uipc_usrreq.c revision 1.118 1 1.118 plunky /* $NetBSD: uipc_usrreq.c,v 1.118 2008/08/06 15:01:23 plunky Exp $ */
2 1.30 thorpej
3 1.30 thorpej /*-
4 1.106 ad * Copyright (c) 1998, 2000, 2004, 2008 The NetBSD Foundation, Inc.
5 1.30 thorpej * All rights reserved.
6 1.30 thorpej *
7 1.30 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.30 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.30 thorpej * NASA Ames Research Center.
10 1.30 thorpej *
11 1.30 thorpej * Redistribution and use in source and binary forms, with or without
12 1.30 thorpej * modification, are permitted provided that the following conditions
13 1.30 thorpej * are met:
14 1.30 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.30 thorpej * notice, this list of conditions and the following disclaimer.
16 1.30 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.30 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.30 thorpej * documentation and/or other materials provided with the distribution.
19 1.30 thorpej *
20 1.30 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.30 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.30 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.30 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.30 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.30 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.30 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.30 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.30 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.30 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.30 thorpej * POSSIBILITY OF SUCH DAMAGE.
31 1.30 thorpej */
32 1.10 cgd
33 1.1 cgd /*
34 1.8 mycroft * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 1.8 mycroft * The Regents of the University of California. All rights reserved.
36 1.1 cgd *
37 1.1 cgd * Redistribution and use in source and binary forms, with or without
38 1.1 cgd * modification, are permitted provided that the following conditions
39 1.1 cgd * are met:
40 1.1 cgd * 1. Redistributions of source code must retain the above copyright
41 1.1 cgd * notice, this list of conditions and the following disclaimer.
42 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
43 1.1 cgd * notice, this list of conditions and the following disclaimer in the
44 1.1 cgd * documentation and/or other materials provided with the distribution.
45 1.67 agc * 3. Neither the name of the University nor the names of its contributors
46 1.67 agc * may be used to endorse or promote products derived from this software
47 1.67 agc * without specific prior written permission.
48 1.67 agc *
49 1.67 agc * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 1.67 agc * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 1.67 agc * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 1.67 agc * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 1.67 agc * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 1.67 agc * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 1.67 agc * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 1.67 agc * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 1.67 agc * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 1.67 agc * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 1.67 agc * SUCH DAMAGE.
60 1.67 agc *
61 1.67 agc * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
62 1.67 agc */
63 1.67 agc
64 1.67 agc /*
65 1.67 agc * Copyright (c) 1997 Christopher G. Demetriou. All rights reserved.
66 1.67 agc *
67 1.67 agc * Redistribution and use in source and binary forms, with or without
68 1.67 agc * modification, are permitted provided that the following conditions
69 1.67 agc * are met:
70 1.67 agc * 1. Redistributions of source code must retain the above copyright
71 1.67 agc * notice, this list of conditions and the following disclaimer.
72 1.67 agc * 2. Redistributions in binary form must reproduce the above copyright
73 1.67 agc * notice, this list of conditions and the following disclaimer in the
74 1.67 agc * documentation and/or other materials provided with the distribution.
75 1.1 cgd * 3. All advertising materials mentioning features or use of this software
76 1.1 cgd * must display the following acknowledgement:
77 1.1 cgd * This product includes software developed by the University of
78 1.1 cgd * California, Berkeley and its contributors.
79 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
80 1.1 cgd * may be used to endorse or promote products derived from this software
81 1.1 cgd * without specific prior written permission.
82 1.1 cgd *
83 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
84 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
85 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
86 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
87 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
88 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
89 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
90 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
91 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
92 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
93 1.1 cgd * SUCH DAMAGE.
94 1.1 cgd *
95 1.31 fvdl * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
96 1.1 cgd */
97 1.53 lukem
98 1.53 lukem #include <sys/cdefs.h>
99 1.118 plunky __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.118 2008/08/06 15:01:23 plunky Exp $");
100 1.1 cgd
101 1.7 mycroft #include <sys/param.h>
102 1.8 mycroft #include <sys/systm.h>
103 1.7 mycroft #include <sys/proc.h>
104 1.7 mycroft #include <sys/filedesc.h>
105 1.7 mycroft #include <sys/domain.h>
106 1.7 mycroft #include <sys/protosw.h>
107 1.7 mycroft #include <sys/socket.h>
108 1.7 mycroft #include <sys/socketvar.h>
109 1.7 mycroft #include <sys/unpcb.h>
110 1.7 mycroft #include <sys/un.h>
111 1.7 mycroft #include <sys/namei.h>
112 1.7 mycroft #include <sys/vnode.h>
113 1.7 mycroft #include <sys/file.h>
114 1.7 mycroft #include <sys/stat.h>
115 1.7 mycroft #include <sys/mbuf.h>
116 1.91 elad #include <sys/kauth.h>
117 1.101 ad #include <sys/kmem.h>
118 1.106 ad #include <sys/atomic.h>
119 1.1 cgd
120 1.1 cgd /*
121 1.1 cgd * Unix communications domain.
122 1.1 cgd *
123 1.1 cgd * TODO:
124 1.1 cgd * SEQPACKET, RDM
125 1.1 cgd * rethink name space problems
126 1.1 cgd * need a proper out-of-band
127 1.112 ad *
128 1.112 ad * Notes on locking:
129 1.112 ad *
130 1.112 ad * The generic rules noted in uipc_socket2.c apply. In addition:
131 1.112 ad *
132 1.112 ad * o We have a global lock, uipc_lock.
133 1.112 ad *
134 1.112 ad * o All datagram sockets are locked by uipc_lock.
135 1.112 ad *
136 1.112 ad * o For stream socketpairs, the two endpoints are created sharing the same
137 1.112 ad * independent lock. Sockets presented to PRU_CONNECT2 must already have
138 1.112 ad * matching locks.
139 1.112 ad *
140 1.112 ad * o Stream sockets created via socket() start life with their own
141 1.112 ad * independent lock.
142 1.112 ad *
143 1.112 ad * o Stream connections to a named endpoint are slightly more complicated.
144 1.112 ad * Sockets that have called listen() have their lock pointer mutated to
145 1.112 ad * the global uipc_lock. When establishing a connection, the connecting
146 1.112 ad * socket also has its lock mutated to uipc_lock, which matches the head
147 1.112 ad * (listening socket). We create a new socket for accept() to return, and
148 1.112 ad * that also shares the head's lock. Until the connection is completely
149 1.112 ad * done on both ends, all three sockets are locked by uipc_lock. Once the
150 1.112 ad * connection is complete, the association with the head's lock is broken.
151 1.112 ad * The connecting socket and the socket returned from accept() have their
152 1.112 ad * lock pointers mutated away from uipc_lock, and back to the connecting
153 1.112 ad * socket's original, independent lock. The head continues to be locked
154 1.112 ad * by uipc_lock.
155 1.112 ad *
156 1.112 ad * o If uipc_lock is determined to be a significant source of contention,
157 1.112 ad * it could easily be hashed out. It is difficult to simply make it an
158 1.112 ad * independent lock because of visibility / garbage collection issues:
159 1.112 ad * if a socket has been associated with a lock at any point, that lock
160 1.112 ad * must remain valid until the socket is no longer visible in the system.
161 1.112 ad * The lock must not be freed or otherwise destroyed until any sockets
162 1.112 ad * that had referenced it have also been destroyed.
163 1.1 cgd */
164 1.93 christos const struct sockaddr_un sun_noname = {
165 1.93 christos .sun_len = sizeof(sun_noname),
166 1.93 christos .sun_family = AF_LOCAL,
167 1.93 christos };
168 1.1 cgd ino_t unp_ino; /* prototype for fake inode numbers */
169 1.1 cgd
170 1.92 ad struct mbuf *unp_addsockcred(struct lwp *, struct mbuf *);
171 1.112 ad static kmutex_t *uipc_lock;
172 1.112 ad
173 1.112 ad /*
174 1.112 ad * Initialize Unix protocols.
175 1.112 ad */
176 1.112 ad void
177 1.112 ad uipc_init(void)
178 1.112 ad {
179 1.112 ad
180 1.112 ad uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
181 1.112 ad }
182 1.112 ad
183 1.112 ad /*
184 1.112 ad * A connection succeeded: disassociate both endpoints from the head's
185 1.112 ad * lock, and make them share their own lock. There is a race here: for
186 1.112 ad * a very brief time one endpoint will be locked by a different lock
187 1.112 ad * than the other end. However, since the current thread holds the old
188 1.112 ad * lock (the listening socket's lock, the head) access can still only be
189 1.112 ad * made to one side of the connection.
190 1.112 ad */
191 1.112 ad static void
192 1.112 ad unp_setpeerlocks(struct socket *so, struct socket *so2)
193 1.112 ad {
194 1.112 ad struct unpcb *unp;
195 1.112 ad kmutex_t *lock;
196 1.112 ad
197 1.112 ad KASSERT(solocked2(so, so2));
198 1.112 ad
199 1.112 ad /*
200 1.112 ad * Bail out if either end of the socket is not yet fully
201 1.112 ad * connected or accepted. We only break the lock association
202 1.112 ad * with the head when the pair of sockets stand completely
203 1.112 ad * on their own.
204 1.112 ad */
205 1.112 ad if (so->so_head != NULL || so2->so_head != NULL)
206 1.112 ad return;
207 1.112 ad
208 1.112 ad /*
209 1.112 ad * Drop references to old lock. A third reference (from the
210 1.112 ad * queue head) must be held as we still hold its lock. Bonus:
211 1.112 ad * we don't need to worry about garbage collecting the lock.
212 1.112 ad */
213 1.112 ad lock = so->so_lock;
214 1.112 ad KASSERT(lock == uipc_lock);
215 1.112 ad mutex_obj_free(lock);
216 1.112 ad mutex_obj_free(lock);
217 1.112 ad
218 1.112 ad /*
219 1.112 ad * Grab stream lock from the initiator and share between the two
220 1.112 ad * endpoints. Issue memory barrier to ensure all modifications
221 1.112 ad * become globally visible before the lock change. so2 is
222 1.112 ad * assumed not to have a stream lock, because it was created
223 1.112 ad * purely for the server side to accept this connection and
224 1.112 ad * started out life using the domain-wide lock.
