uipc_usrreq.c revision 1.167 1 1.167 rtr /* $NetBSD: uipc_usrreq.c,v 1.167 2014/08/05 08:52:10 rtr Exp $ */
2 1.30 thorpej
3 1.30 thorpej /*-
4 1.121 mrg * Copyright (c) 1998, 2000, 2004, 2008, 2009 The NetBSD Foundation, Inc.
5 1.30 thorpej * All rights reserved.
6 1.30 thorpej *
7 1.30 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.30 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.121 mrg * NASA Ames Research Center, and by Andrew Doran.
10 1.30 thorpej *
11 1.30 thorpej * Redistribution and use in source and binary forms, with or without
12 1.30 thorpej * modification, are permitted provided that the following conditions
13 1.30 thorpej * are met:
14 1.30 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.30 thorpej * notice, this list of conditions and the following disclaimer.
16 1.30 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.30 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.30 thorpej * documentation and/or other materials provided with the distribution.
19 1.30 thorpej *
20 1.30 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.30 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.30 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.30 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.30 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.30 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.30 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.30 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.30 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.30 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.30 thorpej * POSSIBILITY OF SUCH DAMAGE.
31 1.30 thorpej */
32 1.10 cgd
33 1.1 cgd /*
34 1.8 mycroft * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 1.8 mycroft * The Regents of the University of California. All rights reserved.
36 1.1 cgd *
37 1.1 cgd * Redistribution and use in source and binary forms, with or without
38 1.1 cgd * modification, are permitted provided that the following conditions
39 1.1 cgd * are met:
40 1.1 cgd * 1. Redistributions of source code must retain the above copyright
41 1.1 cgd * notice, this list of conditions and the following disclaimer.
42 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
43 1.1 cgd * notice, this list of conditions and the following disclaimer in the
44 1.1 cgd * documentation and/or other materials provided with the distribution.
45 1.67 agc * 3. Neither the name of the University nor the names of its contributors
46 1.67 agc * may be used to endorse or promote products derived from this software
47 1.67 agc * without specific prior written permission.
48 1.67 agc *
49 1.67 agc * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 1.67 agc * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 1.67 agc * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 1.67 agc * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 1.67 agc * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 1.67 agc * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 1.67 agc * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 1.67 agc * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 1.67 agc * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 1.67 agc * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 1.67 agc * SUCH DAMAGE.
60 1.67 agc *
61 1.67 agc * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
62 1.67 agc */
63 1.67 agc
64 1.67 agc /*
65 1.67 agc * Copyright (c) 1997 Christopher G. Demetriou. All rights reserved.
66 1.67 agc *
67 1.67 agc * Redistribution and use in source and binary forms, with or without
68 1.67 agc * modification, are permitted provided that the following conditions
69 1.67 agc * are met:
70 1.67 agc * 1. Redistributions of source code must retain the above copyright
71 1.67 agc * notice, this list of conditions and the following disclaimer.
72 1.67 agc * 2. Redistributions in binary form must reproduce the above copyright
73 1.67 agc * notice, this list of conditions and the following disclaimer in the
74 1.67 agc * documentation and/or other materials provided with the distribution.
75 1.1 cgd * 3. All advertising materials mentioning features or use of this software
76 1.1 cgd * must display the following acknowledgement:
77 1.1 cgd * This product includes software developed by the University of
78 1.1 cgd * California, Berkeley and its contributors.
79 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
80 1.1 cgd * may be used to endorse or promote products derived from this software
81 1.1 cgd * without specific prior written permission.
82 1.1 cgd *
83 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
84 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
85 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
86 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
87 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
88 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
89 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
90 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
91 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
92 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
93 1.1 cgd * SUCH DAMAGE.
94 1.1 cgd *
95 1.31 fvdl * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
96 1.1 cgd */
97 1.53 lukem
98 1.53 lukem #include <sys/cdefs.h>
99 1.167 rtr __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.167 2014/08/05 08:52:10 rtr Exp $");
100 1.1 cgd
101 1.7 mycroft #include <sys/param.h>
102 1.8 mycroft #include <sys/systm.h>
103 1.7 mycroft #include <sys/proc.h>
104 1.7 mycroft #include <sys/filedesc.h>
105 1.7 mycroft #include <sys/domain.h>
106 1.7 mycroft #include <sys/protosw.h>
107 1.7 mycroft #include <sys/socket.h>
108 1.7 mycroft #include <sys/socketvar.h>
109 1.7 mycroft #include <sys/unpcb.h>
110 1.7 mycroft #include <sys/un.h>
111 1.7 mycroft #include <sys/namei.h>
112 1.7 mycroft #include <sys/vnode.h>
113 1.7 mycroft #include <sys/file.h>
114 1.7 mycroft #include <sys/stat.h>
115 1.7 mycroft #include <sys/mbuf.h>
116 1.91 elad #include <sys/kauth.h>
117 1.101 ad #include <sys/kmem.h>
118 1.106 ad #include <sys/atomic.h>
119 1.119 pooka #include <sys/uidinfo.h>
120 1.121 mrg #include <sys/kernel.h>
121 1.121 mrg #include <sys/kthread.h>
122 1.1 cgd
123 1.1 cgd /*
124 1.1 cgd * Unix communications domain.
125 1.1 cgd *
126 1.1 cgd * TODO:
127 1.134 manu * RDM
128 1.1 cgd * rethink name space problems
129 1.1 cgd * need a proper out-of-band
130 1.112 ad *
131 1.112 ad * Notes on locking:
132 1.112 ad *
133 1.112 ad * The generic rules noted in uipc_socket2.c apply. In addition:
134 1.112 ad *
135 1.112 ad * o We have a global lock, uipc_lock.
136 1.112 ad *
137 1.112 ad * o All datagram sockets are locked by uipc_lock.
138 1.112 ad *
139 1.112 ad * o For stream socketpairs, the two endpoints are created sharing the same
140 1.112 ad * independent lock. Sockets presented to PRU_CONNECT2 must already have
141 1.112 ad * matching locks.
142 1.112 ad *
143 1.112 ad * o Stream sockets created via socket() start life with their own
144 1.112 ad * independent lock.
145 1.112 ad *
146 1.112 ad * o Stream connections to a named endpoint are slightly more complicated.
147 1.112 ad * Sockets that have called listen() have their lock pointer mutated to
148 1.112 ad * the global uipc_lock. When establishing a connection, the connecting
149 1.112 ad * socket also has its lock mutated to uipc_lock, which matches the head
150 1.112 ad * (listening socket). We create a new socket for accept() to return, and
151 1.112 ad * that also shares the head's lock. Until the connection is completely
152 1.112 ad * done on both ends, all three sockets are locked by uipc_lock. Once the
153 1.112 ad * connection is complete, the association with the head's lock is broken.
154 1.112 ad * The connecting socket and the socket returned from accept() have their
155 1.112 ad * lock pointers mutated away from uipc_lock, and back to the connecting
156 1.112 ad * socket's original, independent lock. The head continues to be locked
157 1.112 ad * by uipc_lock.
158 1.112 ad *
159 1.112 ad * o If uipc_lock is determined to be a significant source of contention,
160 1.112 ad * it could easily be hashed out. It is difficult to simply make it an
161 1.112 ad * independent lock because of visibility / garbage collection issues:
162 1.112 ad * if a socket has been associated with a lock at any point, that lock
163 1.112 ad * must remain valid until the socket is no longer visible in the system.
164 1.112 ad * The lock must not be freed or otherwise destroyed until any sockets
165 1.112 ad * that had referenced it have also been destroyed.
166 1.1 cgd */
167 1.93 christos const struct sockaddr_un sun_noname = {
168 1.145 christos .sun_len = offsetof(struct sockaddr_un, sun_path),
169 1.93 christos .sun_family = AF_LOCAL,
170 1.93 christos };
171 1.1 cgd ino_t unp_ino; /* prototype for fake inode numbers */
172 1.1 cgd
173 1.164 rtr static struct mbuf * unp_addsockcred(struct lwp *, struct mbuf *);
174 1.164 rtr static void unp_discard_later(file_t *);
175 1.164 rtr static void unp_discard_now(file_t *);
176 1.164 rtr static void unp_disconnect1(struct unpcb *);
177 1.164 rtr static bool unp_drop(struct unpcb *, int);
178 1.164 rtr static int unp_internalize(struct mbuf **);
179 1.164 rtr static void unp_mark(file_t *);
180 1.164 rtr static void unp_scan(struct mbuf *, void (*)(file_t *), int);
181 1.164 rtr static void unp_shutdown1(struct unpcb *);
182 1.164 rtr static void unp_thread(void *);
183 1.164 rtr static void unp_thread_kick(void);
184 1.164 rtr
185 1.112 ad static kmutex_t *uipc_lock;
186 1.112 ad
187 1.121 mrg static kcondvar_t unp_thread_cv;
188 1.121 mrg static lwp_t *unp_thread_lwp;
189 1.121 mrg static SLIST_HEAD(,file) unp_thread_discard;
190 1.121 mrg static int unp_defer;
191 1.121 mrg
192 1.112 ad /*
193 1.112 ad * Initialize Unix protocols.
194 1.112 ad */
195 1.112 ad void
196 1.112 ad uipc_init(void)
197 1.112 ad {
198 1.121 mrg int error;
199 1.112 ad
200 1.112 ad uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
201 1.121 mrg cv_init(&unp_thread_cv, "unpgc");
202 1.121 mrg
203 1.121 mrg error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread,
204 1.121 mrg NULL, &unp_thread_lwp, "unpgc");
205 1.121 mrg if (error != 0)
206 1.121 mrg panic("uipc_init %d", error);
207 1.112 ad }
208 1.112 ad
209 1.112 ad /*
210 1.112 ad * A connection succeeded: disassociate both endpoints from the head's
211 1.112 ad * lock, and make them share their own lock. There is a race here: for
212 1.112 ad * a very brief time one endpoint will be locked by a different lock
213 1.112 ad * than the other end. However, since the current thread holds the old
214 1.112 ad * lock (the listening socket's lock, the head) access can still only be
215 1.112 ad * made to one side of the connection.
216 1.112 ad */
217 1.112 ad static void
218 1.112 ad unp_setpeerlocks(struct socket *so, struct socket *so2)
219 1.112 ad {
220 1.112 ad struct unpcb *unp;
221 1.112 ad kmutex_t *lock;
222 1.112 ad
223 1.112 ad KASSERT(solocked2(so, so2));
224 1.112 ad
225 1.112 ad /*
226 1.112 ad * Bail out if either end of the socket is not yet fully
227 1.112 ad * connected or accepted. We only break the lock association
228 1.112 ad * with the head when the pair of sockets stand completely
229 1.112 ad * on their own.
230 1.112 ad */
231 1.125 yamt KASSERT(so->so_head == NULL);
232 1.125 yamt if (so2->so_head != NULL)
233 1.112 ad return;
234 1.112 ad
235 1.112 ad /*
236 1.112 ad * Drop references to old lock. A third reference (from the
237 1.112 ad * queue head) must be held as we still hold its lock. Bonus:
238 1.112 ad * we don't need to worry about garbage collecting the lock.
239 1.112 ad */
240 1.112 ad lock = so->so_lock;
241 1.112 ad KASSERT(lock == uipc_lock);
242 1.112 ad mutex_obj_free(lock);
243 1.112 ad mutex_obj_free(lock);
244 1.112 ad
245 1.112 ad /*
246 1.112 ad * Grab stream lock from the initiator and share between the two
247 1.112 ad * endpoints. Issue memory barrier to ensure all modifications
248 1.112 ad * become globally visible before the lock change. so2 is
249 1.112 ad * assumed not to have a stream lock, because it was created
250 1.112 ad * purely for the server side to accept this connection and
251 1.112 ad * started out life using the domain-wide lock.
