uipc_usrreq.c revision 1.181 1 1.181 maxv /* $NetBSD: uipc_usrreq.c,v 1.181 2016/10/31 15:05:05 maxv Exp $ */
2 1.30 thorpej
3 1.30 thorpej /*-
4 1.121 mrg * Copyright (c) 1998, 2000, 2004, 2008, 2009 The NetBSD Foundation, Inc.
5 1.30 thorpej * All rights reserved.
6 1.30 thorpej *
7 1.30 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.30 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.121 mrg * NASA Ames Research Center, and by Andrew Doran.
10 1.30 thorpej *
11 1.30 thorpej * Redistribution and use in source and binary forms, with or without
12 1.30 thorpej * modification, are permitted provided that the following conditions
13 1.30 thorpej * are met:
14 1.30 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.30 thorpej * notice, this list of conditions and the following disclaimer.
16 1.30 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.30 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.30 thorpej * documentation and/or other materials provided with the distribution.
19 1.30 thorpej *
20 1.30 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.30 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.30 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.30 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.30 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.30 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.30 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.30 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.30 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.30 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.30 thorpej * POSSIBILITY OF SUCH DAMAGE.
31 1.30 thorpej */
32 1.10 cgd
33 1.1 cgd /*
34 1.8 mycroft * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 1.8 mycroft * The Regents of the University of California. All rights reserved.
36 1.1 cgd *
37 1.1 cgd * Redistribution and use in source and binary forms, with or without
38 1.1 cgd * modification, are permitted provided that the following conditions
39 1.1 cgd * are met:
40 1.1 cgd * 1. Redistributions of source code must retain the above copyright
41 1.1 cgd * notice, this list of conditions and the following disclaimer.
42 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
43 1.1 cgd * notice, this list of conditions and the following disclaimer in the
44 1.1 cgd * documentation and/or other materials provided with the distribution.
45 1.67 agc * 3. Neither the name of the University nor the names of its contributors
46 1.67 agc * may be used to endorse or promote products derived from this software
47 1.67 agc * without specific prior written permission.
48 1.67 agc *
49 1.67 agc * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 1.67 agc * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 1.67 agc * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 1.67 agc * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 1.67 agc * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 1.67 agc * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 1.67 agc * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 1.67 agc * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 1.67 agc * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 1.67 agc * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 1.67 agc * SUCH DAMAGE.
60 1.67 agc *
61 1.67 agc * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
62 1.67 agc */
63 1.67 agc
64 1.67 agc /*
65 1.67 agc * Copyright (c) 1997 Christopher G. Demetriou. All rights reserved.
66 1.67 agc *
67 1.67 agc * Redistribution and use in source and binary forms, with or without
68 1.67 agc * modification, are permitted provided that the following conditions
69 1.67 agc * are met:
70 1.67 agc * 1. Redistributions of source code must retain the above copyright
71 1.67 agc * notice, this list of conditions and the following disclaimer.
72 1.67 agc * 2. Redistributions in binary form must reproduce the above copyright
73 1.67 agc * notice, this list of conditions and the following disclaimer in the
74 1.67 agc * documentation and/or other materials provided with the distribution.
75 1.1 cgd * 3. All advertising materials mentioning features or use of this software
76 1.1 cgd * must display the following acknowledgement:
77 1.1 cgd * This product includes software developed by the University of
78 1.1 cgd * California, Berkeley and its contributors.
79 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
80 1.1 cgd * may be used to endorse or promote products derived from this software
81 1.1 cgd * without specific prior written permission.
82 1.1 cgd *
83 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
84 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
85 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
86 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
87 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
88 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
89 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
90 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
91 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
92 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
93 1.1 cgd * SUCH DAMAGE.
94 1.1 cgd *
95 1.31 fvdl * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
96 1.1 cgd */
97 1.53 lukem
98 1.53 lukem #include <sys/cdefs.h>
99 1.181 maxv __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.181 2016/10/31 15:05:05 maxv Exp $");
100 1.1 cgd
101 1.7 mycroft #include <sys/param.h>
102 1.8 mycroft #include <sys/systm.h>
103 1.7 mycroft #include <sys/proc.h>
104 1.7 mycroft #include <sys/filedesc.h>
105 1.7 mycroft #include <sys/domain.h>
106 1.7 mycroft #include <sys/protosw.h>
107 1.7 mycroft #include <sys/socket.h>
108 1.7 mycroft #include <sys/socketvar.h>
109 1.7 mycroft #include <sys/unpcb.h>
110 1.7 mycroft #include <sys/un.h>
111 1.7 mycroft #include <sys/namei.h>
112 1.7 mycroft #include <sys/vnode.h>
113 1.7 mycroft #include <sys/file.h>
114 1.7 mycroft #include <sys/stat.h>
115 1.7 mycroft #include <sys/mbuf.h>
116 1.91 elad #include <sys/kauth.h>
117 1.101 ad #include <sys/kmem.h>
118 1.106 ad #include <sys/atomic.h>
119 1.119 pooka #include <sys/uidinfo.h>
120 1.121 mrg #include <sys/kernel.h>
121 1.121 mrg #include <sys/kthread.h>
122 1.1 cgd
123 1.180 roy #ifdef COMPAT_70
124 1.180 roy #include <compat/sys/socket.h>
125 1.180 roy #endif
126 1.180 roy
127 1.1 cgd /*
128 1.1 cgd * Unix communications domain.
129 1.1 cgd *
130 1.1 cgd * TODO:
131 1.134 manu * RDM
132 1.1 cgd * rethink name space problems
133 1.1 cgd * need a proper out-of-band
134 1.112 ad *
135 1.112 ad * Notes on locking:
136 1.112 ad *
137 1.112 ad * The generic rules noted in uipc_socket2.c apply. In addition:
138 1.112 ad *
139 1.112 ad * o We have a global lock, uipc_lock.
140 1.112 ad *
141 1.112 ad * o All datagram sockets are locked by uipc_lock.
142 1.112 ad *
143 1.112 ad * o For stream socketpairs, the two endpoints are created sharing the same
144 1.112 ad * independent lock. Sockets presented to PRU_CONNECT2 must already have
145 1.112 ad * matching locks.
146 1.112 ad *
147 1.112 ad * o Stream sockets created via socket() start life with their own
148 1.112 ad * independent lock.
149 1.112 ad *
150 1.112 ad * o Stream connections to a named endpoint are slightly more complicated.
151 1.112 ad * Sockets that have called listen() have their lock pointer mutated to
152 1.112 ad * the global uipc_lock. When establishing a connection, the connecting
153 1.112 ad * socket also has its lock mutated to uipc_lock, which matches the head
154 1.112 ad * (listening socket). We create a new socket for accept() to return, and
155 1.112 ad * that also shares the head's lock. Until the connection is completely
156 1.112 ad * done on both ends, all three sockets are locked by uipc_lock. Once the
157 1.112 ad * connection is complete, the association with the head's lock is broken.
158 1.112 ad * The connecting socket and the socket returned from accept() have their
159 1.112 ad * lock pointers mutated away from uipc_lock, and back to the connecting
160 1.112 ad * socket's original, independent lock. The head continues to be locked
161 1.112 ad * by uipc_lock.
162 1.112 ad *
163 1.112 ad * o If uipc_lock is determined to be a significant source of contention,
164 1.112 ad * it could easily be hashed out. It is difficult to simply make it an
165 1.112 ad * independent lock because of visibility / garbage collection issues:
166 1.112 ad * if a socket has been associated with a lock at any point, that lock
167 1.112 ad * must remain valid until the socket is no longer visible in the system.
168 1.112 ad * The lock must not be freed or otherwise destroyed until any sockets
169 1.112 ad * that had referenced it have also been destroyed.
170 1.1 cgd */
171 1.93 christos const struct sockaddr_un sun_noname = {
172 1.145 christos .sun_len = offsetof(struct sockaddr_un, sun_path),
173 1.93 christos .sun_family = AF_LOCAL,
174 1.93 christos };
175 1.1 cgd ino_t unp_ino; /* prototype for fake inode numbers */
176 1.1 cgd
177 1.164 rtr static struct mbuf * unp_addsockcred(struct lwp *, struct mbuf *);
178 1.164 rtr static void unp_discard_later(file_t *);
179 1.164 rtr static void unp_discard_now(file_t *);
180 1.164 rtr static void unp_disconnect1(struct unpcb *);
181 1.164 rtr static bool unp_drop(struct unpcb *, int);
182 1.164 rtr static int unp_internalize(struct mbuf **);
183 1.164 rtr static void unp_mark(file_t *);
184 1.164 rtr static void unp_scan(struct mbuf *, void (*)(file_t *), int);
185 1.164 rtr static void unp_shutdown1(struct unpcb *);
186 1.164 rtr static void unp_thread(void *);
187 1.164 rtr static void unp_thread_kick(void);
188 1.164 rtr
189 1.112 ad static kmutex_t *uipc_lock;
190 1.112 ad
191 1.121 mrg static kcondvar_t unp_thread_cv;
192 1.121 mrg static lwp_t *unp_thread_lwp;
193 1.121 mrg static SLIST_HEAD(,file) unp_thread_discard;
194 1.121 mrg static int unp_defer;
195 1.121 mrg
196 1.112 ad /*
197 1.112 ad * Initialize Unix protocols.
198 1.112 ad */
199 1.112 ad void
200 1.112 ad uipc_init(void)
201 1.112 ad {
202 1.121 mrg int error;
203 1.112 ad
204 1.112 ad uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
205 1.121 mrg cv_init(&unp_thread_cv, "unpgc");
206 1.121 mrg
207 1.121 mrg error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread,
208 1.121 mrg NULL, &unp_thread_lwp, "unpgc");
209 1.121 mrg if (error != 0)
210 1.121 mrg panic("uipc_init %d", error);
211 1.112 ad }
212 1.112 ad
213 1.112 ad /*
214 1.112 ad * A connection succeeded: disassociate both endpoints from the head's
215 1.112 ad * lock, and make them share their own lock. There is a race here: for
216 1.112 ad * a very brief time one endpoint will be locked by a different lock
217 1.112 ad * than the other end. However, since the current thread holds the old
218 1.112 ad * lock (the listening socket's lock, the head) access can still only be
219 1.112 ad * made to one side of the connection.