225 1.112 ad */
226 1.112 ad unp = sotounpcb(so);
227 1.112 ad KASSERT(unp->unp_streamlock != NULL);
228 1.112 ad KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
229 1.112 ad lock = unp->unp_streamlock;
230 1.112 ad unp->unp_streamlock = NULL;
231 1.112 ad mutex_obj_hold(lock);
232 1.112 ad membar_exit();
233 1.115 ad solockreset(so, lock);
234 1.115 ad solockreset(so2, lock);
235 1.112 ad }
236 1.112 ad
237 1.112 ad /*
238 1.112 ad * Reset a socket's lock back to the domain-wide lock.
239 1.112 ad */
240 1.112 ad static void
241 1.112 ad unp_resetlock(struct socket *so)
242 1.112 ad {
243 1.112 ad kmutex_t *olock, *nlock;
244 1.112 ad struct unpcb *unp;
245 1.112 ad
246 1.112 ad KASSERT(solocked(so));
247 1.112 ad
248 1.112 ad olock = so->so_lock;
249 1.112 ad nlock = uipc_lock;
250 1.112 ad if (olock == nlock)
251 1.112 ad return;
252 1.112 ad unp = sotounpcb(so);
253 1.112 ad KASSERT(unp->unp_streamlock == NULL);
254 1.112 ad unp->unp_streamlock = olock;
255 1.112 ad mutex_obj_hold(nlock);
256 1.112 ad mutex_enter(nlock);
257 1.115 ad solockreset(so, nlock);
258 1.112 ad mutex_exit(olock);
259 1.112 ad }
260 1.112 ad
261 1.112 ad static void
262 1.112 ad unp_free(struct unpcb *unp)
263 1.112 ad {
264 1.112 ad
265 1.112 ad if (unp->unp_addr)
266 1.112 ad free(unp->unp_addr, M_SONAME);
267 1.112 ad if (unp->unp_streamlock != NULL)
268 1.112 ad mutex_obj_free(unp->unp_streamlock);
269 1.112 ad free(unp, M_PCB);
270 1.112 ad }
271 1.30 thorpej
272 1.20 mycroft int
273 1.76 matt unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp,
274 1.92 ad struct lwp *l)
275 1.20 mycroft {
276 1.20 mycroft struct socket *so2;
277 1.77 matt const struct sockaddr_un *sun;
278 1.20 mycroft
279 1.20 mycroft so2 = unp->unp_conn->unp_socket;
280 1.112 ad
281 1.112 ad KASSERT(solocked(so2));
282 1.112 ad
283 1.20 mycroft if (unp->unp_addr)
284 1.20 mycroft sun = unp->unp_addr;
285 1.20 mycroft else
286 1.20 mycroft sun = &sun_noname;
287 1.30 thorpej if (unp->unp_conn->unp_flags & UNP_WANTCRED)
288 1.92 ad control = unp_addsockcred(l, control);
289 1.82 christos if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
290 1.20 mycroft control) == 0) {
291 1.112 ad so2->so_rcv.sb_overflowed++;
292 1.112 ad sounlock(so2);
293 1.98 martin unp_dispose(control);
294 1.20 mycroft m_freem(control);
295 1.20 mycroft m_freem(m);
296 1.112 ad solock(so2);
297 1.60 christos return (ENOBUFS);
298 1.20 mycroft } else {
299 1.20 mycroft sorwakeup(so2);
300 1.20 mycroft return (0);
301 1.20 mycroft }
302 1.20 mycroft }
303 1.20 mycroft
304 1.20 mycroft void
305 1.112 ad unp_setaddr(struct socket *so, struct mbuf *nam, bool peeraddr)
306 1.20 mycroft {
307 1.77 matt const struct sockaddr_un *sun;
308 1.112 ad struct unpcb *unp;
309 1.112 ad bool ext;
310 1.20 mycroft
311 1.112 ad unp = sotounpcb(so);
312 1.112 ad ext = false;
313 1.20 mycroft
314 1.112 ad for (;;) {
315 1.112 ad sun = NULL;
316 1.112 ad if (peeraddr) {
317 1.112 ad if (unp->unp_conn && unp->unp_conn->unp_addr)
318 1.112 ad sun = unp->unp_conn->unp_addr;
319 1.112 ad } else {
320 1.112 ad if (unp->unp_addr)
321 1.112 ad sun = unp->unp_addr;
322 1.112 ad }
323 1.112 ad if (sun == NULL)
324 1.112 ad sun = &sun_noname;
325 1.112 ad nam->m_len = sun->sun_len;
326 1.112 ad if (nam->m_len > MLEN && !ext) {
327 1.112 ad sounlock(so);
328 1.112 ad MEXTMALLOC(nam, MAXPATHLEN * 2, M_WAITOK);
329 1.112 ad solock(so);
330 1.112 ad ext = true;
331 1.112 ad } else {
332 1.112 ad KASSERT(nam->m_len <= MAXPATHLEN * 2);
333 1.112 ad memcpy(mtod(nam, void *), sun, (size_t)nam->m_len);
334 1.112 ad break;
335 1.112 ad }
336 1.112 ad }
337 1.20 mycroft }
338 1.20 mycroft
339 1.1 cgd /*ARGSUSED*/
340 1.5 andrew int
341 1.76 matt uipc_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
342 1.86 christos struct mbuf *control, struct lwp *l)
343 1.1 cgd {
344 1.1 cgd struct unpcb *unp = sotounpcb(so);
345 1.46 augustss struct socket *so2;
346 1.86 christos struct proc *p;
347 1.75 christos u_int newhiwat;
348 1.46 augustss int error = 0;
349 1.1 cgd
350 1.1 cgd if (req == PRU_CONTROL)
351 1.1 cgd return (EOPNOTSUPP);
352 1.20 mycroft
353 1.22 mycroft #ifdef DIAGNOSTIC
354 1.22 mycroft if (req != PRU_SEND && req != PRU_SENDOOB && control)
355 1.22 mycroft panic("uipc_usrreq: unexpected control mbuf");
356 1.22 mycroft #endif
357 1.86 christos p = l ? l->l_proc : NULL;
358 1.112 ad if (req != PRU_ATTACH) {
359 1.112 ad if (unp == 0) {
360 1.112 ad error = EINVAL;
361 1.112 ad goto release;
362 1.112 ad }
363 1.112 ad KASSERT(solocked(so));
364 1.1 cgd }
365 1.20 mycroft
366 1.1 cgd switch (req) {
367 1.1 cgd
368 1.1 cgd case PRU_ATTACH:
369 1.20 mycroft if (unp != 0) {
370 1.1 cgd error = EISCONN;
371 1.1 cgd break;
372 1.1 cgd }
373 1.1 cgd error = unp_attach(so);
374 1.1 cgd break;
375 1.1 cgd
376 1.1 cgd case PRU_DETACH:
377 1.1 cgd unp_detach(unp);
378 1.1 cgd break;
379 1.1 cgd
380 1.1 cgd case PRU_BIND:
381 1.90 christos KASSERT(l != NULL);
382 1.112 ad error = unp_bind(so, nam, l);
383 1.1 cgd break;
384 1.1 cgd
385 1.1 cgd case PRU_LISTEN:
386 1.112 ad /*
387 1.112 ad * If the socket can accept a connection, it must be
388 1.112 ad * locked by uipc_lock.
389 1.112 ad */
390 1.112 ad unp_resetlock(so);
391 1.1 cgd if (unp->unp_vnode == 0)
392 1.1 cgd error = EINVAL;
393 1.1 cgd break;
394 1.1 cgd
395 1.1 cgd case PRU_CONNECT:
396 1.90 christos KASSERT(l != NULL);
397 1.86 christos error = unp_connect(so, nam, l);
398 1.1 cgd break;
399 1.1 cgd
400 1.1 cgd case PRU_CONNECT2:
401 1.72 matt error = unp_connect2(so, (struct socket *)nam, PRU_CONNECT2);
402 1.1 cgd break;
403 1.1 cgd
404 1.1 cgd case PRU_DISCONNECT:
405 1.1 cgd unp_disconnect(unp);
406 1.1 cgd break;
407 1.1 cgd
408 1.1 cgd case PRU_ACCEPT:
409 1.112 ad KASSERT(so->so_lock == uipc_lock);
410 1.72 matt /*
411 1.72 matt * Mark the initiating STREAM socket as connected *ONLY*
412 1.72 matt * after it's been accepted. This prevents a client from
413 1.72 matt * overrunning a server and receiving ECONNREFUSED.
414 1.72 matt */
415 1.112 ad if (unp->unp_conn == NULL)
416 1.112 ad break;
417 1.112 ad so2 = unp->unp_conn->unp_socket;
418 1.112 ad if (so2->so_state & SS_ISCONNECTING) {
419 1.112 ad KASSERT(solocked2(so, so->so_head));
420 1.112 ad KASSERT(solocked2(so2, so->so_head));
421 1.112 ad soisconnected(so2);
422 1.112 ad }
423 1.112 ad /*
424 1.112 ad * If the connection is fully established, break the
425 1.112 ad * association with uipc_lock and give the connected
426 1.112 ad * pair a seperate lock to share.
427 1.112 ad */
428 1.112 ad unp_setpeerlocks(so2, so);
429 1.112 ad /*
430 1.112 ad * Only now return peer's address, as we may need to
431 1.112 ad * block in order to allocate memory.
432 1.112 ad *
433 1.112 ad * XXX Minor race: connection can be broken while
434 1.112 ad * lock is dropped in unp_setaddr(). We will return
435 1.112 ad * error == 0 and sun_noname as the peer address.
436 1.112 ad */
437 1.112 ad unp_setaddr(so, nam, true);
438 1.1 cgd break;
439 1.1 cgd
440 1.1 cgd case PRU_SHUTDOWN:
441 1.1 cgd socantsendmore(so);
442 1.1 cgd unp_shutdown(unp);
443 1.1 cgd break;
444 1.1 cgd
445 1.1 cgd case PRU_RCVD:
446 1.1 cgd switch (so->so_type) {
447 1.1 cgd
448 1.1 cgd case SOCK_DGRAM:
449 1.1 cgd panic("uipc 1");
450 1.1 cgd /*NOTREACHED*/
451 1.1 cgd
452 1.1 cgd case SOCK_STREAM:
453 1.1 cgd #define rcv (&so->so_rcv)
454 1.1 cgd #define snd (&so2->so_snd)
455 1.1 cgd if (unp->unp_conn == 0)
456 1.1 cgd break;
457 1.1 cgd so2 = unp->unp_conn->unp_socket;
458 1.112 ad KASSERT(solocked2(so, so2));
459 1.1 cgd /*
460 1.1 cgd * Adjust backpressure on sender
461 1.1 cgd * and wakeup any waiting to write.