252 1.112 ad */
253 1.112 ad unp = sotounpcb(so);
254 1.112 ad KASSERT(unp->unp_streamlock != NULL);
255 1.112 ad KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
256 1.112 ad lock = unp->unp_streamlock;
257 1.112 ad unp->unp_streamlock = NULL;
258 1.112 ad mutex_obj_hold(lock);
259 1.112 ad membar_exit();
260 1.127 bouyer /*
261 1.127 bouyer * possible race if lock is not held - see comment in
262 1.127 bouyer * uipc_usrreq(PRU_ACCEPT).
263 1.127 bouyer */
264 1.127 bouyer KASSERT(mutex_owned(lock));
265 1.115 ad solockreset(so, lock);
266 1.115 ad solockreset(so2, lock);
267 1.112 ad }
268 1.112 ad
269 1.112 ad /*
270 1.112 ad * Reset a socket's lock back to the domain-wide lock.
271 1.112 ad */
272 1.112 ad static void
273 1.112 ad unp_resetlock(struct socket *so)
274 1.112 ad {
275 1.112 ad kmutex_t *olock, *nlock;
276 1.112 ad struct unpcb *unp;
277 1.112 ad
278 1.112 ad KASSERT(solocked(so));
279 1.112 ad
280 1.112 ad olock = so->so_lock;
281 1.112 ad nlock = uipc_lock;
282 1.112 ad if (olock == nlock)
283 1.112 ad return;
284 1.112 ad unp = sotounpcb(so);
285 1.112 ad KASSERT(unp->unp_streamlock == NULL);
286 1.112 ad unp->unp_streamlock = olock;
287 1.112 ad mutex_obj_hold(nlock);
288 1.112 ad mutex_enter(nlock);
289 1.115 ad solockreset(so, nlock);
290 1.112 ad mutex_exit(olock);
291 1.112 ad }
292 1.112 ad
293 1.112 ad static void
294 1.112 ad unp_free(struct unpcb *unp)
295 1.112 ad {
296 1.112 ad if (unp->unp_addr)
297 1.112 ad free(unp->unp_addr, M_SONAME);
298 1.112 ad if (unp->unp_streamlock != NULL)
299 1.112 ad mutex_obj_free(unp->unp_streamlock);
300 1.152 rmind kmem_free(unp, sizeof(*unp));
301 1.112 ad }
302 1.30 thorpej
303 1.164 rtr static int
304 1.164 rtr unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp)
305 1.20 mycroft {
306 1.20 mycroft struct socket *so2;
307 1.77 matt const struct sockaddr_un *sun;
308 1.20 mycroft
309 1.153 christos /* XXX: server side closed the socket */
310 1.153 christos if (unp->unp_conn == NULL)
311 1.153 christos return ECONNREFUSED;
312 1.20 mycroft so2 = unp->unp_conn->unp_socket;
313 1.112 ad
314 1.112 ad KASSERT(solocked(so2));
315 1.112 ad
316 1.20 mycroft if (unp->unp_addr)
317 1.20 mycroft sun = unp->unp_addr;
318 1.20 mycroft else
319 1.20 mycroft sun = &sun_noname;
320 1.30 thorpej if (unp->unp_conn->unp_flags & UNP_WANTCRED)
321 1.164 rtr control = unp_addsockcred(curlwp, control);
322 1.82 christos if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
323 1.20 mycroft control) == 0) {
324 1.112 ad so2->so_rcv.sb_overflowed++;
325 1.98 martin unp_dispose(control);
326 1.20 mycroft m_freem(control);
327 1.20 mycroft m_freem(m);
328 1.60 christos return (ENOBUFS);
329 1.20 mycroft } else {
330 1.20 mycroft sorwakeup(so2);
331 1.20 mycroft return (0);
332 1.20 mycroft }
333 1.20 mycroft }
334 1.20 mycroft
335 1.164 rtr static void
336 1.112 ad unp_setaddr(struct socket *so, struct mbuf *nam, bool peeraddr)
337 1.20 mycroft {
338 1.77 matt const struct sockaddr_un *sun;
339 1.112 ad struct unpcb *unp;
340 1.112 ad bool ext;
341 1.20 mycroft
342 1.127 bouyer KASSERT(solocked(so));
343 1.112 ad unp = sotounpcb(so);
344 1.112 ad ext = false;
345 1.20 mycroft
346 1.112 ad for (;;) {
347 1.112 ad sun = NULL;
348 1.112 ad if (peeraddr) {
349 1.112 ad if (unp->unp_conn && unp->unp_conn->unp_addr)
350 1.112 ad sun = unp->unp_conn->unp_addr;
351 1.112 ad } else {
352 1.112 ad if (unp->unp_addr)
353 1.112 ad sun = unp->unp_addr;
354 1.112 ad }
355 1.112 ad if (sun == NULL)
356 1.112 ad sun = &sun_noname;
357 1.112 ad nam->m_len = sun->sun_len;
358 1.112 ad if (nam->m_len > MLEN && !ext) {
359 1.112 ad sounlock(so);
360 1.112 ad MEXTMALLOC(nam, MAXPATHLEN * 2, M_WAITOK);
361 1.112 ad solock(so);
362 1.112 ad ext = true;
363 1.112 ad } else {
364 1.112 ad KASSERT(nam->m_len <= MAXPATHLEN * 2);
365 1.112 ad memcpy(mtod(nam, void *), sun, (size_t)nam->m_len);
366 1.112 ad break;
367 1.112 ad }
368 1.112 ad }
369 1.20 mycroft }
370 1.20 mycroft
371 1.151 rmind static int
372 1.160 rtr unp_recvoob(struct socket *so, struct mbuf *m, int flags)
373 1.160 rtr {
374 1.160 rtr KASSERT(solocked(so));
375 1.160 rtr
376 1.160 rtr return EOPNOTSUPP;
377 1.160 rtr }
378 1.160 rtr
379 1.160 rtr static int
380 1.166 rtr unp_send(struct socket *so, struct mbuf *m, struct mbuf *nam,
381 1.166 rtr struct mbuf *control, struct lwp *l)
382 1.166 rtr {
383 1.166 rtr struct unpcb *unp = sotounpcb(so);
384 1.166 rtr int error = 0;
385 1.166 rtr u_int newhiwat;
386 1.166 rtr struct socket *so2;
387 1.166 rtr
388 1.166 rtr KASSERT(solocked(so));
389 1.166 rtr KASSERT(unp != NULL);
390 1.166 rtr KASSERT(m != NULL);
391 1.166 rtr
392 1.166 rtr /*
393 1.166 rtr * Note: unp_internalize() rejects any control message
394 1.166 rtr * other than SCM_RIGHTS, and only allows one. This
395 1.166 rtr * has the side-effect of preventing a caller from
396 1.166 rtr * forging SCM_CREDS.
397 1.166 rtr */
398 1.166 rtr if (control) {
399 1.166 rtr sounlock(so);
400 1.166 rtr error = unp_internalize(&control);
401 1.166 rtr solock(so);
402 1.166 rtr if (error != 0) {
403 1.166 rtr m_freem(control);
404 1.166 rtr m_freem(m);
405 1.166 rtr return error;
406 1.166 rtr }
407 1.166 rtr }
408 1.166 rtr
409 1.166 rtr switch (so->so_type) {
410 1.166 rtr
411 1.166 rtr case SOCK_DGRAM: {
412 1.166 rtr KASSERT(so->so_lock == uipc_lock);
413 1.166 rtr if (nam) {
414 1.166 rtr if ((so->so_state & SS_ISCONNECTED) != 0)
415 1.166 rtr error = EISCONN;
416 1.166 rtr else {
417 1.166 rtr /*
418 1.166 rtr * Note: once connected, the
419 1.166 rtr * socket's lock must not be
420 1.166 rtr * dropped until we have sent
421 1.166 rtr * the message and disconnected.
422 1.166 rtr * This is necessary to prevent
423 1.166 rtr * intervening control ops, like
424 1.166 rtr * another connection.
425 1.166 rtr */
426 1.166 rtr error = unp_connect(so, nam, l);
427 1.166 rtr }
428 1.166 rtr } else {
429 1.166 rtr if ((so->so_state & SS_ISCONNECTED) == 0)
430 1.166 rtr error = ENOTCONN;
431 1.166 rtr }
432 1.166 rtr if (error) {
433 1.166 rtr unp_dispose(control);
434 1.166 rtr m_freem(control);
435 1.166 rtr m_freem(m);
436 1.166 rtr return error;
437 1.166 rtr }
438 1.166 rtr error = unp_output(m, control, unp);
439 1.166 rtr if (nam)
440 1.166 rtr unp_disconnect1(unp);
441 1.166 rtr break;
442 1.166 rtr }
443 1.166 rtr
444 1.166 rtr case SOCK_SEQPACKET: /* FALLTHROUGH */
445 1.166 rtr case SOCK_STREAM:
446 1.166 rtr #define rcv (&so2->so_rcv)
447 1.166 rtr #define snd (&so->so_snd)
448 1.166 rtr if (unp->unp_conn == NULL) {
449 1.166 rtr error = ENOTCONN;
450 1.166 rtr break;
451 1.166 rtr }
452 1.166 rtr so2 = unp->unp_conn->unp_socket;
453 1.166 rtr KASSERT(solocked2(so, so2));
454 1.166 rtr if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
455 1.166 rtr /*
456 1.166 rtr * Credentials are passed only once on
457 1.166 rtr * SOCK_STREAM and SOCK_SEQPACKET.
458 1.166 rtr */
459 1.166 rtr unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
460 1.166 rtr control = unp_addsockcred(l, control);
461 1.166 rtr }
462 1.166 rtr /*
463 1.166 rtr * Send to paired receive port, and then reduce
464 1.166 rtr * send buffer hiwater marks to maintain backpressure.
465 1.166 rtr * Wake up readers.
