->so_state & SS_ISCONNECTED) == 0)
524 1.1 cgd error = ENOTCONN;
525 1.111 mlelstv }
526 1.111 mlelstv if (error) {
527 1.112 ad sounlock(so);
528 1.111 mlelstv unp_dispose(control);
529 1.111 mlelstv m_freem(control);
530 1.111 mlelstv m_freem(m);
531 1.112 ad solock(so);
532 1.111 mlelstv break;
533 1.1 cgd }
534 1.89 christos KASSERT(p != NULL);
535 1.92 ad error = unp_output(m, control, unp, l);
536 1.1 cgd if (nam)
537 1.1 cgd unp_disconnect(unp);
538 1.1 cgd break;
539 1.1 cgd }
540 1.1 cgd
541 1.1 cgd case SOCK_STREAM:
542 1.1 cgd #define rcv (&so2->so_rcv)
543 1.1 cgd #define snd (&so->so_snd)
544 1.87 christos if (unp->unp_conn == NULL) {
545 1.87 christos error = ENOTCONN;
546 1.87 christos break;
547 1.87 christos }
548 1.1 cgd so2 = unp->unp_conn->unp_socket;
549 1.112 ad KASSERT(solocked2(so, so2));
550 1.30 thorpej if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
551 1.30 thorpej /*
552 1.30 thorpej * Credentials are passed only once on
553 1.30 thorpej * SOCK_STREAM.
554 1.30 thorpej */
555 1.30 thorpej unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
556 1.92 ad control = unp_addsockcred(l, control);
557 1.30 thorpej }
558 1.1 cgd /*
559 1.1 cgd * Send to paired receive port, and then reduce
560 1.1 cgd * send buffer hiwater marks to maintain backpressure.
561 1.1 cgd * Wake up readers.
562 1.1 cgd */
563 1.1 cgd if (control) {
564 1.112 ad if (sbappendcontrol(rcv, m, control) != 0)
565 1.112 ad control = NULL;
566 1.1 cgd } else
567 1.1 cgd sbappend(rcv, m);
568 1.1 cgd snd->sb_mbmax -=
569 1.1 cgd rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
570 1.1 cgd unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
571 1.75 christos newhiwat = snd->sb_hiwat -
572 1.75 christos (rcv->sb_cc - unp->unp_conn->unp_cc);
573 1.81 christos (void)chgsbsize(so->so_uidinfo,
574 1.75 christos &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
575 1.1 cgd unp->unp_conn->unp_cc = rcv->sb_cc;
576 1.1 cgd sorwakeup(so2);
577 1.1 cgd #undef snd
578 1.1 cgd #undef rcv
579 1.112 ad if (control != NULL) {
580 1.112 ad sounlock(so);
581 1.112 ad unp_dispose(control);
582 1.112 ad m_freem(control);
583 1.112 ad solock(so);
584 1.112 ad }
585 1.1 cgd break;
586 1.1 cgd
587 1.1 cgd default:
588 1.1 cgd panic("uipc 4");
589 1.1 cgd }
590 1.1 cgd break;
591 1.1 cgd
592 1.1 cgd case PRU_ABORT:
593 1.112 ad (void)unp_drop(unp, ECONNABORTED);
594 1.39 sommerfe
595 1.88 matt KASSERT(so->so_head == NULL);
596 1.39 sommerfe #ifdef DIAGNOSTIC
597 1.39 sommerfe if (so->so_pcb == 0)
598 1.39 sommerfe panic("uipc 5: drop killed pcb");
599 1.39 sommerfe #endif
600 1.39 sommerfe unp_detach(unp);
601 1.1 cgd break;
602 1.1 cgd
603 1.1 cgd case PRU_SENSE:
604 1.1 cgd ((struct stat *) m)->st_blksize = so->so_snd.sb_hiwat;
605 1.1 cgd if (so->so_type == SOCK_STREAM && unp->unp_conn != 0) {
606 1.1 cgd so2 = unp->unp_conn->unp_socket;
607 1.112 ad KASSERT(solocked2(so, so2));
608 1.1 cgd ((struct stat *) m)->st_blksize += so2->so_rcv.sb_cc;
609 1.1 cgd }
610 1.1 cgd ((struct stat *) m)->st_dev = NODEV;
611 1.1 cgd if (unp->unp_ino == 0)
612 1.1 cgd unp->unp_ino = unp_ino++;
613 1.25 kleink ((struct stat *) m)->st_atimespec =
614 1.25 kleink ((struct stat *) m)->st_mtimespec =
615 1.25 kleink ((struct stat *) m)->st_ctimespec = unp->unp_ctime;
616 1.1 cgd ((struct stat *) m)->st_ino = unp->unp_ino;
617 1.1 cgd return (0);
618 1.1 cgd
619 1.1 cgd case PRU_RCVOOB:
620 1.20 mycroft error = EOPNOTSUPP;
621 1.20 mycroft break;
622 1.1 cgd
623 1.1 cgd case PRU_SENDOOB:
624 1.22 mycroft m_freem(control);
625 1.20 mycroft m_freem(m);
626 1.1 cgd error = EOPNOTSUPP;
627 1.1 cgd break;
628 1.1 cgd
629 1.1 cgd case PRU_SOCKADDR:
630 1.112 ad unp_setaddr(so, nam, false);
631 1.1 cgd break;
632 1.1 cgd
633 1.1 cgd case PRU_PEERADDR:
634 1.112 ad unp_setaddr(so, nam, true);
635 1.1 cgd break;
636 1.1 cgd
637 1.1 cgd default:
638 1.1 cgd panic("piusrreq");
639 1.1 cgd }
640 1.20 mycroft
641 1.1 cgd release:
642 1.1 cgd return (error);
643 1.1 cgd }
644 1.1 cgd
645 1.1 cgd /*
646 1.30 thorpej * Unix domain socket option processing.