462 1.1 cgd */
463 1.1 cgd snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
464 1.1 cgd unp->unp_mbcnt = rcv->sb_mbcnt;
465 1.75 christos newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
466 1.81 christos (void)chgsbsize(so2->so_uidinfo,
467 1.75 christos &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
468 1.1 cgd unp->unp_cc = rcv->sb_cc;
469 1.1 cgd sowwakeup(so2);
470 1.1 cgd #undef snd
471 1.1 cgd #undef rcv
472 1.1 cgd break;
473 1.1 cgd
474 1.1 cgd default:
475 1.1 cgd panic("uipc 2");
476 1.1 cgd }
477 1.1 cgd break;
478 1.1 cgd
479 1.1 cgd case PRU_SEND:
480 1.30 thorpej /*
481 1.30 thorpej * Note: unp_internalize() rejects any control message
482 1.30 thorpej * other than SCM_RIGHTS, and only allows one. This
483 1.30 thorpej * has the side-effect of preventing a caller from
484 1.30 thorpej * forging SCM_CREDS.
485 1.30 thorpej */
486 1.90 christos if (control) {
487 1.112 ad sounlock(so);
488 1.112 ad error = unp_internalize(&control);
489 1.112 ad solock(so);
490 1.112 ad if (error != 0) {
491 1.111 mlelstv m_freem(control);
492 1.111 mlelstv m_freem(m);
493 1.111 mlelstv break;
494 1.111 mlelstv }
495 1.83 yamt }
496 1.1 cgd switch (so->so_type) {
497 1.1 cgd
498 1.1 cgd case SOCK_DGRAM: {
499 1.112 ad KASSERT(so->so_lock == uipc_lock);
500 1.1 cgd if (nam) {
501 1.111 mlelstv if ((so->so_state & SS_ISCONNECTED) != 0)
502 1.1 cgd error = EISCONN;
503 1.111 mlelstv else {
504 1.112 ad /*
505 1.112 ad * Note: once connected, the
506 1.112 ad * socket's lock must not be
507 1.112 ad * dropped until we have sent
508 1.112 ad * the message and disconnected.
509 1.112 ad * This is necessary to prevent
510 1.112 ad * intervening control ops, like
511 1.112 ad * another connection.
512 1.112 ad */
513 1.111 mlelstv error = unp_connect(so, nam, l);
514 1.20 mycroft }
515 1.1 cgd } else {
516 1.111 mlelstv if ((so->so_state & SS_ISCONNECTED) == 0)
517 1.1 cgd error = ENOTCONN;
518 1.111 mlelstv }
519 1.111 mlelstv if (error) {
520 1.112 ad sounlock(so);
521 1.111 mlelstv unp_dispose(control);
522 1.111 mlelstv m_freem(control);
523 1.111 mlelstv m_freem(m);
524 1.112 ad solock(so);
525 1.111 mlelstv break;
526 1.1 cgd }
527 1.89 christos KASSERT(p != NULL);
528 1.92 ad error = unp_output(m, control, unp, l);
529 1.1 cgd if (nam)
530 1.1 cgd unp_disconnect(unp);
531 1.1 cgd break;
532 1.1 cgd }
533 1.1 cgd
534 1.1 cgd case SOCK_STREAM:
535 1.1 cgd #define rcv (&so2->so_rcv)
536 1.1 cgd #define snd (&so->so_snd)
537 1.87 christos if (unp->unp_conn == NULL) {
538 1.87 christos error = ENOTCONN;
539 1.87 christos break;
540 1.87 christos }
541 1.1 cgd so2 = unp->unp_conn->unp_socket;
542 1.112 ad KASSERT(solocked2(so, so2));
543 1.30 thorpej if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
544 1.30 thorpej /*
545 1.30 thorpej * Credentials are passed only once on
546 1.30 thorpej * SOCK_STREAM.
547 1.30 thorpej */
548 1.30 thorpej unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
549 1.92 ad control = unp_addsockcred(l, control);
550 1.30 thorpej }
551 1.1 cgd /*
552 1.1 cgd * Send to paired receive port, and then reduce
553 1.1 cgd * send buffer hiwater marks to maintain backpressure.
554 1.1 cgd * Wake up readers.
555 1.1 cgd */
556 1.1 cgd if (control) {
557 1.112 ad if (sbappendcontrol(rcv, m, control) != 0)
558 1.112 ad control = NULL;
559 1.1 cgd } else
560 1.1 cgd sbappend(rcv, m);
561 1.1 cgd snd->sb_mbmax -=
562 1.1 cgd rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
563 1.1 cgd unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
564 1.75 christos newhiwat = snd->sb_hiwat -
565 1.75 christos (rcv->sb_cc - unp->unp_conn->unp_cc);
566 1.81 christos (void)chgsbsize(so->so_uidinfo,
567 1.75 christos &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
568 1.1 cgd unp->unp_conn->unp_cc = rcv->sb_cc;
569 1.1 cgd sorwakeup(so2);
570 1.1 cgd #undef snd
571 1.1 cgd #undef rcv
572 1.112 ad if (control != NULL) {
573 1.112 ad sounlock(so);
574 1.112 ad unp_dispose(control);
575 1.112 ad m_freem(control);
576 1.112 ad solock(so);
577 1.112 ad }
578 1.1 cgd break;
579 1.1 cgd
580 1.1 cgd default:
581 1.1 cgd panic("uipc 4");
582 1.1 cgd }
583 1.1 cgd break;
584 1.1 cgd
585 1.1 cgd case PRU_ABORT:
586 1.112 ad (void)unp_drop(unp, ECONNABORTED);
587 1.39 sommerfe
588 1.88 matt KASSERT(so->so_head == NULL);
589 1.39 sommerfe #ifdef DIAGNOSTIC
590 1.39 sommerfe if (so->so_pcb == 0)
591 1.39 sommerfe panic("uipc 5: drop killed pcb");
592 1.39 sommerfe #endif
593 1.39 sommerfe unp_detach(unp);
594 1.1 cgd break;
595 1.1 cgd
596 1.1 cgd case PRU_SENSE:
597 1.1 cgd ((struct stat *) m)->st_blksize = so->so_snd.sb_hiwat;
598 1.1 cgd if (so->so_type == SOCK_STREAM && unp->unp_conn != 0) {
599 1.1 cgd so2 = unp->unp_conn->unp_socket;
600 1.112 ad KASSERT(solocked2(so, so2));
601 1.1 cgd ((struct stat *) m)->st_blksize += so2->so_rcv.sb_cc;
602 1.1 cgd }
603 1.1 cgd ((struct stat *) m)->st_dev = NODEV;
604 1.1 cgd if (unp->unp_ino == 0)
605 1.1 cgd unp->unp_ino = unp_ino++;
606 1.25 kleink ((struct stat *) m)->st_atimespec =
607 1.25 kleink ((struct stat *) m)->st_mtimespec =
608 1.25 kleink ((struct stat *) m)->st_ctimespec = unp->unp_ctime;
609 1.1 cgd ((struct stat *) m)->st_ino = unp->unp_ino;
610 1.1 cgd return (0);
611 1.1 cgd
612 1.1 cgd case PRU_RCVOOB:
613 1.20 mycroft error = EOPNOTSUPP;
614 1.20 mycroft break;
615 1.1 cgd
616 1.1 cgd case PRU_SENDOOB:
617 1.22 mycroft m_freem(control);
618 1.20 mycroft m_freem(m);
619 1.1 cgd error = EOPNOTSUPP;
620 1.1 cgd break;
621 1.1 cgd
622 1.1 cgd case PRU_SOCKADDR:
623 1.112 ad unp_setaddr(so, nam, false);
624 1.1 cgd break;
625 1.1 cgd
626 1.1 cgd case PRU_PEERADDR:
627 1.112 ad unp_setaddr(so, nam, true);
628 1.1 cgd break;
629 1.1 cgd
630 1.1 cgd default:
631 1.1 cgd panic("piusrreq");
632 1.1 cgd }
633 1.20 mycroft
634 1.1 cgd release:
635 1.1 cgd return (error);
636 1.1 cgd }
637 1.1 cgd
638 1.1 cgd /*
639 1.30 thorpej * Unix domain socket option processing.
640 1.30 thorpej */
641 1.30 thorpej int
642 1.118 plunky uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
643 1.30 thorpej {
644 1.30 thorpej struct unpcb *unp = sotounpcb(so);
645 1.30 thorpej int optval = 0, error = 0;
646 1.30 thorpej
647 1.112 ad KASSERT(solocked(so));
648 1.112 ad
649 1.118 plunky if (sopt->sopt_level != 0) {
650 1.100 dyoung error = ENOPROTOOPT;
651 1.30 thorpej } else switch (op) {
652 1.30 thorpej
653 1.30 thorpej case PRCO_SETOPT:
654 1.118 plunky switch (sopt->sopt_name) {
655 1.30 thorpej case LOCAL_CREDS:
656 1.72 matt case LOCAL_CONNWAIT:
657 1.118 plunky error = sockopt_getint(sopt, &optval);
658 1.118 plunky if (error)
659 1.118 plunky break;
660 1.118 plunky switch (sopt->sopt_name) {
661 1.30 thorpej #define OPTSET(bit) \
662 1.30 thorpej if (optval) \
663 1.30 thorpej unp->unp_flags |= (bit); \
664 1.30 thorpej else \
665 1.30 thorpej unp->unp_flags &= ~(bit);
666 1.30 thorpej
667 1.118 plunky case LOCAL_CREDS:
668 1.118 plunky OPTSET(UNP_WANTCRED);
669 1.118 plunky break;
670 1.118 plunky case LOCAL_CONNWAIT:
671 1.118 plunky OPTSET(UNP_CONNWAIT);
672 1.118 plunky break;
673 1.30 thorpej }
674 1.30 thorpej break;
675 1.30 thorpej #undef OPTSET
676 1.30 thorpej
677 1.30 thorpej default:
678 1.30 thorpej error = ENOPROTOOPT;
679 1.30 thorpej break;
680 1.30 thorpej }
681 1.30 thorpej break;
682 1.30 thorpej
683 1.30 thorpej case PRCO_GETOPT:
684 1.112 ad sounlock(so);
685 1.118 plunky switch (sopt->sopt_name) {
686 1.99 he case LOCAL_PEEREID:
687 1.99 he if (unp->unp_flags & UNP_EIDSVALID) {
688 1.118 plunky error = sockopt_set(sopt,
689 1.118 plunky &unp->unp_connid, sizeof(unp->unp_connid));
690 1.99 he } else {
691 1.99 he error = EINVAL;
692 1.99 he }
693 1.99 he break;
694 1.30 thorpej case LOCAL_CREDS:
695 1.30 thorpej #define OPTBIT(bit) (unp->unp_flags & (bit) ? 1 : 0)
696 1.30 thorpej
697 1.99 he optval = OPTBIT(UNP_WANTCRED);
698 1.118 plunky error = sockopt_setint(sopt, optval);
699 1.30 thorpej break;
700 1.30 thorpej #undef OPTBIT
701 1.30 thorpej
702 1.30 thorpej default:
703 1.30 thorpej error = ENOPROTOOPT;
704 1.30 thorpej break;
705 1.30 thorpej }
706 1.112 ad solock(so);
707 1.30 thorpej break;
708 1.30 thorpej }
709 1.30 thorpej return (error);
710 1.30 thorpej }
711 1.30 thorpej
712 1.30 thorpej /*
713 1.1 cgd * Both send and receive buffers are allocated PIPSIZ bytes of buffering
714 1.1 cgd * for stream sockets, although the total for sender and receiver is
715 1.1 cgd * actually only PIPSIZ.