466 1.166 rtr */
467 1.166 rtr if (control) {
468 1.166 rtr if (sbappendcontrol(rcv, m, control) != 0)
469 1.166 rtr control = NULL;
470 1.166 rtr } else {
471 1.166 rtr switch(so->so_type) {
472 1.166 rtr case SOCK_SEQPACKET:
473 1.166 rtr sbappendrecord(rcv, m);
474 1.166 rtr break;
475 1.166 rtr case SOCK_STREAM:
476 1.166 rtr sbappend(rcv, m);
477 1.166 rtr break;
478 1.166 rtr default:
479 1.166 rtr panic("uipc_usrreq");
480 1.166 rtr break;
481 1.166 rtr }
482 1.166 rtr }
483 1.166 rtr snd->sb_mbmax -=
484 1.166 rtr rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
485 1.166 rtr unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
486 1.166 rtr newhiwat = snd->sb_hiwat -
487 1.166 rtr (rcv->sb_cc - unp->unp_conn->unp_cc);
488 1.166 rtr (void)chgsbsize(so->so_uidinfo,
489 1.166 rtr &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
490 1.166 rtr unp->unp_conn->unp_cc = rcv->sb_cc;
491 1.166 rtr sorwakeup(so2);
492 1.166 rtr #undef snd
493 1.166 rtr #undef rcv
494 1.166 rtr if (control != NULL) {
495 1.166 rtr unp_dispose(control);
496 1.166 rtr m_freem(control);
497 1.166 rtr }
498 1.166 rtr break;
499 1.166 rtr
500 1.166 rtr default:
501 1.166 rtr panic("uipc 4");
502 1.166 rtr }
503 1.166 rtr
504 1.166 rtr return error;
505 1.166 rtr }
506 1.166 rtr
507 1.166 rtr static int
508 1.160 rtr unp_sendoob(struct socket *so, struct mbuf *m, struct mbuf * control)
509 1.160 rtr {
510 1.160 rtr KASSERT(solocked(so));
511 1.160 rtr
512 1.160 rtr m_freem(m);
513 1.160 rtr m_freem(control);
514 1.160 rtr
515 1.160 rtr return EOPNOTSUPP;
516 1.160 rtr }
517 1.160 rtr
518 1.160 rtr static int
519 1.151 rmind unp_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
520 1.151 rmind struct mbuf *control, struct lwp *l)
521 1.1 cgd {
522 1.152 rmind struct unpcb *unp;
523 1.46 augustss struct socket *so2;
524 1.75 christos u_int newhiwat;
525 1.46 augustss int error = 0;
526 1.1 cgd
527 1.152 rmind KASSERT(req != PRU_ATTACH);
528 1.152 rmind KASSERT(req != PRU_DETACH);
529 1.159 rtr KASSERT(req != PRU_ACCEPT);
530 1.161 rtr KASSERT(req != PRU_BIND);
531 1.161 rtr KASSERT(req != PRU_LISTEN);
532 1.162 rtr KASSERT(req != PRU_CONNECT);
533 1.163 rtr KASSERT(req != PRU_DISCONNECT);
534 1.163 rtr KASSERT(req != PRU_SHUTDOWN);
535 1.163 rtr KASSERT(req != PRU_ABORT);
536 1.154 rtr KASSERT(req != PRU_CONTROL);
537 1.156 rtr KASSERT(req != PRU_SENSE);
538 1.158 rtr KASSERT(req != PRU_PEERADDR);
539 1.158 rtr KASSERT(req != PRU_SOCKADDR);
540 1.160 rtr KASSERT(req != PRU_RCVOOB);
541 1.166 rtr KASSERT(req != PRU_SEND);
542 1.160 rtr KASSERT(req != PRU_SENDOOB);
543 1.152 rmind
544 1.152 rmind KASSERT(solocked(so));
545 1.152 rmind unp = sotounpcb(so);
546 1.20 mycroft
547 1.166 rtr KASSERT(!control);
548 1.152 rmind if (unp == NULL) {
549 1.152 rmind error = EINVAL;
550 1.152 rmind goto release;
551 1.1 cgd }
552 1.20 mycroft
553 1.1 cgd switch (req) {
554 1.1 cgd case PRU_CONNECT2:
555 1.72 matt error = unp_connect2(so, (struct socket *)nam, PRU_CONNECT2);
556 1.1 cgd break;
557 1.1 cgd
558 1.1 cgd case PRU_RCVD:
559 1.1 cgd switch (so->so_type) {
560 1.1 cgd
561 1.1 cgd case SOCK_DGRAM:
562 1.1 cgd panic("uipc 1");
563 1.1 cgd /*NOTREACHED*/
564 1.1 cgd
565 1.134 manu case SOCK_SEQPACKET: /* FALLTHROUGH */
566 1.1 cgd case SOCK_STREAM:
567 1.1 cgd #define rcv (&so->so_rcv)
568 1.1 cgd #define snd (&so2->so_snd)
569 1.1 cgd if (unp->unp_conn == 0)
570 1.1 cgd break;
571 1.1 cgd so2 = unp->unp_conn->unp_socket;
572 1.112 ad KASSERT(solocked2(so, so2));
573 1.1 cgd /*
574 1.1 cgd * Adjust backpressure on sender
575 1.1 cgd * and wakeup any waiting to write.
576 1.1 cgd */
577 1.1 cgd snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
578 1.1 cgd unp->unp_mbcnt = rcv->sb_mbcnt;
579 1.75 christos newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
580 1.81 christos (void)chgsbsize(so2->so_uidinfo,
581 1.75 christos &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
582 1.1 cgd unp->unp_cc = rcv->sb_cc;
583 1.1 cgd sowwakeup(so2);
584 1.1 cgd #undef snd
585 1.1 cgd #undef rcv
586 1.1 cgd break;
587 1.1 cgd
588 1.1 cgd default:
589 1.1 cgd panic("uipc 2");
590 1.1 cgd }
591 1.1 cgd break;
592 1.1 cgd
593 1.1 cgd default:
594 1.1 cgd panic("piusrreq");
595 1.1 cgd }
596 1.20 mycroft
597 1.1 cgd release:
598 1.1 cgd return (error);
599 1.1 cgd }
600 1.1 cgd
601 1.1 cgd /*
602 1.30 thorpej * Unix domain socket option processing.
603 1.30 thorpej */
604 1.30 thorpej int
605 1.118 plunky uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
606 1.30 thorpej {
607 1.30 thorpej struct unpcb *unp = sotounpcb(so);
608 1.30 thorpej int optval = 0, error = 0;
609 1.30 thorpej
610 1.112 ad KASSERT(solocked(so));
611 1.112 ad
612 1.118 plunky if (sopt->sopt_level != 0) {
613 1.100 dyoung error = ENOPROTOOPT;
614 1.30 thorpej } else switch (op) {
615 1.30 thorpej
616 1.30 thorpej case PRCO_SETOPT:
617 1.118 plunky switch (sopt->sopt_name) {
618 1.30 thorpej case LOCAL_CREDS:
619 1.72 matt case LOCAL_CONNWAIT:
620 1.118 plunky error = sockopt_getint(sopt, &optval);
621 1.118 plunky if (error)
622 1.118 plunky break;
623 1.118 plunky switch (sopt->sopt_name) {
624 1.30 thorpej #define OPTSET(bit) \
625 1.30 thorpej if (optval) \
626 1.30 thorpej unp->unp_flags |= (bit); \
627 1.30 thorpej else \
628 1.30 thorpej unp->unp_flags &= ~(bit);
629 1.30 thorpej
630 1.118 plunky case LOCAL_CREDS:
631 1.118 plunky OPTSET(UNP_WANTCRED);
632 1.118 plunky break;
633 1.118 plunky case LOCAL_CONNWAIT:
634 1.118 plunky OPTSET(UNP_CONNWAIT);
635 1.118 plunky break;
636 1.30 thorpej }
637 1.30 thorpej break;
638 1.30 thorpej #undef OPTSET
639 1.30 thorpej
640 1.30 thorpej default:
641 1.30 thorpej error = ENOPROTOOPT;
642 1.30 thorpej break;
643 1.30 thorpej }
644 1.30 thorpej break;
645 1.30 thorpej
646 1.30 thorpej case PRCO_GETOPT:
647 1.112 ad sounlock(so);
648 1.118 plunky switch (sopt->sopt_name) {
649 1.99 he case LOCAL_PEEREID:
650 1.99 he if (unp->unp_flags & UNP_EIDSVALID) {
651 1.118 plunky error = sockopt_set(sopt,
652 1.118 plunky &unp->unp_connid, sizeof(unp->unp_connid));
653 1.99 he } else {
654 1.99 he error = EINVAL;
655 1.99 he }
656 1.99 he break;
657 1.30 thorpej case LOCAL_CREDS:
658 1.30 thorpej #define OPTBIT(bit) (unp->unp_flags & (bit) ? 1 : 0)
659 1.30 thorpej
660 1.99 he optval = OPTBIT(UNP_WANTCRED);
661 1.118 plunky error = sockopt_setint(sopt, optval);
662 1.30 thorpej break;
663 1.30 thorpej #undef OPTBIT
664 1.30 thorpej
665 1.30 thorpej default:
666 1.30 thorpej error = ENOPROTOOPT;
667 1.30 thorpej break;
668 1.30 thorpej }
669 1.112 ad solock(so);
670 1.30 thorpej break;
671 1.30 thorpej }
672 1.30 thorpej return (error);
673 1.30 thorpej }
674 1.30 thorpej
675 1.30 thorpej /*
676 1.1 cgd * Both send and receive buffers are allocated PIPSIZ bytes of buffering
677 1.1 cgd * for stream sockets, although the total for sender and receiver is
678 1.1 cgd * actually only PIPSIZ.
679 1.1 cgd * Datagram sockets really use the sendspace as the maximum datagram size,
680 1.1 cgd * and don't really want to reserve the sendspace. Their recvspace should
681 1.1 cgd * be large enough for at least one max-size datagram plus address.
682 1.1 cgd */
683 1.1 cgd #define PIPSIZ 4096
684 1.1 cgd u_long unpst_sendspace = PIPSIZ;
685 1.1 cgd u_long unpst_recvspace = PIPSIZ;
686 1.1 cgd u_long unpdg_sendspace = 2*1024; /* really max datagram size */
687 1.1 cgd u_long unpdg_recvspace = 4*1024;
688 1.1 cgd
689 1.121 mrg u_int unp_rights; /* files in flight */
690 1.121 mrg u_int unp_rights_ratio = 2; /* limit, fraction of maxfiles */
691 1.1 cgd
692 1.152 rmind static int
693 1.152 rmind unp_attach(struct socket *so, int proto)
694 1.1 cgd {
695 1.152 rmind struct unpcb *unp = sotounpcb(so);
696 1.152 rmind u_long sndspc, rcvspc;
697 1.1 cgd int error;
698 1.80 perry
699 1.152 rmind KASSERT(unp == NULL);
700 1.152 rmind
701 1.112 ad switch (so->so_type) {
702 1.152 rmind case SOCK_SEQPACKET:
703 1.152 rmind /* FALLTHROUGH */
704 1.112 ad case SOCK_STREAM:
705 1.112 ad if (so->so_lock == NULL) {
706 1.112 ad so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
707 1.112 ad solock(so);
708 1.112 ad }
709 1.152 rmind sndspc = unpst_sendspace;
710 1.152 rmind rcvspc = unpst_recvspace;
711 1.112 ad break;
712 1.1 cgd
713 1.112 ad case SOCK_DGRAM:
714 1.112 ad if (so->so_lock == NULL) {
715 1.112 ad mutex_obj_hold(uipc_lock);
716 1.112 ad so->so_lock = uipc_lock;
717 1.112 ad solock(so);
718 1.112 ad }
719 1.152 rmind sndspc = unpdg_sendspace;
720 1.152 rmind rcvspc = unpdg_recvspace;
721 1.112 ad break;
722 1.8 mycroft
723 1.112 ad default:
724 1.112 ad panic("unp_attach");
725 1.1 cgd }
726 1.152 rmind
727 1.152 rmind if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
728 1.152 rmind error = soreserve(so, sndspc, rcvspc);
729 1.152 rmind if (error) {
730 1.152 rmind return error;
731 1.152 rmind }
732 1.152 rmind }
733 1.152 rmind
734 1.152 rmind unp = kmem_zalloc(sizeof(*unp), KM_SLEEP);
735 1.152 rmind nanotime(&unp->unp_ctime);
736 1.14 mycroft unp->unp_socket = so;
737 1.15 mycroft so->so_pcb = unp;
738 1.152 rmind
739 1.152 rmind KASSERT(solocked(so));
740 1.152 rmind return 0;
741 1.1 cgd }
742 1.1 cgd
743 1.152 rmind static void
744 1.152 rmind unp_detach(struct socket *so)
745 1.1 cgd {
746 1.152 rmind struct unpcb *unp;
747 1.112 ad vnode_t *vp;
748 1.112 ad
749 1.152 rmind unp = sotounpcb(so);
750 1.152 rmind KASSERT(unp != NULL);
751 1.152 rmind KASSERT(solocked(so));
752 1.112 ad retry:
753 1.112 ad if ((vp = unp->unp_vnode) != NULL) {
754 1.112 ad sounlock(so);
755 1.112 ad /* Acquire v_interlock to protect against unp_connect(). */
756 1.113 ad /* XXXAD racy */
757 1.135 rmind mutex_enter(vp->v_interlock);
758 1.112 ad vp->v_socket = NULL;
759 1.148 hannken mutex_exit(vp->v_interlock);
760 1.148 hannken vrele(vp);
761 1.112 ad solock(so);
762 1.112 ad unp->unp_vnode = NULL;
763 1.1 cgd }
764 1.1 cgd if (unp->unp_conn)
765 1.163 rtr unp_disconnect1(unp);
766 1.112 ad while (unp->unp_refs) {
767 1.112 ad KASSERT(solocked2(so, unp->unp_refs->unp_socket));
768 1.112 ad if (unp_drop(unp->unp_refs, ECONNRESET)) {
769 1.112 ad solock(so);
770 1.112 ad goto retry;
771 1.112 ad }
772 1.112 ad }
773 1.112 ad soisdisconnected(so);
774 1.112 ad so->so_pcb = NULL;
775 1.8 mycroft if (unp_rights) {
776 1.8 mycroft /*
777 1.121 mrg * Normally the receive buffer is flushed later, in sofree,
778 1.121 mrg * but if our receive buffer holds references to files that
779 1.121 mrg * are now garbage, we will enqueue those file references to
780 1.121 mrg * the garbage collector and kick it into action.
