uipc_usrreq.c revision 1.169 1 1.169 rtr /* $NetBSD: uipc_usrreq.c,v 1.169 2014/08/09 05:33:00 rtr Exp $ */
2 1.30 thorpej
3 1.30 thorpej /*-
4 1.121 mrg * Copyright (c) 1998, 2000, 2004, 2008, 2009 The NetBSD Foundation, Inc.
5 1.30 thorpej * All rights reserved.
6 1.30 thorpej *
7 1.30 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.30 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.121 mrg * NASA Ames Research Center, and by Andrew Doran.
10 1.30 thorpej *
11 1.30 thorpej * Redistribution and use in source and binary forms, with or without
12 1.30 thorpej * modification, are permitted provided that the following conditions
13 1.30 thorpej * are met:
14 1.30 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.30 thorpej * notice, this list of conditions and the following disclaimer.
16 1.30 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.30 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.30 thorpej * documentation and/or other materials provided with the distribution.
19 1.30 thorpej *
20 1.30 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.30 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.30 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.30 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.30 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.30 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.30 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.30 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.30 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.30 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.30 thorpej * POSSIBILITY OF SUCH DAMAGE.
31 1.30 thorpej */
32 1.10 cgd
33 1.1 cgd /*
34 1.8 mycroft * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 1.8 mycroft * The Regents of the University of California. All rights reserved.
36 1.1 cgd *
37 1.1 cgd * Redistribution and use in source and binary forms, with or without
38 1.1 cgd * modification, are permitted provided that the following conditions
39 1.1 cgd * are met:
40 1.1 cgd * 1. Redistributions of source code must retain the above copyright
41 1.1 cgd * notice, this list of conditions and the following disclaimer.
42 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
43 1.1 cgd * notice, this list of conditions and the following disclaimer in the
44 1.1 cgd * documentation and/or other materials provided with the distribution.
45 1.67 agc * 3. Neither the name of the University nor the names of its contributors
46 1.67 agc * may be used to endorse or promote products derived from this software
47 1.67 agc * without specific prior written permission.
48 1.67 agc *
49 1.67 agc * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 1.67 agc * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 1.67 agc * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 1.67 agc * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 1.67 agc * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 1.67 agc * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 1.67 agc * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 1.67 agc * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 1.67 agc * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 1.67 agc * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 1.67 agc * SUCH DAMAGE.
60 1.67 agc *
61 1.67 agc * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
62 1.67 agc */
63 1.67 agc
64 1.67 agc /*
65 1.67 agc * Copyright (c) 1997 Christopher G. Demetriou. All rights reserved.
66 1.67 agc *
67 1.67 agc * Redistribution and use in source and binary forms, with or without
68 1.67 agc * modification, are permitted provided that the following conditions
69 1.67 agc * are met:
70 1.67 agc * 1. Redistributions of source code must retain the above copyright
71 1.67 agc * notice, this list of conditions and the following disclaimer.
72 1.67 agc * 2. Redistributions in binary form must reproduce the above copyright
73 1.67 agc * notice, this list of conditions and the following disclaimer in the
74 1.67 agc * documentation and/or other materials provided with the distribution.
75 1.1 cgd * 3. All advertising materials mentioning features or use of this software
76 1.1 cgd * must display the following acknowledgement:
77 1.1 cgd * This product includes software developed by the University of
78 1.1 cgd * California, Berkeley and its contributors.
79 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
80 1.1 cgd * may be used to endorse or promote products derived from this software
81 1.1 cgd * without specific prior written permission.
82 1.1 cgd *
83 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
84 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
85 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
86 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
87 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
88 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
89 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
90 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
91 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
92 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
93 1.1 cgd * SUCH DAMAGE.
94 1.1 cgd *
95 1.31 fvdl * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
96 1.1 cgd */
97 1.53 lukem
98 1.53 lukem #include <sys/cdefs.h>
99 1.169 rtr __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.169 2014/08/09 05:33:00 rtr Exp $");
100 1.1 cgd
101 1.7 mycroft #include <sys/param.h>
102 1.8 mycroft #include <sys/systm.h>
103 1.7 mycroft #include <sys/proc.h>
104 1.7 mycroft #include <sys/filedesc.h>
105 1.7 mycroft #include <sys/domain.h>
106 1.7 mycroft #include <sys/protosw.h>
107 1.7 mycroft #include <sys/socket.h>
108 1.7 mycroft #include <sys/socketvar.h>
109 1.7 mycroft #include <sys/unpcb.h>
110 1.7 mycroft #include <sys/un.h>
111 1.7 mycroft #include <sys/namei.h>
112 1.7 mycroft #include <sys/vnode.h>
113 1.7 mycroft #include <sys/file.h>
114 1.7 mycroft #include <sys/stat.h>
115 1.7 mycroft #include <sys/mbuf.h>
116 1.91 elad #include <sys/kauth.h>
117 1.101 ad #include <sys/kmem.h>
118 1.106 ad #include <sys/atomic.h>
119 1.119 pooka #include <sys/uidinfo.h>
120 1.121 mrg #include <sys/kernel.h>
121 1.121 mrg #include <sys/kthread.h>
122 1.1 cgd
123 1.1 cgd /*
124 1.1 cgd * Unix communications domain.
125 1.1 cgd *
126 1.1 cgd * TODO:
127 1.134 manu * RDM
128 1.1 cgd * rethink name space problems
129 1.1 cgd * need a proper out-of-band
130 1.112 ad *
131 1.112 ad * Notes on locking:
132 1.112 ad *
133 1.112 ad * The generic rules noted in uipc_socket2.c apply. In addition:
134 1.112 ad *
135 1.112 ad * o We have a global lock, uipc_lock.
136 1.112 ad *
137 1.112 ad * o All datagram sockets are locked by uipc_lock.
138 1.112 ad *
139 1.112 ad * o For stream socketpairs, the two endpoints are created sharing the same
140 1.112 ad * independent lock. Sockets presented to PRU_CONNECT2 must already have
141 1.112 ad * matching locks.
142 1.112 ad *
143 1.112 ad * o Stream sockets created via socket() start life with their own
144 1.112 ad * independent lock.
145 1.112 ad *
146 1.112 ad * o Stream connections to a named endpoint are slightly more complicated.
147 1.112 ad * Sockets that have called listen() have their lock pointer mutated to
148 1.112 ad * the global uipc_lock. When establishing a connection, the connecting
149 1.112 ad * socket also has its lock mutated to uipc_lock, which matches the head
150 1.112 ad * (listening socket). We create a new socket for accept() to return, and
151 1.112 ad * that also shares the head's lock. Until the connection is completely
152 1.112 ad * done on both ends, all three sockets are locked by uipc_lock. Once the
153 1.112 ad * connection is complete, the association with the head's lock is broken.
154 1.112 ad * The connecting socket and the socket returned from accept() have their
155 1.112 ad * lock pointers mutated away from uipc_lock, and back to the connecting
156 1.112 ad * socket's original, independent lock. The head continues to be locked
157 1.112 ad * by uipc_lock.
158 1.112 ad *
159 1.112 ad * o If uipc_lock is determined to be a significant source of contention,
160 1.112 ad * it could easily be hashed out. It is difficult to simply make it an
161 1.112 ad * independent lock because of visibility / garbage collection issues:
162 1.112 ad * if a socket has been associated with a lock at any point, that lock
163 1.112 ad * must remain valid until the socket is no longer visible in the system.
164 1.112 ad * The lock must not be freed or otherwise destroyed until any sockets
165 1.112 ad * that had referenced it have also been destroyed.
166 1.1 cgd */
167 1.93 christos const struct sockaddr_un sun_noname = {
168 1.145 christos .sun_len = offsetof(struct sockaddr_un, sun_path),
169 1.93 christos .sun_family = AF_LOCAL,
170 1.93 christos };
171 1.1 cgd ino_t unp_ino; /* prototype for fake inode numbers */
172 1.1 cgd
173 1.164 rtr static struct mbuf * unp_addsockcred(struct lwp *, struct mbuf *);
174 1.164 rtr static void unp_discard_later(file_t *);
175 1.164 rtr static void unp_discard_now(file_t *);
176 1.164 rtr static void unp_disconnect1(struct unpcb *);
177 1.164 rtr static bool unp_drop(struct unpcb *, int);
178 1.164 rtr static int unp_internalize(struct mbuf **);
179 1.164 rtr static void unp_mark(file_t *);
180 1.164 rtr static void unp_scan(struct mbuf *, void (*)(file_t *), int);
181 1.164 rtr static void unp_shutdown1(struct unpcb *);
182 1.164 rtr static void unp_thread(void *);
183 1.164 rtr static void unp_thread_kick(void);
184 1.164 rtr
185 1.112 ad static kmutex_t *uipc_lock;
186 1.112 ad
187 1.121 mrg static kcondvar_t unp_thread_cv;
188 1.121 mrg static lwp_t *unp_thread_lwp;
189 1.121 mrg static SLIST_HEAD(,file) unp_thread_discard;
190 1.121 mrg static int unp_defer;
191 1.121 mrg
192 1.112 ad /*
193 1.112 ad * Initialize Unix protocols.
194 1.112 ad */
195 1.112 ad void
196 1.112 ad uipc_init(void)
197 1.112 ad {
198 1.121 mrg int error;
199 1.112 ad
200 1.112 ad uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
201 1.121 mrg cv_init(&unp_thread_cv, "unpgc");
202 1.121 mrg
203 1.121 mrg error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread,
204 1.121 mrg NULL, &unp_thread_lwp, "unpgc");
205 1.121 mrg if (error != 0)
206 1.121 mrg panic("uipc_init %d", error);
207 1.112 ad }
208 1.112 ad
209 1.112 ad /*
210 1.112 ad * A connection succeeded: disassociate both endpoints from the head's
211 1.112 ad * lock, and make them share their own lock. There is a race here: for
212 1.112 ad * a very brief time one endpoint will be locked by a different lock
213 1.112 ad * than the other end. However, since the current thread holds the old
214 1.112 ad * lock (the listening socket's lock, the head) access can still only be
215 1.112 ad * made to one side of the connection.
216 1.112 ad */
217 1.112 ad static void
218 1.112 ad unp_setpeerlocks(struct socket *so, struct socket *so2)
219 1.112 ad {
220 1.112 ad struct unpcb *unp;
221 1.112 ad kmutex_t *lock;
222 1.112 ad
223 1.112 ad KASSERT(solocked2(so, so2));
224 1.112 ad
225 1.112 ad /*
226 1.112 ad * Bail out if either end of the socket is not yet fully
227 1.112 ad * connected or accepted. We only break the lock association
228 1.112 ad * with the head when the pair of sockets stand completely
229 1.112 ad * on their own.
230 1.112 ad */
231 1.125 yamt KASSERT(so->so_head == NULL);
232 1.125 yamt if (so2->so_head != NULL)
233 1.112 ad return;
234 1.112 ad
235 1.112 ad /*
236 1.112 ad * Drop references to old lock. A third reference (from the
237 1.112 ad * queue head) must be held as we still hold its lock. Bonus:
238 1.112 ad * we don't need to worry about garbage collecting the lock.
239 1.112 ad */
240 1.112 ad lock = so->so_lock;
241 1.112 ad KASSERT(lock == uipc_lock);
242 1.112 ad mutex_obj_free(lock);
243 1.112 ad mutex_obj_free(lock);
244 1.112 ad
245 1.112 ad /*
246 1.112 ad * Grab stream lock from the initiator and share between the two
247 1.112 ad * endpoints. Issue memory barrier to ensure all modifications
248 1.112 ad * become globally visible before the lock change. so2 is
249 1.112 ad * assumed not to have a stream lock, because it was created
250 1.112 ad * purely for the server side to accept this connection and
251 1.112 ad * started out life using the domain-wide lock.
252 1.112 ad */
253 1.112 ad unp = sotounpcb(so);
254 1.112 ad KASSERT(unp->unp_streamlock != NULL);
255 1.112 ad KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
256 1.112 ad lock = unp->unp_streamlock;
257 1.112 ad unp->unp_streamlock = NULL;
258 1.112 ad mutex_obj_hold(lock);
259 1.112 ad membar_exit();
260 1.127 bouyer /*
261 1.127 bouyer * possible race if lock is not held - see comment in
262 1.127 bouyer * uipc_usrreq(PRU_ACCEPT).