220 1.112 ad */
221 1.112 ad static void
222 1.112 ad unp_setpeerlocks(struct socket *so, struct socket *so2)
223 1.112 ad {
224 1.112 ad struct unpcb *unp;
225 1.112 ad kmutex_t *lock;
226 1.112 ad
227 1.112 ad KASSERT(solocked2(so, so2));
228 1.112 ad
229 1.112 ad /*
230 1.112 ad * Bail out if either end of the socket is not yet fully
231 1.112 ad * connected or accepted. We only break the lock association
232 1.112 ad * with the head when the pair of sockets stand completely
233 1.112 ad * on their own.
234 1.112 ad */
235 1.125 yamt KASSERT(so->so_head == NULL);
236 1.125 yamt if (so2->so_head != NULL)
237 1.112 ad return;
238 1.112 ad
239 1.112 ad /*
240 1.112 ad * Drop references to old lock. A third reference (from the
241 1.112 ad * queue head) must be held as we still hold its lock. Bonus:
242 1.112 ad * we don't need to worry about garbage collecting the lock.
243 1.112 ad */
244 1.112 ad lock = so->so_lock;
245 1.112 ad KASSERT(lock == uipc_lock);
246 1.112 ad mutex_obj_free(lock);
247 1.112 ad mutex_obj_free(lock);
248 1.112 ad
249 1.112 ad /*
250 1.112 ad * Grab stream lock from the initiator and share between the two
251 1.112 ad * endpoints. Issue memory barrier to ensure all modifications
252 1.112 ad * become globally visible before the lock change. so2 is
253 1.112 ad * assumed not to have a stream lock, because it was created
254 1.112 ad * purely for the server side to accept this connection and
255 1.112 ad * started out life using the domain-wide lock.
256 1.112 ad */
257 1.112 ad unp = sotounpcb(so);
258 1.112 ad KASSERT(unp->unp_streamlock != NULL);
259 1.112 ad KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
260 1.112 ad lock = unp->unp_streamlock;
261 1.112 ad unp->unp_streamlock = NULL;
262 1.112 ad mutex_obj_hold(lock);
263 1.112 ad membar_exit();
264 1.127 bouyer /*
265 1.127 bouyer * possible race if lock is not held - see comment in
266 1.127 bouyer * uipc_usrreq(PRU_ACCEPT).
267 1.127 bouyer */
268 1.127 bouyer KASSERT(mutex_owned(lock));
269 1.115 ad solockreset(so, lock);
270 1.115 ad solockreset(so2, lock);
271 1.112 ad }
272 1.112 ad
273 1.112 ad /*
274 1.112 ad * Reset a socket's lock back to the domain-wide lock.
275 1.112 ad */
276 1.112 ad static void
277 1.112 ad unp_resetlock(struct socket *so)
278 1.112 ad {
279 1.112 ad kmutex_t *olock, *nlock;
280 1.112 ad struct unpcb *unp;
281 1.112 ad
282 1.112 ad KASSERT(solocked(so));
283 1.112 ad
284 1.112 ad olock = so->so_lock;
285 1.112 ad nlock = uipc_lock;
286 1.112 ad if (olock == nlock)
287 1.112 ad return;
288 1.112 ad unp = sotounpcb(so);
289 1.112 ad KASSERT(unp->unp_streamlock == NULL);
290 1.112 ad unp->unp_streamlock = olock;
291 1.112 ad mutex_obj_hold(nlock);
292 1.112 ad mutex_enter(nlock);
293 1.115 ad solockreset(so, nlock);
294 1.112 ad mutex_exit(olock);
295 1.112 ad }
296 1.112 ad
297 1.112 ad static void
298 1.112 ad unp_free(struct unpcb *unp)
299 1.112 ad {
300 1.112 ad if (unp->unp_addr)
301 1.112 ad free(unp->unp_addr, M_SONAME);
302 1.112 ad if (unp->unp_streamlock != NULL)
303 1.112 ad mutex_obj_free(unp->unp_streamlock);
304 1.152 rmind kmem_free(unp, sizeof(*unp));
305 1.112 ad }
306 1.30 thorpej
307 1.164 rtr static int
308 1.164 rtr unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp)
309 1.20 mycroft {
310 1.20 mycroft struct socket *so2;
311 1.77 matt const struct sockaddr_un *sun;
312 1.20 mycroft
313 1.153 christos /* XXX: server side closed the socket */
314 1.153 christos if (unp->unp_conn == NULL)
315 1.153 christos return ECONNREFUSED;
316 1.20 mycroft so2 = unp->unp_conn->unp_socket;
317 1.112 ad
318 1.112 ad KASSERT(solocked(so2));
319 1.112 ad
320 1.20 mycroft if (unp->unp_addr)
321 1.20 mycroft sun = unp->unp_addr;
322 1.20 mycroft else
323 1.20 mycroft sun = &sun_noname;
324 1.30 thorpej if (unp->unp_conn->unp_flags & UNP_WANTCRED)
325 1.164 rtr control = unp_addsockcred(curlwp, control);
326 1.180 roy #ifdef COMPAT_SOCKCRED70
327 1.180 roy if (unp->unp_conn->unp_flags & UNP_OWANTCRED)
328 1.180 roy control = compat_70_unp_addsockcred(curlwp, control);
329 1.180 roy #endif
330 1.82 christos if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
331 1.20 mycroft control) == 0) {
332 1.112 ad so2->so_rcv.sb_overflowed++;
333 1.98 martin unp_dispose(control);
334 1.20 mycroft m_freem(control);
335 1.20 mycroft m_freem(m);
336 1.60 christos return (ENOBUFS);
337 1.20 mycroft } else {
338 1.20 mycroft sorwakeup(so2);
339 1.20 mycroft return (0);
340 1.20 mycroft }
341 1.20 mycroft }
342 1.20 mycroft
343 1.164 rtr static void
344 1.177 rtr unp_setaddr(struct socket *so, struct sockaddr *nam, bool peeraddr)
345 1.20 mycroft {
346 1.177 rtr const struct sockaddr_un *sun = NULL;
347 1.112 ad struct unpcb *unp;
348 1.20 mycroft
349 1.127 bouyer KASSERT(solocked(so));
350 1.112 ad unp = sotounpcb(so);
351 1.20 mycroft
352 1.177 rtr if (peeraddr) {
353 1.177 rtr if (unp->unp_conn && unp->unp_conn->unp_addr)
354 1.177 rtr sun = unp->unp_conn->unp_addr;
355 1.177 rtr } else {
356 1.177 rtr if (unp->unp_addr)
357 1.177 rtr sun = unp->unp_addr;
358 1.112 ad }
359 1.177 rtr if (sun == NULL)
360 1.177 rtr sun = &sun_noname;
361 1.177 rtr
362 1.177 rtr memcpy(nam, sun, sun->sun_len);
363 1.20 mycroft }
364 1.20 mycroft
365 1.151 rmind static int
366 1.168 rtr unp_rcvd(struct socket *so, int flags, struct lwp *l)
367 1.168 rtr {
368 1.168 rtr struct unpcb *unp = sotounpcb(so);
369 1.168 rtr struct socket *so2;
370 1.168 rtr u_int newhiwat;
371 1.168 rtr
372 1.168 rtr KASSERT(solocked(so));
373 1.168 rtr KASSERT(unp != NULL);
374 1.168 rtr
375 1.168 rtr switch (so->so_type) {
376 1.168 rtr
377 1.168 rtr case SOCK_DGRAM:
378 1.168 rtr panic("uipc 1");
379 1.168 rtr /*NOTREACHED*/
380 1.168 rtr
381 1.168 rtr case SOCK_SEQPACKET: /* FALLTHROUGH */
382 1.168 rtr case SOCK_STREAM:
383 1.168 rtr #define rcv (&so->so_rcv)
384 1.168 rtr #define snd (&so2->so_snd)
385 1.168 rtr if (unp->unp_conn == 0)
386 1.168 rtr break;
387 1.168 rtr so2 = unp->unp_conn->unp_socket;
388 1.168 rtr KASSERT(solocked2(so, so2));
389 1.168 rtr /*
390 1.168 rtr * Adjust backpressure on sender
391 1.168 rtr * and wakeup any waiting to write.
392 1.168 rtr */
393 1.168 rtr snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
394 1.168 rtr unp->unp_mbcnt = rcv->sb_mbcnt;
395 1.168 rtr newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
396 1.168 rtr (void)chgsbsize(so2->so_uidinfo,
397 1.168 rtr &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
398 1.168 rtr unp->unp_cc = rcv->sb_cc;
399 1.168 rtr sowwakeup(so2);
400 1.168 rtr #undef snd
401 1.168 rtr #undef rcv
402 1.168 rtr break;
403 1.168 rtr
404 1.168 rtr default:
405 1.168 rtr panic("uipc 2");
406 1.168 rtr }
407 1.168 rtr
408 1.168 rtr return 0;
409 1.168 rtr }
410 1.168 rtr
411 1.168 rtr static int
412 1.160 rtr unp_recvoob(struct socket *so, struct mbuf *m, int flags)
413 1.160 rtr {
414 1.160 rtr KASSERT(solocked(so));
415 1.160 rtr
416 1.160 rtr return EOPNOTSUPP;
417 1.160 rtr }
418 1.160 rtr
419 1.160 rtr static int
420 1.179 rtr unp_send(struct socket *so, struct mbuf *m, struct sockaddr *nam,
421 1.166 rtr struct mbuf *control, struct lwp *l)
422 1.166 rtr {
423 1.166 rtr struct unpcb *unp = sotounpcb(so);
424 1.166 rtr int error = 0;
425 1.166 rtr u_int newhiwat;
426 1.166 rtr struct socket *so2;
427 1.166 rtr
428 1.166 rtr KASSERT(solocked(so));
429 1.166 rtr KASSERT(unp != NULL);
430 1.166 rtr KASSERT(m != NULL);
431 1.166 rtr
432 1.166 rtr /*
433 1.166 rtr * Note: unp_internalize() rejects any control message
434 1.166 rtr * other than SCM_RIGHTS, and only allows one. This
435 1.166 rtr * has the side-effect of preventing a caller from
436 1.166 rtr * forging SCM_CREDS.