781 1.8 mycroft */
782 1.112 ad sorflush(so);
783 1.112 ad unp_free(unp);
784 1.121 mrg unp_thread_kick();
785 1.14 mycroft } else
786 1.112 ad unp_free(unp);
787 1.1 cgd }
788 1.1 cgd
789 1.154 rtr static int
790 1.159 rtr unp_accept(struct socket *so, struct mbuf *nam)
791 1.159 rtr {
792 1.159 rtr struct unpcb *unp = sotounpcb(so);
793 1.159 rtr struct socket *so2;
794 1.159 rtr
795 1.159 rtr KASSERT(solocked(so));
796 1.159 rtr KASSERT(nam != NULL);
797 1.159 rtr
798 1.159 rtr /* XXX code review required to determine if unp can ever be NULL */
799 1.159 rtr if (unp == NULL)
800 1.159 rtr return EINVAL;
801 1.159 rtr
802 1.159 rtr KASSERT(so->so_lock == uipc_lock);
803 1.159 rtr /*
804 1.159 rtr * Mark the initiating STREAM socket as connected *ONLY*
805 1.159 rtr * after it's been accepted. This prevents a client from
806 1.159 rtr * overrunning a server and receiving ECONNREFUSED.
807 1.159 rtr */
808 1.159 rtr if (unp->unp_conn == NULL) {
809 1.159 rtr /*
810 1.159 rtr * This will use the empty socket and will not
811 1.159 rtr * allocate.
812 1.159 rtr */
813 1.159 rtr unp_setaddr(so, nam, true);
814 1.159 rtr return 0;
815 1.159 rtr }
816 1.159 rtr so2 = unp->unp_conn->unp_socket;
817 1.159 rtr if (so2->so_state & SS_ISCONNECTING) {
818 1.159 rtr KASSERT(solocked2(so, so->so_head));
819 1.159 rtr KASSERT(solocked2(so2, so->so_head));
820 1.159 rtr soisconnected(so2);
821 1.159 rtr }
822 1.159 rtr /*
823 1.159 rtr * If the connection is fully established, break the
824 1.159 rtr * association with uipc_lock and give the connected
825 1.159 rtr * pair a separate lock to share.
826 1.159 rtr * There is a race here: sotounpcb(so2)->unp_streamlock
827 1.159 rtr * is not locked, so when changing so2->so_lock
828 1.159 rtr * another thread can grab it while so->so_lock is still
829 1.159 rtr * pointing to the (locked) uipc_lock.
830 1.159 rtr * this should be harmless, except that this makes
831 1.159 rtr * solocked2() and solocked() unreliable.
832 1.159 rtr * Another problem is that unp_setaddr() expects the
833 1.159 rtr * the socket locked. Grabing sotounpcb(so2)->unp_streamlock
834 1.159 rtr * fixes both issues.
835 1.159 rtr */
836 1.159 rtr mutex_enter(sotounpcb(so2)->unp_streamlock);
837 1.159 rtr unp_setpeerlocks(so2, so);
838 1.159 rtr /*
839 1.159 rtr * Only now return peer's address, as we may need to
840 1.159 rtr * block in order to allocate memory.
841 1.159 rtr *
842 1.159 rtr * XXX Minor race: connection can be broken while
843 1.159 rtr * lock is dropped in unp_setaddr(). We will return
844 1.159 rtr * error == 0 and sun_noname as the peer address.
845 1.159 rtr */
846 1.159 rtr unp_setaddr(so, nam, true);
847 1.159 rtr /* so_lock now points to unp_streamlock */
848 1.159 rtr mutex_exit(so2->so_lock);
849 1.159 rtr return 0;
850 1.159 rtr }
851 1.159 rtr
852 1.159 rtr static int
853 1.155 rtr unp_ioctl(struct socket *so, u_long cmd, void *nam, struct ifnet *ifp)
854 1.154 rtr {
855 1.154 rtr return EOPNOTSUPP;
856 1.154 rtr }
857 1.154 rtr
858 1.156 rtr static int
859 1.156 rtr unp_stat(struct socket *so, struct stat *ub)
860 1.156 rtr {
861 1.156 rtr struct unpcb *unp;
862 1.156 rtr struct socket *so2;
863 1.156 rtr
864 1.157 rtr KASSERT(solocked(so));
865 1.157 rtr
866 1.156 rtr unp = sotounpcb(so);
867 1.156 rtr if (unp == NULL)
868 1.156 rtr return EINVAL;
869 1.156 rtr
870 1.156 rtr ub->st_blksize = so->so_snd.sb_hiwat;
871 1.156 rtr switch (so->so_type) {
872 1.156 rtr case SOCK_SEQPACKET: /* FALLTHROUGH */
873 1.156 rtr case SOCK_STREAM:
874 1.156 rtr if (unp->unp_conn == 0)
875 1.156 rtr break;
876 1.156 rtr
877 1.156 rtr so2 = unp->unp_conn->unp_socket;
878 1.156 rtr KASSERT(solocked2(so, so2));
879 1.156 rtr ub->st_blksize += so2->so_rcv.sb_cc;
880 1.156 rtr break;
881 1.156 rtr default:
882 1.156 rtr break;
883 1.156 rtr }
884 1.156 rtr ub->st_dev = NODEV;
885 1.156 rtr if (unp->unp_ino == 0)
886 1.156 rtr unp->unp_ino = unp_ino++;
887 1.156 rtr ub->st_atimespec = ub->st_mtimespec = ub->st_ctimespec = unp->unp_ctime;
888 1.156 rtr ub->st_ino = unp->unp_ino;
889 1.156 rtr return (0);
890 1.156 rtr }
891 1.156 rtr
892 1.158 rtr static int
893 1.158 rtr unp_peeraddr(struct socket *so, struct mbuf *nam)
894 1.158 rtr {
895 1.158 rtr KASSERT(solocked(so));
896 1.158 rtr KASSERT(sotounpcb(so) != NULL);
897 1.158 rtr KASSERT(nam != NULL);
898 1.158 rtr
899 1.158 rtr unp_setaddr(so, nam, true);
900 1.158 rtr return 0;
901 1.158 rtr }
902 1.158 rtr
903 1.158 rtr static int
904 1.158 rtr unp_sockaddr(struct socket *so, struct mbuf *nam)
905 1.158 rtr {
906 1.158 rtr KASSERT(solocked(so));
907 1.158 rtr KASSERT(sotounpcb(so) != NULL);
908 1.158 rtr KASSERT(nam != NULL);
909 1.158 rtr
910 1.158 rtr unp_setaddr(so, nam, false);
911 1.158 rtr return 0;
912 1.158 rtr }
913 1.158 rtr
914 1.146 christos /*
915 1.146 christos * Allocate the new sockaddr. We have to allocate one
916 1.146 christos * extra byte so that we can ensure that the pathname
917 1.146 christos * is nul-terminated. Note that unlike linux, we don't
918 1.146 christos * include in the address length the NUL in the path
919 1.146 christos * component, because doing so, would exceed sizeof(sockaddr_un)
920 1.146 christos * for fully occupied pathnames. Linux is also inconsistent,
921 1.146 christos * because it does not include the NUL in the length of
922 1.146 christos * what it calls "abstract" unix sockets.
923 1.146 christos */
924 1.146 christos static struct sockaddr_un *
925 1.146 christos makeun(struct mbuf *nam, size_t *addrlen) {
926 1.146 christos struct sockaddr_un *sun;
927 1.146 christos
928 1.146 christos *addrlen = nam->m_len + 1;
929 1.146 christos sun = malloc(*addrlen, M_SONAME, M_WAITOK);
930 1.146 christos m_copydata(nam, 0, nam->m_len, (void *)sun);
931 1.146 christos *(((char *)sun) + nam->m_len) = '\0';
932 1.146 christos sun->sun_len = strlen(sun->sun_path) +
933 1.146 christos offsetof(struct sockaddr_un, sun_path);
934 1.146 christos return sun;
935 1.146 christos }
936 1.146 christos
937 1.164 rtr static int
938 1.165 rtr unp_bind(struct socket *so, struct mbuf *nam, struct lwp *l)
939 1.1 cgd {
940 1.27 thorpej struct sockaddr_un *sun;
941 1.112 ad struct unpcb *unp;
942 1.106 ad vnode_t *vp;
943 1.1 cgd struct vattr vattr;
944 1.27 thorpej size_t addrlen;
945 1.1 cgd int error;
946 1.133 dholland struct pathbuf *pb;
947 1.1 cgd struct nameidata nd;
948 1.112 ad proc_t *p;
949 1.1 cgd
950 1.112 ad unp = sotounpcb(so);
951 1.161 rtr
952 1.161 rtr KASSERT(solocked(so));
953 1.161 rtr KASSERT(unp != NULL);
954 1.161 rtr KASSERT(nam != NULL);
955 1.161 rtr
956 1.112 ad if (unp->unp_vnode != NULL)
957 1.20 mycroft return (EINVAL);
958 1.109 ad if ((unp->unp_flags & UNP_BUSY) != 0) {
959 1.109 ad /*
960 1.109 ad * EALREADY may not be strictly accurate, but since this
961 1.109 ad * is a major application error it's hardly a big deal.