263 1.127 bouyer */
264 1.127 bouyer KASSERT(mutex_owned(lock));
265 1.115 ad solockreset(so, lock);
266 1.115 ad solockreset(so2, lock);
267 1.112 ad }
268 1.112 ad
269 1.112 ad /*
270 1.112 ad * Reset a socket's lock back to the domain-wide lock.
271 1.112 ad */
272 1.112 ad static void
273 1.112 ad unp_resetlock(struct socket *so)
274 1.112 ad {
275 1.112 ad kmutex_t *olock, *nlock;
276 1.112 ad struct unpcb *unp;
277 1.112 ad
278 1.112 ad KASSERT(solocked(so));
279 1.112 ad
280 1.112 ad olock = so->so_lock;
281 1.112 ad nlock = uipc_lock;
282 1.112 ad if (olock == nlock)
283 1.112 ad return;
284 1.112 ad unp = sotounpcb(so);
285 1.112 ad KASSERT(unp->unp_streamlock == NULL);
286 1.112 ad unp->unp_streamlock = olock;
287 1.112 ad mutex_obj_hold(nlock);
288 1.112 ad mutex_enter(nlock);
289 1.115 ad solockreset(so, nlock);
290 1.112 ad mutex_exit(olock);
291 1.112 ad }
292 1.112 ad
293 1.112 ad static void
294 1.112 ad unp_free(struct unpcb *unp)
295 1.112 ad {
296 1.112 ad if (unp->unp_addr)
297 1.112 ad free(unp->unp_addr, M_SONAME);
298 1.112 ad if (unp->unp_streamlock != NULL)
299 1.112 ad mutex_obj_free(unp->unp_streamlock);
300 1.152 rmind kmem_free(unp, sizeof(*unp));
301 1.112 ad }
302 1.30 thorpej
303 1.164 rtr static int
304 1.164 rtr unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp)
305 1.20 mycroft {
306 1.20 mycroft struct socket *so2;
307 1.77 matt const struct sockaddr_un *sun;
308 1.20 mycroft
309 1.153 christos /* XXX: server side closed the socket */
310 1.153 christos if (unp->unp_conn == NULL)
311 1.153 christos return ECONNREFUSED;
312 1.20 mycroft so2 = unp->unp_conn->unp_socket;
313 1.112 ad
314 1.112 ad KASSERT(solocked(so2));
315 1.112 ad
316 1.20 mycroft if (unp->unp_addr)
317 1.20 mycroft sun = unp->unp_addr;
318 1.20 mycroft else
319 1.20 mycroft sun = &sun_noname;
320 1.30 thorpej if (unp->unp_conn->unp_flags & UNP_WANTCRED)
321 1.164 rtr control = unp_addsockcred(curlwp, control);
322 1.82 christos if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
323 1.20 mycroft control) == 0) {
324 1.112 ad so2->so_rcv.sb_overflowed++;
325 1.98 martin unp_dispose(control);
326 1.20 mycroft m_freem(control);
327 1.20 mycroft m_freem(m);
328 1.60 christos return (ENOBUFS);
329 1.20 mycroft } else {
330 1.20 mycroft sorwakeup(so2);
331 1.20 mycroft return (0);
332 1.20 mycroft }
333 1.20 mycroft }
334 1.20 mycroft
335 1.164 rtr static void
336 1.112 ad unp_setaddr(struct socket *so, struct mbuf *nam, bool peeraddr)
337 1.20 mycroft {
338 1.77 matt const struct sockaddr_un *sun;
339 1.112 ad struct unpcb *unp;
340 1.112 ad bool ext;
341 1.20 mycroft
342 1.127 bouyer KASSERT(solocked(so));
343 1.112 ad unp = sotounpcb(so);
344 1.112 ad ext = false;
345 1.20 mycroft
346 1.112 ad for (;;) {
347 1.112 ad sun = NULL;
348 1.112 ad if (peeraddr) {
349 1.112 ad if (unp->unp_conn && unp->unp_conn->unp_addr)
350 1.112 ad sun = unp->unp_conn->unp_addr;
351 1.112 ad } else {
352 1.112 ad if (unp->unp_addr)
353 1.112 ad sun = unp->unp_addr;
354 1.112 ad }
355 1.112 ad if (sun == NULL)
356 1.112 ad sun = &sun_noname;
357 1.112 ad nam->m_len = sun->sun_len;
358 1.112 ad if (nam->m_len > MLEN && !ext) {
359 1.112 ad sounlock(so);
360 1.112 ad MEXTMALLOC(nam, MAXPATHLEN * 2, M_WAITOK);
361 1.112 ad solock(so);
362 1.112 ad ext = true;
363 1.112 ad } else {
364 1.112 ad KASSERT(nam->m_len <= MAXPATHLEN * 2);
365 1.112 ad memcpy(mtod(nam, void *), sun, (size_t)nam->m_len);
366 1.112 ad break;
367 1.112 ad }
368 1.112 ad }
369 1.20 mycroft }
370 1.20 mycroft
371 1.151 rmind static int
372 1.168 rtr unp_rcvd(struct socket *so, int flags, struct lwp *l)
373 1.168 rtr {
374 1.168 rtr struct unpcb *unp = sotounpcb(so);
375 1.168 rtr struct socket *so2;
376 1.168 rtr u_int newhiwat;
377 1.168 rtr
378 1.168 rtr KASSERT(solocked(so));
379 1.168 rtr KASSERT(unp != NULL);
380 1.168 rtr
381 1.168 rtr switch (so->so_type) {
382 1.168 rtr
383 1.168 rtr case SOCK_DGRAM:
384 1.168 rtr panic("uipc 1");
385 1.168 rtr /*NOTREACHED*/
386 1.168 rtr
387 1.168 rtr case SOCK_SEQPACKET: /* FALLTHROUGH */
388 1.168 rtr case SOCK_STREAM:
389 1.168 rtr #define rcv (&so->so_rcv)
390 1.168 rtr #define snd (&so2->so_snd)
391 1.168 rtr if (unp->unp_conn == 0)
392 1.168 rtr break;
393 1.168 rtr so2 = unp->unp_conn->unp_socket;
394 1.168 rtr KASSERT(solocked2(so, so2));
395 1.168 rtr /*
396 1.168 rtr * Adjust backpressure on sender
397 1.168 rtr * and wakeup any waiting to write.
398 1.168 rtr */
399 1.168 rtr snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
400 1.168 rtr unp->unp_mbcnt = rcv->sb_mbcnt;
401 1.168 rtr newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
402 1.168 rtr (void)chgsbsize(so2->so_uidinfo,
403 1.168 rtr &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
404 1.168 rtr unp->unp_cc = rcv->sb_cc;
405 1.168 rtr sowwakeup(so2);
406 1.168 rtr #undef snd
407 1.168 rtr #undef rcv
408 1.168 rtr break;
409 1.168 rtr
410 1.168 rtr default:
411 1.168 rtr panic("uipc 2");
412 1.168 rtr }
413 1.168 rtr
414 1.168 rtr return 0;
415 1.168 rtr }
416 1.168 rtr
417 1.168 rtr static int
418 1.160 rtr unp_recvoob(struct socket *so, struct mbuf *m, int flags)
419 1.160 rtr {
420 1.160 rtr KASSERT(solocked(so));
421 1.160 rtr
422 1.160 rtr return EOPNOTSUPP;
423 1.160 rtr }
424 1.160 rtr
425 1.160 rtr static int
426 1.166 rtr unp_send(struct socket *so, struct mbuf *m, struct mbuf *nam,
427 1.166 rtr struct mbuf *control, struct lwp *l)
428 1.166 rtr {
429 1.166 rtr struct unpcb *unp = sotounpcb(so);
430 1.166 rtr int error = 0;
431 1.166 rtr u_int newhiwat;
432 1.166 rtr struct socket *so2;
433 1.166 rtr
434 1.166 rtr KASSERT(solocked(so));
435 1.166 rtr KASSERT(unp != NULL);
436 1.166 rtr KASSERT(m != NULL);
437 1.166 rtr
438 1.166 rtr /*
439 1.166 rtr * Note: unp_internalize() rejects any control message
440 1.166 rtr * other than SCM_RIGHTS, and only allows one. This
441 1.166 rtr * has the side-effect of preventing a caller from
442 1.166 rtr * forging SCM_CREDS.
443 1.166 rtr */
444 1.166 rtr if (control) {
445 1.166 rtr sounlock(so);
446 1.166 rtr error = unp_internalize(&control);
447 1.166 rtr solock(so);
448 1.166 rtr if (error != 0) {
449 1.166 rtr m_freem(control);
450 1.166 rtr m_freem(m);
451 1.166 rtr return error;
452 1.166 rtr }
453 1.166 rtr }
454 1.166 rtr
455 1.166 rtr switch (so->so_type) {
456 1.166 rtr
457 1.166 rtr case SOCK_DGRAM: {
458 1.166 rtr KASSERT(so->so_lock == uipc_lock);
459 1.166 rtr if (nam) {
460 1.166 rtr if ((so->so_state & SS_ISCONNECTED) != 0)
461 1.166 rtr error = EISCONN;
462 1.166 rtr else {
463 1.166 rtr /*
464 1.166 rtr * Note: once connected, the
465 1.166 rtr * socket's lock must not be
466 1.166 rtr * dropped until we have sent
467 1.166 rtr * the message and disconnected.
468 1.166 rtr * This is necessary to prevent
469 1.166 rtr * intervening control ops, like
470 1.166 rtr * another connection.
471 1.166 rtr */
472 1.166 rtr error = unp_connect(so, nam, l);
473 1.166 rtr }
474 1.166 rtr } else {
475 1.166 rtr if ((so->so_state & SS_ISCONNECTED) == 0)
476 1.166 rtr error = ENOTCONN;
477 1.166 rtr }
478 1.166 rtr if (error) {
479 1.166 rtr unp_dispose(control);
480 1.166 rtr m_freem(control);
481 1.166 rtr m_freem(m);
482 1.166 rtr return error;
483 1.166 rtr }
484 1.166 rtr error = unp_output(m, control, unp);
485 1.166 rtr if (nam)
486 1.166 rtr unp_disconnect1(unp);
487 1.166 rtr break;
488 1.166 rtr }
489 1.166 rtr
490 1.166 rtr case SOCK_SEQPACKET: /* FALLTHROUGH */
491 1.166 rtr case SOCK_STREAM:
492 1.166 rtr #define rcv (&so2->so_rcv)
493 1.166 rtr #define snd (&so->so_snd)
494 1.166 rtr if (unp->unp_conn == NULL) {
495 1.166 rtr error = ENOTCONN;
496 1.166 rtr break;
497 1.166 rtr }
498 1.166 rtr so2 = unp->unp_conn->unp_socket;
499 1.166 rtr KASSERT(solocked2(so, so2));
500 1.166 rtr if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
501 1.166 rtr /*
502 1.166 rtr * Credentials are passed only once on
503 1.166 rtr * SOCK_STREAM and SOCK_SEQPACKET.
504 1.166 rtr */
505 1.166 rtr unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
506 1.166 rtr control = unp_addsockcred(l, control);
507 1.166 rtr }
508 1.166 rtr /*
509 1.166 rtr * Send to paired receive port, and then reduce
510 1.166 rtr * send buffer hiwater marks to maintain backpressure.
511 1.166 rtr * Wake up readers.