716 1.1 cgd * Datagram sockets really use the sendspace as the maximum datagram size,
717 1.1 cgd * and don't really want to reserve the sendspace. Their recvspace should
718 1.1 cgd * be large enough for at least one max-size datagram plus address.
719 1.1 cgd */
720 1.1 cgd #define PIPSIZ 4096
721 1.1 cgd u_long unpst_sendspace = PIPSIZ;
722 1.1 cgd u_long unpst_recvspace = PIPSIZ;
723 1.1 cgd u_long unpdg_sendspace = 2*1024; /* really max datagram size */
724 1.1 cgd u_long unpdg_recvspace = 4*1024;
725 1.1 cgd
726 1.106 ad u_int unp_rights; /* file descriptors in flight */
727 1.1 cgd
728 1.5 andrew int
729 1.76 matt unp_attach(struct socket *so)
730 1.1 cgd {
731 1.46 augustss struct unpcb *unp;
732 1.1 cgd int error;
733 1.80 perry
734 1.112 ad switch (so->so_type) {
735 1.112 ad case SOCK_STREAM:
736 1.112 ad if (so->so_lock == NULL) {
737 1.112 ad /*
738 1.112 ad * XXX Assuming that no socket locks are held,
739 1.112 ad * as this call may sleep.
740 1.112 ad */
741 1.112 ad so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
742 1.112 ad solock(so);
743 1.112 ad }
744 1.112 ad if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
745 1.1 cgd error = soreserve(so, unpst_sendspace, unpst_recvspace);
746 1.112 ad if (error != 0)
747 1.112 ad return (error);
748 1.112 ad }
749 1.112 ad break;
750 1.1 cgd
751 1.112 ad case SOCK_DGRAM:
752 1.112 ad if (so->so_lock == NULL) {
753 1.112 ad mutex_obj_hold(uipc_lock);
754 1.112 ad so->so_lock = uipc_lock;
755 1.112 ad solock(so);
756 1.112 ad }
757 1.112 ad if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
758 1.1 cgd error = soreserve(so, unpdg_sendspace, unpdg_recvspace);
759 1.112 ad if (error != 0)
760 1.112 ad return (error);
761 1.112 ad }
762 1.112 ad break;
763 1.8 mycroft
764 1.112 ad default:
765 1.112 ad panic("unp_attach");
766 1.1 cgd }
767 1.112 ad KASSERT(solocked(so));
768 1.14 mycroft unp = malloc(sizeof(*unp), M_PCB, M_NOWAIT);
769 1.14 mycroft if (unp == NULL)
770 1.1 cgd return (ENOBUFS);
771 1.95 christos memset((void *)unp, 0, sizeof(*unp));
772 1.14 mycroft unp->unp_socket = so;
773 1.15 mycroft so->so_pcb = unp;
774 1.85 simonb nanotime(&unp->unp_ctime);
775 1.1 cgd return (0);
776 1.1 cgd }
777 1.1 cgd
778 1.17 pk void
779 1.76 matt unp_detach(struct unpcb *unp)
780 1.1 cgd {
781 1.112 ad struct socket *so;
782 1.112 ad vnode_t *vp;
783 1.112 ad
784 1.112 ad so = unp->unp_socket;
785 1.80 perry
786 1.112 ad retry:
787 1.112 ad if ((vp = unp->unp_vnode) != NULL) {
788 1.112 ad sounlock(so);
789 1.112 ad /* Acquire v_interlock to protect against unp_connect(). */
790 1.113 ad /* XXXAD racy */
791 1.112 ad mutex_enter(&vp->v_interlock);
792 1.112 ad vp->v_socket = NULL;
793 1.112 ad vrelel(vp, 0);
794 1.112 ad solock(so);
795 1.112 ad unp->unp_vnode = NULL;
796 1.1 cgd }
797 1.1 cgd if (unp->unp_conn)
798 1.1 cgd unp_disconnect(unp);
799 1.112 ad while (unp->unp_refs) {
800 1.112 ad KASSERT(solocked2(so, unp->unp_refs->unp_socket));
801 1.112 ad if (unp_drop(unp->unp_refs, ECONNRESET)) {
802 1.112 ad solock(so);
803 1.112 ad goto retry;
804 1.112 ad }
805 1.112 ad }
806 1.112 ad soisdisconnected(so);
807 1.112 ad so->so_pcb = NULL;
808 1.8 mycroft if (unp_rights) {
809 1.8 mycroft /*
810 1.8 mycroft * Normally the receive buffer is flushed later,
811 1.8 mycroft * in sofree, but if our receive buffer holds references
812 1.8 mycroft * to descriptors that are now garbage, we will dispose
813 1.8 mycroft * of those descriptor references after the garbage collector
814 1.8 mycroft * gets them (resulting in a "panic: closef: count < 0").
815 1.8 mycroft */
816 1.112 ad sorflush(so);
817 1.112 ad unp_free(unp);
818 1.112 ad sounlock(so);
819 1.1 cgd unp_gc();
820 1.112 ad solock(so);
821 1.14 mycroft } else
822 1.112 ad unp_free(unp);
823 1.1 cgd }
824 1.1 cgd
825 1.5 andrew int
826 1.112 ad unp_bind(struct socket *so, struct mbuf *nam, struct lwp *l)
827 1.1 cgd {
828 1.27 thorpej struct sockaddr_un *sun;
829 1.112 ad struct unpcb *unp;
830 1.106 ad vnode_t *vp;
831 1.1 cgd struct vattr vattr;
832 1.27 thorpej size_t addrlen;
833 1.1 cgd int error;
834 1.1 cgd struct nameidata nd;
835 1.112 ad proc_t *p;
836 1.1 cgd
837 1.112 ad unp = sotounpcb(so);
838 1.112 ad if (unp->unp_vnode != NULL)
839 1.20 mycroft return (EINVAL);
840 1.109 ad if ((unp->unp_flags & UNP_BUSY) != 0) {
841 1.109 ad /*
842 1.109 ad * EALREADY may not be strictly accurate, but since this
843 1.109 ad * is a major application error it's hardly a big deal.
844 1.109 ad */
845 1.109 ad return (EALREADY);
846 1.109 ad }
847 1.109 ad unp->unp_flags |= UNP_BUSY;
848 1.112 ad sounlock(so);
849 1.109 ad
850 1.27 thorpej /*
851 1.27 thorpej * Allocate the new sockaddr. We have to allocate one
852 1.27 thorpej * extra byte so that we can ensure that the pathname
853 1.27 thorpej * is nul-terminated.
854 1.27 thorpej */
855 1.112 ad p = l->l_proc;
856 1.27 thorpej addrlen = nam->m_len + 1;
857 1.27 thorpej sun = malloc(addrlen, M_SONAME, M_WAITOK);
858 1.95 christos m_copydata(nam, 0, nam->m_len, (void *)sun);
859 1.27 thorpej *(((char *)sun) + nam->m_len) = '\0';
860 1.27 thorpej
861 1.97 dsl NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, UIO_SYSSPACE,
862 1.103 pooka sun->sun_path);
863 1.27 thorpej
864 1.1 cgd /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
865 1.16 christos if ((error = namei(&nd)) != 0)
866 1.27 thorpej goto bad;
867 1.9 mycroft vp = nd.ni_vp;
868 1.96 hannken if (vp != NULL) {
869 1.9 mycroft VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
870 1.9 mycroft if (nd.ni_dvp == vp)
871 1.9 mycroft vrele(nd.ni_dvp);
872 1.1 cgd else
873 1.9 mycroft vput(nd.ni_dvp);
874 1.1 cgd vrele(vp);
875 1.96 hannken error = EADDRINUSE;
876 1.96 hannken goto bad;
877 1.1 cgd }
878 1.1 cgd VATTR_NULL(&vattr);
879 1.1 cgd vattr.va_type = VSOCK;
880 1.84 jmmv vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
881 1.16 christos error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
882 1.16 christos if (error)
883 1.27 thorpej goto bad;
884 1.9 mycroft vp = nd.ni_vp;
885 1.112 ad solock(so);
886 1.1 cgd vp->v_socket = unp->unp_socket;
887 1.1 cgd unp->unp_vnode = vp;
888 1.27 thorpej unp->unp_addrlen = addrlen;
889 1.27 thorpej unp->unp_addr = sun;
890 1.99 he unp->unp_connid.unp_pid = p->p_pid;
891 1.112 ad unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
892 1.112 ad unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
893 1.99 he unp->unp_flags |= UNP_EIDSBIND;
894 1.31 fvdl VOP_UNLOCK(vp, 0);
895 1.109 ad unp->unp_flags &= ~UNP_BUSY;
896 1.1 cgd return (0);
897 1.27 thorpej
898 1.27 thorpej bad:
899 1.27 thorpej free(sun, M_SONAME);
900 1.112 ad solock(so);
901 1.109 ad unp->unp_flags &= ~UNP_BUSY;
902 1.27 thorpej return (error);
903 1.1 cgd }
904 1.1 cgd
905 1.5 andrew int
906 1.86 christos unp_connect(struct socket *so, struct mbuf *nam, struct lwp *l)
907 1.1 cgd {
908 1.46 augustss struct sockaddr_un *sun;
909 1.106 ad vnode_t *vp;
910 1.46 augustss struct socket *so2, *so3;
911 1.99 he struct unpcb *unp, *unp2, *unp3;
912 1.27 thorpej size_t addrlen;
913 1.1 cgd int error;
914 1.1 cgd struct nameidata nd;
915 1.1 cgd
916 1.109 ad unp = sotounpcb(so);
917 1.109 ad if ((unp->unp_flags & UNP_BUSY) != 0) {
918 1.109 ad /*
919 1.109 ad * EALREADY may not be strictly accurate, but since this
920 1.109 ad * is a major application error it's hardly a big deal.