962 1.109 ad */
963 1.109 ad return (EALREADY);
964 1.109 ad }
965 1.109 ad unp->unp_flags |= UNP_BUSY;
966 1.112 ad sounlock(so);
967 1.109 ad
968 1.165 rtr p = l->l_proc;
969 1.146 christos sun = makeun(nam, &addrlen);
970 1.27 thorpej
971 1.133 dholland pb = pathbuf_create(sun->sun_path);
972 1.133 dholland if (pb == NULL) {
973 1.133 dholland error = ENOMEM;
974 1.133 dholland goto bad;
975 1.133 dholland }
976 1.133 dholland NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, pb);
977 1.27 thorpej
978 1.1 cgd /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
979 1.133 dholland if ((error = namei(&nd)) != 0) {
980 1.133 dholland pathbuf_destroy(pb);
981 1.27 thorpej goto bad;
982 1.133 dholland }
983 1.9 mycroft vp = nd.ni_vp;
984 1.96 hannken if (vp != NULL) {
985 1.9 mycroft VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
986 1.9 mycroft if (nd.ni_dvp == vp)
987 1.9 mycroft vrele(nd.ni_dvp);
988 1.1 cgd else
989 1.9 mycroft vput(nd.ni_dvp);
990 1.1 cgd vrele(vp);
991 1.133 dholland pathbuf_destroy(pb);
992 1.96 hannken error = EADDRINUSE;
993 1.96 hannken goto bad;
994 1.1 cgd }
995 1.128 pooka vattr_null(&vattr);
996 1.1 cgd vattr.va_type = VSOCK;
997 1.84 jmmv vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
998 1.16 christos error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
999 1.133 dholland if (error) {
1000 1.149 hannken vput(nd.ni_dvp);
1001 1.133 dholland pathbuf_destroy(pb);
1002 1.27 thorpej goto bad;
1003 1.133 dholland }
1004 1.9 mycroft vp = nd.ni_vp;
1005 1.150 hannken vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1006 1.112 ad solock(so);
1007 1.1 cgd vp->v_socket = unp->unp_socket;
1008 1.1 cgd unp->unp_vnode = vp;
1009 1.27 thorpej unp->unp_addrlen = addrlen;
1010 1.27 thorpej unp->unp_addr = sun;
1011 1.99 he unp->unp_connid.unp_pid = p->p_pid;
1012 1.165 rtr unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
1013 1.165 rtr unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
1014 1.99 he unp->unp_flags |= UNP_EIDSBIND;
1015 1.130 hannken VOP_UNLOCK(vp);
1016 1.149 hannken vput(nd.ni_dvp);
1017 1.109 ad unp->unp_flags &= ~UNP_BUSY;
1018 1.133 dholland pathbuf_destroy(pb);
1019 1.1 cgd return (0);
1020 1.27 thorpej
1021 1.27 thorpej bad:
1022 1.27 thorpej free(sun, M_SONAME);
1023 1.112 ad solock(so);
1024 1.109 ad unp->unp_flags &= ~UNP_BUSY;
1025 1.27 thorpej return (error);
1026 1.1 cgd }
1027 1.1 cgd
1028 1.161 rtr static int
1029 1.165 rtr unp_listen(struct socket *so, struct lwp *l)
1030 1.161 rtr {
1031 1.161 rtr struct unpcb *unp = sotounpcb(so);
1032 1.161 rtr
1033 1.161 rtr KASSERT(solocked(so));
1034 1.161 rtr KASSERT(unp != NULL);
1035 1.161 rtr
1036 1.161 rtr /*
1037 1.161 rtr * If the socket can accept a connection, it must be
1038 1.161 rtr * locked by uipc_lock.
1039 1.161 rtr */
1040 1.161 rtr unp_resetlock(so);
1041 1.161 rtr if (unp->unp_vnode == NULL)
1042 1.161 rtr return EINVAL;
1043 1.161 rtr
1044 1.161 rtr return 0;
1045 1.161 rtr }
1046 1.161 rtr
1047 1.163 rtr static int
1048 1.163 rtr unp_disconnect(struct socket *so)
1049 1.163 rtr {
1050 1.163 rtr KASSERT(solocked(so));
1051 1.163 rtr KASSERT(sotounpcb(so) != NULL);
1052 1.163 rtr
1053 1.163 rtr unp_disconnect1(sotounpcb(so));
1054 1.163 rtr return 0;
1055 1.163 rtr }
1056 1.163 rtr
1057 1.163 rtr static int
1058 1.163 rtr unp_shutdown(struct socket *so)
1059 1.163 rtr {
1060 1.163 rtr KASSERT(solocked(so));
1061 1.163 rtr KASSERT(sotounpcb(so) != NULL);
1062 1.163 rtr
1063 1.163 rtr socantsendmore(so);
1064 1.163 rtr unp_shutdown1(sotounpcb(so));
1065 1.163 rtr return 0;
1066 1.163 rtr }
1067 1.163 rtr
1068 1.163 rtr static int
1069 1.163 rtr unp_abort(struct socket *so)
1070 1.163 rtr {
1071 1.163 rtr KASSERT(solocked(so));
1072 1.163 rtr KASSERT(sotounpcb(so) != NULL);
1073 1.163 rtr
1074 1.163 rtr (void)unp_drop(sotounpcb(so), ECONNABORTED);
1075 1.163 rtr KASSERT(so->so_head == NULL);
1076 1.163 rtr KASSERT(so->so_pcb != NULL);
1077 1.163 rtr unp_detach(so);
1078 1.163 rtr return 0;
1079 1.163 rtr }
1080 1.163 rtr
1081 1.5 andrew int
1082 1.165 rtr unp_connect(struct socket *so, struct mbuf *nam, struct lwp *l)
1083 1.1 cgd {
1084 1.46 augustss struct sockaddr_un *sun;
1085 1.106 ad vnode_t *vp;
1086 1.46 augustss struct socket *so2, *so3;
1087 1.99 he struct unpcb *unp, *unp2, *unp3;
1088 1.27 thorpej size_t addrlen;
1089 1.1 cgd int error;
1090 1.133 dholland struct pathbuf *pb;
1091 1.1 cgd struct nameidata nd;
1092 1.1 cgd
1093 1.109 ad unp = sotounpcb(so);
1094 1.109 ad if ((unp->unp_flags & UNP_BUSY) != 0) {
1095 1.109 ad /*
1096 1.109 ad * EALREADY may not be strictly accurate, but since this
1097 1.109 ad * is a major application error it's hardly a big deal.
1098 1.109 ad */
1099 1.109 ad return (EALREADY);
1100 1.109 ad }
1101 1.109 ad unp->unp_flags |= UNP_BUSY;
1102 1.112 ad sounlock(so);
1103 1.109 ad
1104 1.146 christos sun = makeun(nam, &addrlen);
1105 1.133 dholland pb = pathbuf_create(sun->sun_path);
1106 1.133 dholland if (pb == NULL) {
1107 1.133 dholland error = ENOMEM;
1108 1.133 dholland goto bad2;
1109 1.133 dholland }
1110 1.27 thorpej
1111 1.133 dholland NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
1112 1.133 dholland
1113 1.133 dholland if ((error = namei(&nd)) != 0) {
1114 1.133 dholland pathbuf_destroy(pb);
1115 1.27 thorpej goto bad2;
1116 1.133 dholland }
1117 1.9 mycroft vp = nd.ni_vp;
1118 1.1 cgd if (vp->v_type != VSOCK) {
1119 1.1 cgd error = ENOTSOCK;
1120 1.1 cgd goto bad;
1121 1.1 cgd }
1122 1.133 dholland pathbuf_destroy(pb);
1123 1.167 rtr if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
1124 1.1 cgd goto bad;
1125 1.112 ad /* Acquire v_interlock to protect against unp_detach(). */
1126 1.135 rmind mutex_enter(vp->v_interlock);
1127 1.1 cgd so2 = vp->v_socket;
1128 1.112 ad if (so2 == NULL) {
1129 1.135 rmind mutex_exit(vp->v_interlock);
1130 1.1 cgd error = ECONNREFUSED;
1131 1.1 cgd goto bad;
1132 1.1 cgd }
1133 1.1 cgd if (so->so_type != so2->so_type) {
1134 1.135 rmind mutex_exit(vp->v_interlock);
1135 1.1 cgd error = EPROTOTYPE;
1136 1.1 cgd goto bad;
1137 1.1 cgd }
1138 1.112 ad solock(so);
1139 1.112 ad unp_resetlock(so);
1140 1.135 rmind mutex_exit(vp->v_interlock);
1141 1.112 ad if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
1142 1.112 ad /*
1143 1.112 ad * This may seem somewhat fragile but is OK: if we can
1144 1.112 ad * see SO_ACCEPTCONN set on the endpoint, then it must
1145 1.112 ad * be locked by the domain-wide uipc_lock.
1146 1.112 ad */
1147 1.132 yamt KASSERT((so2->so_options & SO_ACCEPTCONN) == 0 ||
1148 1.112 ad so2->so_lock == uipc_lock);
1149 1.1 cgd if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
1150 1.144 rmind (so3 = sonewconn(so2, false)) == NULL) {
1151 1.1 cgd error = ECONNREFUSED;
1152 1.112 ad sounlock(so);
1153 1.1 cgd goto bad;
1154 1.1 cgd }
1155 1.1 cgd unp2 = sotounpcb(so2);
1156 1.1 cgd unp3 = sotounpcb(so3);
1157 1.26 thorpej if (unp2->unp_addr) {
1158 1.26 thorpej unp3->unp_addr = malloc(unp2->unp_addrlen,
1159 1.26 thorpej M_SONAME, M_WAITOK);
1160 1.36 perry memcpy(unp3->unp_addr, unp2->unp_addr,
1161 1.26 thorpej unp2->unp_addrlen);
1162 1.26 thorpej unp3->unp_addrlen = unp2->unp_addrlen;
1163 1.26 thorpej }
1164 1.30 thorpej unp3->unp_flags = unp2->unp_flags;
1165 1.167 rtr unp3->unp_connid.unp_pid = l->l_proc->p_pid;
1166 1.167 rtr unp3->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
1167 1.167 rtr unp3->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
1168 1.99 he unp3->unp_flags |= UNP_EIDSVALID;
1169 1.99 he if (unp2->unp_flags & UNP_EIDSBIND) {
1170 1.99 he unp->unp_connid = unp2->unp_connid;
1171 1.99 he unp->unp_flags |= UNP_EIDSVALID;
1172 1.99 he }
1173 1.112 ad so2 = so3;
1174 1.33 thorpej }
1175 1.72 matt error = unp_connect2(so, so2, PRU_CONNECT);
1176 1.112 ad sounlock(so);
1177 1.27 thorpej bad:
1178 1.1 cgd vput(vp);
1179 1.27 thorpej bad2:
1180 1.27 thorpej free(sun, M_SONAME);
1181 1.112 ad solock(so);
1182 1.109 ad unp->unp_flags &= ~UNP_BUSY;
1183 1.1 cgd return (error);
1184 1.1 cgd }
1185 1.1 cgd
1186 1.5 andrew int
1187 1.76 matt unp_connect2(struct socket *so, struct socket *so2, int req)
1188 1.1 cgd {
1189 1.46 augustss struct unpcb *unp = sotounpcb(so);
1190 1.46 augustss struct unpcb *unp2;
1191 1.1 cgd
1192 1.1 cgd if (so2->so_type != so->so_type)
1193 1.1 cgd return (EPROTOTYPE);
1194 1.112 ad
1195 1.112 ad /*
1196 1.112 ad * All three sockets involved must be locked by same lock:
1197 1.112 ad *
1198 1.112 ad * local endpoint (so)
1199 1.112 ad * remote endpoint (so2)
1200 1.131 yamt * queue head (so2->so_head, only if PR_CONNREQUIRED)
1201 1.112 ad */
1202 1.112 ad KASSERT(solocked2(so, so2));
1203 1.125 yamt KASSERT(so->so_head == NULL);
1204 1.125 yamt if (so2->so_head != NULL) {
1205 1.125 yamt KASSERT(so2->so_lock == uipc_lock);
1206 1.125 yamt KASSERT(solocked2(so2, so2->so_head));
1207 1.112 ad }
1208 1.112 ad
1209 1.1 cgd unp2 = sotounpcb(so2);
1210 1.1 cgd unp->unp_conn = unp2;
1211 1.1 cgd switch (so->so_type) {
1212 1.1 cgd
1213 1.1 cgd case SOCK_DGRAM:
1214 1.1 cgd unp->unp_nextref = unp2->unp_refs;
1215 1.1 cgd unp2->unp_refs = unp;
1216 1.1 cgd soisconnected(so);
1217 1.1 cgd break;
1218 1.1 cgd
1219 1.134 manu case SOCK_SEQPACKET: /* FALLTHROUGH */
1220 1.1 cgd case SOCK_STREAM:
1221 1.1 cgd unp2->unp_conn = unp;
1222 1.72 matt if (req == PRU_CONNECT &&
1223 1.72 matt ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1224 1.72 matt soisconnecting(so);
1225 1.72 matt else
1226 1.72 matt soisconnected(so);
1227 1.1 cgd soisconnected(so2);
1228 1.112 ad /*
1229 1.112 ad * If the connection is fully established, break the
1230 1.112 ad * association with uipc_lock and give the connected
1231 1.112 ad * pair a seperate lock to share. For CONNECT2, we
1232 1.112 ad * require that the locks already match (the sockets
1233 1.112 ad * are created that way).