647 1.30 thorpej */
648 1.30 thorpej int
649 1.76 matt uipc_ctloutput(int op, struct socket *so, int level, int optname,
650 1.76 matt struct mbuf **mp)
651 1.30 thorpej {
652 1.30 thorpej struct unpcb *unp = sotounpcb(so);
653 1.30 thorpej struct mbuf *m = *mp;
654 1.30 thorpej int optval = 0, error = 0;
655 1.30 thorpej
656 1.112 ad KASSERT(solocked(so));
657 1.112 ad
658 1.30 thorpej if (level != 0) {
659 1.100 dyoung error = ENOPROTOOPT;
660 1.30 thorpej if (op == PRCO_SETOPT && m)
661 1.30 thorpej (void) m_free(m);
662 1.30 thorpej } else switch (op) {
663 1.30 thorpej
664 1.30 thorpej case PRCO_SETOPT:
665 1.30 thorpej switch (optname) {
666 1.30 thorpej case LOCAL_CREDS:
667 1.72 matt case LOCAL_CONNWAIT:
668 1.30 thorpej if (m == NULL || m->m_len != sizeof(int))
669 1.30 thorpej error = EINVAL;
670 1.30 thorpej else {
671 1.30 thorpej optval = *mtod(m, int *);
672 1.30 thorpej switch (optname) {
673 1.30 thorpej #define OPTSET(bit) \
674 1.30 thorpej if (optval) \
675 1.30 thorpej unp->unp_flags |= (bit); \
676 1.30 thorpej else \
677 1.30 thorpej unp->unp_flags &= ~(bit);
678 1.30 thorpej
679 1.30 thorpej case LOCAL_CREDS:
680 1.30 thorpej OPTSET(UNP_WANTCRED);
681 1.30 thorpej break;
682 1.72 matt case LOCAL_CONNWAIT:
683 1.72 matt OPTSET(UNP_CONNWAIT);
684 1.72 matt break;
685 1.30 thorpej }
686 1.30 thorpej }
687 1.30 thorpej break;
688 1.30 thorpej #undef OPTSET
689 1.30 thorpej
690 1.30 thorpej default:
691 1.30 thorpej error = ENOPROTOOPT;
692 1.30 thorpej break;
693 1.30 thorpej }
694 1.30 thorpej if (m)
695 1.30 thorpej (void) m_free(m);
696 1.30 thorpej break;
697 1.30 thorpej
698 1.30 thorpej case PRCO_GETOPT:
699 1.112 ad sounlock(so);
700 1.30 thorpej switch (optname) {
701 1.99 he case LOCAL_PEEREID:
702 1.99 he if (unp->unp_flags & UNP_EIDSVALID) {
703 1.99 he *mp = m = m_get(M_WAIT, MT_SOOPTS);
704 1.99 he m->m_len = sizeof(struct unpcbid);
705 1.99 he *mtod(m, struct unpcbid *) = unp->unp_connid;
706 1.99 he } else {
707 1.99 he error = EINVAL;
708 1.99 he }
709 1.99 he break;
710 1.30 thorpej case LOCAL_CREDS:
711 1.30 thorpej *mp = m = m_get(M_WAIT, MT_SOOPTS);
712 1.30 thorpej m->m_len = sizeof(int);
713 1.30 thorpej
714 1.30 thorpej #define OPTBIT(bit) (unp->unp_flags & (bit) ? 1 : 0)
715 1.30 thorpej
716 1.99 he optval = OPTBIT(UNP_WANTCRED);
717 1.30 thorpej *mtod(m, int *) = optval;
718 1.30 thorpej break;
719 1.30 thorpej #undef OPTBIT
720 1.30 thorpej
721 1.30 thorpej default:
722 1.30 thorpej error = ENOPROTOOPT;
723 1.30 thorpej break;
724 1.30 thorpej }
725 1.112 ad solock(so);
726 1.30 thorpej break;
727 1.30 thorpej }
728 1.30 thorpej return (error);
729 1.30 thorpej }
730 1.30 thorpej
731 1.30 thorpej /*
732 1.1 cgd * Both send and receive buffers are allocated PIPSIZ bytes of buffering
733 1.1 cgd * for stream sockets, although the total for sender and receiver is
734 1.1 cgd * actually only PIPSIZ.
735 1.1 cgd * Datagram sockets really use the sendspace as the maximum datagram size,
736 1.1 cgd * and don't really want to reserve the sendspace. Their recvspace should
737 1.1 cgd * be large enough for at least one max-size datagram plus address.
738 1.1 cgd */
739 1.1 cgd #define PIPSIZ 4096
740 1.1 cgd u_long unpst_sendspace = PIPSIZ;
741 1.1 cgd u_long unpst_recvspace = PIPSIZ;
742 1.1 cgd u_long unpdg_sendspace = 2*1024; /* really max datagram size */
743 1.1 cgd u_long unpdg_recvspace = 4*1024;
744 1.1 cgd
745 1.106 ad u_int unp_rights; /* file descriptors in flight */
746 1.1 cgd
747 1.5 andrew int
748 1.76 matt unp_attach(struct socket *so)
749 1.1 cgd {
750 1.46 augustss struct unpcb *unp;
751 1.1 cgd int error;
752 1.80 perry
753 1.112 ad switch (so->so_type) {
754 1.112 ad case SOCK_STREAM:
755 1.112 ad if (so->so_lock == NULL) {
756 1.112 ad /*
757 1.112 ad * XXX Assuming that no socket locks are held,
758 1.112 ad * as this call may sleep.
759 1.112 ad */
760 1.112 ad so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
761 1.112 ad solock(so);
762 1.112 ad }
763 1.112 ad if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
764 1.1 cgd error = soreserve(so, unpst_sendspace, unpst_recvspace);
765 1.112 ad if (error != 0)
766 1.112 ad return (error);
767 1.112 ad }
768 1.112 ad break;
769 1.1 cgd
770 1.112 ad case SOCK_DGRAM:
771 1.112 ad if (so->so_lock == NULL) {
772 1.112 ad mutex_obj_hold(uipc_lock);
773 1.112 ad so->so_lock = uipc_lock;
774 1.112 ad solock(so);
775 1.112 ad }
776 1.112 ad if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
777 1.1 cgd error = soreserve(so, unpdg_sendspace, unpdg_recvspace);
778 1.112 ad if (error != 0)
779 1.112 ad return (error);
780 1.112 ad }
781 1.112 ad break;
782 1.8 mycroft
783 1.112 ad default:
784 1.112 ad panic("unp_attach");
785 1.1 cgd }
786 1.112 ad KASSERT(solocked(so));
787 1.14 mycroft unp = malloc(sizeof(*unp), M_PCB, M_NOWAIT);
788 1.14 mycroft if (unp == NULL)
789 1.1 cgd return (ENOBUFS);
790 1.95 christos memset((void *)unp, 0, sizeof(*unp));
791 1.14 mycroft unp->unp_socket = so;
792 1.15 mycroft so->so_pcb = unp;
793 1.85 simonb nanotime(&unp->unp_ctime);
794 1.1 cgd return (0);
795 1.1 cgd }
796 1.1 cgd
797 1.17 pk void
798 1.76 matt unp_detach(struct unpcb *unp)
799 1.1 cgd {
800 1.112 ad struct socket *so;
801 1.112 ad vnode_t *vp;
802 1.112 ad
803 1.112 ad so = unp->unp_socket;
804 1.80 perry
805 1.112 ad retry:
806 1.112 ad if ((vp = unp->unp_vnode) != NULL) {
807 1.112 ad sounlock(so);
808 1.112 ad /* Acquire v_interlock to protect against unp_connect(). */
809 1.113 ad /* XXXAD racy */
810 1.112 ad mutex_enter(&vp->v_interlock);
811 1.112 ad vp->v_socket = NULL;
812 1.112 ad vrelel(vp, 0);
813 1.112 ad solock(so);
814 1.112 ad unp->unp_vnode = NULL;
815 1.1 cgd }
816 1.1 cgd if (unp->unp_conn)
817 1.1 cgd unp_disconnect(unp);
818 1.112 ad while (unp->unp_refs) {
819 1.112 ad KASSERT(solocked2(so, unp->unp_refs->unp_socket));
820 1.112 ad if (unp_drop(unp->unp_refs, ECONNRESET)) {
821 1.112 ad solock(so);
822 1.112 ad goto retry;
823 1.112 ad }
824 1.112 ad }
825 1.112 ad soisdisconnected(so);
826 1.112 ad so->so_pcb = NULL;
827 1.8 mycroft if (unp_rights) {
828 1.8 mycroft /*
829 1.8 mycroft * Normally the receive buffer is flushed later,
830 1.8 mycroft * in sofree, but if our receive buffer holds references
831 1.8 mycroft * to descriptors that are now garbage, we will dispose
832 1.8 mycroft * of those descriptor references after the garbage collector
833 1.8 mycroft * gets them (resulting in a "panic: closef: count < 0").