437 1.166 rtr */
438 1.166 rtr if (control) {
439 1.166 rtr sounlock(so);
440 1.166 rtr error = unp_internalize(&control);
441 1.166 rtr solock(so);
442 1.166 rtr if (error != 0) {
443 1.166 rtr m_freem(control);
444 1.166 rtr m_freem(m);
445 1.166 rtr return error;
446 1.166 rtr }
447 1.166 rtr }
448 1.166 rtr
449 1.166 rtr switch (so->so_type) {
450 1.166 rtr
451 1.166 rtr case SOCK_DGRAM: {
452 1.166 rtr KASSERT(so->so_lock == uipc_lock);
453 1.166 rtr if (nam) {
454 1.166 rtr if ((so->so_state & SS_ISCONNECTED) != 0)
455 1.166 rtr error = EISCONN;
456 1.166 rtr else {
457 1.166 rtr /*
458 1.166 rtr * Note: once connected, the
459 1.166 rtr * socket's lock must not be
460 1.166 rtr * dropped until we have sent
461 1.166 rtr * the message and disconnected.
462 1.166 rtr * This is necessary to prevent
463 1.166 rtr * intervening control ops, like
464 1.166 rtr * another connection.
465 1.166 rtr */
466 1.166 rtr error = unp_connect(so, nam, l);
467 1.166 rtr }
468 1.166 rtr } else {
469 1.166 rtr if ((so->so_state & SS_ISCONNECTED) == 0)
470 1.166 rtr error = ENOTCONN;
471 1.166 rtr }
472 1.166 rtr if (error) {
473 1.166 rtr unp_dispose(control);
474 1.166 rtr m_freem(control);
475 1.166 rtr m_freem(m);
476 1.166 rtr return error;
477 1.166 rtr }
478 1.166 rtr error = unp_output(m, control, unp);
479 1.166 rtr if (nam)
480 1.166 rtr unp_disconnect1(unp);
481 1.166 rtr break;
482 1.166 rtr }
483 1.166 rtr
484 1.166 rtr case SOCK_SEQPACKET: /* FALLTHROUGH */
485 1.166 rtr case SOCK_STREAM:
486 1.166 rtr #define rcv (&so2->so_rcv)
487 1.166 rtr #define snd (&so->so_snd)
488 1.166 rtr if (unp->unp_conn == NULL) {
489 1.166 rtr error = ENOTCONN;
490 1.166 rtr break;
491 1.166 rtr }
492 1.166 rtr so2 = unp->unp_conn->unp_socket;
493 1.166 rtr KASSERT(solocked2(so, so2));
494 1.166 rtr if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
495 1.166 rtr /*
496 1.166 rtr * Credentials are passed only once on
497 1.166 rtr * SOCK_STREAM and SOCK_SEQPACKET.
498 1.166 rtr */
499 1.166 rtr unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
500 1.166 rtr control = unp_addsockcred(l, control);
501 1.166 rtr }
502 1.180 roy #ifdef COMPAT_SOCKCRED70
503 1.180 roy if (unp->unp_conn->unp_flags & UNP_OWANTCRED) {
504 1.180 roy /*
505 1.180 roy * Credentials are passed only once on
506 1.180 roy * SOCK_STREAM and SOCK_SEQPACKET.
507 1.180 roy */
508 1.180 roy unp->unp_conn->unp_flags &= ~UNP_OWANTCRED;
509 1.180 roy control = compat_70_unp_addsockcred(l, control);
510 1.180 roy }
511 1.180 roy #endif
512 1.166 rtr /*
513 1.166 rtr * Send to paired receive port, and then reduce
514 1.166 rtr * send buffer hiwater marks to maintain backpressure.
515 1.166 rtr * Wake up readers.
516 1.166 rtr */
517 1.166 rtr if (control) {
518 1.166 rtr if (sbappendcontrol(rcv, m, control) != 0)
519 1.166 rtr control = NULL;
520 1.166 rtr } else {
521 1.166 rtr switch(so->so_type) {
522 1.166 rtr case SOCK_SEQPACKET:
523 1.166 rtr sbappendrecord(rcv, m);
524 1.166 rtr break;
525 1.166 rtr case SOCK_STREAM:
526 1.166 rtr sbappend(rcv, m);
527 1.166 rtr break;
528 1.166 rtr default:
529 1.166 rtr panic("uipc_usrreq");
530 1.166 rtr break;
531 1.166 rtr }
532 1.166 rtr }
533 1.166 rtr snd->sb_mbmax -=
534 1.166 rtr rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
535 1.166 rtr unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
536 1.166 rtr newhiwat = snd->sb_hiwat -
537 1.166 rtr (rcv->sb_cc - unp->unp_conn->unp_cc);
538 1.166 rtr (void)chgsbsize(so->so_uidinfo,
539 1.166 rtr &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
540 1.166 rtr unp->unp_conn->unp_cc = rcv->sb_cc;
541 1.166 rtr sorwakeup(so2);
542 1.166 rtr #undef snd
543 1.166 rtr #undef rcv
544 1.166 rtr if (control != NULL) {
545 1.166 rtr unp_dispose(control);
546 1.166 rtr m_freem(control);
547 1.166 rtr }
548 1.166 rtr break;
549 1.166 rtr
550 1.166 rtr default:
551 1.166 rtr panic("uipc 4");
552 1.166 rtr }
553 1.166 rtr
554 1.166 rtr return error;
555 1.166 rtr }
556 1.166 rtr
557 1.166 rtr static int
558 1.160 rtr unp_sendoob(struct socket *so, struct mbuf *m, struct mbuf * control)
559 1.160 rtr {
560 1.160 rtr KASSERT(solocked(so));
561 1.160 rtr
562 1.160 rtr m_freem(m);
563 1.160 rtr m_freem(control);
564 1.160 rtr
565 1.160 rtr return EOPNOTSUPP;
566 1.160 rtr }
567 1.160 rtr
568 1.1 cgd /*
569 1.30 thorpej * Unix domain socket option processing.
570 1.30 thorpej */
571 1.30 thorpej int
572 1.118 plunky uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
573 1.30 thorpej {
574 1.30 thorpej struct unpcb *unp = sotounpcb(so);
575 1.30 thorpej int optval = 0, error = 0;
576 1.30 thorpej
577 1.112 ad KASSERT(solocked(so));
578 1.112 ad
579 1.118 plunky if (sopt->sopt_level != 0) {
580 1.100 dyoung error = ENOPROTOOPT;
581 1.30 thorpej } else switch (op) {
582 1.30 thorpej
583 1.30 thorpej case PRCO_SETOPT:
584 1.118 plunky switch (sopt->sopt_name) {
585 1.30 thorpej case LOCAL_CREDS:
586 1.72 matt case LOCAL_CONNWAIT:
587 1.180 roy #ifdef COMPAT_SOCKCRED70
588 1.180 roy case LOCAL_OCREDS:
589 1.180 roy #endif
590 1.118 plunky error = sockopt_getint(sopt, &optval);
591 1.118 plunky if (error)
592 1.118 plunky break;
593 1.118 plunky switch (sopt->sopt_name) {
594 1.30 thorpej #define OPTSET(bit) \
595 1.30 thorpej if (optval) \
596 1.30 thorpej unp->unp_flags |= (bit); \
597 1.30 thorpej else \
598 1.30 thorpej unp->unp_flags &= ~(bit);
599 1.30 thorpej
600 1.118 plunky case LOCAL_CREDS:
601 1.118 plunky OPTSET(UNP_WANTCRED);
602 1.118 plunky break;
603 1.118 plunky case LOCAL_CONNWAIT:
604 1.118 plunky OPTSET(UNP_CONNWAIT);
605 1.118 plunky break;
606 1.180 roy #ifdef COMPAT_SOCKCRED70
607 1.180 roy case LOCAL_OCREDS:
608 1.180 roy OPTSET(UNP_OWANTCRED);
609 1.180 roy break;
610 1.180 roy #endif
611 1.30 thorpej }
612 1.30 thorpej break;
613 1.30 thorpej #undef OPTSET
614 1.30 thorpej
615 1.30 thorpej default:
616 1.30 thorpej error = ENOPROTOOPT;
617 1.30 thorpej break;
618 1.30 thorpej }
619 1.30 thorpej break;
620 1.30 thorpej
621 1.30 thorpej case PRCO_GETOPT:
622 1.112 ad sounlock(so);
623 1.118 plunky switch (sopt->sopt_name) {
624 1.99 he case LOCAL_PEEREID:
625 1.99 he if (unp->unp_flags & UNP_EIDSVALID) {
626 1.118 plunky error = sockopt_set(sopt,
627 1.118 plunky &unp->unp_connid, sizeof(unp->unp_connid));
628 1.99 he } else {
629 1.99 he error = EINVAL;
630 1.99 he }
631 1.99 he break;
632 1.30 thorpej case LOCAL_CREDS:
633 1.30 thorpej #define OPTBIT(bit) (unp->unp_flags & (bit) ? 1 : 0)
634 1.30 thorpej
635 1.99 he optval = OPTBIT(UNP_WANTCRED);
636 1.118 plunky error = sockopt_setint(sopt, optval);
637 1.30 thorpej break;
638 1.180 roy #ifdef COMPAT_SOCKCRED70
639 1.180 roy case LOCAL_OCREDS:
640 1.180 roy optval = OPTBIT(UNP_OWANTCRED);
641 1.180 roy error = sockopt_setint(sopt, optval);
642 1.180 roy break;
643 1.180 roy #endif
644 1.30 thorpej #undef OPTBIT
645 1.30 thorpej
646 1.30 thorpej default:
647 1.30 thorpej error = ENOPROTOOPT;
648 1.30 thorpej break;
649 1.30 thorpej }
650 1.112 ad solock(so);
651 1.30 thorpej break;
652 1.30 thorpej }
653 1.30 thorpej return (error);
654 1.30 thorpej }
655 1.30 thorpej
656 1.30 thorpej /*
657 1.1 cgd * Both send and receive buffers are allocated PIPSIZ bytes of buffering
658 1.1 cgd * for stream sockets, although the total for sender and receiver is
659 1.1 cgd * actually only PIPSIZ.
660 1.1 cgd * Datagram sockets really use the sendspace as the maximum datagram size,
661 1.1 cgd * and don't really want to reserve the sendspace. Their recvspace should
662 1.1 cgd * be large enough for at least one max-size datagram plus address.