512 1.166 rtr */
513 1.166 rtr if (control) {
514 1.166 rtr if (sbappendcontrol(rcv, m, control) != 0)
515 1.166 rtr control = NULL;
516 1.166 rtr } else {
517 1.166 rtr switch(so->so_type) {
518 1.166 rtr case SOCK_SEQPACKET:
519 1.166 rtr sbappendrecord(rcv, m);
520 1.166 rtr break;
521 1.166 rtr case SOCK_STREAM:
522 1.166 rtr sbappend(rcv, m);
523 1.166 rtr break;
524 1.166 rtr default:
525 1.166 rtr panic("uipc_usrreq");
526 1.166 rtr break;
527 1.166 rtr }
528 1.166 rtr }
529 1.166 rtr snd->sb_mbmax -=
530 1.166 rtr rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
531 1.166 rtr unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
532 1.166 rtr newhiwat = snd->sb_hiwat -
533 1.166 rtr (rcv->sb_cc - unp->unp_conn->unp_cc);
534 1.166 rtr (void)chgsbsize(so->so_uidinfo,
535 1.166 rtr &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
536 1.166 rtr unp->unp_conn->unp_cc = rcv->sb_cc;
537 1.166 rtr sorwakeup(so2);
538 1.166 rtr #undef snd
539 1.166 rtr #undef rcv
540 1.166 rtr if (control != NULL) {
541 1.166 rtr unp_dispose(control);
542 1.166 rtr m_freem(control);
543 1.166 rtr }
544 1.166 rtr break;
545 1.166 rtr
546 1.166 rtr default:
547 1.166 rtr panic("uipc 4");
548 1.166 rtr }
549 1.166 rtr
550 1.166 rtr return error;
551 1.166 rtr }
552 1.166 rtr
553 1.166 rtr static int
554 1.160 rtr unp_sendoob(struct socket *so, struct mbuf *m, struct mbuf * control)
555 1.160 rtr {
556 1.160 rtr KASSERT(solocked(so));
557 1.160 rtr
558 1.160 rtr m_freem(m);
559 1.160 rtr m_freem(control);
560 1.160 rtr
561 1.160 rtr return EOPNOTSUPP;
562 1.160 rtr }
563 1.160 rtr
564 1.160 rtr static int
565 1.151 rmind unp_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
566 1.151 rmind struct mbuf *control, struct lwp *l)
567 1.1 cgd {
568 1.1 cgd
569 1.152 rmind KASSERT(req != PRU_ATTACH);
570 1.152 rmind KASSERT(req != PRU_DETACH);
571 1.159 rtr KASSERT(req != PRU_ACCEPT);
572 1.161 rtr KASSERT(req != PRU_BIND);
573 1.161 rtr KASSERT(req != PRU_LISTEN);
574 1.162 rtr KASSERT(req != PRU_CONNECT);
575 1.169 rtr KASSERT(req != PRU_CONNECT2);
576 1.163 rtr KASSERT(req != PRU_DISCONNECT);
577 1.163 rtr KASSERT(req != PRU_SHUTDOWN);
578 1.163 rtr KASSERT(req != PRU_ABORT);
579 1.154 rtr KASSERT(req != PRU_CONTROL);
580 1.156 rtr KASSERT(req != PRU_SENSE);
581 1.158 rtr KASSERT(req != PRU_PEERADDR);
582 1.158 rtr KASSERT(req != PRU_SOCKADDR);
583 1.168 rtr KASSERT(req != PRU_RCVD);
584 1.160 rtr KASSERT(req != PRU_RCVOOB);
585 1.166 rtr KASSERT(req != PRU_SEND);
586 1.160 rtr KASSERT(req != PRU_SENDOOB);
587 1.169 rtr KASSERT(req != PRU_PURGEIF);
588 1.152 rmind
589 1.152 rmind KASSERT(solocked(so));
590 1.20 mycroft
591 1.169 rtr if (sotounpcb(so) == NULL)
592 1.169 rtr return EINVAL;
593 1.20 mycroft
594 1.169 rtr panic("piusrreq");
595 1.1 cgd
596 1.169 rtr return 0;
597 1.1 cgd }
598 1.1 cgd
599 1.1 cgd /*
600 1.30 thorpej * Unix domain socket option processing.
601 1.30 thorpej */
602 1.30 thorpej int
603 1.118 plunky uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
604 1.30 thorpej {
605 1.30 thorpej struct unpcb *unp = sotounpcb(so);
606 1.30 thorpej int optval = 0, error = 0;
607 1.30 thorpej
608 1.112 ad KASSERT(solocked(so));
609 1.112 ad
610 1.118 plunky if (sopt->sopt_level != 0) {
611 1.100 dyoung error = ENOPROTOOPT;
612 1.30 thorpej } else switch (op) {
613 1.30 thorpej
614 1.30 thorpej case PRCO_SETOPT:
615 1.118 plunky switch (sopt->sopt_name) {
616 1.30 thorpej case LOCAL_CREDS:
617 1.72 matt case LOCAL_CONNWAIT:
618 1.118 plunky error = sockopt_getint(sopt, &optval);
619 1.118 plunky if (error)
620 1.118 plunky break;
621 1.118 plunky switch (sopt->sopt_name) {
622 1.30 thorpej #define OPTSET(bit) \
623 1.30 thorpej if (optval) \
624 1.30 thorpej unp->unp_flags |= (bit); \
625 1.30 thorpej else \
626 1.30 thorpej unp->unp_flags &= ~(bit);
627 1.30 thorpej
628 1.118 plunky case LOCAL_CREDS:
629 1.118 plunky OPTSET(UNP_WANTCRED);
630 1.118 plunky break;
631 1.118 plunky case LOCAL_CONNWAIT:
632 1.118 plunky OPTSET(UNP_CONNWAIT);
633 1.118 plunky break;
634 1.30 thorpej }
635 1.30 thorpej break;
636 1.30 thorpej #undef OPTSET
637 1.30 thorpej
638 1.30 thorpej default:
639 1.30 thorpej error = ENOPROTOOPT;
640 1.30 thorpej break;
641 1.30 thorpej }
642 1.30 thorpej break;
643 1.30 thorpej
644 1.30 thorpej case PRCO_GETOPT:
645 1.112 ad sounlock(so);
646 1.118 plunky switch (sopt->sopt_name) {
647 1.99 he case LOCAL_PEEREID:
648 1.99 he if (unp->unp_flags & UNP_EIDSVALID) {
649 1.118 plunky error = sockopt_set(sopt,
650 1.118 plunky &unp->unp_connid, sizeof(unp->unp_connid));
651 1.99 he } else {
652 1.99 he error = EINVAL;
653 1.99 he }
654 1.99 he break;
655 1.30 thorpej case LOCAL_CREDS:
656 1.30 thorpej #define OPTBIT(bit) (unp->unp_flags & (bit) ? 1 : 0)
657 1.30 thorpej
658 1.99 he optval = OPTBIT(UNP_WANTCRED);
659 1.118 plunky error = sockopt_setint(sopt, optval);
660 1.30 thorpej break;
661 1.30 thorpej #undef OPTBIT
662 1.30 thorpej
663 1.30 thorpej default:
664 1.30 thorpej error = ENOPROTOOPT;
665 1.30 thorpej break;
666 1.30 thorpej }
667 1.112 ad solock(so);
668 1.30 thorpej break;
669 1.30 thorpej }
670 1.30 thorpej return (error);
671 1.30 thorpej }
672 1.30 thorpej
673 1.30 thorpej /*
674 1.1 cgd * Both send and receive buffers are allocated PIPSIZ bytes of buffering
675 1.1 cgd * for stream sockets, although the total for sender and receiver is
676 1.1 cgd * actually only PIPSIZ.
677 1.1 cgd * Datagram sockets really use the sendspace as the maximum datagram size,
678 1.1 cgd * and don't really want to reserve the sendspace. Their recvspace should
679 1.1 cgd * be large enough for at least one max-size datagram plus address.
680 1.1 cgd */
681 1.1 cgd #define PIPSIZ 4096
682 1.1 cgd u_long unpst_sendspace = PIPSIZ;
683 1.1 cgd u_long unpst_recvspace = PIPSIZ;
684 1.1 cgd u_long unpdg_sendspace = 2*1024; /* really max datagram size */
685 1.1 cgd u_long unpdg_recvspace = 4*1024;
686 1.1 cgd
687 1.121 mrg u_int unp_rights; /* files in flight */
688 1.121 mrg u_int unp_rights_ratio = 2; /* limit, fraction of maxfiles */
689 1.1 cgd
690 1.152 rmind static int
691 1.152 rmind unp_attach(struct socket *so, int proto)
692 1.1 cgd {
693 1.152 rmind struct unpcb *unp = sotounpcb(so);
694 1.152 rmind u_long sndspc, rcvspc;
695 1.1 cgd int error;
696 1.80 perry
697 1.152 rmind KASSERT(unp == NULL);
698 1.152 rmind
699 1.112 ad switch (so->so_type) {
700 1.152 rmind case SOCK_SEQPACKET:
701 1.152 rmind /* FALLTHROUGH */
702 1.112 ad case SOCK_STREAM:
703 1.112 ad if (so->so_lock == NULL) {
704 1.112 ad so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
705 1.112 ad solock(so);
706 1.112 ad }
707 1.152 rmind sndspc = unpst_sendspace;
708 1.152 rmind rcvspc = unpst_recvspace;
709 1.112 ad break;
710 1.1 cgd
711 1.112 ad case SOCK_DGRAM:
712 1.112 ad if (so->so_lock == NULL) {
713 1.112 ad mutex_obj_hold(uipc_lock);
714 1.112 ad so->so_lock = uipc_lock;
715 1.112 ad solock(so);
716 1.112 ad }
717 1.152 rmind sndspc = unpdg_sendspace;
718 1.152 rmind rcvspc = unpdg_recvspace;
719 1.112 ad break;
720 1.8 mycroft
721 1.112 ad default:
722 1.112 ad panic("unp_attach");
723 1.1 cgd }
724 1.152 rmind
725 1.152 rmind if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
726 1.152 rmind error = soreserve(so, sndspc, rcvspc);
727 1.152 rmind if (error) {
728 1.152 rmind return error;
729 1.152 rmind }
730 1.152 rmind }
731 1.152 rmind
732 1.152 rmind unp = kmem_zalloc(sizeof(*unp), KM_SLEEP);
733 1.152 rmind nanotime(&unp->unp_ctime);
734 1.14 mycroft unp->unp_socket = so;
735 1.15 mycroft so->so_pcb = unp;
736 1.152 rmind
737 1.152 rmind KASSERT(solocked(so));
738 1.152 rmind return 0;
739 1.1 cgd }
740 1.1 cgd
741 1.152 rmind static void
742 1.152 rmind unp_detach(struct socket *so)
743 1.1 cgd {
744 1.152 rmind struct unpcb *unp;
745 1.112 ad vnode_t *vp;
746 1.112 ad
747 1.152 rmind unp = sotounpcb(so);
748 1.152 rmind KASSERT(unp != NULL);
749 1.152 rmind KASSERT(solocked(so));
750 1.112 ad retry:
751 1.112 ad if ((vp = unp->unp_vnode) != NULL) {
752 1.112 ad sounlock(so);
753 1.112 ad /* Acquire v_interlock to protect against unp_connect(). */
754 1.113 ad /* XXXAD racy */
755 1.135 rmind mutex_enter(vp->v_interlock);
756 1.112 ad vp->v_socket = NULL;
757 1.148 hannken mutex_exit(vp->v_interlock);
758 1.148 hannken vrele(vp);
759 1.112 ad solock(so);
760 1.112 ad unp->unp_vnode = NULL;
761 1.1 cgd }
762 1.1 cgd if (unp->unp_conn)
763 1.163 rtr unp_disconnect1(unp);
764 1.112 ad while (unp->unp_refs) {
765 1.112 ad KASSERT(solocked2(so, unp->unp_refs->unp_socket));
766 1.112 ad if (unp_drop(unp->unp_refs, ECONNRESET)) {
767 1.112 ad solock(so);
768 1.112 ad goto retry;
769 1.112 ad }
770 1.112 ad }
771 1.112 ad soisdisconnected(so);
772 1.112 ad so->so_pcb = NULL;
773 1.8 mycroft if (unp_rights) {
774 1.8 mycroft /*
775 1.121 mrg * Normally the receive buffer is flushed later, in sofree,
776 1.121 mrg * but if our receive buffer holds references to files that
777 1.121 mrg * are now garbage, we will enqueue those file references to
778 1.121 mrg * the garbage collector and kick it into action.