834 1.8 mycroft */
835 1.112 ad sorflush(so);
836 1.112 ad unp_free(unp);
837 1.112 ad sounlock(so);
838 1.1 cgd unp_gc();
839 1.112 ad solock(so);
840 1.14 mycroft } else
841 1.112 ad unp_free(unp);
842 1.1 cgd }
843 1.1 cgd
844 1.5 andrew int
845 1.112 ad unp_bind(struct socket *so, struct mbuf *nam, struct lwp *l)
846 1.1 cgd {
847 1.27 thorpej struct sockaddr_un *sun;
848 1.112 ad struct unpcb *unp;
849 1.106 ad vnode_t *vp;
850 1.1 cgd struct vattr vattr;
851 1.27 thorpej size_t addrlen;
852 1.1 cgd int error;
853 1.1 cgd struct nameidata nd;
854 1.112 ad proc_t *p;
855 1.1 cgd
856 1.112 ad unp = sotounpcb(so);
857 1.112 ad if (unp->unp_vnode != NULL)
858 1.20 mycroft return (EINVAL);
859 1.109 ad if ((unp->unp_flags & UNP_BUSY) != 0) {
860 1.109 ad /*
861 1.109 ad * EALREADY may not be strictly accurate, but since this
862 1.109 ad * is a major application error it's hardly a big deal.
863 1.109 ad */
864 1.109 ad return (EALREADY);
865 1.109 ad }
866 1.109 ad unp->unp_flags |= UNP_BUSY;
867 1.112 ad sounlock(so);
868 1.109 ad
869 1.27 thorpej /*
870 1.27 thorpej * Allocate the new sockaddr. We have to allocate one
871 1.27 thorpej * extra byte so that we can ensure that the pathname
872 1.27 thorpej * is nul-terminated.
873 1.27 thorpej */
874 1.112 ad p = l->l_proc;
875 1.27 thorpej addrlen = nam->m_len + 1;
876 1.27 thorpej sun = malloc(addrlen, M_SONAME, M_WAITOK);
877 1.95 christos m_copydata(nam, 0, nam->m_len, (void *)sun);
878 1.27 thorpej *(((char *)sun) + nam->m_len) = '\0';
879 1.27 thorpej
880 1.97 dsl NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, UIO_SYSSPACE,
881 1.103 pooka sun->sun_path);
882 1.27 thorpej
883 1.1 cgd /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
884 1.16 christos if ((error = namei(&nd)) != 0)
885 1.27 thorpej goto bad;
886 1.9 mycroft vp = nd.ni_vp;
887 1.96 hannken if (vp != NULL) {
888 1.9 mycroft VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
889 1.9 mycroft if (nd.ni_dvp == vp)
890 1.9 mycroft vrele(nd.ni_dvp);
891 1.1 cgd else
892 1.9 mycroft vput(nd.ni_dvp);
893 1.1 cgd vrele(vp);
894 1.96 hannken error = EADDRINUSE;
895 1.96 hannken goto bad;
896 1.1 cgd }
897 1.1 cgd VATTR_NULL(&vattr);
898 1.1 cgd vattr.va_type = VSOCK;
899 1.84 jmmv vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
900 1.16 christos error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
901 1.16 christos if (error)
902 1.27 thorpej goto bad;
903 1.9 mycroft vp = nd.ni_vp;
904 1.112 ad solock(so);
905 1.1 cgd vp->v_socket = unp->unp_socket;
906 1.1 cgd unp->unp_vnode = vp;
907 1.27 thorpej unp->unp_addrlen = addrlen;
908 1.27 thorpej unp->unp_addr = sun;
909 1.99 he unp->unp_connid.unp_pid = p->p_pid;
910 1.112 ad unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
911 1.112 ad unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
912 1.99 he unp->unp_flags |= UNP_EIDSBIND;
913 1.31 fvdl VOP_UNLOCK(vp, 0);
914 1.109 ad unp->unp_flags &= ~UNP_BUSY;
915 1.1 cgd return (0);
916 1.27 thorpej
917 1.27 thorpej bad:
918 1.27 thorpej free(sun, M_SONAME);
919 1.112 ad solock(so);
920 1.109 ad unp->unp_flags &= ~UNP_BUSY;
921 1.27 thorpej return (error);
922 1.1 cgd }
923 1.1 cgd
924 1.5 andrew int
925 1.86 christos unp_connect(struct socket *so, struct mbuf *nam, struct lwp *l)
926 1.1 cgd {
927 1.46 augustss struct sockaddr_un *sun;
928 1.106 ad vnode_t *vp;
929 1.46 augustss struct socket *so2, *so3;
930 1.99 he struct unpcb *unp, *unp2, *unp3;
931 1.27 thorpej size_t addrlen;
932 1.1 cgd int error;
933 1.1 cgd struct nameidata nd;
934 1.1 cgd
935 1.109 ad unp = sotounpcb(so);
936 1.109 ad if ((unp->unp_flags & UNP_BUSY) != 0) {
937 1.109 ad /*
938 1.109 ad * EALREADY may not be strictly accurate, but since this
939 1.109 ad * is a major application error it's hardly a big deal.
940 1.109 ad */
941 1.109 ad return (EALREADY);
942 1.109 ad }
943 1.109 ad unp->unp_flags |= UNP_BUSY;
944 1.112 ad sounlock(so);
945 1.109 ad
946 1.27 thorpej /*
947 1.27 thorpej * Allocate a temporary sockaddr. We have to allocate one extra
948 1.27 thorpej * byte so that we can ensure that the pathname is nul-terminated.
949 1.27 thorpej * When we establish the connection, we copy the other PCB's
950 1.27 thorpej * sockaddr to our own.
951 1.27 thorpej */
952 1.27 thorpej addrlen = nam->m_len + 1;
953 1.27 thorpej sun = malloc(addrlen, M_SONAME, M_WAITOK);
954 1.95 christos m_copydata(nam, 0, nam->m_len, (void *)sun);
955 1.27 thorpej *(((char *)sun) + nam->m_len) = '\0';
956 1.27 thorpej
957 1.103 pooka NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, UIO_SYSSPACE,
958 1.103 pooka sun->sun_path);
959 1.27 thorpej
960 1.16 christos if ((error = namei(&nd)) != 0)
961 1.27 thorpej goto bad2;
962 1.9 mycroft vp = nd.ni_vp;
963 1.1 cgd if (vp->v_type != VSOCK) {
964 1.1 cgd error = ENOTSOCK;
965 1.1 cgd goto bad;
966 1.1 cgd }
967 1.102 pooka if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
968 1.1 cgd goto bad;
969 1.112 ad /* Acquire v_interlock to protect against unp_detach(). */
970 1.112 ad mutex_enter(&vp->v_interlock);
971 1.1 cgd so2 = vp->v_socket;
972 1.112 ad if (so2 == NULL) {
973 1.112 ad mutex_exit(&vp->v_interlock);
974 1.1 cgd error = ECONNREFUSED;
975 1.1 cgd goto bad;
976 1.1 cgd }
977 1.1 cgd if (so->so_type != so2->so_type) {
978 1.112 ad mutex_exit(&vp->v_interlock);
979 1.1 cgd error = EPROTOTYPE;
980 1.1 cgd goto bad;
981 1.1 cgd }
982 1.112 ad solock(so);
983 1.112 ad unp_resetlock(so);
984 1.112 ad mutex_exit(&vp->v_interlock);
985 1.112 ad if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
986 1.112 ad /*
987 1.112 ad * This may seem somewhat fragile but is OK: if we can
988 1.112 ad * see SO_ACCEPTCONN set on the endpoint, then it must
989 1.112 ad * be locked by the domain-wide uipc_lock.