663 1.1 cgd */
664 1.1 cgd #define PIPSIZ 4096
665 1.1 cgd u_long unpst_sendspace = PIPSIZ;
666 1.1 cgd u_long unpst_recvspace = PIPSIZ;
667 1.1 cgd u_long unpdg_sendspace = 2*1024; /* really max datagram size */
668 1.1 cgd u_long unpdg_recvspace = 4*1024;
669 1.1 cgd
670 1.121 mrg u_int unp_rights; /* files in flight */
671 1.121 mrg u_int unp_rights_ratio = 2; /* limit, fraction of maxfiles */
672 1.1 cgd
673 1.152 rmind static int
674 1.152 rmind unp_attach(struct socket *so, int proto)
675 1.1 cgd {
676 1.152 rmind struct unpcb *unp = sotounpcb(so);
677 1.152 rmind u_long sndspc, rcvspc;
678 1.1 cgd int error;
679 1.80 perry
680 1.152 rmind KASSERT(unp == NULL);
681 1.152 rmind
682 1.112 ad switch (so->so_type) {
683 1.152 rmind case SOCK_SEQPACKET:
684 1.152 rmind /* FALLTHROUGH */
685 1.112 ad case SOCK_STREAM:
686 1.112 ad if (so->so_lock == NULL) {
687 1.112 ad so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
688 1.112 ad solock(so);
689 1.112 ad }
690 1.152 rmind sndspc = unpst_sendspace;
691 1.152 rmind rcvspc = unpst_recvspace;
692 1.112 ad break;
693 1.1 cgd
694 1.112 ad case SOCK_DGRAM:
695 1.112 ad if (so->so_lock == NULL) {
696 1.112 ad mutex_obj_hold(uipc_lock);
697 1.112 ad so->so_lock = uipc_lock;
698 1.112 ad solock(so);
699 1.112 ad }
700 1.152 rmind sndspc = unpdg_sendspace;
701 1.152 rmind rcvspc = unpdg_recvspace;
702 1.112 ad break;
703 1.8 mycroft
704 1.112 ad default:
705 1.112 ad panic("unp_attach");
706 1.1 cgd }
707 1.152 rmind
708 1.152 rmind if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
709 1.152 rmind error = soreserve(so, sndspc, rcvspc);
710 1.152 rmind if (error) {
711 1.152 rmind return error;
712 1.152 rmind }
713 1.152 rmind }
714 1.152 rmind
715 1.152 rmind unp = kmem_zalloc(sizeof(*unp), KM_SLEEP);
716 1.152 rmind nanotime(&unp->unp_ctime);
717 1.14 mycroft unp->unp_socket = so;
718 1.15 mycroft so->so_pcb = unp;
719 1.152 rmind
720 1.152 rmind KASSERT(solocked(so));
721 1.152 rmind return 0;
722 1.1 cgd }
723 1.1 cgd
724 1.152 rmind static void
725 1.152 rmind unp_detach(struct socket *so)
726 1.1 cgd {
727 1.152 rmind struct unpcb *unp;
728 1.112 ad vnode_t *vp;
729 1.112 ad
730 1.152 rmind unp = sotounpcb(so);
731 1.152 rmind KASSERT(unp != NULL);
732 1.152 rmind KASSERT(solocked(so));
733 1.112 ad retry:
734 1.112 ad if ((vp = unp->unp_vnode) != NULL) {
735 1.112 ad sounlock(so);
736 1.112 ad /* Acquire v_interlock to protect against unp_connect(). */
737 1.113 ad /* XXXAD racy */
738 1.135 rmind mutex_enter(vp->v_interlock);
739 1.112 ad vp->v_socket = NULL;
740 1.148 hannken mutex_exit(vp->v_interlock);
741 1.148 hannken vrele(vp);
742 1.112 ad solock(so);
743 1.112 ad unp->unp_vnode = NULL;
744 1.1 cgd }
745 1.1 cgd if (unp->unp_conn)
746 1.163 rtr unp_disconnect1(unp);
747 1.112 ad while (unp->unp_refs) {
748 1.112 ad KASSERT(solocked2(so, unp->unp_refs->unp_socket));
749 1.112 ad if (unp_drop(unp->unp_refs, ECONNRESET)) {
750 1.112 ad solock(so);
751 1.112 ad goto retry;
752 1.112 ad }
753 1.112 ad }
754 1.112 ad soisdisconnected(so);
755 1.112 ad so->so_pcb = NULL;
756 1.8 mycroft if (unp_rights) {
757 1.8 mycroft /*
758 1.121 mrg * Normally the receive buffer is flushed later, in sofree,
759 1.121 mrg * but if our receive buffer holds references to files that
760 1.121 mrg * are now garbage, we will enqueue those file references to
761 1.121 mrg * the garbage collector and kick it into action.
762 1.8 mycroft */
763 1.112 ad sorflush(so);
764 1.112 ad unp_free(unp);
765 1.121 mrg unp_thread_kick();
766 1.14 mycroft } else
767 1.112 ad unp_free(unp);
768 1.1 cgd }
769 1.1 cgd
770 1.154 rtr static int
771 1.177 rtr unp_accept(struct socket *so, struct sockaddr *nam)
772 1.159 rtr {
773 1.159 rtr struct unpcb *unp = sotounpcb(so);
774 1.159 rtr struct socket *so2;
775 1.159 rtr
776 1.159 rtr KASSERT(solocked(so));
777 1.159 rtr KASSERT(nam != NULL);
778 1.159 rtr
779 1.159 rtr /* XXX code review required to determine if unp can ever be NULL */
780 1.159 rtr if (unp == NULL)
781 1.159 rtr return EINVAL;
782 1.159 rtr
783 1.159 rtr KASSERT(so->so_lock == uipc_lock);
784 1.159 rtr /*
785 1.159 rtr * Mark the initiating STREAM socket as connected *ONLY*
786 1.159 rtr * after it's been accepted. This prevents a client from
787 1.159 rtr * overrunning a server and receiving ECONNREFUSED.
788 1.159 rtr */
789 1.159 rtr if (unp->unp_conn == NULL) {
790 1.159 rtr /*
791 1.159 rtr * This will use the empty socket and will not
792 1.159 rtr * allocate.
793 1.159 rtr */
794 1.159 rtr unp_setaddr(so, nam, true);
795 1.159 rtr return 0;
796 1.159 rtr }
797 1.159 rtr so2 = unp->unp_conn->unp_socket;
798 1.159 rtr if (so2->so_state & SS_ISCONNECTING) {
799 1.159 rtr KASSERT(solocked2(so, so->so_head));
800 1.159 rtr KASSERT(solocked2(so2, so->so_head));
801 1.159 rtr soisconnected(so2);
802 1.159 rtr }
803 1.159 rtr /*
804 1.159 rtr * If the connection is fully established, break the
805 1.159 rtr * association with uipc_lock and give the connected
806 1.159 rtr * pair a separate lock to share.
807 1.159 rtr * There is a race here: sotounpcb(so2)->unp_streamlock
808 1.159 rtr * is not locked, so when changing so2->so_lock
809 1.159 rtr * another thread can grab it while so->so_lock is still
810 1.159 rtr * pointing to the (locked) uipc_lock.
811 1.159 rtr * this should be harmless, except that this makes
812 1.159 rtr * solocked2() and solocked() unreliable.
813 1.159 rtr * Another problem is that unp_setaddr() expects the
814 1.159 rtr * the socket locked. Grabing sotounpcb(so2)->unp_streamlock
815 1.159 rtr * fixes both issues.
816 1.159 rtr */
817 1.159 rtr mutex_enter(sotounpcb(so2)->unp_streamlock);
818 1.159 rtr unp_setpeerlocks(so2, so);
819 1.159 rtr /*
820 1.159 rtr * Only now return peer's address, as we may need to
821 1.159 rtr * block in order to allocate memory.
822 1.159 rtr *
823 1.159 rtr * XXX Minor race: connection can be broken while
824 1.159 rtr * lock is dropped in unp_setaddr(). We will return
825 1.159 rtr * error == 0 and sun_noname as the peer address.
826 1.159 rtr */
827 1.159 rtr unp_setaddr(so, nam, true);
828 1.159 rtr /* so_lock now points to unp_streamlock */
829 1.159 rtr mutex_exit(so2->so_lock);
830 1.159 rtr return 0;
831 1.159 rtr }
832 1.159 rtr
833 1.159 rtr static int
834 1.155 rtr unp_ioctl(struct socket *so, u_long cmd, void *nam, struct ifnet *ifp)
835 1.154 rtr {
836 1.154 rtr return EOPNOTSUPP;
837 1.154 rtr }
838 1.154 rtr
839 1.156 rtr static int
840 1.156 rtr unp_stat(struct socket *so, struct stat *ub)
841 1.156 rtr {
842 1.156 rtr struct unpcb *unp;
843 1.156 rtr struct socket *so2;
844 1.156 rtr
845 1.157 rtr KASSERT(solocked(so));
846 1.157 rtr
847 1.156 rtr unp = sotounpcb(so);
848 1.156 rtr if (unp == NULL)
849 1.156 rtr return EINVAL;
850 1.156 rtr
851 1.156 rtr ub->st_blksize = so->so_snd.sb_hiwat;
852 1.156 rtr switch (so->so_type) {
853 1.156 rtr case SOCK_SEQPACKET: /* FALLTHROUGH */
854 1.156 rtr case SOCK_STREAM:
855 1.156 rtr if (unp->unp_conn == 0)
856 1.156 rtr break;
857 1.156 rtr
858 1.156 rtr so2 = unp->unp_conn->unp_socket;
859 1.156 rtr KASSERT(solocked2(so, so2));
860 1.156 rtr ub->st_blksize += so2->so_rcv.sb_cc;
861 1.156 rtr break;
862 1.156 rtr default:
863 1.156 rtr break;
864 1.156 rtr }
865 1.156 rtr ub->st_dev = NODEV;
866 1.156 rtr if (unp->unp_ino == 0)
867 1.156 rtr unp->unp_ino = unp_ino++;
868 1.156 rtr ub->st_atimespec = ub->st_mtimespec = ub->st_ctimespec = unp->unp_ctime;
869 1.156 rtr ub->st_ino = unp->unp_ino;
870 1.156 rtr return (0);
871 1.156 rtr }
872 1.156 rtr
873 1.158 rtr static int
874 1.177 rtr unp_peeraddr(struct socket *so, struct sockaddr *nam)
875 1.158 rtr {
876 1.158 rtr KASSERT(solocked(so));
877 1.158 rtr KASSERT(sotounpcb(so) != NULL);
878 1.158 rtr KASSERT(nam != NULL);
879 1.158 rtr
880 1.158 rtr unp_setaddr(so, nam, true);
881 1.158 rtr return 0;
882 1.158 rtr }
883 1.158 rtr
884 1.158 rtr static int
885 1.177 rtr unp_sockaddr(struct socket *so, struct sockaddr *nam)
886 1.158 rtr {
887 1.158 rtr KASSERT(solocked(so));
888 1.158 rtr KASSERT(sotounpcb(so) != NULL);
889 1.158 rtr KASSERT(nam != NULL);
890 1.158 rtr
891 1.158 rtr unp_setaddr(so, nam, false);
892 1.158 rtr return 0;
893 1.158 rtr }
894 1.158 rtr
895 1.146 christos /*
896 1.176 rtr * we only need to perform this allocation until syscalls other than
897 1.176 rtr * bind are adjusted to use sockaddr_big.