921 1.109 ad */
922 1.109 ad return (EALREADY);
923 1.109 ad }
924 1.109 ad unp->unp_flags |= UNP_BUSY;
925 1.112 ad sounlock(so);
926 1.109 ad
927 1.27 thorpej /*
928 1.27 thorpej * Allocate a temporary sockaddr. We have to allocate one extra
929 1.27 thorpej * byte so that we can ensure that the pathname is nul-terminated.
930 1.27 thorpej * When we establish the connection, we copy the other PCB's
931 1.27 thorpej * sockaddr to our own.
932 1.27 thorpej */
933 1.27 thorpej addrlen = nam->m_len + 1;
934 1.27 thorpej sun = malloc(addrlen, M_SONAME, M_WAITOK);
935 1.95 christos m_copydata(nam, 0, nam->m_len, (void *)sun);
936 1.27 thorpej *(((char *)sun) + nam->m_len) = '\0';
937 1.27 thorpej
938 1.103 pooka NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, UIO_SYSSPACE,
939 1.103 pooka sun->sun_path);
940 1.27 thorpej
941 1.16 christos if ((error = namei(&nd)) != 0)
942 1.27 thorpej goto bad2;
943 1.9 mycroft vp = nd.ni_vp;
944 1.1 cgd if (vp->v_type != VSOCK) {
945 1.1 cgd error = ENOTSOCK;
946 1.1 cgd goto bad;
947 1.1 cgd }
948 1.102 pooka if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
949 1.1 cgd goto bad;
950 1.112 ad /* Acquire v_interlock to protect against unp_detach(). */
951 1.112 ad mutex_enter(&vp->v_interlock);
952 1.1 cgd so2 = vp->v_socket;
953 1.112 ad if (so2 == NULL) {
954 1.112 ad mutex_exit(&vp->v_interlock);
955 1.1 cgd error = ECONNREFUSED;
956 1.1 cgd goto bad;
957 1.1 cgd }
958 1.1 cgd if (so->so_type != so2->so_type) {
959 1.112 ad mutex_exit(&vp->v_interlock);
960 1.1 cgd error = EPROTOTYPE;
961 1.1 cgd goto bad;
962 1.1 cgd }
963 1.112 ad solock(so);
964 1.112 ad unp_resetlock(so);
965 1.112 ad mutex_exit(&vp->v_interlock);
966 1.112 ad if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
967 1.112 ad /*
968 1.112 ad * This may seem somewhat fragile but is OK: if we can
969 1.112 ad * see SO_ACCEPTCONN set on the endpoint, then it must
970 1.112 ad * be locked by the domain-wide uipc_lock.
971 1.112 ad */
972 1.112 ad KASSERT((so->so_options & SO_ACCEPTCONN) == 0 ||
973 1.112 ad so2->so_lock == uipc_lock);
974 1.1 cgd if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
975 1.1 cgd (so3 = sonewconn(so2, 0)) == 0) {
976 1.1 cgd error = ECONNREFUSED;
977 1.112 ad sounlock(so);
978 1.1 cgd goto bad;
979 1.1 cgd }
980 1.1 cgd unp2 = sotounpcb(so2);
981 1.1 cgd unp3 = sotounpcb(so3);
982 1.26 thorpej if (unp2->unp_addr) {
983 1.26 thorpej unp3->unp_addr = malloc(unp2->unp_addrlen,
984 1.26 thorpej M_SONAME, M_WAITOK);
985 1.36 perry memcpy(unp3->unp_addr, unp2->unp_addr,
986 1.26 thorpej unp2->unp_addrlen);
987 1.26 thorpej unp3->unp_addrlen = unp2->unp_addrlen;
988 1.26 thorpej }
989 1.30 thorpej unp3->unp_flags = unp2->unp_flags;
990 1.112 ad unp3->unp_connid.unp_pid = l->l_proc->p_pid;
991 1.112 ad unp3->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
992 1.112 ad unp3->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
993 1.99 he unp3->unp_flags |= UNP_EIDSVALID;
994 1.99 he if (unp2->unp_flags & UNP_EIDSBIND) {
995 1.99 he unp->unp_connid = unp2->unp_connid;
996 1.99 he unp->unp_flags |= UNP_EIDSVALID;
997 1.99 he }
998 1.112 ad so2 = so3;
999 1.33 thorpej }
1000 1.72 matt error = unp_connect2(so, so2, PRU_CONNECT);
1001 1.112 ad sounlock(so);
1002 1.27 thorpej bad:
1003 1.1 cgd vput(vp);
1004 1.27 thorpej bad2:
1005 1.27 thorpej free(sun, M_SONAME);
1006 1.112 ad solock(so);
1007 1.109 ad unp->unp_flags &= ~UNP_BUSY;
1008 1.1 cgd return (error);
1009 1.1 cgd }
1010 1.1 cgd
1011 1.5 andrew int
1012 1.76 matt unp_connect2(struct socket *so, struct socket *so2, int req)
1013 1.1 cgd {
1014 1.46 augustss struct unpcb *unp = sotounpcb(so);
1015 1.46 augustss struct unpcb *unp2;
1016 1.1 cgd
1017 1.1 cgd if (so2->so_type != so->so_type)
1018 1.1 cgd return (EPROTOTYPE);
1019 1.112 ad
1020 1.112 ad /*
1021 1.112 ad * All three sockets involved must be locked by same lock:
1022 1.112 ad *
1023 1.112 ad * local endpoint (so)
1024 1.112 ad * remote endpoint (so2)
1025 1.112 ad * queue head (so->so_head, only if PR_CONNREQUIRED)
1026 1.112 ad */
1027 1.112 ad KASSERT(solocked2(so, so2));
1028 1.112 ad if (so->so_head != NULL) {
1029 1.112 ad KASSERT(so->so_lock == uipc_lock);
1030 1.112 ad KASSERT(solocked2(so, so->so_head));
1031 1.112 ad }
1032 1.112 ad
1033 1.1 cgd unp2 = sotounpcb(so2);
1034 1.1 cgd unp->unp_conn = unp2;
1035 1.1 cgd switch (so->so_type) {
1036 1.1 cgd
1037 1.1 cgd case SOCK_DGRAM:
1038 1.1 cgd unp->unp_nextref = unp2->unp_refs;
1039 1.1 cgd unp2->unp_refs = unp;
1040 1.1 cgd soisconnected(so);
1041 1.1 cgd break;
1042 1.1 cgd
1043 1.1 cgd case SOCK_STREAM:
1044 1.1 cgd unp2->unp_conn = unp;
1045 1.72 matt if (req == PRU_CONNECT &&
1046 1.72 matt ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1047 1.72 matt soisconnecting(so);
1048 1.72 matt else
1049 1.72 matt soisconnected(so);
1050 1.1 cgd soisconnected(so2);
1051 1.112 ad /*
1052 1.112 ad * If the connection is fully established, break the
1053 1.112 ad * association with uipc_lock and give the connected
1054 1.112 ad * pair a seperate lock to share. For CONNECT2, we
1055 1.112 ad * require that the locks already match (the sockets
1056 1.112 ad * are created that way).