990 1.112 ad */
991 1.112 ad KASSERT((so->so_options & SO_ACCEPTCONN) == 0 ||
992 1.112 ad so2->so_lock == uipc_lock);
993 1.1 cgd if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
994 1.1 cgd (so3 = sonewconn(so2, 0)) == 0) {
995 1.1 cgd error = ECONNREFUSED;
996 1.112 ad sounlock(so);
997 1.1 cgd goto bad;
998 1.1 cgd }
999 1.1 cgd unp2 = sotounpcb(so2);
1000 1.1 cgd unp3 = sotounpcb(so3);
1001 1.26 thorpej if (unp2->unp_addr) {
1002 1.26 thorpej unp3->unp_addr = malloc(unp2->unp_addrlen,
1003 1.26 thorpej M_SONAME, M_WAITOK);
1004 1.36 perry memcpy(unp3->unp_addr, unp2->unp_addr,
1005 1.26 thorpej unp2->unp_addrlen);
1006 1.26 thorpej unp3->unp_addrlen = unp2->unp_addrlen;
1007 1.26 thorpej }
1008 1.30 thorpej unp3->unp_flags = unp2->unp_flags;
1009 1.112 ad unp3->unp_connid.unp_pid = l->l_proc->p_pid;
1010 1.112 ad unp3->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
1011 1.112 ad unp3->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
1012 1.99 he unp3->unp_flags |= UNP_EIDSVALID;
1013 1.99 he if (unp2->unp_flags & UNP_EIDSBIND) {
1014 1.99 he unp->unp_connid = unp2->unp_connid;
1015 1.99 he unp->unp_flags |= UNP_EIDSVALID;
1016 1.99 he }
1017 1.112 ad so2 = so3;
1018 1.33 thorpej }
1019 1.72 matt error = unp_connect2(so, so2, PRU_CONNECT);
1020 1.112 ad sounlock(so);
1021 1.27 thorpej bad:
1022 1.1 cgd vput(vp);
1023 1.27 thorpej bad2:
1024 1.27 thorpej free(sun, M_SONAME);
1025 1.112 ad solock(so);
1026 1.109 ad unp->unp_flags &= ~UNP_BUSY;
1027 1.1 cgd return (error);
1028 1.1 cgd }
1029 1.1 cgd
1030 1.5 andrew int
1031 1.76 matt unp_connect2(struct socket *so, struct socket *so2, int req)
1032 1.1 cgd {
1033 1.46 augustss struct unpcb *unp = sotounpcb(so);
1034 1.46 augustss struct unpcb *unp2;
1035 1.1 cgd
1036 1.1 cgd if (so2->so_type != so->so_type)
1037 1.1 cgd return (EPROTOTYPE);
1038 1.112 ad
1039 1.112 ad /*
1040 1.112 ad * All three sockets involved must be locked by same lock:
1041 1.112 ad *
1042 1.112 ad * local endpoint (so)
1043 1.112 ad * remote endpoint (so2)
1044 1.112 ad * queue head (so->so_head, only if PR_CONNREQUIRED)
1045 1.112 ad */
1046 1.112 ad KASSERT(solocked2(so, so2));
1047 1.112 ad if (so->so_head != NULL) {
1048 1.112 ad KASSERT(so->so_lock == uipc_lock);
1049 1.112 ad KASSERT(solocked2(so, so->so_head));
1050 1.112 ad }
1051 1.112 ad
1052 1.1 cgd unp2 = sotounpcb(so2);
1053 1.1 cgd unp->unp_conn = unp2;
1054 1.1 cgd switch (so->so_type) {
1055 1.1 cgd
1056 1.1 cgd case SOCK_DGRAM:
1057 1.1 cgd unp->unp_nextref = unp2->unp_refs;
1058 1.1 cgd unp2->unp_refs = unp;
1059 1.1 cgd soisconnected(so);
1060 1.1 cgd break;
1061 1.1 cgd
1062 1.1 cgd case SOCK_STREAM:
1063 1.1 cgd unp2->unp_conn = unp;
1064 1.72 matt if (req == PRU_CONNECT &&
1065 1.72 matt ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1066 1.72 matt soisconnecting(so);
1067 1.72 matt else
1068 1.72 matt soisconnected(so);
1069 1.1 cgd soisconnected(so2);
1070 1.112 ad /*
1071 1.112 ad * If the connection is fully established, break the
1072 1.112 ad * association with uipc_lock and give the connected
1073 1.112 ad * pair a seperate lock to share. For CONNECT2, we
1074 1.112 ad * require that the locks already match (the sockets
1075 1.112 ad * are created that way).
1076 1.112 ad */
1077 1.112 ad if (req == PRU_CONNECT)
1078 1.112 ad unp_setpeerlocks(so, so2);
1079 1.1 cgd break;
1080 1.1 cgd
1081 1.1 cgd default:
1082 1.1 cgd panic("unp_connect2");
1083 1.1 cgd }
1084 1.1 cgd return (0);
1085 1.1 cgd }
1086 1.1 cgd
1087 1.5 andrew void
1088 1.76 matt unp_disconnect(struct unpcb *unp)
1089 1.1 cgd {
1090 1.46 augustss struct unpcb *unp2 = unp->unp_conn;
1091 1.112 ad struct socket *so;
1092 1.1 cgd
1093 1.1 cgd if (unp2 == 0)
1094 1.1 cgd return;
1095 1.1 cgd unp->unp_conn = 0;
1096 1.112 ad so = unp->unp_socket;
1097 1.112 ad switch (so->so_type) {
1098 1.1 cgd case SOCK_DGRAM:
1099 1.1 cgd if (unp2->unp_refs == unp)
1100 1.1 cgd unp2->unp_refs = unp->unp_nextref;
1101 1.1 cgd else {
1102 1.1 cgd unp2 = unp2->unp_refs;
1103 1.1 cgd for (;;) {
1104 1.112 ad KASSERT(solocked2(so, unp2->unp_socket));
1105 1.1 cgd if (unp2 == 0)
1106 1.1 cgd panic("unp_disconnect");
1107 1.1 cgd if (unp2->unp_nextref == unp)
1108 1.1 cgd break;
1109 1.1 cgd unp2 = unp2->unp_nextref;
1110 1.1 cgd }
1111 1.1 cgd unp2->unp_nextref = unp->unp_nextref;
1112 1.1 cgd }
1113 1.1 cgd unp->unp_nextref = 0;
1114 1.112 ad so->so_state &= ~SS_ISCONNECTED;
1115 1.1 cgd break;
1116 1.1 cgd
1117 1.1 cgd case SOCK_STREAM:
1118 1.112 ad KASSERT(solocked2(so, unp2->unp_socket));
1119 1.112 ad soisdisconnected(so);
1120 1.1 cgd unp2->unp_conn = 0;
1121 1.1 cgd soisdisconnected(unp2->unp_socket);
1122 1.1 cgd break;
1123 1.1 cgd }
1124 1.1 cgd }
1125 1.1 cgd
1126 1.1 cgd #ifdef notdef
1127 1.76 matt unp_abort(struct unpcb *unp)
1128 1.1 cgd {
1129 1.1 cgd unp_detach(unp);
1130 1.1 cgd }
1131 1.1 cgd #endif
1132 1.1 cgd
1133 1.5 andrew void
1134 1.76 matt unp_shutdown(struct unpcb *unp)
1135 1.1 cgd {
1136 1.1 cgd struct socket *so;
1137 1.1 cgd
1138 1.1 cgd if (unp->unp_socket->so_type == SOCK_STREAM && unp->unp_conn &&
1139 1.1 cgd (so = unp->unp_conn->unp_socket))
1140 1.1 cgd socantrcvmore(so);
1141 1.1 cgd }
1142 1.1 cgd
1143 1.112 ad bool
1144 1.76 matt unp_drop(struct unpcb *unp, int errno)
1145 1.1 cgd {
1146 1.1 cgd struct socket *so = unp->unp_socket;
1147 1.1 cgd
1148 1.112 ad KASSERT(solocked(so));
1149 1.112 ad
1150 1.1 cgd so->so_error = errno;
1151 1.1 cgd unp_disconnect(unp);
1152 1.1 cgd if (so->so_head) {
1153 1.112 ad so->so_pcb = NULL;