779 1.8 mycroft */
780 1.112 ad sorflush(so);
781 1.112 ad unp_free(unp);
782 1.121 mrg unp_thread_kick();
783 1.14 mycroft } else
784 1.112 ad unp_free(unp);
785 1.1 cgd }
786 1.1 cgd
787 1.154 rtr static int
788 1.159 rtr unp_accept(struct socket *so, struct mbuf *nam)
789 1.159 rtr {
790 1.159 rtr struct unpcb *unp = sotounpcb(so);
791 1.159 rtr struct socket *so2;
792 1.159 rtr
793 1.159 rtr KASSERT(solocked(so));
794 1.159 rtr KASSERT(nam != NULL);
795 1.159 rtr
796 1.159 rtr /* XXX code review required to determine if unp can ever be NULL */
797 1.159 rtr if (unp == NULL)
798 1.159 rtr return EINVAL;
799 1.159 rtr
800 1.159 rtr KASSERT(so->so_lock == uipc_lock);
801 1.159 rtr /*
802 1.159 rtr * Mark the initiating STREAM socket as connected *ONLY*
803 1.159 rtr * after it's been accepted. This prevents a client from
804 1.159 rtr * overrunning a server and receiving ECONNREFUSED.
805 1.159 rtr */
806 1.159 rtr if (unp->unp_conn == NULL) {
807 1.159 rtr /*
808 1.159 rtr * This will use the empty socket and will not
809 1.159 rtr * allocate.
810 1.159 rtr */
811 1.159 rtr unp_setaddr(so, nam, true);
812 1.159 rtr return 0;
813 1.159 rtr }
814 1.159 rtr so2 = unp->unp_conn->unp_socket;
815 1.159 rtr if (so2->so_state & SS_ISCONNECTING) {
816 1.159 rtr KASSERT(solocked2(so, so->so_head));
817 1.159 rtr KASSERT(solocked2(so2, so->so_head));
818 1.159 rtr soisconnected(so2);
819 1.159 rtr }
820 1.159 rtr /*
821 1.159 rtr * If the connection is fully established, break the
822 1.159 rtr * association with uipc_lock and give the connected
823 1.159 rtr * pair a separate lock to share.
824 1.159 rtr * There is a race here: sotounpcb(so2)->unp_streamlock
825 1.159 rtr * is not locked, so when changing so2->so_lock
826 1.159 rtr * another thread can grab it while so->so_lock is still
827 1.159 rtr * pointing to the (locked) uipc_lock.
828 1.159 rtr * this should be harmless, except that this makes
829 1.159 rtr * solocked2() and solocked() unreliable.
830 1.159 rtr * Another problem is that unp_setaddr() expects the
831 1.159 rtr * the socket locked. Grabing sotounpcb(so2)->unp_streamlock
832 1.159 rtr * fixes both issues.
833 1.159 rtr */
834 1.159 rtr mutex_enter(sotounpcb(so2)->unp_streamlock);
835 1.159 rtr unp_setpeerlocks(so2, so);
836 1.159 rtr /*
837 1.159 rtr * Only now return peer's address, as we may need to
838 1.159 rtr * block in order to allocate memory.
839 1.159 rtr *
840 1.159 rtr * XXX Minor race: connection can be broken while
841 1.159 rtr * lock is dropped in unp_setaddr(). We will return
842 1.159 rtr * error == 0 and sun_noname as the peer address.
843 1.159 rtr */
844 1.159 rtr unp_setaddr(so, nam, true);
845 1.159 rtr /* so_lock now points to unp_streamlock */
846 1.159 rtr mutex_exit(so2->so_lock);
847 1.159 rtr return 0;
848 1.159 rtr }
849 1.159 rtr
850 1.159 rtr static int
851 1.155 rtr unp_ioctl(struct socket *so, u_long cmd, void *nam, struct ifnet *ifp)
852 1.154 rtr {
853 1.154 rtr return EOPNOTSUPP;
854 1.154 rtr }
855 1.154 rtr
856 1.156 rtr static int
857 1.156 rtr unp_stat(struct socket *so, struct stat *ub)
858 1.156 rtr {
859 1.156 rtr struct unpcb *unp;
860 1.156 rtr struct socket *so2;
861 1.156 rtr
862 1.157 rtr KASSERT(solocked(so));
863 1.157 rtr
864 1.156 rtr unp = sotounpcb(so);
865 1.156 rtr if (unp == NULL)
866 1.156 rtr return EINVAL;
867 1.156 rtr
868 1.156 rtr ub->st_blksize = so->so_snd.sb_hiwat;
869 1.156 rtr switch (so->so_type) {
870 1.156 rtr case SOCK_SEQPACKET: /* FALLTHROUGH */
871 1.156 rtr case SOCK_STREAM:
872 1.156 rtr if (unp->unp_conn == 0)
873 1.156 rtr break;
874 1.156 rtr
875 1.156 rtr so2 = unp->unp_conn->unp_socket;
876 1.156 rtr KASSERT(solocked2(so, so2));
877 1.156 rtr ub->st_blksize += so2->so_rcv.sb_cc;
878 1.156 rtr break;
879 1.156 rtr default:
880 1.156 rtr break;
881 1.156 rtr }
882 1.156 rtr ub->st_dev = NODEV;
883 1.156 rtr if (unp->unp_ino == 0)
884 1.156 rtr unp->unp_ino = unp_ino++;
885 1.156 rtr ub->st_atimespec = ub->st_mtimespec = ub->st_ctimespec = unp->unp_ctime;
886 1.156 rtr ub->st_ino = unp->unp_ino;
887 1.156 rtr return (0);
888 1.156 rtr }
889 1.156 rtr
890 1.158 rtr static int
891 1.158 rtr unp_peeraddr(struct socket *so, struct mbuf *nam)
892 1.158 rtr {
893 1.158 rtr KASSERT(solocked(so));
894 1.158 rtr KASSERT(sotounpcb(so) != NULL);
895 1.158 rtr KASSERT(nam != NULL);
896 1.158 rtr
897 1.158 rtr unp_setaddr(so, nam, true);
898 1.158 rtr return 0;
899 1.158 rtr }
900 1.158 rtr
901 1.158 rtr static int
902 1.158 rtr unp_sockaddr(struct socket *so, struct mbuf *nam)
903 1.158 rtr {
904 1.158 rtr KASSERT(solocked(so));
905 1.158 rtr KASSERT(sotounpcb(so) != NULL);
906 1.158 rtr KASSERT(nam != NULL);
907 1.158 rtr
908 1.158 rtr unp_setaddr(so, nam, false);
909 1.158 rtr return 0;
910 1.158 rtr }
911 1.158 rtr
912 1.146 christos /*
913 1.146 christos * Allocate the new sockaddr. We have to allocate one
914 1.146 christos * extra byte so that we can ensure that the pathname
915 1.146 christos * is nul-terminated. Note that unlike linux, we don't
916 1.146 christos * include in the address length the NUL in the path
917 1.146 christos * component, because doing so, would exceed sizeof(sockaddr_un)
918 1.146 christos * for fully occupied pathnames. Linux is also inconsistent,
919 1.146 christos * because it does not include the NUL in the length of
920 1.146 christos * what it calls "abstract" unix sockets.
921 1.146 christos */
922 1.146 christos static struct sockaddr_un *
923 1.146 christos makeun(struct mbuf *nam, size_t *addrlen) {
924 1.146 christos struct sockaddr_un *sun;
925 1.146 christos
926 1.146 christos *addrlen = nam->m_len + 1;
927 1.146 christos sun = malloc(*addrlen, M_SONAME, M_WAITOK);
928 1.146 christos m_copydata(nam, 0, nam->m_len, (void *)sun);
929 1.146 christos *(((char *)sun) + nam->m_len) = '\0';
930 1.146 christos sun->sun_len = strlen(sun->sun_path) +
931 1.146 christos offsetof(struct sockaddr_un, sun_path);
932 1.146 christos return sun;
933 1.146 christos }
934 1.146 christos
935 1.164 rtr static int
936 1.165 rtr unp_bind(struct socket *so, struct mbuf *nam, struct lwp *l)
937 1.1 cgd {
938 1.27 thorpej struct sockaddr_un *sun;
939 1.112 ad struct unpcb *unp;
940 1.106 ad vnode_t *vp;
941 1.1 cgd struct vattr vattr;
942 1.27 thorpej size_t addrlen;
943 1.1 cgd int error;
944 1.133 dholland struct pathbuf *pb;
945 1.1 cgd struct nameidata nd;
946 1.112 ad proc_t *p;
947 1.1 cgd
948 1.112 ad unp = sotounpcb(so);
949 1.161 rtr
950 1.161 rtr KASSERT(solocked(so));
951 1.161 rtr KASSERT(unp != NULL);
952 1.161 rtr KASSERT(nam != NULL);
953 1.161 rtr
954 1.112 ad if (unp->unp_vnode != NULL)
955 1.20 mycroft return (EINVAL);
956 1.109 ad if ((unp->unp_flags & UNP_BUSY) != 0) {
957 1.109 ad /*
958 1.109 ad * EALREADY may not be strictly accurate, but since this
959 1.109 ad * is a major application error it's hardly a big deal.
960 1.109 ad */
961 1.109 ad return (EALREADY);
962 1.109 ad }
963 1.109 ad unp->unp_flags |= UNP_BUSY;
964 1.112 ad sounlock(so);
965 1.109 ad
966 1.165 rtr p = l->l_proc;
967 1.146 christos sun = makeun(nam, &addrlen);
968 1.27 thorpej
969 1.133 dholland pb = pathbuf_create(sun->sun_path);
970 1.133 dholland if (pb == NULL) {
971 1.133 dholland error = ENOMEM;
972 1.133 dholland goto bad;
973 1.133 dholland }
974 1.133 dholland NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, pb);
975 1.27 thorpej
976 1.1 cgd /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
977 1.133 dholland if ((error = namei(&nd)) != 0) {
978 1.133 dholland pathbuf_destroy(pb);
979 1.27 thorpej goto bad;
980 1.133 dholland }
981 1.9 mycroft vp = nd.ni_vp;
982 1.96 hannken if (vp != NULL) {
983 1.9 mycroft VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
984 1.9 mycroft if (nd.ni_dvp == vp)
985 1.9 mycroft vrele(nd.ni_dvp);
986 1.1 cgd else
987 1.9 mycroft vput(nd.ni_dvp);
988 1.1 cgd vrele(vp);
989 1.133 dholland pathbuf_destroy(pb);
990 1.96 hannken error = EADDRINUSE;
991 1.96 hannken goto bad;
992 1.1 cgd }
993 1.128 pooka vattr_null(&vattr);
994 1.1 cgd vattr.va_type = VSOCK;
995 1.84 jmmv vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
996 1.16 christos error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
997 1.133 dholland if (error) {
998 1.149 hannken vput(nd.ni_dvp);
999 1.133 dholland pathbuf_destroy(pb);
1000 1.27 thorpej goto bad;
1001 1.133 dholland }
1002 1.9 mycroft vp = nd.ni_vp;
1003 1.150 hannken vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1004 1.112 ad solock(so);
1005 1.1 cgd vp->v_socket = unp->unp_socket;
1006 1.1 cgd unp->unp_vnode = vp;
1007 1.27 thorpej unp->unp_addrlen = addrlen;
1008 1.27 thorpej unp->unp_addr = sun;
1009 1.99 he unp->unp_connid.unp_pid = p->p_pid;
1010 1.165 rtr unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
1011 1.165 rtr unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
1012 1.99 he unp->unp_flags |= UNP_EIDSBIND;
1013 1.130 hannken VOP_UNLOCK(vp);
1014 1.149 hannken vput(nd.ni_dvp);
1015 1.109 ad unp->unp_flags &= ~UNP_BUSY;
1016 1.133 dholland pathbuf_destroy(pb);
1017 1.1 cgd return (0);
1018 1.27 thorpej
1019 1.27 thorpej bad:
1020 1.27 thorpej free(sun, M_SONAME);
1021 1.112 ad solock(so);
1022 1.109 ad unp->unp_flags &= ~UNP_BUSY;
1023 1.27 thorpej return (error);
1024 1.1 cgd }
1025 1.1 cgd
1026 1.161 rtr static int
1027 1.165 rtr unp_listen(struct socket *so, struct lwp *l)
1028 1.161 rtr {
1029 1.161 rtr struct unpcb *unp = sotounpcb(so);
1030 1.161 rtr
1031 1.161 rtr KASSERT(solocked(so));
1032 1.161 rtr KASSERT(unp != NULL);
1033 1.161 rtr
1034 1.161 rtr /*
1035 1.161 rtr * If the socket can accept a connection, it must be
1036 1.161 rtr * locked by uipc_lock.