898 1.176 rtr */
899 1.176 rtr static struct sockaddr_un *
900 1.176 rtr makeun_sb(struct sockaddr *nam, size_t *addrlen)
901 1.176 rtr {
902 1.176 rtr struct sockaddr_un *sun;
903 1.176 rtr
904 1.176 rtr *addrlen = nam->sa_len + 1;
905 1.176 rtr sun = malloc(*addrlen, M_SONAME, M_WAITOK);
906 1.176 rtr memcpy(sun, nam, nam->sa_len);
907 1.176 rtr *(((char *)sun) + nam->sa_len) = '\0';
908 1.176 rtr return sun;
909 1.176 rtr }
910 1.176 rtr
911 1.164 rtr static int
912 1.176 rtr unp_bind(struct socket *so, struct sockaddr *nam, struct lwp *l)
913 1.1 cgd {
914 1.27 thorpej struct sockaddr_un *sun;
915 1.112 ad struct unpcb *unp;
916 1.106 ad vnode_t *vp;
917 1.1 cgd struct vattr vattr;
918 1.27 thorpej size_t addrlen;
919 1.1 cgd int error;
920 1.133 dholland struct pathbuf *pb;
921 1.1 cgd struct nameidata nd;
922 1.112 ad proc_t *p;
923 1.1 cgd
924 1.112 ad unp = sotounpcb(so);
925 1.161 rtr
926 1.161 rtr KASSERT(solocked(so));
927 1.161 rtr KASSERT(unp != NULL);
928 1.161 rtr KASSERT(nam != NULL);
929 1.161 rtr
930 1.112 ad if (unp->unp_vnode != NULL)
931 1.20 mycroft return (EINVAL);
932 1.109 ad if ((unp->unp_flags & UNP_BUSY) != 0) {
933 1.109 ad /*
934 1.109 ad * EALREADY may not be strictly accurate, but since this
935 1.109 ad * is a major application error it's hardly a big deal.
936 1.109 ad */
937 1.109 ad return (EALREADY);
938 1.109 ad }
939 1.109 ad unp->unp_flags |= UNP_BUSY;
940 1.112 ad sounlock(so);
941 1.109 ad
942 1.165 rtr p = l->l_proc;
943 1.176 rtr sun = makeun_sb(nam, &addrlen);
944 1.27 thorpej
945 1.133 dholland pb = pathbuf_create(sun->sun_path);
946 1.133 dholland if (pb == NULL) {
947 1.133 dholland error = ENOMEM;
948 1.133 dholland goto bad;
949 1.133 dholland }
950 1.133 dholland NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, pb);
951 1.27 thorpej
952 1.1 cgd /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
953 1.133 dholland if ((error = namei(&nd)) != 0) {
954 1.133 dholland pathbuf_destroy(pb);
955 1.27 thorpej goto bad;
956 1.133 dholland }
957 1.9 mycroft vp = nd.ni_vp;
958 1.96 hannken if (vp != NULL) {
959 1.9 mycroft VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
960 1.9 mycroft if (nd.ni_dvp == vp)
961 1.9 mycroft vrele(nd.ni_dvp);
962 1.1 cgd else
963 1.9 mycroft vput(nd.ni_dvp);
964 1.1 cgd vrele(vp);
965 1.133 dholland pathbuf_destroy(pb);
966 1.96 hannken error = EADDRINUSE;
967 1.96 hannken goto bad;
968 1.1 cgd }
969 1.128 pooka vattr_null(&vattr);
970 1.1 cgd vattr.va_type = VSOCK;
971 1.84 jmmv vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
972 1.16 christos error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
973 1.133 dholland if (error) {
974 1.149 hannken vput(nd.ni_dvp);
975 1.133 dholland pathbuf_destroy(pb);
976 1.27 thorpej goto bad;
977 1.133 dholland }
978 1.9 mycroft vp = nd.ni_vp;
979 1.150 hannken vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
980 1.112 ad solock(so);
981 1.1 cgd vp->v_socket = unp->unp_socket;
982 1.1 cgd unp->unp_vnode = vp;
983 1.27 thorpej unp->unp_addrlen = addrlen;
984 1.27 thorpej unp->unp_addr = sun;
985 1.99 he unp->unp_connid.unp_pid = p->p_pid;
986 1.165 rtr unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
987 1.165 rtr unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
988 1.99 he unp->unp_flags |= UNP_EIDSBIND;
989 1.130 hannken VOP_UNLOCK(vp);
990 1.149 hannken vput(nd.ni_dvp);
991 1.109 ad unp->unp_flags &= ~UNP_BUSY;
992 1.133 dholland pathbuf_destroy(pb);
993 1.1 cgd return (0);
994 1.27 thorpej
995 1.27 thorpej bad:
996 1.27 thorpej free(sun, M_SONAME);
997 1.112 ad solock(so);
998 1.109 ad unp->unp_flags &= ~UNP_BUSY;
999 1.27 thorpej return (error);
1000 1.1 cgd }
1001 1.1 cgd
1002 1.161 rtr static int
1003 1.165 rtr unp_listen(struct socket *so, struct lwp *l)
1004 1.161 rtr {
1005 1.161 rtr struct unpcb *unp = sotounpcb(so);
1006 1.161 rtr
1007 1.161 rtr KASSERT(solocked(so));
1008 1.161 rtr KASSERT(unp != NULL);
1009 1.161 rtr
1010 1.161 rtr /*
1011 1.161 rtr * If the socket can accept a connection, it must be
1012 1.161 rtr * locked by uipc_lock.
1013 1.161 rtr */
1014 1.161 rtr unp_resetlock(so);
1015 1.161 rtr if (unp->unp_vnode == NULL)
1016 1.161 rtr return EINVAL;
1017 1.161 rtr
1018 1.161 rtr return 0;
1019 1.161 rtr }
1020 1.161 rtr
1021 1.163 rtr static int
1022 1.163 rtr unp_disconnect(struct socket *so)
1023 1.163 rtr {
1024 1.163 rtr KASSERT(solocked(so));
1025 1.163 rtr KASSERT(sotounpcb(so) != NULL);
1026 1.163 rtr
1027 1.163 rtr unp_disconnect1(sotounpcb(so));
1028 1.163 rtr return 0;
1029 1.163 rtr }
1030 1.163 rtr
1031 1.163 rtr static int
1032 1.163 rtr unp_shutdown(struct socket *so)
1033 1.163 rtr {
1034 1.163 rtr KASSERT(solocked(so));
1035 1.163 rtr KASSERT(sotounpcb(so) != NULL);
1036 1.163 rtr
1037 1.163 rtr socantsendmore(so);
1038 1.163 rtr unp_shutdown1(sotounpcb(so));
1039 1.163 rtr return 0;
1040 1.163 rtr }
1041 1.163 rtr
1042 1.163 rtr static int
1043 1.163 rtr unp_abort(struct socket *so)
1044 1.163 rtr {
1045 1.163 rtr KASSERT(solocked(so));
1046 1.163 rtr KASSERT(sotounpcb(so) != NULL);
1047 1.163 rtr
1048 1.163 rtr (void)unp_drop(sotounpcb(so), ECONNABORTED);
1049 1.163 rtr KASSERT(so->so_head == NULL);
1050 1.163 rtr KASSERT(so->so_pcb != NULL);
1051 1.163 rtr unp_detach(so);
1052 1.163 rtr return 0;
1053 1.163 rtr }
1054 1.163 rtr
1055 1.169 rtr static int
1056 1.173 christos unp_connect1(struct socket *so, struct socket *so2, struct lwp *l)
1057 1.169 rtr {
1058 1.169 rtr struct unpcb *unp = sotounpcb(so);
1059 1.169 rtr struct unpcb *unp2;
1060 1.169 rtr
1061 1.169 rtr if (so2->so_type != so->so_type)
1062 1.169 rtr return EPROTOTYPE;
1063 1.169 rtr
1064 1.169 rtr /*
1065 1.169 rtr * All three sockets involved must be locked by same lock:
1066 1.169 rtr *
1067 1.169 rtr * local endpoint (so)
1068 1.169 rtr * remote endpoint (so2)
1069 1.169 rtr * queue head (so2->so_head, only if PR_CONNREQUIRED)
1070 1.169 rtr */
1071 1.169 rtr KASSERT(solocked2(so, so2));
1072 1.169 rtr KASSERT(so->so_head == NULL);
1073 1.169 rtr if (so2->so_head != NULL) {
1074 1.169 rtr KASSERT(so2->so_lock == uipc_lock);
1075 1.169 rtr KASSERT(solocked2(so2, so2->so_head));
1076 1.169 rtr }
1077 1.169 rtr
1078 1.169 rtr unp2 = sotounpcb(so2);
1079 1.169 rtr unp->unp_conn = unp2;
1080 1.173 christos
1081 1.173 christos if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
1082 1.173 christos unp2->unp_connid.unp_pid = l->l_proc->p_pid;
1083 1.173 christos unp2->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
1084 1.173 christos unp2->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
1085 1.173 christos unp2->unp_flags |= UNP_EIDSVALID;
1086 1.173 christos if (unp2->unp_flags & UNP_EIDSBIND) {
1087 1.173 christos unp->unp_connid = unp2->unp_connid;
1088 1.173 christos unp->unp_flags |= UNP_EIDSVALID;
1089 1.173 christos }
1090 1.173 christos }
1091 1.173 christos
1092 1.169 rtr switch (so->so_type) {
1093 1.169 rtr
1094 1.169 rtr case SOCK_DGRAM:
1095 1.169 rtr unp->unp_nextref = unp2->unp_refs;
1096 1.169 rtr unp2->unp_refs = unp;
1097 1.169 rtr soisconnected(so);
1098 1.169 rtr break;
1099 1.169 rtr
1100 1.169 rtr case SOCK_SEQPACKET: /* FALLTHROUGH */
1101 1.169 rtr case SOCK_STREAM:
1102 1.169 rtr
1103 1.169 rtr /*
1104 1.169 rtr * SOCK_SEQPACKET and SOCK_STREAM cases are handled by callers
1105 1.169 rtr * which are unp_connect() or unp_connect2().