1234 1.112 ad */
1235 1.125 yamt if (req == PRU_CONNECT) {
1236 1.125 yamt KASSERT(so2->so_head != NULL);
1237 1.112 ad unp_setpeerlocks(so, so2);
1238 1.125 yamt }
1239 1.1 cgd break;
1240 1.1 cgd
1241 1.1 cgd default:
1242 1.1 cgd panic("unp_connect2");
1243 1.1 cgd }
1244 1.1 cgd return (0);
1245 1.1 cgd }
1246 1.1 cgd
1247 1.164 rtr static void
1248 1.163 rtr unp_disconnect1(struct unpcb *unp)
1249 1.1 cgd {
1250 1.46 augustss struct unpcb *unp2 = unp->unp_conn;
1251 1.112 ad struct socket *so;
1252 1.1 cgd
1253 1.1 cgd if (unp2 == 0)
1254 1.1 cgd return;
1255 1.1 cgd unp->unp_conn = 0;
1256 1.112 ad so = unp->unp_socket;
1257 1.112 ad switch (so->so_type) {
1258 1.1 cgd case SOCK_DGRAM:
1259 1.1 cgd if (unp2->unp_refs == unp)
1260 1.1 cgd unp2->unp_refs = unp->unp_nextref;
1261 1.1 cgd else {
1262 1.1 cgd unp2 = unp2->unp_refs;
1263 1.1 cgd for (;;) {
1264 1.112 ad KASSERT(solocked2(so, unp2->unp_socket));
1265 1.1 cgd if (unp2 == 0)
1266 1.163 rtr panic("unp_disconnect1");
1267 1.1 cgd if (unp2->unp_nextref == unp)
1268 1.1 cgd break;
1269 1.1 cgd unp2 = unp2->unp_nextref;
1270 1.1 cgd }
1271 1.1 cgd unp2->unp_nextref = unp->unp_nextref;
1272 1.1 cgd }
1273 1.1 cgd unp->unp_nextref = 0;
1274 1.112 ad so->so_state &= ~SS_ISCONNECTED;
1275 1.1 cgd break;
1276 1.1 cgd
1277 1.134 manu case SOCK_SEQPACKET: /* FALLTHROUGH */
1278 1.1 cgd case SOCK_STREAM:
1279 1.112 ad KASSERT(solocked2(so, unp2->unp_socket));
1280 1.112 ad soisdisconnected(so);
1281 1.1 cgd unp2->unp_conn = 0;
1282 1.1 cgd soisdisconnected(unp2->unp_socket);
1283 1.1 cgd break;
1284 1.1 cgd }
1285 1.1 cgd }
1286 1.1 cgd
1287 1.164 rtr static void
1288 1.163 rtr unp_shutdown1(struct unpcb *unp)
1289 1.1 cgd {
1290 1.1 cgd struct socket *so;
1291 1.1 cgd
1292 1.134 manu switch(unp->unp_socket->so_type) {
1293 1.134 manu case SOCK_SEQPACKET: /* FALLTHROUGH */
1294 1.134 manu case SOCK_STREAM:
1295 1.134 manu if (unp->unp_conn && (so = unp->unp_conn->unp_socket))
1296 1.134 manu socantrcvmore(so);
1297 1.134 manu break;
1298 1.134 manu default:
1299 1.134 manu break;
1300 1.134 manu }
1301 1.1 cgd }
1302 1.1 cgd
1303 1.164 rtr static bool
1304 1.76 matt unp_drop(struct unpcb *unp, int errno)
1305 1.1 cgd {
1306 1.1 cgd struct socket *so = unp->unp_socket;
1307 1.1 cgd
1308 1.112 ad KASSERT(solocked(so));
1309 1.112 ad
1310 1.1 cgd so->so_error = errno;
1311 1.163 rtr unp_disconnect1(unp);
1312 1.1 cgd if (so->so_head) {
1313 1.112 ad so->so_pcb = NULL;
1314 1.112 ad /* sofree() drops the socket lock */
1315 1.14 mycroft sofree(so);
1316 1.112 ad unp_free(unp);
1317 1.112 ad return true;
1318 1.1 cgd }
1319 1.112 ad return false;
1320 1.1 cgd }
1321 1.1 cgd
1322 1.1 cgd #ifdef notdef
1323 1.76 matt unp_drain(void)
1324 1.1 cgd {
1325 1.1 cgd
1326 1.1 cgd }
1327 1.1 cgd #endif
1328 1.1 cgd
1329 1.5 andrew int
1330 1.136 christos unp_externalize(struct mbuf *rights, struct lwp *l, int flags)
1331 1.1 cgd {
1332 1.138 christos struct cmsghdr * const cm = mtod(rights, struct cmsghdr *);
1333 1.138 christos struct proc * const p = l->l_proc;
1334 1.106 ad file_t **rp;
1335 1.138 christos int error = 0;
1336 1.47 thorpej
1337 1.138 christos const size_t nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
1338 1.106 ad sizeof(file_t *);
1339 1.143 drochner if (nfds == 0)
1340 1.143 drochner goto noop;
1341 1.1 cgd
1342 1.138 christos int * const fdp = kmem_alloc(nfds * sizeof(int), KM_SLEEP);
1343 1.101 ad rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
1344 1.50 thorpej
1345 1.121 mrg /* Make sure the recipient should be able to see the files.. */
1346 1.140 christos rp = (file_t **)CMSG_DATA(cm);
1347 1.140 christos for (size_t i = 0; i < nfds; i++) {
1348 1.140 christos file_t * const fp = *rp++;
1349 1.140 christos if (fp == NULL) {
1350 1.140 christos error = EINVAL;
1351 1.140 christos goto out;
1352 1.140 christos }
1353 1.140 christos /*
1354 1.140 christos * If we are in a chroot'ed directory, and
1355 1.140 christos * someone wants to pass us a directory, make
1356 1.140 christos * sure it's inside the subtree we're allowed
1357 1.140 christos * to access.
1358 1.140 christos */
1359 1.140 christos if (p->p_cwdi->cwdi_rdir != NULL && fp->f_type == DTYPE_VNODE) {
1360 1.140 christos vnode_t *vp = (vnode_t *)fp->f_data;
1361 1.140 christos if ((vp->v_type == VDIR) &&
1362 1.140 christos !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
1363 1.140 christos error = EPERM;
1364 1.140 christos goto out;
1365 1.39 sommerfe }
1366 1.39 sommerfe }
1367 1.39 sommerfe }
1368 1.50 thorpej
1369 1.50 thorpej restart:
1370 1.24 cgd /*
1371 1.50 thorpej * First loop -- allocate file descriptor table slots for the
1372 1.121 mrg * new files.
1373 1.24 cgd */
1374 1.138 christos for (size_t i = 0; i < nfds; i++) {
1375 1.106 ad if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
1376 1.49 thorpej /*
1377 1.50 thorpej * Back out what we've done so far.
1378 1.49 thorpej */
1379 1.138 christos while (i-- > 0) {
1380 1.106 ad fd_abort(p, NULL, fdp[i]);
1381 1.106 ad }
1382 1.50 thorpej if (error == ENOSPC) {
1383 1.106 ad fd_tryexpand(p);
1384 1.50 thorpej error = 0;
1385 1.138 christos goto restart;
1386 1.50 thorpej }
1387 1.138 christos /*
1388 1.138 christos * This is the error that has historically
1389 1.138 christos * been returned, and some callers may
1390 1.138 christos * expect it.
1391 1.138 christos */
1392 1.138 christos error = EMSGSIZE;
1393 1.138 christos goto out;
1394 1.49 thorpej }
1395 1.1 cgd }
1396 1.24 cgd
1397 1.24 cgd /*
1398 1.50 thorpej * Now that adding them has succeeded, update all of the
1399 1.121 mrg * file passing state and affix the descriptors.
1400 1.112 ad */
1401 1.106 ad rp = (file_t **)CMSG_DATA(cm);
1402 1.138 christos int *ofdp = (int *)CMSG_DATA(cm);
1403 1.138 christos for (size_t i = 0; i < nfds; i++) {
1404 1.138 christos file_t * const fp = *rp++;
1405 1.138 christos const int fd = fdp[i];
1406 1.106 ad atomic_dec_uint(&unp_rights);
1407 1.136 christos fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
1408 1.136 christos fd_affix(p, fp, fd);
1409 1.138 christos /*
1410 1.138 christos * Done with this file pointer, replace it with a fd;
1411 1.138 christos */
1412 1.138 christos *ofdp++ = fd;
1413 1.106 ad mutex_enter(&fp->f_lock);
1414 1.50 thorpej fp->f_msgcount--;
1415 1.106 ad mutex_exit(&fp->f_lock);
1416 1.106 ad /*
1417 1.106 ad * Note that fd_affix() adds a reference to the file.
1418 1.106 ad * The file may already have been closed by another
1419 1.106 ad * LWP in the process, so we must drop the reference
1420 1.106 ad * added by unp_internalize() with closef().
1421 1.106 ad */
1422 1.106 ad closef(fp);
1423 1.50 thorpej }
1424 1.50 thorpej
1425 1.50 thorpej /*
1426 1.138 christos * Adjust length, in case of transition from large file_t
1427 1.138 christos * pointers to ints.
1428 1.50 thorpej */
1429 1.138 christos if (sizeof(file_t *) != sizeof(int)) {
1430 1.138 christos cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
1431 1.138 christos rights->m_len = CMSG_SPACE(nfds * sizeof(int));
1432 1.138 christos }
1433 1.50 thorpej out:
1434 1.138 christos if (__predict_false(error != 0)) {
1435 1.141 riastrad file_t **const fpp = (file_t **)CMSG_DATA(cm);
1436 1.141 riastrad for (size_t i = 0; i < nfds; i++)
1437 1.141 riastrad unp_discard_now(fpp[i]);
1438 1.141 riastrad /*
1439 1.141 riastrad * Truncate the array so that nobody will try to interpret
1440 1.141 riastrad * what is now garbage in it.
1441 1.141 riastrad */
1442 1.141 riastrad cm->cmsg_len = CMSG_LEN(0);
1443 1.141 riastrad rights->m_len = CMSG_SPACE(0);
1444 1.138 christos }
1445 1.143 drochner rw_exit(&p->p_cwdi->cwdi_lock);
1446 1.143 drochner kmem_free(fdp, nfds * sizeof(int));
1447 1.138 christos
1448 1.143 drochner noop:
1449 1.141 riastrad /*
1450 1.141 riastrad * Don't disclose kernel memory in the alignment space.
1451 1.141 riastrad */
1452 1.141 riastrad KASSERT(cm->cmsg_len <= rights->m_len);
1453 1.141 riastrad memset(&mtod(rights, char *)[cm->cmsg_len], 0, rights->m_len -
1454 1.141 riastrad cm->cmsg_len);
1455 1.139 christos return error;
1456 1.1 cgd }
1457 1.1 cgd
1458 1.164 rtr static int
1459 1.112 ad unp_internalize(struct mbuf **controlp)
1460 1.1 cgd {
1461 1.121 mrg filedesc_t *fdescp = curlwp->l_fd;
1462 1.108 yamt struct mbuf *control = *controlp;
1463 1.73 martin struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
1464 1.106 ad file_t **rp, **files;
1465 1.106 ad file_t *fp;
1466 1.46 augustss int i, fd, *fdp;
1467 1.106 ad int nfds, error;
1468 1.121 mrg u_int maxmsg;
1469 1.106 ad
1470 1.106 ad error = 0;
1471 1.106 ad newcm = NULL;
1472 1.38 thorpej
1473 1.106 ad /* Sanity check the control message header. */
1474 1.66 jdolecek if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
1475 1.117 christos cm->cmsg_len > control->m_len ||
1476 1.117 christos cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
1477 1.1 cgd return (EINVAL);
1478 1.24 cgd
1479 1.106 ad /*
1480 1.106 ad * Verify that the file descriptors are valid, and acquire
1481 1.106 ad * a reference to each.