1037 1.161 rtr */
1038 1.161 rtr unp_resetlock(so);
1039 1.161 rtr if (unp->unp_vnode == NULL)
1040 1.161 rtr return EINVAL;
1041 1.161 rtr
1042 1.161 rtr return 0;
1043 1.161 rtr }
1044 1.161 rtr
1045 1.163 rtr static int
1046 1.163 rtr unp_disconnect(struct socket *so)
1047 1.163 rtr {
1048 1.163 rtr KASSERT(solocked(so));
1049 1.163 rtr KASSERT(sotounpcb(so) != NULL);
1050 1.163 rtr
1051 1.163 rtr unp_disconnect1(sotounpcb(so));
1052 1.163 rtr return 0;
1053 1.163 rtr }
1054 1.163 rtr
1055 1.163 rtr static int
1056 1.163 rtr unp_shutdown(struct socket *so)
1057 1.163 rtr {
1058 1.163 rtr KASSERT(solocked(so));
1059 1.163 rtr KASSERT(sotounpcb(so) != NULL);
1060 1.163 rtr
1061 1.163 rtr socantsendmore(so);
1062 1.163 rtr unp_shutdown1(sotounpcb(so));
1063 1.163 rtr return 0;
1064 1.163 rtr }
1065 1.163 rtr
1066 1.163 rtr static int
1067 1.163 rtr unp_abort(struct socket *so)
1068 1.163 rtr {
1069 1.163 rtr KASSERT(solocked(so));
1070 1.163 rtr KASSERT(sotounpcb(so) != NULL);
1071 1.163 rtr
1072 1.163 rtr (void)unp_drop(sotounpcb(so), ECONNABORTED);
1073 1.163 rtr KASSERT(so->so_head == NULL);
1074 1.163 rtr KASSERT(so->so_pcb != NULL);
1075 1.163 rtr unp_detach(so);
1076 1.163 rtr return 0;
1077 1.163 rtr }
1078 1.163 rtr
1079 1.169 rtr static int
1080 1.169 rtr unp_connect1(struct socket *so, struct socket *so2)
1081 1.169 rtr {
1082 1.169 rtr struct unpcb *unp = sotounpcb(so);
1083 1.169 rtr struct unpcb *unp2;
1084 1.169 rtr
1085 1.169 rtr if (so2->so_type != so->so_type)
1086 1.169 rtr return EPROTOTYPE;
1087 1.169 rtr
1088 1.169 rtr /*
1089 1.169 rtr * All three sockets involved must be locked by same lock:
1090 1.169 rtr *
1091 1.169 rtr * local endpoint (so)
1092 1.169 rtr * remote endpoint (so2)
1093 1.169 rtr * queue head (so2->so_head, only if PR_CONNREQUIRED)
1094 1.169 rtr */
1095 1.169 rtr KASSERT(solocked2(so, so2));
1096 1.169 rtr KASSERT(so->so_head == NULL);
1097 1.169 rtr if (so2->so_head != NULL) {
1098 1.169 rtr KASSERT(so2->so_lock == uipc_lock);
1099 1.169 rtr KASSERT(solocked2(so2, so2->so_head));
1100 1.169 rtr }
1101 1.169 rtr
1102 1.169 rtr unp2 = sotounpcb(so2);
1103 1.169 rtr unp->unp_conn = unp2;
1104 1.169 rtr switch (so->so_type) {
1105 1.169 rtr
1106 1.169 rtr case SOCK_DGRAM:
1107 1.169 rtr unp->unp_nextref = unp2->unp_refs;
1108 1.169 rtr unp2->unp_refs = unp;
1109 1.169 rtr soisconnected(so);
1110 1.169 rtr break;
1111 1.169 rtr
1112 1.169 rtr case SOCK_SEQPACKET: /* FALLTHROUGH */
1113 1.169 rtr case SOCK_STREAM:
1114 1.169 rtr
1115 1.169 rtr /*
1116 1.169 rtr * SOCK_SEQPACKET and SOCK_STREAM cases are handled by callers
1117 1.169 rtr * which are unp_connect() or unp_connect2().
1118 1.169 rtr */
1119 1.169 rtr
1120 1.169 rtr break;
1121 1.169 rtr
1122 1.169 rtr default:
1123 1.169 rtr panic("unp_connect1");
1124 1.169 rtr }
1125 1.169 rtr
1126 1.169 rtr return 0;
1127 1.169 rtr }
1128 1.169 rtr
1129 1.5 andrew int
1130 1.165 rtr unp_connect(struct socket *so, struct mbuf *nam, struct lwp *l)
1131 1.1 cgd {
1132 1.46 augustss struct sockaddr_un *sun;
1133 1.106 ad vnode_t *vp;
1134 1.46 augustss struct socket *so2, *so3;
1135 1.99 he struct unpcb *unp, *unp2, *unp3;
1136 1.27 thorpej size_t addrlen;
1137 1.1 cgd int error;
1138 1.133 dholland struct pathbuf *pb;
1139 1.1 cgd struct nameidata nd;
1140 1.1 cgd
1141 1.109 ad unp = sotounpcb(so);
1142 1.109 ad if ((unp->unp_flags & UNP_BUSY) != 0) {
1143 1.109 ad /*
1144 1.109 ad * EALREADY may not be strictly accurate, but since this
1145 1.109 ad * is a major application error it's hardly a big deal.
1146 1.109 ad */
1147 1.109 ad return (EALREADY);
1148 1.109 ad }
1149 1.109 ad unp->unp_flags |= UNP_BUSY;
1150 1.112 ad sounlock(so);
1151 1.109 ad
1152 1.146 christos sun = makeun(nam, &addrlen);
1153 1.133 dholland pb = pathbuf_create(sun->sun_path);
1154 1.133 dholland if (pb == NULL) {
1155 1.133 dholland error = ENOMEM;
1156 1.133 dholland goto bad2;
1157 1.133 dholland }
1158 1.27 thorpej
1159 1.133 dholland NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
1160 1.133 dholland
1161 1.133 dholland if ((error = namei(&nd)) != 0) {
1162 1.133 dholland pathbuf_destroy(pb);
1163 1.27 thorpej goto bad2;
1164 1.133 dholland }
1165 1.9 mycroft vp = nd.ni_vp;
1166 1.1 cgd if (vp->v_type != VSOCK) {
1167 1.1 cgd error = ENOTSOCK;
1168 1.1 cgd goto bad;
1169 1.1 cgd }
1170 1.133 dholland pathbuf_destroy(pb);
1171 1.167 rtr if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
1172 1.1 cgd goto bad;
1173 1.112 ad /* Acquire v_interlock to protect against unp_detach(). */
1174 1.135 rmind mutex_enter(vp->v_interlock);
1175 1.1 cgd so2 = vp->v_socket;
1176 1.112 ad if (so2 == NULL) {
1177 1.135 rmind mutex_exit(vp->v_interlock);
1178 1.1 cgd error = ECONNREFUSED;
1179 1.1 cgd goto bad;
1180 1.1 cgd }
1181 1.1 cgd if (so->so_type != so2->so_type) {
1182 1.135 rmind mutex_exit(vp->v_interlock);
1183 1.1 cgd error = EPROTOTYPE;
1184 1.1 cgd goto bad;
1185 1.1 cgd }
1186 1.112 ad solock(so);
1187 1.112 ad unp_resetlock(so);
1188 1.135 rmind mutex_exit(vp->v_interlock);
1189 1.112 ad if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
1190 1.112 ad /*
1191 1.112 ad * This may seem somewhat fragile but is OK: if we can
1192 1.112 ad * see SO_ACCEPTCONN set on the endpoint, then it must
1193 1.112 ad * be locked by the domain-wide uipc_lock.
1194 1.112 ad */
1195 1.132 yamt KASSERT((so2->so_options & SO_ACCEPTCONN) == 0 ||
1196 1.112 ad so2->so_lock == uipc_lock);
1197 1.1 cgd if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
1198 1.144 rmind (so3 = sonewconn(so2, false)) == NULL) {
1199 1.1 cgd error = ECONNREFUSED;
1200 1.112 ad sounlock(so);
1201 1.1 cgd goto bad;
1202 1.1 cgd }
1203 1.1 cgd unp2 = sotounpcb(so2);
1204 1.1 cgd unp3 = sotounpcb(so3);
1205 1.26 thorpej if (unp2->unp_addr) {
1206 1.26 thorpej unp3->unp_addr = malloc(unp2->unp_addrlen,
1207 1.26 thorpej M_SONAME, M_WAITOK);
1208 1.36 perry memcpy(unp3->unp_addr, unp2->unp_addr,
1209 1.26 thorpej unp2->unp_addrlen);
1210 1.26 thorpej unp3->unp_addrlen = unp2->unp_addrlen;
1211 1.26 thorpej }
1212 1.30 thorpej unp3->unp_flags = unp2->unp_flags;
1213 1.167 rtr unp3->unp_connid.unp_pid = l->l_proc->p_pid;
1214 1.167 rtr unp3->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
1215 1.167 rtr unp3->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
1216 1.99 he unp3->unp_flags |= UNP_EIDSVALID;
1217 1.99 he if (unp2->unp_flags & UNP_EIDSBIND) {
1218 1.99 he unp->unp_connid = unp2->unp_connid;
1219 1.99 he unp->unp_flags |= UNP_EIDSVALID;
1220 1.99 he }
1221 1.112 ad so2 = so3;
1222 1.33 thorpej }
1223 1.169 rtr error = unp_connect1(so, so2);
1224 1.169 rtr if (error) {
1225 1.169 rtr sounlock(so);
1226 1.169 rtr goto bad;
1227 1.169 rtr }
1228 1.169 rtr unp2 = sotounpcb(so2);
1229 1.169 rtr switch (so->so_type) {
1230 1.169 rtr
1231 1.169 rtr /*
1232 1.169 rtr * SOCK_DGRAM and default cases are handled in prior call to
1233 1.169 rtr * unp_connect1(), do not add a default case without fixing
1234 1.169 rtr * unp_connect1().
1235 1.169 rtr */
1236 1.169 rtr
1237 1.169 rtr case SOCK_SEQPACKET: /* FALLTHROUGH */
1238 1.169 rtr case SOCK_STREAM:
1239 1.169 rtr unp2->unp_conn = unp;
1240 1.169 rtr if ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT)
1241 1.169 rtr soisconnecting(so);
1242 1.169 rtr else
1243 1.169 rtr soisconnected(so);
1244 1.169 rtr soisconnected(so2);
1245 1.169 rtr /*
1246 1.169 rtr * If the connection is fully established, break the
1247 1.169 rtr * association with uipc_lock and give the connected
1248 1.169 rtr * pair a seperate lock to share.