1106 1.169 rtr */
1107 1.169 rtr
1108 1.169 rtr break;
1109 1.169 rtr
1110 1.169 rtr default:
1111 1.169 rtr panic("unp_connect1");
1112 1.169 rtr }
1113 1.169 rtr
1114 1.169 rtr return 0;
1115 1.169 rtr }
1116 1.169 rtr
1117 1.5 andrew int
1118 1.179 rtr unp_connect(struct socket *so, struct sockaddr *nam, struct lwp *l)
1119 1.1 cgd {
1120 1.46 augustss struct sockaddr_un *sun;
1121 1.106 ad vnode_t *vp;
1122 1.46 augustss struct socket *so2, *so3;
1123 1.99 he struct unpcb *unp, *unp2, *unp3;
1124 1.27 thorpej size_t addrlen;
1125 1.1 cgd int error;
1126 1.133 dholland struct pathbuf *pb;
1127 1.1 cgd struct nameidata nd;
1128 1.1 cgd
1129 1.109 ad unp = sotounpcb(so);
1130 1.109 ad if ((unp->unp_flags & UNP_BUSY) != 0) {
1131 1.109 ad /*
1132 1.109 ad * EALREADY may not be strictly accurate, but since this
1133 1.109 ad * is a major application error it's hardly a big deal.
1134 1.109 ad */
1135 1.109 ad return (EALREADY);
1136 1.109 ad }
1137 1.109 ad unp->unp_flags |= UNP_BUSY;
1138 1.112 ad sounlock(so);
1139 1.109 ad
1140 1.179 rtr sun = makeun_sb(nam, &addrlen);
1141 1.133 dholland pb = pathbuf_create(sun->sun_path);
1142 1.133 dholland if (pb == NULL) {
1143 1.133 dholland error = ENOMEM;
1144 1.133 dholland goto bad2;
1145 1.133 dholland }
1146 1.27 thorpej
1147 1.133 dholland NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
1148 1.133 dholland
1149 1.133 dholland if ((error = namei(&nd)) != 0) {
1150 1.133 dholland pathbuf_destroy(pb);
1151 1.27 thorpej goto bad2;
1152 1.133 dholland }
1153 1.9 mycroft vp = nd.ni_vp;
1154 1.181 maxv pathbuf_destroy(pb);
1155 1.1 cgd if (vp->v_type != VSOCK) {
1156 1.1 cgd error = ENOTSOCK;
1157 1.1 cgd goto bad;
1158 1.1 cgd }
1159 1.167 rtr if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
1160 1.1 cgd goto bad;
1161 1.112 ad /* Acquire v_interlock to protect against unp_detach(). */
1162 1.135 rmind mutex_enter(vp->v_interlock);
1163 1.1 cgd so2 = vp->v_socket;
1164 1.112 ad if (so2 == NULL) {
1165 1.135 rmind mutex_exit(vp->v_interlock);
1166 1.1 cgd error = ECONNREFUSED;
1167 1.1 cgd goto bad;
1168 1.1 cgd }
1169 1.1 cgd if (so->so_type != so2->so_type) {
1170 1.135 rmind mutex_exit(vp->v_interlock);
1171 1.1 cgd error = EPROTOTYPE;
1172 1.1 cgd goto bad;
1173 1.1 cgd }
1174 1.112 ad solock(so);
1175 1.112 ad unp_resetlock(so);
1176 1.135 rmind mutex_exit(vp->v_interlock);
1177 1.112 ad if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
1178 1.112 ad /*
1179 1.112 ad * This may seem somewhat fragile but is OK: if we can
1180 1.112 ad * see SO_ACCEPTCONN set on the endpoint, then it must
1181 1.112 ad * be locked by the domain-wide uipc_lock.
1182 1.112 ad */
1183 1.132 yamt KASSERT((so2->so_options & SO_ACCEPTCONN) == 0 ||
1184 1.112 ad so2->so_lock == uipc_lock);
1185 1.1 cgd if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
1186 1.144 rmind (so3 = sonewconn(so2, false)) == NULL) {
1187 1.1 cgd error = ECONNREFUSED;
1188 1.112 ad sounlock(so);
1189 1.1 cgd goto bad;
1190 1.1 cgd }
1191 1.1 cgd unp2 = sotounpcb(so2);
1192 1.1 cgd unp3 = sotounpcb(so3);
1193 1.26 thorpej if (unp2->unp_addr) {
1194 1.26 thorpej unp3->unp_addr = malloc(unp2->unp_addrlen,
1195 1.26 thorpej M_SONAME, M_WAITOK);
1196 1.36 perry memcpy(unp3->unp_addr, unp2->unp_addr,
1197 1.26 thorpej unp2->unp_addrlen);
1198 1.26 thorpej unp3->unp_addrlen = unp2->unp_addrlen;
1199 1.26 thorpej }
1200 1.30 thorpej unp3->unp_flags = unp2->unp_flags;
1201 1.112 ad so2 = so3;
1202 1.33 thorpej }
1203 1.173 christos error = unp_connect1(so, so2, l);
1204 1.169 rtr if (error) {
1205 1.169 rtr sounlock(so);
1206 1.169 rtr goto bad;
1207 1.169 rtr }
1208 1.169 rtr unp2 = sotounpcb(so2);
1209 1.169 rtr switch (so->so_type) {
1210 1.169 rtr
1211 1.169 rtr /*
1212 1.169 rtr * SOCK_DGRAM and default cases are handled in prior call to
1213 1.169 rtr * unp_connect1(), do not add a default case without fixing
1214 1.169 rtr * unp_connect1().
1215 1.169 rtr */
1216 1.169 rtr
1217 1.169 rtr case SOCK_SEQPACKET: /* FALLTHROUGH */
1218 1.169 rtr case SOCK_STREAM:
1219 1.169 rtr unp2->unp_conn = unp;
1220 1.169 rtr if ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT)
1221 1.169 rtr soisconnecting(so);
1222 1.169 rtr else
1223 1.169 rtr soisconnected(so);
1224 1.169 rtr soisconnected(so2);
1225 1.169 rtr /*
1226 1.169 rtr * If the connection is fully established, break the
1227 1.169 rtr * association with uipc_lock and give the connected
1228 1.169 rtr * pair a seperate lock to share.
1229 1.169 rtr */
1230 1.169 rtr KASSERT(so2->so_head != NULL);
1231 1.169 rtr unp_setpeerlocks(so, so2);
1232 1.169 rtr break;
1233 1.169 rtr
1234 1.169 rtr }
1235 1.112 ad sounlock(so);
1236 1.27 thorpej bad:
1237 1.1 cgd vput(vp);
1238 1.27 thorpej bad2:
1239 1.27 thorpej free(sun, M_SONAME);
1240 1.112 ad solock(so);
1241 1.109 ad unp->unp_flags &= ~UNP_BUSY;
1242 1.1 cgd return (error);
1243 1.1 cgd }
1244 1.1 cgd
1245 1.5 andrew int
1246 1.169 rtr unp_connect2(struct socket *so, struct socket *so2)
1247 1.1 cgd {
1248 1.46 augustss struct unpcb *unp = sotounpcb(so);
1249 1.46 augustss struct unpcb *unp2;
1250 1.169 rtr int error = 0;
1251 1.1 cgd
1252 1.169 rtr KASSERT(solocked2(so, so2));
1253 1.112 ad
1254 1.173 christos error = unp_connect1(so, so2, curlwp);
1255 1.169 rtr if (error)
1256 1.169 rtr return error;
1257 1.112 ad
1258 1.1 cgd unp2 = sotounpcb(so2);
1259 1.1 cgd switch (so->so_type) {
1260 1.1 cgd
1261 1.169 rtr /*
1262 1.169 rtr * SOCK_DGRAM and default cases are handled in prior call to
1263 1.169 rtr * unp_connect1(), do not add a default case without fixing
1264 1.169 rtr * unp_connect1().