1057 1.112 ad */
1058 1.112 ad if (req == PRU_CONNECT)
1059 1.112 ad unp_setpeerlocks(so, so2);
1060 1.1 cgd break;
1061 1.1 cgd
1062 1.1 cgd default:
1063 1.1 cgd panic("unp_connect2");
1064 1.1 cgd }
1065 1.1 cgd return (0);
1066 1.1 cgd }
1067 1.1 cgd
1068 1.5 andrew void
1069 1.76 matt unp_disconnect(struct unpcb *unp)
1070 1.1 cgd {
1071 1.46 augustss struct unpcb *unp2 = unp->unp_conn;
1072 1.112 ad struct socket *so;
1073 1.1 cgd
1074 1.1 cgd if (unp2 == 0)
1075 1.1 cgd return;
1076 1.1 cgd unp->unp_conn = 0;
1077 1.112 ad so = unp->unp_socket;
1078 1.112 ad switch (so->so_type) {
1079 1.1 cgd case SOCK_DGRAM:
1080 1.1 cgd if (unp2->unp_refs == unp)
1081 1.1 cgd unp2->unp_refs = unp->unp_nextref;
1082 1.1 cgd else {
1083 1.1 cgd unp2 = unp2->unp_refs;
1084 1.1 cgd for (;;) {
1085 1.112 ad KASSERT(solocked2(so, unp2->unp_socket));
1086 1.1 cgd if (unp2 == 0)
1087 1.1 cgd panic("unp_disconnect");
1088 1.1 cgd if (unp2->unp_nextref == unp)
1089 1.1 cgd break;
1090 1.1 cgd unp2 = unp2->unp_nextref;
1091 1.1 cgd }
1092 1.1 cgd unp2->unp_nextref = unp->unp_nextref;
1093 1.1 cgd }
1094 1.1 cgd unp->unp_nextref = 0;
1095 1.112 ad so->so_state &= ~SS_ISCONNECTED;
1096 1.1 cgd break;
1097 1.1 cgd
1098 1.1 cgd case SOCK_STREAM:
1099 1.112 ad KASSERT(solocked2(so, unp2->unp_socket));
1100 1.112 ad soisdisconnected(so);
1101 1.1 cgd unp2->unp_conn = 0;
1102 1.1 cgd soisdisconnected(unp2->unp_socket);
1103 1.1 cgd break;
1104 1.1 cgd }
1105 1.1 cgd }
1106 1.1 cgd
1107 1.1 cgd #ifdef notdef
1108 1.76 matt unp_abort(struct unpcb *unp)
1109 1.1 cgd {
1110 1.1 cgd unp_detach(unp);
1111 1.1 cgd }
1112 1.1 cgd #endif
1113 1.1 cgd
1114 1.5 andrew void
1115 1.76 matt unp_shutdown(struct unpcb *unp)
1116 1.1 cgd {
1117 1.1 cgd struct socket *so;
1118 1.1 cgd
1119 1.1 cgd if (unp->unp_socket->so_type == SOCK_STREAM && unp->unp_conn &&
1120 1.1 cgd (so = unp->unp_conn->unp_socket))
1121 1.1 cgd socantrcvmore(so);
1122 1.1 cgd }
1123 1.1 cgd
1124 1.112 ad bool
1125 1.76 matt unp_drop(struct unpcb *unp, int errno)
1126 1.1 cgd {
1127 1.1 cgd struct socket *so = unp->unp_socket;
1128 1.1 cgd
1129 1.112 ad KASSERT(solocked(so));
1130 1.112 ad
1131 1.1 cgd so->so_error = errno;
1132 1.1 cgd unp_disconnect(unp);
1133 1.1 cgd if (so->so_head) {
1134 1.112 ad so->so_pcb = NULL;
1135 1.112 ad /* sofree() drops the socket lock */
1136 1.14 mycroft sofree(so);
1137 1.112 ad unp_free(unp);
1138 1.112 ad return true;
1139 1.1 cgd }
1140 1.112 ad return false;
1141 1.1 cgd }
1142 1.1 cgd
1143 1.1 cgd #ifdef notdef
1144 1.76 matt unp_drain(void)
1145 1.1 cgd {
1146 1.1 cgd
1147 1.1 cgd }
1148 1.1 cgd #endif
1149 1.1 cgd
1150 1.5 andrew int
1151 1.86 christos unp_externalize(struct mbuf *rights, struct lwp *l)
1152 1.1 cgd {
1153 1.46 augustss struct cmsghdr *cm = mtod(rights, struct cmsghdr *);
1154 1.86 christos struct proc *p = l->l_proc;
1155 1.47 thorpej int i, *fdp;
1156 1.106 ad file_t **rp;
1157 1.106 ad file_t *fp;
1158 1.50 thorpej int nfds, error = 0;
1159 1.47 thorpej
1160 1.47 thorpej nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
1161 1.106 ad sizeof(file_t *);
1162 1.106 ad rp = (file_t **)CMSG_DATA(cm);
1163 1.1 cgd
1164 1.50 thorpej fdp = malloc(nfds * sizeof(int), M_TEMP, M_WAITOK);
1165 1.101 ad rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
1166 1.50 thorpej
1167 1.39 sommerfe /* Make sure the recipient should be able to see the descriptors.. */
1168 1.42 thorpej if (p->p_cwdi->cwdi_rdir != NULL) {
1169 1.106 ad rp = (file_t **)CMSG_DATA(cm);
1170 1.39 sommerfe for (i = 0; i < nfds; i++) {
1171 1.39 sommerfe fp = *rp++;
1172 1.39 sommerfe /*
1173 1.39 sommerfe * If we are in a chroot'ed directory, and
1174 1.39 sommerfe * someone wants to pass us a directory, make
1175 1.39 sommerfe * sure it's inside the subtree we're allowed
1176 1.39 sommerfe * to access.
1177 1.39 sommerfe */
1178 1.39 sommerfe if (fp->f_type == DTYPE_VNODE) {
1179 1.106 ad vnode_t *vp = (vnode_t *)fp->f_data;
1180 1.39 sommerfe if ((vp->v_type == VDIR) &&
1181 1.86 christos !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
1182 1.39 sommerfe error = EPERM;
1183 1.39 sommerfe break;
1184 1.39 sommerfe }
1185 1.39 sommerfe }
1186 1.39 sommerfe }
1187 1.39 sommerfe }
1188 1.50 thorpej
1189 1.50 thorpej restart:
1190 1.106 ad rp = (file_t **)CMSG_DATA(cm);
1191 1.50 thorpej if (error != 0) {
1192 1.24 cgd for (i = 0; i < nfds; i++) {
1193 1.1 cgd fp = *rp;
1194 1.39 sommerfe /*
1195 1.39 sommerfe * zero the pointer before calling unp_discard,
1196 1.39 sommerfe * since it may end up in unp_gc()..
1197 1.39 sommerfe */
1198 1.39 sommerfe *rp++ = 0;
1199 1.1 cgd unp_discard(fp);
1200 1.1 cgd }
1201 1.50 thorpej goto out;
1202 1.1 cgd }
1203 1.50 thorpej
1204 1.24 cgd /*
1205 1.50 thorpej * First loop -- allocate file descriptor table slots for the
1206 1.50 thorpej * new descriptors.
1207 1.24 cgd */
1208 1.24 cgd for (i = 0; i < nfds; i++) {
1209 1.39 sommerfe fp = *rp++;
1210 1.106 ad if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
1211 1.49 thorpej /*
1212 1.50 thorpej * Back out what we've done so far.
1213 1.49 thorpej */
1214 1.106 ad for (--i; i >= 0; i--) {
1215 1.106 ad fd_abort(p, NULL, fdp[i]);
1216 1.106 ad }
1217 1.50 thorpej if (error == ENOSPC) {
1218 1.106 ad fd_tryexpand(p);
1219 1.50 thorpej error = 0;
1220 1.50 thorpej } else {
1221 1.50 thorpej /*
1222 1.50 thorpej * This is the error that has historically
1223 1.50 thorpej * been returned, and some callers may
1224 1.50 thorpej * expect it.
1225 1.50 thorpej */
1226 1.50 thorpej error = EMSGSIZE;
1227 1.50 thorpej }
1228 1.50 thorpej goto restart;
1229 1.49 thorpej }
1230 1.1 cgd }
1231 1.24 cgd
1232 1.24 cgd /*
1233 1.50 thorpej * Now that adding them has succeeded, update all of the
1234 1.112 ad * descriptor passing state.
1235 1.112 ad */
1236 1.106 ad rp = (file_t **)CMSG_DATA(cm);
1237 1.50 thorpej for (i = 0; i < nfds; i++) {
1238 1.50 thorpej fp = *rp++;
1239 1.106 ad atomic_dec_uint(&unp_rights);
1240 1.106 ad fd_affix(p, fp, fdp[i]);
1241 1.106 ad mutex_enter(&fp->f_lock);
1242 1.50 thorpej fp->f_msgcount--;
1243 1.106 ad mutex_exit(&fp->f_lock);
1244 1.106 ad /*
1245 1.106 ad * Note that fd_affix() adds a reference to the file.
1246 1.106 ad * The file may already have been closed by another
1247 1.106 ad * LWP in the process, so we must drop the reference
1248 1.106 ad * added by unp_internalize() with closef().
1249 1.106 ad */
1250 1.106 ad closef(fp);
1251 1.50 thorpej }
1252 1.50 thorpej
1253 1.50 thorpej /*
1254 1.50 thorpej * Copy temporary array to message and adjust length, in case of
1255 1.106 ad * transition from large file_t pointers to ints.
1256 1.50 thorpej */
1257 1.50 thorpej memcpy(CMSG_DATA(cm), fdp, nfds * sizeof(int));
1258 1.47 thorpej cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
1259 1.47 thorpej rights->m_len = CMSG_SPACE(nfds * sizeof(int));
1260 1.50 thorpej out:
1261 1.101 ad rw_exit(&p->p_cwdi->cwdi_lock);
1262 1.50 thorpej free(fdp, M_TEMP);
1263 1.50 thorpej return (error);
1264 1.1 cgd }
1265 1.1 cgd
1266 1.5 andrew int
1267 1.112 ad unp_internalize(struct mbuf **controlp)
1268 1.1 cgd {
1269 1.106 ad struct filedesc *fdescp = curlwp->l_fd;
1270 1.108 yamt struct mbuf *control = *controlp;
1271 1.73 martin struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
1272 1.106 ad file_t **rp, **files;
1273 1.106 ad file_t *fp;
1274 1.46 augustss int i, fd, *fdp;
1275 1.106 ad int nfds, error;
1276 1.106 ad
1277 1.106 ad error = 0;
1278 1.106 ad newcm = NULL;
1279 1.38 thorpej
1280 1.106 ad /* Sanity check the control message header. */
1281 1.66 jdolecek if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
1282 1.117 christos cm->cmsg_len > control->m_len ||
1283 1.117 christos cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
1284 1.1 cgd return (EINVAL);
1285 1.24 cgd
1286 1.106 ad /*
1287 1.106 ad * Verify that the file descriptors are valid, and acquire
1288 1.106 ad * a reference to each.
1289 1.106 ad */
1290 1.47 thorpej nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
1291 1.47 thorpej fdp = (int *)CMSG_DATA(cm);
1292 1.24 cgd for (i = 0; i < nfds; i++) {
1293 1.24 cgd fd = *fdp++;
1294 1.106 ad if ((fp = fd_getfile(fd)) == NULL) {
1295 1.106 ad nfds = i + 1;
1296 1.106 ad error = EBADF;
1297 1.106 ad goto out;
1298 1.101 ad }
1299 1.24 cgd }
1300 1.24 cgd
1301 1.106 ad /* Allocate new space and copy header into it. */
1302 1.106 ad newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
1303 1.106 ad if (newcm == NULL) {
1304 1.106 ad error = E2BIG;
1305 1.106 ad goto out;
1306 1.106 ad }
1307 1.106 ad memcpy(newcm, cm, sizeof(struct cmsghdr));
1308 1.106 ad files = (file_t **)CMSG_DATA(newcm);
1309 1.106 ad
1310 1.24 cgd /*
1311 1.106 ad * Transform the file descriptors into file_t pointers, in
1312 1.24 cgd * reverse order so that if pointers are bigger than ints, the
1313 1.106 ad * int won't get until we're done. No need to lock, as we have
1314 1.106 ad * already validated the descriptors with fd_getfile().