1249 1.169 rtr */
1250 1.169 rtr KASSERT(so2->so_head != NULL);
1251 1.169 rtr unp_setpeerlocks(so, so2);
1252 1.169 rtr break;
1253 1.169 rtr
1254 1.169 rtr }
1255 1.112 ad sounlock(so);
1256 1.27 thorpej bad:
1257 1.1 cgd vput(vp);
1258 1.27 thorpej bad2:
1259 1.27 thorpej free(sun, M_SONAME);
1260 1.112 ad solock(so);
1261 1.109 ad unp->unp_flags &= ~UNP_BUSY;
1262 1.1 cgd return (error);
1263 1.1 cgd }
1264 1.1 cgd
1265 1.5 andrew int
1266 1.169 rtr unp_connect2(struct socket *so, struct socket *so2)
1267 1.1 cgd {
1268 1.46 augustss struct unpcb *unp = sotounpcb(so);
1269 1.46 augustss struct unpcb *unp2;
1270 1.169 rtr int error = 0;
1271 1.1 cgd
1272 1.169 rtr KASSERT(solocked2(so, so2));
1273 1.112 ad
1274 1.169 rtr error = unp_connect1(so, so2);
1275 1.169 rtr if (error)
1276 1.169 rtr return error;
1277 1.112 ad
1278 1.1 cgd unp2 = sotounpcb(so2);
1279 1.1 cgd switch (so->so_type) {
1280 1.1 cgd
1281 1.169 rtr /*
1282 1.169 rtr * SOCK_DGRAM and default cases are handled in prior call to
1283 1.169 rtr * unp_connect1(), do not add a default case without fixing
1284 1.169 rtr * unp_connect1().
1285 1.169 rtr */
1286 1.1 cgd
1287 1.134 manu case SOCK_SEQPACKET: /* FALLTHROUGH */
1288 1.1 cgd case SOCK_STREAM:
1289 1.1 cgd unp2->unp_conn = unp;
1290 1.169 rtr soisconnected(so);
1291 1.1 cgd soisconnected(so2);
1292 1.1 cgd break;
1293 1.1 cgd
1294 1.1 cgd }
1295 1.169 rtr return error;
1296 1.1 cgd }
1297 1.1 cgd
1298 1.164 rtr static void
1299 1.163 rtr unp_disconnect1(struct unpcb *unp)
1300 1.1 cgd {
1301 1.46 augustss struct unpcb *unp2 = unp->unp_conn;
1302 1.112 ad struct socket *so;
1303 1.1 cgd
1304 1.1 cgd if (unp2 == 0)
1305 1.1 cgd return;
1306 1.1 cgd unp->unp_conn = 0;
1307 1.112 ad so = unp->unp_socket;
1308 1.112 ad switch (so->so_type) {
1309 1.1 cgd case SOCK_DGRAM:
1310 1.1 cgd if (unp2->unp_refs == unp)
1311 1.1 cgd unp2->unp_refs = unp->unp_nextref;
1312 1.1 cgd else {
1313 1.1 cgd unp2 = unp2->unp_refs;
1314 1.1 cgd for (;;) {
1315 1.112 ad KASSERT(solocked2(so, unp2->unp_socket));
1316 1.1 cgd if (unp2 == 0)
1317 1.163 rtr panic("unp_disconnect1");
1318 1.1 cgd if (unp2->unp_nextref == unp)
1319 1.1 cgd break;
1320 1.1 cgd unp2 = unp2->unp_nextref;
1321 1.1 cgd }
1322 1.1 cgd unp2->unp_nextref = unp->unp_nextref;
1323 1.1 cgd }
1324 1.1 cgd unp->unp_nextref = 0;
1325 1.112 ad so->so_state &= ~SS_ISCONNECTED;
1326 1.1 cgd break;
1327 1.1 cgd
1328 1.134 manu case SOCK_SEQPACKET: /* FALLTHROUGH */
1329 1.1 cgd case SOCK_STREAM:
1330 1.112 ad KASSERT(solocked2(so, unp2->unp_socket));
1331 1.112 ad soisdisconnected(so);
1332 1.1 cgd unp2->unp_conn = 0;
1333 1.1 cgd soisdisconnected(unp2->unp_socket);
1334 1.1 cgd break;
1335 1.1 cgd }
1336 1.1 cgd }
1337 1.1 cgd
1338 1.164 rtr static void
1339 1.163 rtr unp_shutdown1(struct unpcb *unp)
1340 1.1 cgd {
1341 1.1 cgd struct socket *so;
1342 1.1 cgd
1343 1.134 manu switch(unp->unp_socket->so_type) {
1344 1.134 manu case SOCK_SEQPACKET: /* FALLTHROUGH */
1345 1.134 manu case SOCK_STREAM:
1346 1.134 manu if (unp->unp_conn && (so = unp->unp_conn->unp_socket))
1347 1.134 manu socantrcvmore(so);
1348 1.134 manu break;
1349 1.134 manu default:
1350 1.134 manu break;
1351 1.134 manu }
1352 1.1 cgd }
1353 1.1 cgd
1354 1.164 rtr static bool
1355 1.76 matt unp_drop(struct unpcb *unp, int errno)
1356 1.1 cgd {
1357 1.1 cgd struct socket *so = unp->unp_socket;
1358 1.1 cgd
1359 1.112 ad KASSERT(solocked(so));
1360 1.112 ad
1361 1.1 cgd so->so_error = errno;
1362 1.163 rtr unp_disconnect1(unp);
1363 1.1 cgd if (so->so_head) {
1364 1.112 ad so->so_pcb = NULL;
1365 1.112 ad /* sofree() drops the socket lock */
1366 1.14 mycroft sofree(so);
1367 1.112 ad unp_free(unp);
1368 1.112 ad return true;
1369 1.1 cgd }
1370 1.112 ad return false;
1371 1.1 cgd }
1372 1.1 cgd
1373 1.1 cgd #ifdef notdef
1374 1.76 matt unp_drain(void)
1375 1.1 cgd {
1376 1.1 cgd
1377 1.1 cgd }
1378 1.1 cgd #endif
1379 1.1 cgd
1380 1.5 andrew int
1381 1.136 christos unp_externalize(struct mbuf *rights, struct lwp *l, int flags)
1382 1.1 cgd {
1383 1.138 christos struct cmsghdr * const cm = mtod(rights, struct cmsghdr *);
1384 1.138 christos struct proc * const p = l->l_proc;
1385 1.106 ad file_t **rp;
1386 1.138 christos int error = 0;
1387 1.47 thorpej
1388 1.138 christos const size_t nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
1389 1.106 ad sizeof(file_t *);
1390 1.143 drochner if (nfds == 0)
1391 1.143 drochner goto noop;
1392 1.1 cgd
1393 1.138 christos int * const fdp = kmem_alloc(nfds * sizeof(int), KM_SLEEP);
1394 1.101 ad rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
1395 1.50 thorpej
1396 1.121 mrg /* Make sure the recipient should be able to see the files.. */
1397 1.140 christos rp = (file_t **)CMSG_DATA(cm);
1398 1.140 christos for (size_t i = 0; i < nfds; i++) {
1399 1.140 christos file_t * const fp = *rp++;
1400 1.140 christos if (fp == NULL) {
1401 1.140 christos error = EINVAL;
1402 1.140 christos goto out;
1403 1.140 christos }
1404 1.140 christos /*
1405 1.140 christos * If we are in a chroot'ed directory, and
1406 1.140 christos * someone wants to pass us a directory, make
1407 1.140 christos * sure it's inside the subtree we're allowed
1408 1.140 christos * to access.
1409 1.140 christos */
1410 1.140 christos if (p->p_cwdi->cwdi_rdir != NULL && fp->f_type == DTYPE_VNODE) {
1411 1.140 christos vnode_t *vp = (vnode_t *)fp->f_data;
1412 1.140 christos if ((vp->v_type == VDIR) &&
1413 1.140 christos !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
1414 1.140 christos error = EPERM;
1415 1.140 christos goto out;
1416 1.39 sommerfe }
1417 1.39 sommerfe }
1418 1.39 sommerfe }
1419 1.50 thorpej
1420 1.50 thorpej restart:
1421 1.24 cgd /*
1422 1.50 thorpej * First loop -- allocate file descriptor table slots for the
1423 1.121 mrg * new files.
1424 1.24 cgd */
1425 1.138 christos for (size_t i = 0; i < nfds; i++) {
1426 1.106 ad if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
1427 1.49 thorpej /*
1428 1.50 thorpej * Back out what we've done so far.
1429 1.49 thorpej */
1430 1.138 christos while (i-- > 0) {
1431 1.106 ad fd_abort(p, NULL, fdp[i]);
1432 1.106 ad }
1433 1.50 thorpej if (error == ENOSPC) {
1434 1.106 ad fd_tryexpand(p);
1435 1.50 thorpej error = 0;
1436 1.138 christos goto restart;
1437 1.50 thorpej }
1438 1.138 christos /*
1439 1.138 christos * This is the error that has historically
1440 1.138 christos * been returned, and some callers may
1441 1.138 christos * expect it.
1442 1.138 christos */
1443 1.138 christos error = EMSGSIZE;
1444 1.138 christos goto out;
1445 1.49 thorpej }
1446 1.1 cgd }
1447 1.24 cgd
1448 1.24 cgd /*
1449 1.50 thorpej * Now that adding them has succeeded, update all of the
1450 1.121 mrg * file passing state and affix the descriptors.
1451 1.112 ad */
1452 1.106 ad rp = (file_t **)CMSG_DATA(cm);
1453 1.138 christos int *ofdp = (int *)CMSG_DATA(cm);
1454 1.138 christos for (size_t i = 0; i < nfds; i++) {
1455 1.138 christos file_t * const fp = *rp++;
1456 1.138 christos const int fd = fdp[i];
1457 1.106 ad atomic_dec_uint(&unp_rights);
1458 1.136 christos fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
1459 1.136 christos fd_affix(p, fp, fd);
1460 1.138 christos /*
1461 1.138 christos * Done with this file pointer, replace it with a fd;
1462 1.138 christos */
1463 1.138 christos *ofdp++ = fd;
1464 1.106 ad mutex_enter(&fp->f_lock);
1465 1.50 thorpej fp->f_msgcount--;
1466 1.106 ad mutex_exit(&fp->f_lock);
1467 1.106 ad /*
1468 1.106 ad * Note that fd_affix() adds a reference to the file.
1469 1.106 ad * The file may already have been closed by another
1470 1.106 ad * LWP in the process, so we must drop the reference
1471 1.106 ad * added by unp_internalize() with closef().
1472 1.106 ad */
1473 1.106 ad closef(fp);
1474 1.50 thorpej }
1475 1.50 thorpej
1476 1.50 thorpej /*
1477 1.138 christos * Adjust length, in case of transition from large file_t
1478 1.138 christos * pointers to ints.
1479 1.50 thorpej */
1480 1.138 christos if (sizeof(file_t *) != sizeof(int)) {
1481 1.138 christos cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
1482 1.138 christos rights->m_len = CMSG_SPACE(nfds * sizeof(int));
1483 1.138 christos }
1484 1.50 thorpej out:
1485 1.138 christos if (__predict_false(error != 0)) {
1486 1.141 riastrad file_t **const fpp = (file_t **)CMSG_DATA(cm);
1487 1.141 riastrad for (size_t i = 0; i < nfds; i++)
1488 1.141 riastrad unp_discard_now(fpp[i]);
1489 1.141 riastrad /*
1490 1.141 riastrad * Truncate the array so that nobody will try to interpret
1491 1.141 riastrad * what is now garbage in it.
1492 1.141 riastrad */
1493 1.141 riastrad cm->cmsg_len = CMSG_LEN(0);
1494 1.141 riastrad rights->m_len = CMSG_SPACE(0);
1495 1.138 christos }
1496 1.143 drochner rw_exit(&p->p_cwdi->cwdi_lock);
1497 1.143 drochner kmem_free(fdp, nfds * sizeof(int));
1498 1.138 christos
1499 1.143 drochner noop:
1500 1.141 riastrad /*
1501 1.141 riastrad * Don't disclose kernel memory in the alignment space.