1265 1.169 rtr */
1266 1.1 cgd
1267 1.134 manu case SOCK_SEQPACKET: /* FALLTHROUGH */
1268 1.1 cgd case SOCK_STREAM:
1269 1.1 cgd unp2->unp_conn = unp;
1270 1.173 christos if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
1271 1.173 christos unp->unp_connid = unp2->unp_connid;
1272 1.173 christos unp->unp_flags |= UNP_EIDSVALID;
1273 1.173 christos }
1274 1.169 rtr soisconnected(so);
1275 1.1 cgd soisconnected(so2);
1276 1.1 cgd break;
1277 1.1 cgd
1278 1.1 cgd }
1279 1.169 rtr return error;
1280 1.1 cgd }
1281 1.1 cgd
1282 1.164 rtr static void
1283 1.163 rtr unp_disconnect1(struct unpcb *unp)
1284 1.1 cgd {
1285 1.46 augustss struct unpcb *unp2 = unp->unp_conn;
1286 1.112 ad struct socket *so;
1287 1.1 cgd
1288 1.1 cgd if (unp2 == 0)
1289 1.1 cgd return;
1290 1.1 cgd unp->unp_conn = 0;
1291 1.112 ad so = unp->unp_socket;
1292 1.112 ad switch (so->so_type) {
1293 1.1 cgd case SOCK_DGRAM:
1294 1.1 cgd if (unp2->unp_refs == unp)
1295 1.1 cgd unp2->unp_refs = unp->unp_nextref;
1296 1.1 cgd else {
1297 1.1 cgd unp2 = unp2->unp_refs;
1298 1.1 cgd for (;;) {
1299 1.112 ad KASSERT(solocked2(so, unp2->unp_socket));
1300 1.1 cgd if (unp2 == 0)
1301 1.163 rtr panic("unp_disconnect1");
1302 1.1 cgd if (unp2->unp_nextref == unp)
1303 1.1 cgd break;
1304 1.1 cgd unp2 = unp2->unp_nextref;
1305 1.1 cgd }
1306 1.1 cgd unp2->unp_nextref = unp->unp_nextref;
1307 1.1 cgd }
1308 1.1 cgd unp->unp_nextref = 0;
1309 1.112 ad so->so_state &= ~SS_ISCONNECTED;
1310 1.1 cgd break;
1311 1.1 cgd
1312 1.134 manu case SOCK_SEQPACKET: /* FALLTHROUGH */
1313 1.1 cgd case SOCK_STREAM:
1314 1.112 ad KASSERT(solocked2(so, unp2->unp_socket));
1315 1.112 ad soisdisconnected(so);
1316 1.1 cgd unp2->unp_conn = 0;
1317 1.1 cgd soisdisconnected(unp2->unp_socket);
1318 1.1 cgd break;
1319 1.1 cgd }
1320 1.1 cgd }
1321 1.1 cgd
1322 1.164 rtr static void
1323 1.163 rtr unp_shutdown1(struct unpcb *unp)
1324 1.1 cgd {
1325 1.1 cgd struct socket *so;
1326 1.1 cgd
1327 1.134 manu switch(unp->unp_socket->so_type) {
1328 1.134 manu case SOCK_SEQPACKET: /* FALLTHROUGH */
1329 1.134 manu case SOCK_STREAM:
1330 1.134 manu if (unp->unp_conn && (so = unp->unp_conn->unp_socket))
1331 1.134 manu socantrcvmore(so);
1332 1.134 manu break;
1333 1.134 manu default:
1334 1.134 manu break;
1335 1.134 manu }
1336 1.1 cgd }
1337 1.1 cgd
1338 1.164 rtr static bool
1339 1.76 matt unp_drop(struct unpcb *unp, int errno)
1340 1.1 cgd {
1341 1.1 cgd struct socket *so = unp->unp_socket;
1342 1.1 cgd
1343 1.112 ad KASSERT(solocked(so));
1344 1.112 ad
1345 1.1 cgd so->so_error = errno;
1346 1.163 rtr unp_disconnect1(unp);
1347 1.1 cgd if (so->so_head) {
1348 1.112 ad so->so_pcb = NULL;
1349 1.112 ad /* sofree() drops the socket lock */
1350 1.14 mycroft sofree(so);
1351 1.112 ad unp_free(unp);
1352 1.112 ad return true;
1353 1.1 cgd }
1354 1.112 ad return false;
1355 1.1 cgd }
1356 1.1 cgd
1357 1.1 cgd #ifdef notdef
1358 1.76 matt unp_drain(void)
1359 1.1 cgd {
1360 1.1 cgd
1361 1.1 cgd }
1362 1.1 cgd #endif
1363 1.1 cgd
1364 1.5 andrew int
1365 1.136 christos unp_externalize(struct mbuf *rights, struct lwp *l, int flags)
1366 1.1 cgd {
1367 1.138 christos struct cmsghdr * const cm = mtod(rights, struct cmsghdr *);
1368 1.138 christos struct proc * const p = l->l_proc;
1369 1.106 ad file_t **rp;
1370 1.138 christos int error = 0;
1371 1.47 thorpej
1372 1.138 christos const size_t nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
1373 1.106 ad sizeof(file_t *);
1374 1.143 drochner if (nfds == 0)
1375 1.143 drochner goto noop;
1376 1.1 cgd
1377 1.138 christos int * const fdp = kmem_alloc(nfds * sizeof(int), KM_SLEEP);
1378 1.101 ad rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
1379 1.50 thorpej
1380 1.121 mrg /* Make sure the recipient should be able to see the files.. */
1381 1.140 christos rp = (file_t **)CMSG_DATA(cm);
1382 1.140 christos for (size_t i = 0; i < nfds; i++) {
1383 1.140 christos file_t * const fp = *rp++;
1384 1.140 christos if (fp == NULL) {
1385 1.140 christos error = EINVAL;
1386 1.140 christos goto out;
1387 1.140 christos }
1388 1.140 christos /*
1389 1.140 christos * If we are in a chroot'ed directory, and
1390 1.140 christos * someone wants to pass us a directory, make
1391 1.140 christos * sure it's inside the subtree we're allowed
1392 1.140 christos * to access.
1393 1.140 christos */
1394 1.140 christos if (p->p_cwdi->cwdi_rdir != NULL && fp->f_type == DTYPE_VNODE) {
1395 1.171 matt vnode_t *vp = fp->f_vnode;
1396 1.140 christos if ((vp->v_type == VDIR) &&
1397 1.140 christos !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
1398 1.140 christos error = EPERM;
1399 1.140 christos goto out;
1400 1.39 sommerfe }
1401 1.39 sommerfe }
1402 1.39 sommerfe }
1403 1.50 thorpej
1404 1.50 thorpej restart:
1405 1.24 cgd /*
1406 1.50 thorpej * First loop -- allocate file descriptor table slots for the
1407 1.121 mrg * new files.
1408 1.24 cgd */
1409 1.138 christos for (size_t i = 0; i < nfds; i++) {
1410 1.106 ad if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
1411 1.49 thorpej /*
1412 1.50 thorpej * Back out what we've done so far.
1413 1.49 thorpej */
1414 1.138 christos while (i-- > 0) {
1415 1.106 ad fd_abort(p, NULL, fdp[i]);
1416 1.106 ad }
1417 1.50 thorpej if (error == ENOSPC) {
1418 1.106 ad fd_tryexpand(p);
1419 1.50 thorpej error = 0;
1420 1.138 christos goto restart;
1421 1.50 thorpej }
1422 1.138 christos /*
1423 1.138 christos * This is the error that has historically
1424 1.138 christos * been returned, and some callers may
1425 1.138 christos * expect it.
1426 1.138 christos */
1427 1.138 christos error = EMSGSIZE;
1428 1.138 christos goto out;
1429 1.49 thorpej }
1430 1.1 cgd }
1431 1.24 cgd
1432 1.24 cgd /*
1433 1.50 thorpej * Now that adding them has succeeded, update all of the
1434 1.121 mrg * file passing state and affix the descriptors.
1435 1.112 ad */
1436 1.106 ad rp = (file_t **)CMSG_DATA(cm);
1437 1.138 christos int *ofdp = (int *)CMSG_DATA(cm);
1438 1.138 christos for (size_t i = 0; i < nfds; i++) {
1439 1.138 christos file_t * const fp = *rp++;
1440 1.138 christos const int fd = fdp[i];
1441 1.106 ad atomic_dec_uint(&unp_rights);
1442 1.136 christos fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
1443 1.136 christos fd_affix(p, fp, fd);
1444 1.138 christos /*
1445 1.138 christos * Done with this file pointer, replace it with a fd;
1446 1.138 christos */
1447 1.138 christos *ofdp++ = fd;
1448 1.106 ad mutex_enter(&fp->f_lock);
1449 1.50 thorpej fp->f_msgcount--;
1450 1.106 ad mutex_exit(&fp->f_lock);
1451 1.106 ad /*
1452 1.106 ad * Note that fd_affix() adds a reference to the file.
1453 1.106 ad * The file may already have been closed by another
1454 1.106 ad * LWP in the process, so we must drop the reference
1455 1.106 ad * added by unp_internalize() with closef().
1456 1.106 ad */
1457 1.106 ad closef(fp);
1458 1.50 thorpej }
1459 1.50 thorpej
1460 1.50 thorpej /*
1461 1.138 christos * Adjust length, in case of transition from large file_t
1462 1.138 christos * pointers to ints.
1463 1.50 thorpej */
1464 1.138 christos if (sizeof(file_t *) != sizeof(int)) {
1465 1.138 christos cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
1466 1.138 christos rights->m_len = CMSG_SPACE(nfds * sizeof(int));
1467 1.138 christos }
1468 1.50 thorpej out:
1469 1.138 christos if (__predict_false(error != 0)) {
1470 1.141 riastrad file_t **const fpp = (file_t **)CMSG_DATA(cm);
1471 1.141 riastrad for (size_t i = 0; i < nfds; i++)
1472 1.141 riastrad unp_discard_now(fpp[i]);
1473 1.141 riastrad /*
1474 1.141 riastrad * Truncate the array so that nobody will try to interpret
1475 1.141 riastrad * what is now garbage in it.
1476 1.141 riastrad */
1477 1.141 riastrad cm->cmsg_len = CMSG_LEN(0);
1478 1.141 riastrad rights->m_len = CMSG_SPACE(0);
1479 1.138 christos }
1480 1.143 drochner rw_exit(&p->p_cwdi->cwdi_lock);
1481 1.143 drochner kmem_free(fdp, nfds * sizeof(int));
1482 1.138 christos
1483 1.143 drochner noop:
1484 1.141 riastrad /*
1485 1.141 riastrad * Don't disclose kernel memory in the alignment space.
1486 1.141 riastrad */
1487 1.141 riastrad KASSERT(cm->cmsg_len <= rights->m_len);
1488 1.141 riastrad memset(&mtod(rights, char *)[cm->cmsg_len], 0, rights->m_len -
1489 1.141 riastrad cm->cmsg_len);
1490 1.139 christos return error;
1491 1.1 cgd }
1492 1.1 cgd
1493 1.164 rtr static int
1494 1.112 ad unp_internalize(struct mbuf **controlp)
1495 1.1 cgd {
1496 1.121 mrg filedesc_t *fdescp = curlwp->l_fd;
1497 1.108 yamt struct mbuf *control = *controlp;
1498 1.73 martin struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
1499 1.106 ad file_t **rp, **files;
1500 1.106 ad file_t *fp;
1501 1.46 augustss int i, fd, *fdp;
1502 1.106 ad int nfds, error;
1503 1.121 mrg u_int maxmsg;
1504 1.106 ad
1505 1.106 ad error = 0;
1506 1.106 ad newcm = NULL;
1507 1.38 thorpej
1508 1.106 ad /* Sanity check the control message header. */
1509 1.66 jdolecek if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
1510 1.117 christos cm->cmsg_len > control->m_len ||
1511 1.117 christos cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
1512 1.1 cgd return (EINVAL);
1513 1.24 cgd
1514 1.106 ad /*
1515 1.106 ad * Verify that the file descriptors are valid, and acquire
1516 1.106 ad * a reference to each.