1315 1.24 cgd */
1316 1.94 cbiere fdp = (int *)CMSG_DATA(cm) + nfds;
1317 1.94 cbiere rp = files + nfds;
1318 1.24 cgd for (i = 0; i < nfds; i++) {
1319 1.106 ad fp = fdescp->fd_ofiles[*--fdp]->ff_file;
1320 1.106 ad KASSERT(fp != NULL);
1321 1.106 ad mutex_enter(&fp->f_lock);
1322 1.94 cbiere *--rp = fp;
1323 1.1 cgd fp->f_count++;
1324 1.1 cgd fp->f_msgcount++;
1325 1.106 ad mutex_exit(&fp->f_lock);
1326 1.106 ad atomic_inc_uint(&unp_rights);
1327 1.106 ad }
1328 1.106 ad
1329 1.106 ad out:
1330 1.106 ad /* Release descriptor references. */
1331 1.106 ad fdp = (int *)CMSG_DATA(cm);
1332 1.106 ad for (i = 0; i < nfds; i++) {
1333 1.106 ad fd_putfile(*fdp++);
1334 1.1 cgd }
1335 1.73 martin
1336 1.106 ad if (error == 0) {
1337 1.108 yamt if (control->m_flags & M_EXT) {
1338 1.108 yamt m_freem(control);
1339 1.108 yamt *controlp = control = m_get(M_WAIT, MT_CONTROL);
1340 1.108 yamt }
1341 1.106 ad MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
1342 1.73 martin M_MBUF, NULL, NULL);
1343 1.73 martin cm = newcm;
1344 1.106 ad /*
1345 1.106 ad * Adjust message & mbuf to note amount of space
1346 1.106 ad * actually used.
1347 1.106 ad */
1348 1.106 ad cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
1349 1.106 ad control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
1350 1.73 martin }
1351 1.73 martin
1352 1.106 ad return error;
1353 1.30 thorpej }
1354 1.30 thorpej
1355 1.30 thorpej struct mbuf *
1356 1.92 ad unp_addsockcred(struct lwp *l, struct mbuf *control)
1357 1.30 thorpej {
1358 1.30 thorpej struct cmsghdr *cmp;
1359 1.30 thorpej struct sockcred *sc;
1360 1.30 thorpej struct mbuf *m, *n;
1361 1.47 thorpej int len, space, i;
1362 1.30 thorpej
1363 1.92 ad len = CMSG_LEN(SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)));
1364 1.92 ad space = CMSG_SPACE(SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)));
1365 1.30 thorpej
1366 1.30 thorpej m = m_get(M_WAIT, MT_CONTROL);
1367 1.47 thorpej if (space > MLEN) {
1368 1.47 thorpej if (space > MCLBYTES)
1369 1.47 thorpej MEXTMALLOC(m, space, M_WAITOK);
1370 1.30 thorpej else
1371 1.59 matt m_clget(m, M_WAIT);
1372 1.30 thorpej if ((m->m_flags & M_EXT) == 0) {
1373 1.30 thorpej m_free(m);
1374 1.30 thorpej return (control);
1375 1.30 thorpej }
1376 1.30 thorpej }
1377 1.30 thorpej
1378 1.47 thorpej m->m_len = space;
1379 1.30 thorpej m->m_next = NULL;
1380 1.30 thorpej cmp = mtod(m, struct cmsghdr *);
1381 1.30 thorpej sc = (struct sockcred *)CMSG_DATA(cmp);
1382 1.30 thorpej cmp->cmsg_len = len;
1383 1.30 thorpej cmp->cmsg_level = SOL_SOCKET;
1384 1.30 thorpej cmp->cmsg_type = SCM_CREDS;
1385 1.92 ad sc->sc_uid = kauth_cred_getuid(l->l_cred);
1386 1.92 ad sc->sc_euid = kauth_cred_geteuid(l->l_cred);
1387 1.92 ad sc->sc_gid = kauth_cred_getgid(l->l_cred);
1388 1.92 ad sc->sc_egid = kauth_cred_getegid(l->l_cred);
1389 1.92 ad sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
1390 1.30 thorpej for (i = 0; i < sc->sc_ngroups; i++)
1391 1.92 ad sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
1392 1.30 thorpej
1393 1.30 thorpej /*
1394 1.30 thorpej * If a control message already exists, append us to the end.
1395 1.30 thorpej */
1396 1.30 thorpej if (control != NULL) {
1397 1.30 thorpej for (n = control; n->m_next != NULL; n = n->m_next)
1398 1.30 thorpej ;
1399 1.30 thorpej n->m_next = m;
1400 1.30 thorpej } else
1401 1.30 thorpej control = m;
1402 1.30 thorpej
1403 1.30 thorpej return (control);
1404 1.1 cgd }
1405 1.1 cgd
1406 1.1 cgd int unp_defer, unp_gcing;
1407 1.1 cgd extern struct domain unixdomain;
1408 1.1 cgd
1409 1.39 sommerfe /*
1410 1.39 sommerfe * Comment added long after the fact explaining what's going on here.
1411 1.39 sommerfe * Do a mark-sweep GC of file descriptors on the system, to free up
1412 1.39 sommerfe * any which are caught in flight to an about-to-be-closed socket.
1413 1.39 sommerfe *
1414 1.39 sommerfe * Traditional mark-sweep gc's start at the "root", and mark
1415 1.39 sommerfe * everything reachable from the root (which, in our case would be the
1416 1.39 sommerfe * process table). The mark bits are cleared during the sweep.
1417 1.39 sommerfe *
1418 1.39 sommerfe * XXX For some inexplicable reason (perhaps because the file
1419 1.39 sommerfe * descriptor tables used to live in the u area which could be swapped
1420 1.39 sommerfe * out and thus hard to reach), we do multiple scans over the set of
1421 1.39 sommerfe * descriptors, using use *two* mark bits per object (DEFER and MARK).
1422 1.39 sommerfe * Whenever we find a descriptor which references other descriptors,
1423 1.39 sommerfe * the ones it references are marked with both bits, and we iterate
1424 1.39 sommerfe * over the whole file table until there are no more DEFER bits set.
1425 1.39 sommerfe * We also make an extra pass *before* the GC to clear the mark bits,
1426 1.39 sommerfe * which could have been cleared at almost no cost during the previous
1427 1.39 sommerfe * sweep.
1428 1.39 sommerfe */
1429 1.5 andrew void
1430 1.76 matt unp_gc(void)
1431 1.1 cgd {
1432 1.106 ad file_t *fp, *nextfp;
1433 1.46 augustss struct socket *so, *so1;
1434 1.106 ad file_t **extra_ref, **fpp;
1435 1.106 ad int nunref, nslots, i;
1436 1.1 cgd
1437 1.106 ad if (atomic_swap_uint(&unp_gcing, 1) == 1)
1438 1.1 cgd return;
1439 1.106 ad
1440 1.106 ad restart:
1441 1.106 ad nslots = nfiles * 2;
1442 1.106 ad extra_ref = kmem_alloc(nslots * sizeof(file_t *), KM_SLEEP);
1443 1.39 sommerfe
1444 1.101 ad mutex_enter(&filelist_lock);
1445 1.106 ad unp_defer = 0;
1446 1.101 ad
1447 1.39 sommerfe /* Clear mark bits */
1448 1.106 ad LIST_FOREACH(fp, &filehead, f_list) {
1449 1.106 ad atomic_and_uint(&fp->f_flag, ~(FMARK|FDEFER));
1450 1.106 ad }
1451 1.39 sommerfe
1452 1.39 sommerfe /*
1453 1.39 sommerfe * Iterate over the set of descriptors, marking ones believed
1454 1.39 sommerfe * (based on refcount) to be referenced from a process, and
1455 1.39 sommerfe * marking for rescan descriptors which are queued on a socket.
1456 1.39 sommerfe */
1457 1.1 cgd do {
1458 1.54 matt LIST_FOREACH(fp, &filehead, f_list) {
1459 1.106 ad mutex_enter(&fp->f_lock);
1460 1.106 ad if (fp->f_flag & FDEFER) {
1461 1.106 ad atomic_and_uint(&fp->f_flag, ~FDEFER);
1462 1.1 cgd unp_defer--;
1463 1.106 ad KASSERT(fp->f_count != 0);
1464 1.1 cgd } else {
1465 1.101 ad if (fp->f_count == 0 ||
1466 1.101 ad (fp->f_flag & FMARK) ||
1467 1.101 ad fp->f_count == fp->f_msgcount) {
1468 1.106 ad mutex_exit(&fp->f_lock);
1469 1.1 cgd continue;
1470 1.101 ad }
1471 1.1 cgd }
1472 1.106 ad atomic_or_uint(&fp->f_flag, FMARK);
1473 1.39 sommerfe
1474 1.1 cgd if (fp->f_type != DTYPE_SOCKET ||
1475 1.112 ad (so = fp->f_data) == NULL ||
1476 1.101 ad so->so_proto->pr_domain != &unixdomain ||
1477 1.101 ad (so->so_proto->pr_flags&PR_RIGHTS) == 0) {
1478 1.106 ad mutex_exit(&fp->f_lock);
1479 1.1 cgd continue;
1480 1.101 ad }
1481 1.1 cgd #ifdef notdef
1482 1.1 cgd if (so->so_rcv.sb_flags & SB_LOCK) {
1483 1.107 rmind mutex_exit(&fp->f_lock);
1484 1.107 rmind mutex_exit(&filelist_lock);
1485 1.107 rmind kmem_free(extra_ref, nslots * sizeof(file_t *));
1486 1.1 cgd /*
1487 1.1 cgd * This is problematical; it's not clear
1488 1.1 cgd * we need to wait for the sockbuf to be
1489 1.1 cgd * unlocked (on a uniprocessor, at least),
1490 1.1 cgd * and it's also not clear what to do
1491 1.1 cgd * if sbwait returns an error due to receipt
1492 1.1 cgd * of a signal. If sbwait does return
1493 1.1 cgd * an error, we'll go into an infinite
1494 1.1 cgd * loop. Delete all of this for now.