1482 1.106 ad */
1483 1.47 thorpej nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
1484 1.47 thorpej fdp = (int *)CMSG_DATA(cm);
1485 1.121 mrg maxmsg = maxfiles / unp_rights_ratio;
1486 1.24 cgd for (i = 0; i < nfds; i++) {
1487 1.24 cgd fd = *fdp++;
1488 1.121 mrg if (atomic_inc_uint_nv(&unp_rights) > maxmsg) {
1489 1.121 mrg atomic_dec_uint(&unp_rights);
1490 1.121 mrg nfds = i;
1491 1.121 mrg error = EAGAIN;
1492 1.121 mrg goto out;
1493 1.121 mrg }
1494 1.137 martin if ((fp = fd_getfile(fd)) == NULL
1495 1.137 martin || fp->f_type == DTYPE_KQUEUE) {
1496 1.137 martin if (fp)
1497 1.137 martin fd_putfile(fd);
1498 1.121 mrg atomic_dec_uint(&unp_rights);
1499 1.120 pooka nfds = i;
1500 1.106 ad error = EBADF;
1501 1.106 ad goto out;
1502 1.101 ad }
1503 1.24 cgd }
1504 1.24 cgd
1505 1.106 ad /* Allocate new space and copy header into it. */
1506 1.106 ad newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
1507 1.106 ad if (newcm == NULL) {
1508 1.106 ad error = E2BIG;
1509 1.106 ad goto out;
1510 1.106 ad }
1511 1.106 ad memcpy(newcm, cm, sizeof(struct cmsghdr));
1512 1.106 ad files = (file_t **)CMSG_DATA(newcm);
1513 1.106 ad
1514 1.24 cgd /*
1515 1.106 ad * Transform the file descriptors into file_t pointers, in
1516 1.24 cgd * reverse order so that if pointers are bigger than ints, the
1517 1.106 ad * int won't get until we're done. No need to lock, as we have
1518 1.106 ad * already validated the descriptors with fd_getfile().
1519 1.24 cgd */
1520 1.94 cbiere fdp = (int *)CMSG_DATA(cm) + nfds;
1521 1.94 cbiere rp = files + nfds;
1522 1.24 cgd for (i = 0; i < nfds; i++) {
1523 1.126 ad fp = fdescp->fd_dt->dt_ff[*--fdp]->ff_file;
1524 1.106 ad KASSERT(fp != NULL);
1525 1.106 ad mutex_enter(&fp->f_lock);
1526 1.94 cbiere *--rp = fp;
1527 1.1 cgd fp->f_count++;
1528 1.1 cgd fp->f_msgcount++;
1529 1.106 ad mutex_exit(&fp->f_lock);
1530 1.106 ad }
1531 1.106 ad
1532 1.106 ad out:
1533 1.106 ad /* Release descriptor references. */
1534 1.106 ad fdp = (int *)CMSG_DATA(cm);
1535 1.106 ad for (i = 0; i < nfds; i++) {
1536 1.106 ad fd_putfile(*fdp++);
1537 1.121 mrg if (error != 0) {
1538 1.121 mrg atomic_dec_uint(&unp_rights);
1539 1.121 mrg }
1540 1.1 cgd }
1541 1.73 martin
1542 1.106 ad if (error == 0) {
1543 1.108 yamt if (control->m_flags & M_EXT) {
1544 1.108 yamt m_freem(control);
1545 1.108 yamt *controlp = control = m_get(M_WAIT, MT_CONTROL);
1546 1.108 yamt }
1547 1.106 ad MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
1548 1.73 martin M_MBUF, NULL, NULL);
1549 1.73 martin cm = newcm;
1550 1.106 ad /*
1551 1.106 ad * Adjust message & mbuf to note amount of space
1552 1.106 ad * actually used.
1553 1.106 ad */
1554 1.106 ad cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
1555 1.106 ad control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
1556 1.73 martin }
1557 1.73 martin
1558 1.106 ad return error;
1559 1.30 thorpej }
1560 1.30 thorpej
1561 1.30 thorpej struct mbuf *
1562 1.92 ad unp_addsockcred(struct lwp *l, struct mbuf *control)
1563 1.30 thorpej {
1564 1.30 thorpej struct sockcred *sc;
1565 1.142 christos struct mbuf *m;
1566 1.142 christos void *p;
1567 1.30 thorpej
1568 1.142 christos m = sbcreatecontrol1(&p, SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)),
1569 1.142 christos SCM_CREDS, SOL_SOCKET, M_WAITOK);
1570 1.142 christos if (m == NULL)
1571 1.142 christos return control;
1572 1.142 christos
1573 1.142 christos sc = p;
1574 1.92 ad sc->sc_uid = kauth_cred_getuid(l->l_cred);
1575 1.92 ad sc->sc_euid = kauth_cred_geteuid(l->l_cred);
1576 1.92 ad sc->sc_gid = kauth_cred_getgid(l->l_cred);
1577 1.92 ad sc->sc_egid = kauth_cred_getegid(l->l_cred);
1578 1.92 ad sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
1579 1.142 christos
1580 1.142 christos for (int i = 0; i < sc->sc_ngroups; i++)
1581 1.92 ad sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
1582 1.30 thorpej
1583 1.142 christos return m_add(control, m);
1584 1.1 cgd }
1585 1.1 cgd
1586 1.39 sommerfe /*
1587 1.121 mrg * Do a mark-sweep GC of files in the system, to free up any which are
1588 1.121 mrg * caught in flight to an about-to-be-closed socket. Additionally,
1589 1.121 mrg * process deferred file closures.
1590 1.39 sommerfe */
1591 1.121 mrg static void
1592 1.121 mrg unp_gc(file_t *dp)
1593 1.1 cgd {
1594 1.121 mrg extern struct domain unixdomain;
1595 1.121 mrg file_t *fp, *np;
1596 1.46 augustss struct socket *so, *so1;
1597 1.121 mrg u_int i, old, new;
1598 1.121 mrg bool didwork;
1599 1.1 cgd
1600 1.121 mrg KASSERT(curlwp == unp_thread_lwp);
1601 1.121 mrg KASSERT(mutex_owned(&filelist_lock));
1602 1.106 ad
1603 1.121 mrg /*
1604 1.121 mrg * First, process deferred file closures.
1605 1.121 mrg */
1606 1.121 mrg while (!SLIST_EMPTY(&unp_thread_discard)) {
1607 1.121 mrg fp = SLIST_FIRST(&unp_thread_discard);
1608 1.121 mrg KASSERT(fp->f_unpcount > 0);
1609 1.121 mrg KASSERT(fp->f_count > 0);
1610 1.121 mrg KASSERT(fp->f_msgcount > 0);
1611 1.121 mrg KASSERT(fp->f_count >= fp->f_unpcount);
1612 1.121 mrg KASSERT(fp->f_count >= fp->f_msgcount);
1613 1.121 mrg KASSERT(fp->f_msgcount >= fp->f_unpcount);
1614 1.121 mrg SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist);
1615 1.121 mrg i = fp->f_unpcount;
1616 1.121 mrg fp->f_unpcount = 0;
1617 1.121 mrg mutex_exit(&filelist_lock);
1618 1.121 mrg for (; i != 0; i--) {
1619 1.121 mrg unp_discard_now(fp);
1620 1.121 mrg }
1621 1.121 mrg mutex_enter(&filelist_lock);
1622 1.121 mrg }
1623 1.39 sommerfe
1624 1.121 mrg /*
1625 1.121 mrg * Clear mark bits. Ensure that we don't consider new files
1626 1.121 mrg * entering the file table during this loop (they will not have
1627 1.121 mrg * FSCAN set).
1628 1.121 mrg */
1629 1.106 ad unp_defer = 0;
1630 1.106 ad LIST_FOREACH(fp, &filehead, f_list) {
1631 1.121 mrg for (old = fp->f_flag;; old = new) {
1632 1.121 mrg new = atomic_cas_uint(&fp->f_flag, old,
1633 1.121 mrg (old | FSCAN) & ~(FMARK|FDEFER));
1634 1.121 mrg if (__predict_true(old == new)) {
1635 1.121 mrg break;
1636 1.121 mrg }
1637 1.121 mrg }
1638 1.106 ad }
1639 1.39 sommerfe
1640 1.39 sommerfe /*
1641 1.121 mrg * Iterate over the set of sockets, marking ones believed (based on
1642 1.121 mrg * refcount) to be referenced from a process, and marking for rescan
1643 1.121 mrg * sockets which are queued on a socket. Recan continues descending
1644 1.121 mrg * and searching for sockets referenced by sockets (FDEFER), until
1645 1.121 mrg * there are no more socket->socket references to be discovered.
1646 1.39 sommerfe */
1647 1.1 cgd do {
1648 1.121 mrg didwork = false;
1649 1.121 mrg for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1650 1.121 mrg KASSERT(mutex_owned(&filelist_lock));
1651 1.121 mrg np = LIST_NEXT(fp, f_list);
1652 1.106 ad mutex_enter(&fp->f_lock);
1653 1.121 mrg if ((fp->f_flag & FDEFER) != 0) {
1654 1.106 ad atomic_and_uint(&fp->f_flag, ~FDEFER);
1655 1.1 cgd unp_defer--;
1656 1.106 ad KASSERT(fp->f_count != 0);
1657 1.1 cgd } else {
1658 1.101 ad if (fp->f_count == 0 ||
1659 1.121 mrg (fp->f_flag & FMARK) != 0 ||
1660 1.121 mrg fp->f_count == fp->f_msgcount ||
1661 1.121 mrg fp->f_unpcount != 0) {
1662 1.106 ad mutex_exit(&fp->f_lock);
1663 1.1 cgd continue;
1664 1.101 ad }
1665 1.1 cgd }
1666 1.106 ad atomic_or_uint(&fp->f_flag, FMARK);
1667 1.39 sommerfe
1668 1.1 cgd if (fp->f_type != DTYPE_SOCKET ||
1669 1.112 ad (so = fp->f_data) == NULL ||
1670 1.101 ad so->so_proto->pr_domain != &unixdomain ||
1671 1.121 mrg (so->so_proto->pr_flags & PR_RIGHTS) == 0) {
1672 1.106 ad mutex_exit(&fp->f_lock);
1673 1.1 cgd continue;
1674 1.101 ad }
1675 1.121 mrg
1676 1.121 mrg /* Gain file ref, mark our position, and unlock. */
1677 1.121 mrg didwork = true;
1678 1.121 mrg LIST_INSERT_AFTER(fp, dp, f_list);
1679 1.121 mrg fp->f_count++;
1680 1.106 ad mutex_exit(&fp->f_lock);
1681 1.121 mrg mutex_exit(&filelist_lock);
1682 1.101 ad
1683 1.112 ad /*
1684 1.121 mrg * Mark files referenced from sockets queued on the
1685 1.121 mrg * accept queue as well.
1686 1.112 ad */
1687 1.112 ad solock(so);
1688 1.39 sommerfe unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
1689 1.121 mrg if ((so->so_options & SO_ACCEPTCONN) != 0) {
1690 1.54 matt TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
1691 1.39 sommerfe unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1692 1.39 sommerfe }
1693 1.54 matt TAILQ_FOREACH(so1, &so->so_q, so_qe) {
1694 1.39 sommerfe unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1695 1.39 sommerfe }
1696 1.39 sommerfe }
1697 1.112 ad sounlock(so);
1698 1.121 mrg
1699 1.121 mrg /* Re-lock and restart from where we left off. */
1700 1.121 mrg closef(fp);
1701 1.121 mrg mutex_enter(&filelist_lock);
1702 1.121 mrg np = LIST_NEXT(dp, f_list);
1703 1.121 mrg LIST_REMOVE(dp, f_list);
1704 1.1 cgd }
1705 1.121 mrg /*
1706 1.121 mrg * Bail early if we did nothing in the loop above. Could
1707 1.121 mrg * happen because of concurrent activity causing unp_defer
1708 1.121 mrg * to get out of sync.