1502 1.141 riastrad */
1503 1.141 riastrad KASSERT(cm->cmsg_len <= rights->m_len);
1504 1.141 riastrad memset(&mtod(rights, char *)[cm->cmsg_len], 0, rights->m_len -
1505 1.141 riastrad cm->cmsg_len);
1506 1.139 christos return error;
1507 1.1 cgd }
1508 1.1 cgd
1509 1.164 rtr static int
1510 1.112 ad unp_internalize(struct mbuf **controlp)
1511 1.1 cgd {
1512 1.121 mrg filedesc_t *fdescp = curlwp->l_fd;
1513 1.108 yamt struct mbuf *control = *controlp;
1514 1.73 martin struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
1515 1.106 ad file_t **rp, **files;
1516 1.106 ad file_t *fp;
1517 1.46 augustss int i, fd, *fdp;
1518 1.106 ad int nfds, error;
1519 1.121 mrg u_int maxmsg;
1520 1.106 ad
1521 1.106 ad error = 0;
1522 1.106 ad newcm = NULL;
1523 1.38 thorpej
1524 1.106 ad /* Sanity check the control message header. */
1525 1.66 jdolecek if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
1526 1.117 christos cm->cmsg_len > control->m_len ||
1527 1.117 christos cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
1528 1.1 cgd return (EINVAL);
1529 1.24 cgd
1530 1.106 ad /*
1531 1.106 ad * Verify that the file descriptors are valid, and acquire
1532 1.106 ad * a reference to each.
1533 1.106 ad */
1534 1.47 thorpej nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
1535 1.47 thorpej fdp = (int *)CMSG_DATA(cm);
1536 1.121 mrg maxmsg = maxfiles / unp_rights_ratio;
1537 1.24 cgd for (i = 0; i < nfds; i++) {
1538 1.24 cgd fd = *fdp++;
1539 1.121 mrg if (atomic_inc_uint_nv(&unp_rights) > maxmsg) {
1540 1.121 mrg atomic_dec_uint(&unp_rights);
1541 1.121 mrg nfds = i;
1542 1.121 mrg error = EAGAIN;
1543 1.121 mrg goto out;
1544 1.121 mrg }
1545 1.137 martin if ((fp = fd_getfile(fd)) == NULL
1546 1.137 martin || fp->f_type == DTYPE_KQUEUE) {
1547 1.137 martin if (fp)
1548 1.137 martin fd_putfile(fd);
1549 1.121 mrg atomic_dec_uint(&unp_rights);
1550 1.120 pooka nfds = i;
1551 1.106 ad error = EBADF;
1552 1.106 ad goto out;
1553 1.101 ad }
1554 1.24 cgd }
1555 1.24 cgd
1556 1.106 ad /* Allocate new space and copy header into it. */
1557 1.106 ad newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
1558 1.106 ad if (newcm == NULL) {
1559 1.106 ad error = E2BIG;
1560 1.106 ad goto out;
1561 1.106 ad }
1562 1.106 ad memcpy(newcm, cm, sizeof(struct cmsghdr));
1563 1.106 ad files = (file_t **)CMSG_DATA(newcm);
1564 1.106 ad
1565 1.24 cgd /*
1566 1.106 ad * Transform the file descriptors into file_t pointers, in
1567 1.24 cgd * reverse order so that if pointers are bigger than ints, the
1568 1.106 ad * int won't get until we're done. No need to lock, as we have
1569 1.106 ad * already validated the descriptors with fd_getfile().
1570 1.24 cgd */
1571 1.94 cbiere fdp = (int *)CMSG_DATA(cm) + nfds;
1572 1.94 cbiere rp = files + nfds;
1573 1.24 cgd for (i = 0; i < nfds; i++) {
1574 1.126 ad fp = fdescp->fd_dt->dt_ff[*--fdp]->ff_file;
1575 1.106 ad KASSERT(fp != NULL);
1576 1.106 ad mutex_enter(&fp->f_lock);
1577 1.94 cbiere *--rp = fp;
1578 1.1 cgd fp->f_count++;
1579 1.1 cgd fp->f_msgcount++;
1580 1.106 ad mutex_exit(&fp->f_lock);
1581 1.106 ad }
1582 1.106 ad
1583 1.106 ad out:
1584 1.106 ad /* Release descriptor references. */
1585 1.106 ad fdp = (int *)CMSG_DATA(cm);
1586 1.106 ad for (i = 0; i < nfds; i++) {
1587 1.106 ad fd_putfile(*fdp++);
1588 1.121 mrg if (error != 0) {
1589 1.121 mrg atomic_dec_uint(&unp_rights);
1590 1.121 mrg }
1591 1.1 cgd }
1592 1.73 martin
1593 1.106 ad if (error == 0) {
1594 1.108 yamt if (control->m_flags & M_EXT) {
1595 1.108 yamt m_freem(control);
1596 1.108 yamt *controlp = control = m_get(M_WAIT, MT_CONTROL);
1597 1.108 yamt }
1598 1.106 ad MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
1599 1.73 martin M_MBUF, NULL, NULL);
1600 1.73 martin cm = newcm;
1601 1.106 ad /*
1602 1.106 ad * Adjust message & mbuf to note amount of space
1603 1.106 ad * actually used.
1604 1.106 ad */
1605 1.106 ad cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
1606 1.106 ad control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
1607 1.73 martin }
1608 1.73 martin
1609 1.106 ad return error;
1610 1.30 thorpej }
1611 1.30 thorpej
1612 1.30 thorpej struct mbuf *
1613 1.92 ad unp_addsockcred(struct lwp *l, struct mbuf *control)
1614 1.30 thorpej {
1615 1.30 thorpej struct sockcred *sc;
1616 1.142 christos struct mbuf *m;
1617 1.142 christos void *p;
1618 1.30 thorpej
1619 1.142 christos m = sbcreatecontrol1(&p, SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)),
1620 1.142 christos SCM_CREDS, SOL_SOCKET, M_WAITOK);
1621 1.142 christos if (m == NULL)
1622 1.142 christos return control;
1623 1.142 christos
1624 1.142 christos sc = p;
1625 1.92 ad sc->sc_uid = kauth_cred_getuid(l->l_cred);
1626 1.92 ad sc->sc_euid = kauth_cred_geteuid(l->l_cred);
1627 1.92 ad sc->sc_gid = kauth_cred_getgid(l->l_cred);
1628 1.92 ad sc->sc_egid = kauth_cred_getegid(l->l_cred);
1629 1.92 ad sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
1630 1.142 christos
1631 1.142 christos for (int i = 0; i < sc->sc_ngroups; i++)
1632 1.92 ad sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
1633 1.30 thorpej
1634 1.142 christos return m_add(control, m);
1635 1.1 cgd }
1636 1.1 cgd
1637 1.39 sommerfe /*
1638 1.121 mrg * Do a mark-sweep GC of files in the system, to free up any which are
1639 1.121 mrg * caught in flight to an about-to-be-closed socket. Additionally,
1640 1.121 mrg * process deferred file closures.
1641 1.39 sommerfe */
1642 1.121 mrg static void
1643 1.121 mrg unp_gc(file_t *dp)
1644 1.1 cgd {
1645 1.121 mrg extern struct domain unixdomain;
1646 1.121 mrg file_t *fp, *np;
1647 1.46 augustss struct socket *so, *so1;
1648 1.121 mrg u_int i, old, new;
1649 1.121 mrg bool didwork;
1650 1.1 cgd
1651 1.121 mrg KASSERT(curlwp == unp_thread_lwp);
1652 1.121 mrg KASSERT(mutex_owned(&filelist_lock));
1653 1.106 ad
1654 1.121 mrg /*
1655 1.121 mrg * First, process deferred file closures.
1656 1.121 mrg */
1657 1.121 mrg while (!SLIST_EMPTY(&unp_thread_discard)) {
1658 1.121 mrg fp = SLIST_FIRST(&unp_thread_discard);
1659 1.121 mrg KASSERT(fp->f_unpcount > 0);
1660 1.121 mrg KASSERT(fp->f_count > 0);
1661 1.121 mrg KASSERT(fp->f_msgcount > 0);
1662 1.121 mrg KASSERT(fp->f_count >= fp->f_unpcount);
1663 1.121 mrg KASSERT(fp->f_count >= fp->f_msgcount);
1664 1.121 mrg KASSERT(fp->f_msgcount >= fp->f_unpcount);
1665 1.121 mrg SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist);
1666 1.121 mrg i = fp->f_unpcount;
1667 1.121 mrg fp->f_unpcount = 0;
1668 1.121 mrg mutex_exit(&filelist_lock);
1669 1.121 mrg for (; i != 0; i--) {
1670 1.121 mrg unp_discard_now(fp);
1671 1.121 mrg }
1672 1.121 mrg mutex_enter(&filelist_lock);
1673 1.121 mrg }
1674 1.39 sommerfe
1675 1.121 mrg /*
1676 1.121 mrg * Clear mark bits. Ensure that we don't consider new files
1677 1.121 mrg * entering the file table during this loop (they will not have
1678 1.121 mrg * FSCAN set).
1679 1.121 mrg */
1680 1.106 ad unp_defer = 0;
1681 1.106 ad LIST_FOREACH(fp, &filehead, f_list) {
1682 1.121 mrg for (old = fp->f_flag;; old = new) {
1683 1.121 mrg new = atomic_cas_uint(&fp->f_flag, old,
1684 1.121 mrg (old | FSCAN) & ~(FMARK|FDEFER));
1685 1.121 mrg if (__predict_true(old == new)) {
1686 1.121 mrg break;
1687 1.121 mrg }
1688 1.121 mrg }
1689 1.106 ad }
1690 1.39 sommerfe
1691 1.39 sommerfe /*
1692 1.121 mrg * Iterate over the set of sockets, marking ones believed (based on
1693 1.121 mrg * refcount) to be referenced from a process, and marking for rescan
1694 1.121 mrg * sockets which are queued on a socket. Recan continues descending
1695 1.121 mrg * and searching for sockets referenced by sockets (FDEFER), until
1696 1.121 mrg * there are no more socket->socket references to be discovered.
1697 1.39 sommerfe */
1698 1.1 cgd do {
1699 1.121 mrg didwork = false;
1700 1.121 mrg for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1701 1.121 mrg KASSERT(mutex_owned(&filelist_lock));
1702 1.121 mrg np = LIST_NEXT(fp, f_list);
1703 1.106 ad mutex_enter(&fp->f_lock);
1704 1.121 mrg if ((fp->f_flag & FDEFER) != 0) {
1705 1.106 ad atomic_and_uint(&fp->f_flag, ~FDEFER);
1706 1.1 cgd unp_defer--;
1707 1.106 ad KASSERT(fp->f_count != 0);
1708 1.1 cgd } else {
1709 1.101 ad if (fp->f_count == 0 ||
1710 1.121 mrg (fp->f_flag & FMARK) != 0 ||
1711 1.121 mrg fp->f_count == fp->f_msgcount ||
1712 1.121 mrg fp->f_unpcount != 0) {
1713 1.106 ad mutex_exit(&fp->f_lock);
1714 1.1 cgd continue;
1715 1.101 ad }
1716 1.1 cgd }
1717 1.106 ad atomic_or_uint(&fp->f_flag, FMARK);
1718 1.39 sommerfe
1719 1.1 cgd if (fp->f_type != DTYPE_SOCKET ||
1720 1.112 ad (so = fp->f_data) == NULL ||
1721 1.101 ad so->so_proto->pr_domain != &unixdomain ||
1722 1.121 mrg (so->so_proto->pr_flags & PR_RIGHTS) == 0) {
1723 1.106 ad mutex_exit(&fp->f_lock);
1724 1.1 cgd continue;
1725 1.101 ad }
1726 1.121 mrg
1727 1.121 mrg /* Gain file ref, mark our position, and unlock. */
1728 1.121 mrg didwork = true;
1729 1.121 mrg LIST_INSERT_AFTER(fp, dp, f_list);
1730 1.121 mrg fp->f_count++;
1731 1.106 ad mutex_exit(&fp->f_lock);
1732 1.121 mrg mutex_exit(&filelist_lock);
1733 1.101 ad
1734 1.112 ad /*
1735 1.121 mrg * Mark files referenced from sockets queued on the
1736 1.121 mrg * accept queue as well.