1495 1.1 cgd */
1496 1.1 cgd (void) sbwait(&so->so_rcv);
1497 1.1 cgd goto restart;
1498 1.1 cgd }
1499 1.1 cgd #endif
1500 1.106 ad mutex_exit(&fp->f_lock);
1501 1.101 ad
1502 1.112 ad /*
1503 1.112 ad * XXX Locking a socket with filelist_lock held
1504 1.112 ad * is ugly. filelist_lock can be taken by the
1505 1.112 ad * pagedaemon when reclaiming items from file_cache.
1506 1.112 ad * Socket activity could delay the pagedaemon.
1507 1.112 ad */
1508 1.112 ad solock(so);
1509 1.39 sommerfe unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
1510 1.39 sommerfe /*
1511 1.106 ad * Mark descriptors referenced from sockets queued
1512 1.106 ad * on the accept queue as well.
1513 1.39 sommerfe */
1514 1.39 sommerfe if (so->so_options & SO_ACCEPTCONN) {
1515 1.54 matt TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
1516 1.39 sommerfe unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1517 1.39 sommerfe }
1518 1.54 matt TAILQ_FOREACH(so1, &so->so_q, so_qe) {
1519 1.39 sommerfe unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1520 1.39 sommerfe }
1521 1.39 sommerfe }
1522 1.112 ad sounlock(so);
1523 1.1 cgd }
1524 1.1 cgd } while (unp_defer);
1525 1.101 ad
1526 1.8 mycroft /*
1527 1.39 sommerfe * Sweep pass. Find unmarked descriptors, and free them.
1528 1.39 sommerfe *
1529 1.8 mycroft * We grab an extra reference to each of the file table entries
1530 1.8 mycroft * that are not otherwise accessible and then free the rights
1531 1.8 mycroft * that are stored in messages on them.
1532 1.8 mycroft *
1533 1.57 pk * The bug in the original code is a little tricky, so I'll describe
1534 1.8 mycroft * what's wrong with it here.
1535 1.8 mycroft *
1536 1.8 mycroft * It is incorrect to simply unp_discard each entry for f_msgcount
1537 1.8 mycroft * times -- consider the case of sockets A and B that contain
1538 1.8 mycroft * references to each other. On a last close of some other socket,
1539 1.8 mycroft * we trigger a gc since the number of outstanding rights (unp_rights)
1540 1.8 mycroft * is non-zero. If during the sweep phase the gc code un_discards,
1541 1.8 mycroft * we end up doing a (full) closef on the descriptor. A closef on A
1542 1.8 mycroft * results in the following chain. Closef calls soo_close, which
1543 1.8 mycroft * calls soclose. Soclose calls first (through the switch
1544 1.8 mycroft * uipc_usrreq) unp_detach, which re-invokes unp_gc. Unp_gc simply
1545 1.8 mycroft * returns because the previous instance had set unp_gcing, and
1546 1.8 mycroft * we return all the way back to soclose, which marks the socket
1547 1.8 mycroft * with SS_NOFDREF, and then calls sofree. Sofree calls sorflush
1548 1.8 mycroft * to free up the rights that are queued in messages on the socket A,
1549 1.8 mycroft * i.e., the reference on B. The sorflush calls via the dom_dispose
1550 1.8 mycroft * switch unp_dispose, which unp_scans with unp_discard. This second
1551 1.8 mycroft * instance of unp_discard just calls closef on B.
1552 1.8 mycroft *
1553 1.8 mycroft * Well, a similar chain occurs on B, resulting in a sorflush on B,
1554 1.8 mycroft * which results in another closef on A. Unfortunately, A is already
1555 1.8 mycroft * being closed, and the descriptor has already been marked with
1556 1.8 mycroft * SS_NOFDREF, and soclose panics at this point.
1557 1.8 mycroft *
1558 1.8 mycroft * Here, we first take an extra reference to each inaccessible
1559 1.39 sommerfe * descriptor. Then, if the inaccessible descriptor is a
1560 1.39 sommerfe * socket, we call sorflush in case it is a Unix domain
1561 1.39 sommerfe * socket. After we destroy all the rights carried in
1562 1.39 sommerfe * messages, we do a last closef to get rid of our extra
1563 1.39 sommerfe * reference. This is the last close, and the unp_detach etc
1564 1.39 sommerfe * will shut down the socket.
1565 1.8 mycroft *
1566 1.8 mycroft * 91/09/19, bsy (at) cs.cmu.edu
1567 1.8 mycroft */
1568 1.106 ad if (nslots < nfiles) {
1569 1.107 rmind mutex_exit(&filelist_lock);
1570 1.107 rmind kmem_free(extra_ref, nslots * sizeof(file_t *));
1571 1.107 rmind goto restart;
1572 1.106 ad }
1573 1.54 matt for (nunref = 0, fp = LIST_FIRST(&filehead), fpp = extra_ref; fp != 0;
1574 1.11 mycroft fp = nextfp) {
1575 1.54 matt nextfp = LIST_NEXT(fp, f_list);
1576 1.106 ad mutex_enter(&fp->f_lock);
1577 1.57 pk if (fp->f_count != 0 &&
1578 1.57 pk fp->f_count == fp->f_msgcount && !(fp->f_flag & FMARK)) {
1579 1.8 mycroft *fpp++ = fp;
1580 1.8 mycroft nunref++;
1581 1.8 mycroft fp->f_count++;
1582 1.8 mycroft }
1583 1.106 ad mutex_exit(&fp->f_lock);
1584 1.1 cgd }
1585 1.101 ad mutex_exit(&filelist_lock);
1586 1.101 ad
1587 1.39 sommerfe for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) {
1588 1.45 thorpej fp = *fpp;
1589 1.112 ad if (fp->f_type == DTYPE_SOCKET) {
1590 1.112 ad so = fp->f_data;
1591 1.112 ad solock(so);
1592 1.106 ad sorflush(fp->f_data);
1593 1.112 ad sounlock(so);
1594 1.112 ad }
1595 1.39 sommerfe }
1596 1.44 thorpej for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) {
1597 1.106 ad closef(*fpp);
1598 1.44 thorpej }
1599 1.106 ad kmem_free(extra_ref, nslots * sizeof(file_t *));
1600 1.106 ad atomic_swap_uint(&unp_gcing, 0);
1601 1.1 cgd }
1602 1.1 cgd
1603 1.5 andrew void
1604 1.76 matt unp_dispose(struct mbuf *m)
1605 1.1 cgd {
1606 1.8 mycroft
1607 1.1 cgd if (m)
1608 1.39 sommerfe unp_scan(m, unp_discard, 1);
1609 1.1 cgd }
1610 1.1 cgd
1611 1.5 andrew void
1612 1.106 ad unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
1613 1.1 cgd {
1614 1.46 augustss struct mbuf *m;
1615 1.106 ad file_t **rp;
1616 1.46 augustss struct cmsghdr *cm;
1617 1.46 augustss int i;
1618 1.1 cgd int qfds;
1619 1.1 cgd
1620 1.1 cgd while (m0) {
1621 1.48 thorpej for (m = m0; m; m = m->m_next) {
1622 1.1 cgd if (m->m_type == MT_CONTROL &&
1623 1.1 cgd m->m_len >= sizeof(*cm)) {
1624 1.1 cgd cm = mtod(m, struct cmsghdr *);
1625 1.1 cgd if (cm->cmsg_level != SOL_SOCKET ||
1626 1.111 mlelstv cm->cmsg_type != SCM_RIGHTS)
1627 1.1 cgd continue;
1628 1.48 thorpej qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
1629 1.106 ad / sizeof(file_t *);
1630 1.106 ad rp = (file_t **)CMSG_DATA(cm);
1631 1.39 sommerfe for (i = 0; i < qfds; i++) {
1632 1.106 ad file_t *fp = *rp;
1633 1.39 sommerfe if (discard)
1634 1.39 sommerfe *rp = 0;
1635 1.39 sommerfe (*op)(fp);
1636 1.39 sommerfe rp++;
1637 1.39 sommerfe }
1638 1.1 cgd break; /* XXX, but saves time */
1639 1.1 cgd }
1640 1.48 thorpej }
1641 1.52 thorpej m0 = m0->m_nextpkt;
1642 1.1 cgd }
1643 1.1 cgd }
1644 1.1 cgd
1645 1.5 andrew void
1646 1.106 ad unp_mark(file_t *fp)
1647 1.1 cgd {
1648 1.101 ad
1649 1.39 sommerfe if (fp == NULL)
1650 1.39 sommerfe return;
1651 1.80 perry
1652 1.39 sommerfe /* If we're already deferred, don't screw up the defer count */
1653 1.106 ad mutex_enter(&fp->f_lock);
1654 1.101 ad if (fp->f_flag & (FMARK | FDEFER)) {
1655 1.106 ad mutex_exit(&fp->f_lock);
1656 1.1 cgd return;
1657 1.101 ad }
1658 1.39 sommerfe
1659 1.39 sommerfe /*
1660 1.39 sommerfe * Minimize the number of deferrals... Sockets are the only
1661 1.39 sommerfe * type of descriptor which can hold references to another
1662 1.39 sommerfe * descriptor, so just mark other descriptors, and defer
1663 1.39 sommerfe * unmarked sockets for the next pass.
1664 1.39 sommerfe */
1665 1.39 sommerfe if (fp->f_type == DTYPE_SOCKET) {
1666 1.39 sommerfe unp_defer++;
1667 1.106 ad KASSERT(fp->f_count != 0);
1668 1.106 ad atomic_or_uint(&fp->f_flag, FDEFER);
1669 1.39 sommerfe } else {
1670 1.106 ad atomic_or_uint(&fp->f_flag, FMARK);
1671 1.39 sommerfe }
1672 1.106 ad mutex_exit(&fp->f_lock);
1673 1.39 sommerfe return;
1674 1.1 cgd }
1675 1.1 cgd
1676 1.5 andrew void
1677 1.106 ad unp_discard(file_t *fp)
1678 1.1 cgd {
1679 1.106 ad
1680 1.39 sommerfe if (fp == NULL)
1681 1.39 sommerfe return;
1682 1.106 ad
1683 1.106 ad mutex_enter(&fp->f_lock);
1684 1.106 ad KASSERT(fp->f_count > 0);
1685 1.1 cgd fp->f_msgcount--;
1686 1.106 ad mutex_exit(&fp->f_lock);
1687 1.106 ad atomic_dec_uint(&unp_rights);
1688 1.106 ad (void)closef(fp);
1689 1.1 cgd }
1690