1154 1.112 ad /* sofree() drops the socket lock */
1155 1.14 mycroft sofree(so);
1156 1.112 ad unp_free(unp);
1157 1.112 ad return true;
1158 1.1 cgd }
1159 1.112 ad return false;
1160 1.1 cgd }
1161 1.1 cgd
1162 1.1 cgd #ifdef notdef
1163 1.76 matt unp_drain(void)
1164 1.1 cgd {
1165 1.1 cgd
1166 1.1 cgd }
1167 1.1 cgd #endif
1168 1.1 cgd
1169 1.5 andrew int
1170 1.86 christos unp_externalize(struct mbuf *rights, struct lwp *l)
1171 1.1 cgd {
1172 1.46 augustss struct cmsghdr *cm = mtod(rights, struct cmsghdr *);
1173 1.86 christos struct proc *p = l->l_proc;
1174 1.47 thorpej int i, *fdp;
1175 1.106 ad file_t **rp;
1176 1.106 ad file_t *fp;
1177 1.50 thorpej int nfds, error = 0;
1178 1.47 thorpej
1179 1.47 thorpej nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
1180 1.106 ad sizeof(file_t *);
1181 1.106 ad rp = (file_t **)CMSG_DATA(cm);
1182 1.1 cgd
1183 1.50 thorpej fdp = malloc(nfds * sizeof(int), M_TEMP, M_WAITOK);
1184 1.101 ad rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
1185 1.50 thorpej
1186 1.39 sommerfe /* Make sure the recipient should be able to see the descriptors.. */
1187 1.42 thorpej if (p->p_cwdi->cwdi_rdir != NULL) {
1188 1.106 ad rp = (file_t **)CMSG_DATA(cm);
1189 1.39 sommerfe for (i = 0; i < nfds; i++) {
1190 1.39 sommerfe fp = *rp++;
1191 1.39 sommerfe /*
1192 1.39 sommerfe * If we are in a chroot'ed directory, and
1193 1.39 sommerfe * someone wants to pass us a directory, make
1194 1.39 sommerfe * sure it's inside the subtree we're allowed
1195 1.39 sommerfe * to access.
1196 1.39 sommerfe */
1197 1.39 sommerfe if (fp->f_type == DTYPE_VNODE) {
1198 1.106 ad vnode_t *vp = (vnode_t *)fp->f_data;
1199 1.39 sommerfe if ((vp->v_type == VDIR) &&
1200 1.86 christos !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
1201 1.39 sommerfe error = EPERM;
1202 1.39 sommerfe break;
1203 1.39 sommerfe }
1204 1.39 sommerfe }
1205 1.39 sommerfe }
1206 1.39 sommerfe }
1207 1.50 thorpej
1208 1.50 thorpej restart:
1209 1.106 ad rp = (file_t **)CMSG_DATA(cm);
1210 1.50 thorpej if (error != 0) {
1211 1.24 cgd for (i = 0; i < nfds; i++) {
1212 1.1 cgd fp = *rp;
1213 1.39 sommerfe /*
1214 1.39 sommerfe * zero the pointer before calling unp_discard,
1215 1.39 sommerfe * since it may end up in unp_gc()..
1216 1.39 sommerfe */
1217 1.39 sommerfe *rp++ = 0;
1218 1.1 cgd unp_discard(fp);
1219 1.1 cgd }
1220 1.50 thorpej goto out;
1221 1.1 cgd }
1222 1.50 thorpej
1223 1.24 cgd /*
1224 1.50 thorpej * First loop -- allocate file descriptor table slots for the
1225 1.50 thorpej * new descriptors.
1226 1.24 cgd */
1227 1.24 cgd for (i = 0; i < nfds; i++) {
1228 1.39 sommerfe fp = *rp++;
1229 1.106 ad if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
1230 1.49 thorpej /*
1231 1.50 thorpej * Back out what we've done so far.
1232 1.49 thorpej */
1233 1.106 ad for (--i; i >= 0; i--) {
1234 1.106 ad fd_abort(p, NULL, fdp[i]);
1235 1.106 ad }
1236 1.50 thorpej if (error == ENOSPC) {
1237 1.106 ad fd_tryexpand(p);
1238 1.50 thorpej error = 0;
1239 1.50 thorpej } else {
1240 1.50 thorpej /*
1241 1.50 thorpej * This is the error that has historically
1242 1.50 thorpej * been returned, and some callers may
1243 1.50 thorpej * expect it.
1244 1.50 thorpej */
1245 1.50 thorpej error = EMSGSIZE;
1246 1.50 thorpej }
1247 1.50 thorpej goto restart;
1248 1.49 thorpej }
1249 1.1 cgd }
1250 1.24 cgd
1251 1.24 cgd /*
1252 1.50 thorpej * Now that adding them has succeeded, update all of the
1253 1.112 ad * descriptor passing state.
1254 1.112 ad */
1255 1.106 ad rp = (file_t **)CMSG_DATA(cm);
1256 1.50 thorpej for (i = 0; i < nfds; i++) {
1257 1.50 thorpej fp = *rp++;
1258 1.106 ad atomic_dec_uint(&unp_rights);
1259 1.106 ad fd_affix(p, fp, fdp[i]);
1260 1.106 ad mutex_enter(&fp->f_lock);
1261 1.50 thorpej fp->f_msgcount--;
1262 1.106 ad mutex_exit(&fp->f_lock);
1263 1.106 ad /*
1264 1.106 ad * Note that fd_affix() adds a reference to the file.
1265 1.106 ad * The file may already have been closed by another
1266 1.106 ad * LWP in the process, so we must drop the reference
1267 1.106 ad * added by unp_internalize() with closef().
1268 1.106 ad */
1269 1.106 ad closef(fp);
1270 1.50 thorpej }
1271 1.50 thorpej
1272 1.50 thorpej /*
1273 1.50 thorpej * Copy temporary array to message and adjust length, in case of
1274 1.106 ad * transition from large file_t pointers to ints.
1275 1.50 thorpej */
1276 1.50 thorpej memcpy(CMSG_DATA(cm), fdp, nfds * sizeof(int));
1277 1.47 thorpej cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
1278 1.47 thorpej rights->m_len = CMSG_SPACE(nfds * sizeof(int));
1279 1.50 thorpej out:
1280 1.101 ad rw_exit(&p->p_cwdi->cwdi_lock);
1281 1.50 thorpej free(fdp, M_TEMP);
1282 1.50 thorpej return (error);
1283 1.1 cgd }
1284 1.1 cgd
1285 1.5 andrew int
1286 1.112 ad unp_internalize(struct mbuf **controlp)
1287 1.1 cgd {
1288 1.106 ad struct filedesc *fdescp = curlwp->l_fd;
1289 1.108 yamt struct mbuf *control = *controlp;
1290 1.73 martin struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
1291 1.106 ad file_t **rp, **files;
1292 1.106 ad file_t *fp;
1293 1.46 augustss int i, fd, *fdp;
1294 1.106 ad int nfds, error;
1295 1.106 ad
1296 1.106 ad error = 0;
1297 1.106 ad newcm = NULL;
1298 1.38 thorpej
1299 1.106 ad /* Sanity check the control message header. */
1300 1.66 jdolecek if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
1301 1.1 cgd cm->cmsg_len != control->m_len)
1302 1.1 cgd return (EINVAL);
1303 1.24 cgd
1304 1.106 ad /*
1305 1.106 ad * Verify that the file descriptors are valid, and acquire
1306 1.106 ad * a reference to each.