1737 1.112 ad */
1738 1.112 ad solock(so);
1739 1.39 sommerfe unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
1740 1.121 mrg if ((so->so_options & SO_ACCEPTCONN) != 0) {
1741 1.54 matt TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
1742 1.39 sommerfe unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1743 1.39 sommerfe }
1744 1.54 matt TAILQ_FOREACH(so1, &so->so_q, so_qe) {
1745 1.39 sommerfe unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1746 1.39 sommerfe }
1747 1.39 sommerfe }
1748 1.112 ad sounlock(so);
1749 1.121 mrg
1750 1.121 mrg /* Re-lock and restart from where we left off. */
1751 1.121 mrg closef(fp);
1752 1.121 mrg mutex_enter(&filelist_lock);
1753 1.121 mrg np = LIST_NEXT(dp, f_list);
1754 1.121 mrg LIST_REMOVE(dp, f_list);
1755 1.1 cgd }
1756 1.121 mrg /*
1757 1.121 mrg * Bail early if we did nothing in the loop above. Could
1758 1.121 mrg * happen because of concurrent activity causing unp_defer
1759 1.121 mrg * to get out of sync.
1760 1.121 mrg */
1761 1.121 mrg } while (unp_defer != 0 && didwork);
1762 1.101 ad
1763 1.8 mycroft /*
1764 1.121 mrg * Sweep pass.
1765 1.8 mycroft *
1766 1.121 mrg * We grab an extra reference to each of the files that are
1767 1.121 mrg * not otherwise accessible and then free the rights that are
1768 1.121 mrg * stored in messages on them.
1769 1.8 mycroft */
1770 1.121 mrg for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1771 1.121 mrg KASSERT(mutex_owned(&filelist_lock));
1772 1.121 mrg np = LIST_NEXT(fp, f_list);
1773 1.106 ad mutex_enter(&fp->f_lock);
1774 1.121 mrg
1775 1.121 mrg /*
1776 1.121 mrg * Ignore non-sockets.
1777 1.121 mrg * Ignore dead sockets, or sockets with pending close.
1778 1.121 mrg * Ignore sockets obviously referenced elsewhere.
1779 1.121 mrg * Ignore sockets marked as referenced by our scan.
1780 1.121 mrg * Ignore new sockets that did not exist during the scan.
1781 1.121 mrg */
1782 1.121 mrg if (fp->f_type != DTYPE_SOCKET ||
1783 1.121 mrg fp->f_count == 0 || fp->f_unpcount != 0 ||
1784 1.121 mrg fp->f_count != fp->f_msgcount ||
1785 1.121 mrg (fp->f_flag & (FMARK | FSCAN)) != FSCAN) {
1786 1.121 mrg mutex_exit(&fp->f_lock);
1787 1.121 mrg continue;
1788 1.8 mycroft }
1789 1.121 mrg
1790 1.121 mrg /* Gain file ref, mark our position, and unlock. */
1791 1.121 mrg LIST_INSERT_AFTER(fp, dp, f_list);
1792 1.121 mrg fp->f_count++;
1793 1.106 ad mutex_exit(&fp->f_lock);
1794 1.121 mrg mutex_exit(&filelist_lock);
1795 1.121 mrg
1796 1.121 mrg /*
1797 1.121 mrg * Flush all data from the socket's receive buffer.
1798 1.121 mrg * This will cause files referenced only by the
1799 1.121 mrg * socket to be queued for close.
1800 1.121 mrg */
1801 1.121 mrg so = fp->f_data;
1802 1.121 mrg solock(so);
1803 1.121 mrg sorflush(so);
1804 1.121 mrg sounlock(so);
1805 1.121 mrg
1806 1.121 mrg /* Re-lock and restart from where we left off. */
1807 1.121 mrg closef(fp);
1808 1.121 mrg mutex_enter(&filelist_lock);
1809 1.121 mrg np = LIST_NEXT(dp, f_list);
1810 1.121 mrg LIST_REMOVE(dp, f_list);
1811 1.121 mrg }
1812 1.121 mrg }
1813 1.121 mrg
1814 1.121 mrg /*
1815 1.121 mrg * Garbage collector thread. While SCM_RIGHTS messages are in transit,
1816 1.121 mrg * wake once per second to garbage collect. Run continually while we
1817 1.121 mrg * have deferred closes to process.
1818 1.121 mrg */
1819 1.121 mrg static void
1820 1.121 mrg unp_thread(void *cookie)
1821 1.121 mrg {
1822 1.121 mrg file_t *dp;
1823 1.121 mrg
1824 1.121 mrg /* Allocate a dummy file for our scans. */
1825 1.121 mrg if ((dp = fgetdummy()) == NULL) {
1826 1.121 mrg panic("unp_thread");
1827 1.1 cgd }
1828 1.101 ad
1829 1.121 mrg mutex_enter(&filelist_lock);
1830 1.121 mrg for (;;) {
1831 1.121 mrg KASSERT(mutex_owned(&filelist_lock));
1832 1.121 mrg if (SLIST_EMPTY(&unp_thread_discard)) {
1833 1.121 mrg if (unp_rights != 0) {
1834 1.121 mrg (void)cv_timedwait(&unp_thread_cv,
1835 1.121 mrg &filelist_lock, hz);
1836 1.121 mrg } else {
1837 1.121 mrg cv_wait(&unp_thread_cv, &filelist_lock);
1838 1.121 mrg }
1839 1.112 ad }
1840 1.121 mrg unp_gc(dp);
1841 1.39 sommerfe }
1842 1.121 mrg /* NOTREACHED */
1843 1.121 mrg }
1844 1.121 mrg
1845 1.121 mrg /*
1846 1.121 mrg * Kick the garbage collector into action if there is something for
1847 1.121 mrg * it to process.
1848 1.121 mrg */
1849 1.121 mrg static void
1850 1.121 mrg unp_thread_kick(void)
1851 1.121 mrg {
1852 1.121 mrg
1853 1.121 mrg if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) {
1854 1.121 mrg mutex_enter(&filelist_lock);
1855 1.121 mrg cv_signal(&unp_thread_cv);
1856 1.121 mrg mutex_exit(&filelist_lock);
1857 1.44 thorpej }
1858 1.1 cgd }
1859 1.1 cgd
1860 1.5 andrew void
1861 1.76 matt unp_dispose(struct mbuf *m)
1862 1.1 cgd {
1863 1.8 mycroft
1864 1.1 cgd if (m)
1865 1.121 mrg unp_scan(m, unp_discard_later, 1);
1866 1.1 cgd }
1867 1.1 cgd
1868 1.5 andrew void
1869 1.106 ad unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
1870 1.1 cgd {
1871 1.46 augustss struct mbuf *m;
1872 1.121 mrg file_t **rp, *fp;
1873 1.46 augustss struct cmsghdr *cm;
1874 1.121 mrg int i, qfds;
1875 1.1 cgd
1876 1.1 cgd while (m0) {
1877 1.48 thorpej for (m = m0; m; m = m->m_next) {
1878 1.121 mrg if (m->m_type != MT_CONTROL ||
1879 1.121 mrg m->m_len < sizeof(*cm)) {
1880 1.121 mrg continue;
1881 1.121 mrg }
1882 1.121 mrg cm = mtod(m, struct cmsghdr *);
1883 1.121 mrg if (cm->cmsg_level != SOL_SOCKET ||
1884 1.121 mrg cm->cmsg_type != SCM_RIGHTS)
1885 1.121 mrg continue;
1886 1.121 mrg qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
1887 1.121 mrg / sizeof(file_t *);
1888 1.121 mrg rp = (file_t **)CMSG_DATA(cm);
1889 1.121 mrg for (i = 0; i < qfds; i++) {
1890 1.121 mrg fp = *rp;
1891 1.121 mrg if (discard) {
1892 1.121 mrg *rp = 0;
1893 1.39 sommerfe }
1894 1.121 mrg (*op)(fp);
1895 1.121 mrg rp++;
1896 1.1 cgd }
1897 1.48 thorpej }
1898 1.52 thorpej m0 = m0->m_nextpkt;
1899 1.1 cgd }
1900 1.1 cgd }
1901 1.1 cgd
1902 1.5 andrew void
1903 1.106 ad unp_mark(file_t *fp)
1904 1.1 cgd {
1905 1.101 ad
1906 1.39 sommerfe if (fp == NULL)
1907 1.39 sommerfe return;
1908 1.80 perry
1909 1.39 sommerfe /* If we're already deferred, don't screw up the defer count */
1910 1.106 ad mutex_enter(&fp->f_lock);
1911 1.101 ad if (fp->f_flag & (FMARK | FDEFER)) {
1912 1.106 ad mutex_exit(&fp->f_lock);
1913 1.1 cgd return;
1914 1.101 ad }
1915 1.39 sommerfe
1916 1.39 sommerfe /*
1917 1.121 mrg * Minimize the number of deferrals... Sockets are the only type of
1918 1.121 mrg * file which can hold references to another file, so just mark
1919 1.121 mrg * other files, and defer unmarked sockets for the next pass.
1920 1.39 sommerfe */
1921 1.39 sommerfe if (fp->f_type == DTYPE_SOCKET) {
1922 1.39 sommerfe unp_defer++;
1923 1.106 ad KASSERT(fp->f_count != 0);
1924 1.106 ad atomic_or_uint(&fp->f_flag, FDEFER);
1925 1.39 sommerfe } else {
1926 1.106 ad atomic_or_uint(&fp->f_flag, FMARK);
1927 1.39 sommerfe }
1928 1.106 ad mutex_exit(&fp->f_lock);
1929 1.1 cgd }
1930 1.1 cgd
1931 1.121 mrg static void
1932 1.121 mrg unp_discard_now(file_t *fp)
1933 1.1 cgd {
1934 1.106 ad
1935 1.39 sommerfe if (fp == NULL)
1936 1.39 sommerfe return;
1937 1.106 ad
1938 1.121 mrg KASSERT(fp->f_count > 0);
1939 1.121 mrg KASSERT(fp->f_msgcount > 0);
1940 1.121 mrg
1941 1.106 ad mutex_enter(&fp->f_lock);
1942 1.1 cgd fp->f_msgcount--;
1943 1.106 ad mutex_exit(&fp->f_lock);
1944 1.106 ad atomic_dec_uint(&unp_rights);
1945 1.106 ad (void)closef(fp);
1946 1.1 cgd }
1947 1.121 mrg
1948 1.121 mrg static void
1949 1.121 mrg unp_discard_later(file_t *fp)
1950 1.121 mrg {
1951 1.121 mrg
1952 1.121 mrg if (fp == NULL)
1953 1.121 mrg return;
1954 1.121 mrg
1955 1.121 mrg KASSERT(fp->f_count > 0);
1956 1.121 mrg KASSERT(fp->f_msgcount > 0);
1957 1.121 mrg
1958 1.121 mrg mutex_enter(&filelist_lock);
1959 1.121 mrg if (fp->f_unpcount++ == 0) {
1960 1.121 mrg SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist);
1961 1.121 mrg }
1962 1.121 mrg mutex_exit(&filelist_lock);
1963 1.121 mrg }
1964 1.151 rmind
1965 1.151 rmind const struct pr_usrreqs unp_usrreqs = {
1966 1.152 rmind .pr_attach = unp_attach,
1967 1.152 rmind .pr_detach = unp_detach,
1968 1.159 rtr .pr_accept = unp_accept,
1969 1.161 rtr .pr_bind = unp_bind,
1970 1.161 rtr .pr_listen = unp_listen,
1971 1.162 rtr .pr_connect = unp_connect,
1972 1.169 rtr .pr_connect2 = unp_connect2,
1973 1.163 rtr .pr_disconnect = unp_disconnect,
1974 1.163 rtr .pr_shutdown = unp_shutdown,
1975 1.163 rtr .pr_abort = unp_abort,
1976 1.154 rtr .pr_ioctl = unp_ioctl,
1977 1.156 rtr .pr_stat = unp_stat,
1978 1.158 rtr .pr_peeraddr = unp_peeraddr,
1979 1.158 rtr .pr_sockaddr = unp_sockaddr,
1980 1.168 rtr .pr_rcvd = unp_rcvd,
1981 1.160 rtr .pr_recvoob = unp_recvoob,
1982 1.166 rtr .pr_send = unp_send,
1983 1.160 rtr .pr_sendoob = unp_sendoob,
1984 1.151 rmind .pr_generic = unp_usrreq,
1985 1.151 rmind };
1986