1709 1.121 mrg */
1710 1.121 mrg } while (unp_defer != 0 && didwork);
1711 1.101 ad
1712 1.8 mycroft /*
1713 1.121 mrg * Sweep pass.
1714 1.8 mycroft *
1715 1.121 mrg * We grab an extra reference to each of the files that are
1716 1.121 mrg * not otherwise accessible and then free the rights that are
1717 1.121 mrg * stored in messages on them.
1718 1.8 mycroft */
1719 1.121 mrg for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1720 1.121 mrg KASSERT(mutex_owned(&filelist_lock));
1721 1.121 mrg np = LIST_NEXT(fp, f_list);
1722 1.106 ad mutex_enter(&fp->f_lock);
1723 1.121 mrg
1724 1.121 mrg /*
1725 1.121 mrg * Ignore non-sockets.
1726 1.121 mrg * Ignore dead sockets, or sockets with pending close.
1727 1.121 mrg * Ignore sockets obviously referenced elsewhere.
1728 1.121 mrg * Ignore sockets marked as referenced by our scan.
1729 1.121 mrg * Ignore new sockets that did not exist during the scan.
1730 1.121 mrg */
1731 1.121 mrg if (fp->f_type != DTYPE_SOCKET ||
1732 1.121 mrg fp->f_count == 0 || fp->f_unpcount != 0 ||
1733 1.121 mrg fp->f_count != fp->f_msgcount ||
1734 1.121 mrg (fp->f_flag & (FMARK | FSCAN)) != FSCAN) {
1735 1.121 mrg mutex_exit(&fp->f_lock);
1736 1.121 mrg continue;
1737 1.8 mycroft }
1738 1.121 mrg
1739 1.121 mrg /* Gain file ref, mark our position, and unlock. */
1740 1.121 mrg LIST_INSERT_AFTER(fp, dp, f_list);
1741 1.121 mrg fp->f_count++;
1742 1.106 ad mutex_exit(&fp->f_lock);
1743 1.121 mrg mutex_exit(&filelist_lock);
1744 1.121 mrg
1745 1.121 mrg /*
1746 1.121 mrg * Flush all data from the socket's receive buffer.
1747 1.121 mrg * This will cause files referenced only by the
1748 1.121 mrg * socket to be queued for close.
1749 1.121 mrg */
1750 1.121 mrg so = fp->f_data;
1751 1.121 mrg solock(so);
1752 1.121 mrg sorflush(so);
1753 1.121 mrg sounlock(so);
1754 1.121 mrg
1755 1.121 mrg /* Re-lock and restart from where we left off. */
1756 1.121 mrg closef(fp);
1757 1.121 mrg mutex_enter(&filelist_lock);
1758 1.121 mrg np = LIST_NEXT(dp, f_list);
1759 1.121 mrg LIST_REMOVE(dp, f_list);
1760 1.121 mrg }
1761 1.121 mrg }
1762 1.121 mrg
1763 1.121 mrg /*
1764 1.121 mrg * Garbage collector thread. While SCM_RIGHTS messages are in transit,
1765 1.121 mrg * wake once per second to garbage collect. Run continually while we
1766 1.121 mrg * have deferred closes to process.
1767 1.121 mrg */
1768 1.121 mrg static void
1769 1.121 mrg unp_thread(void *cookie)
1770 1.121 mrg {
1771 1.121 mrg file_t *dp;
1772 1.121 mrg
1773 1.121 mrg /* Allocate a dummy file for our scans. */
1774 1.121 mrg if ((dp = fgetdummy()) == NULL) {
1775 1.121 mrg panic("unp_thread");
1776 1.1 cgd }
1777 1.101 ad
1778 1.121 mrg mutex_enter(&filelist_lock);
1779 1.121 mrg for (;;) {
1780 1.121 mrg KASSERT(mutex_owned(&filelist_lock));
1781 1.121 mrg if (SLIST_EMPTY(&unp_thread_discard)) {
1782 1.121 mrg if (unp_rights != 0) {
1783 1.121 mrg (void)cv_timedwait(&unp_thread_cv,
1784 1.121 mrg &filelist_lock, hz);
1785 1.121 mrg } else {
1786 1.121 mrg cv_wait(&unp_thread_cv, &filelist_lock);
1787 1.121 mrg }
1788 1.112 ad }
1789 1.121 mrg unp_gc(dp);
1790 1.39 sommerfe }
1791 1.121 mrg /* NOTREACHED */
1792 1.121 mrg }
1793 1.121 mrg
1794 1.121 mrg /*
1795 1.121 mrg * Kick the garbage collector into action if there is something for
1796 1.121 mrg * it to process.
1797 1.121 mrg */
1798 1.121 mrg static void
1799 1.121 mrg unp_thread_kick(void)
1800 1.121 mrg {
1801 1.121 mrg
1802 1.121 mrg if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) {
1803 1.121 mrg mutex_enter(&filelist_lock);
1804 1.121 mrg cv_signal(&unp_thread_cv);
1805 1.121 mrg mutex_exit(&filelist_lock);
1806 1.44 thorpej }
1807 1.1 cgd }
1808 1.1 cgd
1809 1.5 andrew void
1810 1.76 matt unp_dispose(struct mbuf *m)
1811 1.1 cgd {
1812 1.8 mycroft
1813 1.1 cgd if (m)
1814 1.121 mrg unp_scan(m, unp_discard_later, 1);
1815 1.1 cgd }
1816 1.1 cgd
1817 1.5 andrew void
1818 1.106 ad unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
1819 1.1 cgd {
1820 1.46 augustss struct mbuf *m;
1821 1.121 mrg file_t **rp, *fp;
1822 1.46 augustss struct cmsghdr *cm;
1823 1.121 mrg int i, qfds;
1824 1.1 cgd
1825 1.1 cgd while (m0) {
1826 1.48 thorpej for (m = m0; m; m = m->m_next) {
1827 1.121 mrg if (m->m_type != MT_CONTROL ||
1828 1.121 mrg m->m_len < sizeof(*cm)) {
1829 1.121 mrg continue;
1830 1.121 mrg }
1831 1.121 mrg cm = mtod(m, struct cmsghdr *);
1832 1.121 mrg if (cm->cmsg_level != SOL_SOCKET ||
1833 1.121 mrg cm->cmsg_type != SCM_RIGHTS)
1834 1.121 mrg continue;
1835 1.121 mrg qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
1836 1.121 mrg / sizeof(file_t *);
1837 1.121 mrg rp = (file_t **)CMSG_DATA(cm);
1838 1.121 mrg for (i = 0; i < qfds; i++) {
1839 1.121 mrg fp = *rp;
1840 1.121 mrg if (discard) {
1841 1.121 mrg *rp = 0;
1842 1.39 sommerfe }
1843 1.121 mrg (*op)(fp);
1844 1.121 mrg rp++;
1845 1.1 cgd }
1846 1.48 thorpej }
1847 1.52 thorpej m0 = m0->m_nextpkt;
1848 1.1 cgd }
1849 1.1 cgd }
1850 1.1 cgd
1851 1.5 andrew void
1852 1.106 ad unp_mark(file_t *fp)
1853 1.1 cgd {
1854 1.101 ad
1855 1.39 sommerfe if (fp == NULL)
1856 1.39 sommerfe return;
1857 1.80 perry
1858 1.39 sommerfe /* If we're already deferred, don't screw up the defer count */
1859 1.106 ad mutex_enter(&fp->f_lock);
1860 1.101 ad if (fp->f_flag & (FMARK | FDEFER)) {
1861 1.106 ad mutex_exit(&fp->f_lock);
1862 1.1 cgd return;
1863 1.101 ad }
1864 1.39 sommerfe
1865 1.39 sommerfe /*
1866 1.121 mrg * Minimize the number of deferrals... Sockets are the only type of
1867 1.121 mrg * file which can hold references to another file, so just mark
1868 1.121 mrg * other files, and defer unmarked sockets for the next pass.
1869 1.39 sommerfe */
1870 1.39 sommerfe if (fp->f_type == DTYPE_SOCKET) {
1871 1.39 sommerfe unp_defer++;
1872 1.106 ad KASSERT(fp->f_count != 0);
1873 1.106 ad atomic_or_uint(&fp->f_flag, FDEFER);
1874 1.39 sommerfe } else {
1875 1.106 ad atomic_or_uint(&fp->f_flag, FMARK);
1876 1.39 sommerfe }
1877 1.106 ad mutex_exit(&fp->f_lock);
1878 1.1 cgd }
1879 1.1 cgd
1880 1.121 mrg static void
1881 1.121 mrg unp_discard_now(file_t *fp)
1882 1.1 cgd {
1883 1.106 ad
1884 1.39 sommerfe if (fp == NULL)
1885 1.39 sommerfe return;
1886 1.106 ad
1887 1.121 mrg KASSERT(fp->f_count > 0);
1888 1.121 mrg KASSERT(fp->f_msgcount > 0);
1889 1.121 mrg
1890 1.106 ad mutex_enter(&fp->f_lock);
1891 1.1 cgd fp->f_msgcount--;
1892 1.106 ad mutex_exit(&fp->f_lock);
1893 1.106 ad atomic_dec_uint(&unp_rights);
1894 1.106 ad (void)closef(fp);
1895 1.1 cgd }
1896 1.121 mrg
1897 1.121 mrg static void
1898 1.121 mrg unp_discard_later(file_t *fp)
1899 1.121 mrg {
1900 1.121 mrg
1901 1.121 mrg if (fp == NULL)
1902 1.121 mrg return;
1903 1.121 mrg
1904 1.121 mrg KASSERT(fp->f_count > 0);
1905 1.121 mrg KASSERT(fp->f_msgcount > 0);
1906 1.121 mrg
1907 1.121 mrg mutex_enter(&filelist_lock);
1908 1.121 mrg if (fp->f_unpcount++ == 0) {
1909 1.121 mrg SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist);
1910 1.121 mrg }
1911 1.121 mrg mutex_exit(&filelist_lock);
1912 1.121 mrg }
1913 1.151 rmind
1914 1.151 rmind const struct pr_usrreqs unp_usrreqs = {
1915 1.152 rmind .pr_attach = unp_attach,
1916 1.152 rmind .pr_detach = unp_detach,
1917 1.159 rtr .pr_accept = unp_accept,
1918 1.161 rtr .pr_bind = unp_bind,
1919 1.161 rtr .pr_listen = unp_listen,
1920 1.162 rtr .pr_connect = unp_connect,
1921 1.163 rtr .pr_disconnect = unp_disconnect,
1922 1.163 rtr .pr_shutdown = unp_shutdown,
1923 1.163 rtr .pr_abort = unp_abort,
1924 1.154 rtr .pr_ioctl = unp_ioctl,
1925 1.156 rtr .pr_stat = unp_stat,
1926 1.158 rtr .pr_peeraddr = unp_peeraddr,
1927 1.158 rtr .pr_sockaddr = unp_sockaddr,
1928 1.160 rtr .pr_recvoob = unp_recvoob,
1929 1.166 rtr .pr_send = unp_send,
1930 1.160 rtr .pr_sendoob = unp_sendoob,
1931 1.151 rmind .pr_generic = unp_usrreq,
1932 1.151 rmind };
1933