1307 1.106 ad */
1308 1.47 thorpej nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
1309 1.47 thorpej fdp = (int *)CMSG_DATA(cm);
1310 1.24 cgd for (i = 0; i < nfds; i++) {
1311 1.24 cgd fd = *fdp++;
1312 1.106 ad if ((fp = fd_getfile(fd)) == NULL) {
1313 1.106 ad nfds = i + 1;
1314 1.106 ad error = EBADF;
1315 1.106 ad goto out;
1316 1.101 ad }
1317 1.24 cgd }
1318 1.24 cgd
1319 1.106 ad /* Allocate new space and copy header into it. */
1320 1.106 ad newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
1321 1.106 ad if (newcm == NULL) {
1322 1.106 ad error = E2BIG;
1323 1.106 ad goto out;
1324 1.106 ad }
1325 1.106 ad memcpy(newcm, cm, sizeof(struct cmsghdr));
1326 1.106 ad files = (file_t **)CMSG_DATA(newcm);
1327 1.106 ad
1328 1.24 cgd /*
1329 1.106 ad * Transform the file descriptors into file_t pointers, in
1330 1.24 cgd * reverse order so that if pointers are bigger than ints, the
1331 1.106 ad * int won't get until we're done. No need to lock, as we have
1332 1.106 ad * already validated the descriptors with fd_getfile().
1333 1.24 cgd */
1334 1.94 cbiere fdp = (int *)CMSG_DATA(cm) + nfds;
1335 1.94 cbiere rp = files + nfds;
1336 1.24 cgd for (i = 0; i < nfds; i++) {
1337 1.106 ad fp = fdescp->fd_ofiles[*--fdp]->ff_file;
1338 1.106 ad KASSERT(fp != NULL);
1339 1.106 ad mutex_enter(&fp->f_lock);
1340 1.94 cbiere *--rp = fp;
1341 1.1 cgd fp->f_count++;
1342 1.1 cgd fp->f_msgcount++;
1343 1.106 ad mutex_exit(&fp->f_lock);
1344 1.106 ad atomic_inc_uint(&unp_rights);
1345 1.106 ad }
1346 1.106 ad
1347 1.106 ad out:
1348 1.106 ad /* Release descriptor references. */
1349 1.106 ad fdp = (int *)CMSG_DATA(cm);
1350 1.106 ad for (i = 0; i < nfds; i++) {
1351 1.106 ad fd_putfile(*fdp++);
1352 1.1 cgd }
1353 1.73 martin
1354 1.106 ad if (error == 0) {
1355 1.108 yamt if (control->m_flags & M_EXT) {
1356 1.108 yamt m_freem(control);
1357 1.108 yamt *controlp = control = m_get(M_WAIT, MT_CONTROL);
1358 1.108 yamt }
1359 1.106 ad MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
1360 1.73 martin M_MBUF, NULL, NULL);
1361 1.73 martin cm = newcm;
1362 1.106 ad /*
1363 1.106 ad * Adjust message & mbuf to note amount of space
1364 1.106 ad * actually used.
1365 1.106 ad */
1366 1.106 ad cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
1367 1.106 ad control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
1368 1.73 martin }
1369 1.73 martin
1370 1.106 ad return error;
1371 1.30 thorpej }
1372 1.30 thorpej
1373 1.30 thorpej struct mbuf *
1374 1.92 ad unp_addsockcred(struct lwp *l, struct mbuf *control)
1375 1.30 thorpej {
1376 1.30 thorpej struct cmsghdr *cmp;
1377 1.30 thorpej struct sockcred *sc;
1378 1.30 thorpej struct mbuf *m, *n;
1379 1.47 thorpej int len, space, i;
1380 1.30 thorpej
1381 1.92 ad len = CMSG_LEN(SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)));
1382 1.92 ad space = CMSG_SPACE(SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)));
1383 1.30 thorpej
1384 1.30 thorpej m = m_get(M_WAIT, MT_CONTROL);
1385 1.47 thorpej if (space > MLEN) {
1386 1.47 thorpej if (space > MCLBYTES)
1387 1.47 thorpej MEXTMALLOC(m, space, M_WAITOK);
1388 1.30 thorpej else
1389 1.59 matt m_clget(m, M_WAIT);
1390 1.30 thorpej if ((m->m_flags & M_EXT) == 0) {
1391 1.30 thorpej m_free(m);
1392 1.30 thorpej return (control);
1393 1.30 thorpej }
1394 1.30 thorpej }
1395 1.30 thorpej
1396 1.47 thorpej m->m_len = space;
1397 1.30 thorpej m->m_next = NULL;
1398 1.30 thorpej cmp = mtod(m, struct cmsghdr *);
1399 1.30 thorpej sc = (struct sockcred *)CMSG_DATA(cmp);
1400 1.30 thorpej cmp->cmsg_len = len;
1401 1.30 thorpej cmp->cmsg_level = SOL_SOCKET;
1402 1.30 thorpej cmp->cmsg_type = SCM_CREDS;
1403 1.92 ad sc->sc_uid = kauth_cred_getuid(l->l_cred);
1404 1.92 ad sc->sc_euid = kauth_cred_geteuid(l->l_cred);
1405 1.92 ad sc->sc_gid = kauth_cred_getgid(l->l_cred);
1406 1.92 ad sc->sc_egid = kauth_cred_getegid(l->l_cred);
1407 1.92 ad sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
1408 1.30 thorpej for (i = 0; i < sc->sc_ngroups; i++)
1409 1.92 ad sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
1410 1.30 thorpej
1411 1.30 thorpej /*
1412 1.30 thorpej * If a control message already exists, append us to the end.
1413 1.30 thorpej */
1414 1.30 thorpej if (control != NULL) {
1415 1.30 thorpej for (n = control; n->m_next != NULL; n = n->m_next)
1416 1.30 thorpej ;
1417 1.30 thorpej n->m_next = m;
1418 1.30 thorpej } else
1419 1.30 thorpej control = m;
1420 1.30 thorpej
1421 1.30 thorpej return (control);
1422 1.1 cgd }
1423 1.1 cgd
1424 1.1 cgd int unp_defer, unp_gcing;
1425 1.1 cgd extern struct domain unixdomain;
1426 1.1 cgd
1427 1.39 sommerfe /*
1428 1.39 sommerfe * Comment added long after the fact explaining what's going on here.
1429 1.39 sommerfe * Do a mark-sweep GC of file descriptors on the system, to free up
1430 1.39 sommerfe * any which are caught in flight to an about-to-be-closed socket.
1431 1.39 sommerfe *
1432 1.39 sommerfe * Traditional mark-sweep gc's start at the "root", and mark
1433 1.39 sommerfe * everything reachable from the root (which, in our case would be the
1434 1.39 sommerfe * process table). The mark bits are cleared during the sweep.
1435 1.39 sommerfe *
1436 1.39 sommerfe * XXX For some inexplicable reason (perhaps because the file
1437 1.39 sommerfe * descriptor tables used to live in the u area which could be swapped
1438 1.39 sommerfe * out and thus hard to reach), we do multiple scans over the set of
1439 1.39 sommerfe * descriptors, using use *two* mark bits per object (DEFER and MARK).
1440 1.39 sommerfe * Whenever we find a descriptor which references other descriptors,
1441 1.39 sommerfe * the ones it references are marked with both bits, and we iterate
1442 1.39 sommerfe * over the whole file table until there are no more DEFER bits set.
1443 1.39 sommerfe * We also make an extra pass *before* the GC to clear the mark bits,
1444 1.39 sommerfe * which could have been cleared at almost no cost during the previous
1445 1.39 sommerfe * sweep.
1446 1.39 sommerfe */
1447 1.5 andrew void
1448 1.76 matt unp_gc(void)
1449 1.1 cgd {
1450 1.106 ad file_t *fp, *nextfp;
1451 1.46 augustss struct socket *so, *so1;
1452 1.106 ad file_t **extra_ref, **fpp;
1453 1.106 ad int nunref, nslots, i;
1454 1.1 cgd
1455 1.106 ad if (atomic_swap_uint(&unp_gcing, 1) == 1)
1456 1.1 cgd return;
1457 1.106 ad
1458 1.106 ad restart:
1459 1.106 ad nslots = nfiles * 2;
1460 1.106 ad extra_ref = kmem_alloc(nslots * sizeof(file_t *), KM_SLEEP);
1461 1.39 sommerfe
1462 1.101 ad mutex_enter(&filelist_lock);
1463 1.106 ad unp_defer = 0;
1464 1.101 ad
1465 1.39 sommerfe /* Clear mark bits */
1466 1.106 ad LIST_FOREACH(fp, &filehead, f_list) {
1467 1.106 ad atomic_and_uint(&fp->f_flag, ~(FMARK|FDEFER));
1468 1.106 ad }
1469 1.39 sommerfe
1470 1.39 sommerfe /*
1471 1.39 sommerfe * Iterate over the set of descriptors, marking ones believed
1472 1.39 sommerfe * (based on refcount) to be referenced from a process, and
1473 1.39 sommerfe * marking for rescan descriptors which are queued on a socket.
1474 1.39 sommerfe */
1475 1.1 cgd do {
1476 1.54 matt LIST_FOREACH(fp, &filehead, f_list) {
1477 1.106 ad mutex_enter(&fp->f_lock);
1478 1.106 ad if (fp->f_flag & FDEFER) {
1479 1.106 ad atomic_and_uint(&fp->f_flag, ~FDEFER);
1480 1.1 cgd unp_defer--;
1481 1.106 ad KASSERT(fp->f_count != 0);
1482 1.1 cgd } else {
1483 1.101 ad if (fp->f_count == 0 ||
1484 1.101 ad (fp->f_flag & FMARK) ||
1485 1.101 ad fp->f_count == fp->f_msgcount) {
1486 1.106 ad mutex_exit(&fp->f_lock);
1487 1.1 cgd continue;
1488 1.101 ad }
1489 1.1 cgd }
1490 1.106 ad atomic_or_uint(&fp->f_flag, FMARK);
1491 1.39 sommerfe
1492 1.1 cgd if (fp->f_type != DTYPE_SOCKET ||
1493 1.112 ad (so = fp->f_data) == NULL ||
1494 1.101 ad so->so_proto->pr_domain != &unixdomain ||
1495 1.101 ad (so->so_proto->pr_flags&PR_RIGHTS) == 0) {
1496 1.106 ad mutex_exit(&fp->f_lock);
1497 1.1 cgd continue;
1498 1.101 ad }
1499 1.1 cgd #ifdef notdef
1500 1.1 cgd if (so->so_rcv.sb_flags & SB_LOCK) {
1501 1.107 rmind mutex_exit(&fp->f_lock);
1502 1.107 rmind mutex_exit(&filelist_lock);
1503 1.107 rmind kmem_free(extra_ref, nslots * sizeof(file_t *));
1504 1.1 cgd /*
1505 1.1 cgd * This is problematical; it's not clear
1506 1.1 cgd * we need to wait for the sockbuf to be
1507 1.1 cgd * unlocked (on a uniprocessor, at least),
1508 1.1 cgd * and it's also not clear what to do
1509 1.1 cgd * if sbwait returns an error due to receipt
1510 1.1 cgd * of a signal. If sbwait does return
1511 1.1 cgd * an error, we'll go into an infinite
1512 1.1 cgd * loop. Delete all of this for now.
1513 1.1 cgd */
1514 1.1 cgd (void) sbwait(&so->so_rcv);
1515 1.1 cgd goto restart;
1516 1.1 cgd }
1517 1.1 cgd #endif
1518 1.106 ad mutex_exit(&fp->f_lock);
1519 1.101 ad
1520 1.112 ad /*
1521 1.112 ad * XXX Locking a socket with filelist_lock held
1522 1.112 ad * is ugly. filelist_lock can be taken by the
1523 1.112 ad * pagedaemon when reclaiming items from file_cache.
1524 1.112 ad * Socket activity could delay the pagedaemon.
1525 1.112 ad */
1526 1.112 ad solock(so);
1527 1.39 sommerfe unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
1528 1.39 sommerfe /*
1529 1.106 ad * Mark descriptors referenced from sockets queued
1530 1.106 ad * on the accept queue as well.
1531 1.39 sommerfe */
1532 1.39 sommerfe if (so->so_options & SO_ACCEPTCONN) {
1533 1.54 matt TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
1534 1.39 sommerfe unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1535 1.39 sommerfe }
1536 1.54 matt TAILQ_FOREACH(so1, &so->so_q, so_qe) {
1537 1.39 sommerfe unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1538 1.39 sommerfe }
1539 1.39 sommerfe }
1540 1.112 ad sounlock(so);
1541 1.1 cgd }
1542 1.1 cgd } while (unp_defer);
1543 1.101 ad
1544 1.8 mycroft /*
1545 1.39 sommerfe * Sweep pass. Find unmarked descriptors, and free them.
1546 1.39 sommerfe *
1547 1.8 mycroft * We grab an extra reference to each of the file table entries
1548 1.8 mycroft * that are not otherwise accessible and then free the rights
1549 1.8 mycroft * that are stored in messages on them.
1550 1.8 mycroft *
1551 1.57 pk * The bug in the original code is a little tricky, so I'll describe
1552 1.8 mycroft * what's wrong with it here.
1553 1.8 mycroft *
1554 1.8 mycroft * It is incorrect to simply unp_discard each entry for f_msgcount
1555 1.8 mycroft * times -- consider the case of sockets A and B that contain
1556 1.8 mycroft * references to each other. On a last close of some other socket,
1557 1.8 mycroft * we trigger a gc since the number of outstanding rights (unp_rights)
1558 1.8 mycroft * is non-zero. If during the sweep phase the gc code un_discards,
1559 1.8 mycroft * we end up doing a (full) closef on the descriptor. A closef on A
1560 1.8 mycroft * results in the following chain. Closef calls soo_close, which
1561 1.8 mycroft * calls soclose. Soclose calls first (through the switch
1562 1.8 mycroft * uipc_usrreq) unp_detach, which re-invokes unp_gc. Unp_gc simply
1563 1.8 mycroft * returns because the previous instance had set unp_gcing, and
1564 1.8 mycroft * we return all the way back to soclose, which marks the socket
1565 1.8 mycroft * with SS_NOFDREF, and then calls sofree. Sofree calls sorflush
1566 1.8 mycroft * to free up the rights that are queued in messages on the socket A,
1567 1.8 mycroft * i.e., the reference on B. The sorflush calls via the dom_dispose
1568 1.8 mycroft * switch unp_dispose, which unp_scans with unp_discard. This second
1569 1.8 mycroft * instance of unp_discard just calls closef on B.
1570 1.8 mycroft *
1571 1.8 mycroft * Well, a similar chain occurs on B, resulting in a sorflush on B,
1572 1.8 mycroft * which results in another closef on A. Unfortunately, A is already
1573 1.8 mycroft * being closed, and the descriptor has already been marked with
1574 1.8 mycroft * SS_NOFDREF, and soclose panics at this point.
1575 1.8 mycroft *
1576 1.8 mycroft * Here, we first take an extra reference to each inaccessible
1577 1.39 sommerfe * descriptor. Then, if the inaccessible descriptor is a
1578 1.39 sommerfe * socket, we call sorflush in case it is a Unix domain
1579 1.39 sommerfe * socket. After we destroy all the rights carried in
1580 1.39 sommerfe * messages, we do a last closef to get rid of our extra
1581 1.39 sommerfe * reference. This is the last close, and the unp_detach etc
1582 1.39 sommerfe * will shut down the socket.
1583 1.8 mycroft *
1584 1.8 mycroft * 91/09/19, bsy (at) cs.cmu.edu
1585 1.8 mycroft */
1586 1.106 ad if (nslots < nfiles) {
1587 1.107 rmind mutex_exit(&filelist_lock);
1588 1.107 rmind kmem_free(extra_ref, nslots * sizeof(file_t *));
1589 1.107 rmind goto restart;
1590 1.106 ad }
1591 1.54 matt for (nunref = 0, fp = LIST_FIRST(&filehead), fpp = extra_ref; fp != 0;
1592 1.11 mycroft fp = nextfp) {
1593 1.54 matt nextfp = LIST_NEXT(fp, f_list);
1594 1.106 ad mutex_enter(&fp->f_lock);
1595 1.57 pk if (fp->f_count != 0 &&
1596 1.57 pk fp->f_count == fp->f_msgcount && !(fp->f_flag & FMARK)) {
1597 1.8 mycroft *fpp++ = fp;
1598 1.8 mycroft nunref++;
1599 1.8 mycroft fp->f_count++;
1600 1.8 mycroft }
1601 1.106 ad mutex_exit(&fp->f_lock);
1602 1.1 cgd }
1603 1.101 ad mutex_exit(&filelist_lock);
1604 1.101 ad
1605 1.39 sommerfe for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) {
1606 1.45 thorpej fp = *fpp;
1607 1.112 ad if (fp->f_type == DTYPE_SOCKET) {
1608 1.112 ad so = fp->f_data;
1609 1.112 ad solock(so);
1610 1.106 ad sorflush(fp->f_data);
1611 1.112 ad sounlock(so);
1612 1.112 ad }
1613 1.39 sommerfe }
1614 1.44 thorpej for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) {
1615 1.106 ad closef(*fpp);
1616 1.44 thorpej }
1617 1.106 ad kmem_free(extra_ref, nslots * sizeof(file_t *));
1618 1.106 ad atomic_swap_uint(&unp_gcing, 0);
1619 1.1 cgd }
1620 1.1 cgd
1621 1.5 andrew void
1622 1.76 matt unp_dispose(struct mbuf *m)
1623 1.1 cgd {
1624 1.8 mycroft
1625 1.1 cgd if (m)
1626 1.39 sommerfe unp_scan(m, unp_discard, 1);
1627 1.1 cgd }
1628 1.1 cgd
1629 1.5 andrew void
1630 1.106 ad unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
1631 1.1 cgd {
1632 1.46 augustss struct mbuf *m;
1633 1.106 ad file_t **rp;
1634 1.46 augustss struct cmsghdr *cm;
1635 1.46 augustss int i;
1636 1.1 cgd int qfds;
1637 1.1 cgd
1638 1.1 cgd while (m0) {
1639 1.48 thorpej for (m = m0; m; m = m->m_next) {
1640 1.1 cgd if (m->m_type == MT_CONTROL &&
1641 1.1 cgd m->m_len >= sizeof(*cm)) {
1642 1.1 cgd cm = mtod(m, struct cmsghdr *);
1643 1.1 cgd if (cm->cmsg_level != SOL_SOCKET ||
1644 1.111 mlelstv cm->cmsg_type != SCM_RIGHTS)
1645 1.1 cgd continue;
1646 1.48 thorpej qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
1647 1.106 ad / sizeof(file_t *);
1648 1.106 ad rp = (file_t **)CMSG_DATA(cm);
1649 1.39 sommerfe for (i = 0; i < qfds; i++) {
1650 1.106 ad file_t *fp = *rp;
1651 1.39 sommerfe if (discard)
1652 1.39 sommerfe *rp = 0;
1653 1.39 sommerfe (*op)(fp);
1654 1.39 sommerfe rp++;
1655 1.39 sommerfe }
1656 1.1 cgd break; /* XXX, but saves time */
1657 1.1 cgd }
1658 1.48 thorpej }
1659 1.52 thorpej m0 = m0->m_nextpkt;
1660 1.1 cgd }
1661 1.1 cgd }
1662 1.1 cgd
1663 1.5 andrew void
1664 1.106 ad unp_mark(file_t *fp)
1665 1.1 cgd {
1666 1.101 ad
1667 1.39 sommerfe if (fp == NULL)
1668 1.39 sommerfe return;
1669 1.80 perry
1670 1.39 sommerfe /* If we're already deferred, don't screw up the defer count */
1671 1.106 ad mutex_enter(&fp->f_lock);
1672 1.101 ad if (fp->f_flag & (FMARK | FDEFER)) {
1673 1.106 ad mutex_exit(&fp->f_lock);
1674 1.1 cgd return;
1675 1.101 ad }
1676 1.39 sommerfe
1677 1.39 sommerfe /*
1678 1.39 sommerfe * Minimize the number of deferrals... Sockets are the only
1679 1.39 sommerfe * type of descriptor which can hold references to another
1680 1.39 sommerfe * descriptor, so just mark other descriptors, and defer
1681 1.39 sommerfe * unmarked sockets for the next pass.
1682 1.39 sommerfe */
1683 1.39 sommerfe if (fp->f_type == DTYPE_SOCKET) {
1684 1.39 sommerfe unp_defer++;
1685 1.106 ad KASSERT(fp->f_count != 0);
1686 1.106 ad atomic_or_uint(&fp->f_flag, FDEFER);
1687 1.39 sommerfe } else {
1688 1.106 ad atomic_or_uint(&fp->f_flag, FMARK);
1689 1.39 sommerfe }
1690 1.106 ad mutex_exit(&fp->f_lock);
1691 1.39 sommerfe return;
1692 1.1 cgd }
1693 1.1 cgd
1694 1.5 andrew void
1695 1.106 ad unp_discard(file_t *fp)
1696 1.1 cgd {
1697 1.106 ad
1698 1.39 sommerfe if (fp == NULL)
1699 1.39 sommerfe return;
1700 1.106 ad
1701 1.106 ad mutex_enter(&fp->f_lock);
1702 1.106 ad KASSERT(fp->f_count > 0);
1703 1.1 cgd fp->f_msgcount--;
1704 1.106 ad mutex_exit(&fp->f_lock);
1705 1.106 ad atomic_dec_uint(&unp_rights);
1706 1.106 ad (void)closef(fp);
1707 1.1 cgd }
1708