1517 1.106 ad */
1518 1.47 thorpej nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
1519 1.47 thorpej fdp = (int *)CMSG_DATA(cm);
1520 1.121 mrg maxmsg = maxfiles / unp_rights_ratio;
1521 1.24 cgd for (i = 0; i < nfds; i++) {
1522 1.24 cgd fd = *fdp++;
1523 1.121 mrg if (atomic_inc_uint_nv(&unp_rights) > maxmsg) {
1524 1.121 mrg atomic_dec_uint(&unp_rights);
1525 1.121 mrg nfds = i;
1526 1.121 mrg error = EAGAIN;
1527 1.121 mrg goto out;
1528 1.121 mrg }
1529 1.137 martin if ((fp = fd_getfile(fd)) == NULL
1530 1.137 martin || fp->f_type == DTYPE_KQUEUE) {
1531 1.137 martin if (fp)
1532 1.137 martin fd_putfile(fd);
1533 1.121 mrg atomic_dec_uint(&unp_rights);
1534 1.120 pooka nfds = i;
1535 1.106 ad error = EBADF;
1536 1.106 ad goto out;
1537 1.101 ad }
1538 1.24 cgd }
1539 1.24 cgd
1540 1.106 ad /* Allocate new space and copy header into it. */
1541 1.106 ad newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
1542 1.106 ad if (newcm == NULL) {
1543 1.106 ad error = E2BIG;
1544 1.106 ad goto out;
1545 1.106 ad }
1546 1.106 ad memcpy(newcm, cm, sizeof(struct cmsghdr));
1547 1.106 ad files = (file_t **)CMSG_DATA(newcm);
1548 1.106 ad
1549 1.24 cgd /*
1550 1.106 ad * Transform the file descriptors into file_t pointers, in
1551 1.24 cgd * reverse order so that if pointers are bigger than ints, the
1552 1.106 ad * int won't get until we're done. No need to lock, as we have
1553 1.106 ad * already validated the descriptors with fd_getfile().
1554 1.24 cgd */
1555 1.94 cbiere fdp = (int *)CMSG_DATA(cm) + nfds;
1556 1.94 cbiere rp = files + nfds;
1557 1.24 cgd for (i = 0; i < nfds; i++) {
1558 1.126 ad fp = fdescp->fd_dt->dt_ff[*--fdp]->ff_file;
1559 1.106 ad KASSERT(fp != NULL);
1560 1.106 ad mutex_enter(&fp->f_lock);
1561 1.94 cbiere *--rp = fp;
1562 1.1 cgd fp->f_count++;
1563 1.1 cgd fp->f_msgcount++;
1564 1.106 ad mutex_exit(&fp->f_lock);
1565 1.106 ad }
1566 1.106 ad
1567 1.106 ad out:
1568 1.106 ad /* Release descriptor references. */
1569 1.106 ad fdp = (int *)CMSG_DATA(cm);
1570 1.106 ad for (i = 0; i < nfds; i++) {
1571 1.106 ad fd_putfile(*fdp++);
1572 1.121 mrg if (error != 0) {
1573 1.121 mrg atomic_dec_uint(&unp_rights);
1574 1.121 mrg }
1575 1.1 cgd }
1576 1.73 martin
1577 1.106 ad if (error == 0) {
1578 1.108 yamt if (control->m_flags & M_EXT) {
1579 1.108 yamt m_freem(control);
1580 1.108 yamt *controlp = control = m_get(M_WAIT, MT_CONTROL);
1581 1.108 yamt }
1582 1.106 ad MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
1583 1.73 martin M_MBUF, NULL, NULL);
1584 1.73 martin cm = newcm;
1585 1.106 ad /*
1586 1.106 ad * Adjust message & mbuf to note amount of space
1587 1.106 ad * actually used.
1588 1.106 ad */
1589 1.106 ad cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
1590 1.106 ad control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
1591 1.73 martin }
1592 1.73 martin
1593 1.106 ad return error;
1594 1.30 thorpej }
1595 1.30 thorpej
1596 1.30 thorpej struct mbuf *
1597 1.92 ad unp_addsockcred(struct lwp *l, struct mbuf *control)
1598 1.30 thorpej {
1599 1.30 thorpej struct sockcred *sc;
1600 1.142 christos struct mbuf *m;
1601 1.142 christos void *p;
1602 1.30 thorpej
1603 1.142 christos m = sbcreatecontrol1(&p, SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)),
1604 1.142 christos SCM_CREDS, SOL_SOCKET, M_WAITOK);
1605 1.142 christos if (m == NULL)
1606 1.142 christos return control;
1607 1.180 roy
1608 1.142 christos sc = p;
1609 1.180 roy sc->sc_pid = l->l_proc->p_pid;
1610 1.92 ad sc->sc_uid = kauth_cred_getuid(l->l_cred);
1611 1.92 ad sc->sc_euid = kauth_cred_geteuid(l->l_cred);
1612 1.92 ad sc->sc_gid = kauth_cred_getgid(l->l_cred);
1613 1.92 ad sc->sc_egid = kauth_cred_getegid(l->l_cred);
1614 1.92 ad sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
1615 1.142 christos
1616 1.142 christos for (int i = 0; i < sc->sc_ngroups; i++)
1617 1.92 ad sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
1618 1.30 thorpej
1619 1.142 christos return m_add(control, m);
1620 1.1 cgd }
1621 1.1 cgd
1622 1.39 sommerfe /*
1623 1.121 mrg * Do a mark-sweep GC of files in the system, to free up any which are
1624 1.121 mrg * caught in flight to an about-to-be-closed socket. Additionally,
1625 1.121 mrg * process deferred file closures.
1626 1.39 sommerfe */
1627 1.121 mrg static void
1628 1.121 mrg unp_gc(file_t *dp)
1629 1.1 cgd {
1630 1.121 mrg extern struct domain unixdomain;
1631 1.121 mrg file_t *fp, *np;
1632 1.46 augustss struct socket *so, *so1;
1633 1.170 matt u_int i, oflags, rflags;
1634 1.121 mrg bool didwork;
1635 1.1 cgd
1636 1.121 mrg KASSERT(curlwp == unp_thread_lwp);
1637 1.121 mrg KASSERT(mutex_owned(&filelist_lock));
1638 1.106 ad
1639 1.121 mrg /*
1640 1.121 mrg * First, process deferred file closures.
1641 1.121 mrg */
1642 1.121 mrg while (!SLIST_EMPTY(&unp_thread_discard)) {
1643 1.121 mrg fp = SLIST_FIRST(&unp_thread_discard);
1644 1.121 mrg KASSERT(fp->f_unpcount > 0);
1645 1.121 mrg KASSERT(fp->f_count > 0);
1646 1.121 mrg KASSERT(fp->f_msgcount > 0);
1647 1.121 mrg KASSERT(fp->f_count >= fp->f_unpcount);
1648 1.121 mrg KASSERT(fp->f_count >= fp->f_msgcount);
1649 1.121 mrg KASSERT(fp->f_msgcount >= fp->f_unpcount);
1650 1.121 mrg SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist);
1651 1.121 mrg i = fp->f_unpcount;
1652 1.121 mrg fp->f_unpcount = 0;
1653 1.121 mrg mutex_exit(&filelist_lock);
1654 1.121 mrg for (; i != 0; i--) {
1655 1.121 mrg unp_discard_now(fp);
1656 1.121 mrg }
1657 1.121 mrg mutex_enter(&filelist_lock);
1658 1.121 mrg }
1659 1.39 sommerfe
1660 1.121 mrg /*
1661 1.121 mrg * Clear mark bits. Ensure that we don't consider new files
1662 1.121 mrg * entering the file table during this loop (they will not have
1663 1.121 mrg * FSCAN set).
1664 1.121 mrg */
1665 1.106 ad unp_defer = 0;
1666 1.106 ad LIST_FOREACH(fp, &filehead, f_list) {
1667 1.170 matt for (oflags = fp->f_flag;; oflags = rflags) {
1668 1.170 matt rflags = atomic_cas_uint(&fp->f_flag, oflags,
1669 1.170 matt (oflags | FSCAN) & ~(FMARK|FDEFER));
1670 1.170 matt if (__predict_true(oflags == rflags)) {
1671 1.121 mrg break;
1672 1.121 mrg }
1673 1.121 mrg }
1674 1.106 ad }
1675 1.39 sommerfe
1676 1.39 sommerfe /*
1677 1.121 mrg * Iterate over the set of sockets, marking ones believed (based on
1678 1.121 mrg * refcount) to be referenced from a process, and marking for rescan
1679 1.121 mrg * sockets which are queued on a socket. Recan continues descending
1680 1.121 mrg * and searching for sockets referenced by sockets (FDEFER), until
1681 1.121 mrg * there are no more socket->socket references to be discovered.
1682 1.39 sommerfe */
1683 1.1 cgd do {
1684 1.121 mrg didwork = false;
1685 1.121 mrg for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1686 1.121 mrg KASSERT(mutex_owned(&filelist_lock));
1687 1.121 mrg np = LIST_NEXT(fp, f_list);
1688 1.106 ad mutex_enter(&fp->f_lock);
1689 1.121 mrg if ((fp->f_flag & FDEFER) != 0) {
1690 1.106 ad atomic_and_uint(&fp->f_flag, ~FDEFER);
1691 1.1 cgd unp_defer--;
1692 1.175 christos if (fp->f_count == 0) {
1693 1.175 christos /*
1694 1.175 christos * XXX: closef() doesn't pay attention
1695 1.175 christos * to FDEFER
1696 1.175 christos */
1697 1.175 christos mutex_exit(&fp->f_lock);
1698 1.175 christos continue;
1699 1.175 christos }
1700 1.1 cgd } else {
1701 1.101 ad if (fp->f_count == 0 ||
1702 1.121 mrg (fp->f_flag & FMARK) != 0 ||
1703 1.121 mrg fp->f_count == fp->f_msgcount ||
1704 1.121 mrg fp->f_unpcount != 0) {
1705 1.106 ad mutex_exit(&fp->f_lock);
1706 1.1 cgd continue;
1707 1.101 ad }
1708 1.1 cgd }
1709 1.106 ad atomic_or_uint(&fp->f_flag, FMARK);
1710 1.39 sommerfe
1711 1.1 cgd if (fp->f_type != DTYPE_SOCKET ||
1712 1.171 matt (so = fp->f_socket) == NULL ||
1713 1.101 ad so->so_proto->pr_domain != &unixdomain ||
1714 1.121 mrg (so->so_proto->pr_flags & PR_RIGHTS) == 0) {
1715 1.106 ad mutex_exit(&fp->f_lock);
1716 1.1 cgd continue;
1717 1.101 ad }
1718 1.121 mrg
1719 1.121 mrg /* Gain file ref, mark our position, and unlock. */
1720 1.121 mrg didwork = true;
1721 1.121 mrg LIST_INSERT_AFTER(fp, dp, f_list);
1722 1.121 mrg fp->f_count++;
1723 1.106 ad mutex_exit(&fp->f_lock);
1724 1.121 mrg mutex_exit(&filelist_lock);
1725 1.101 ad
1726 1.112 ad /*
1727 1.121 mrg * Mark files referenced from sockets queued on the
1728 1.121 mrg * accept queue as well.
1729 1.112 ad */
1730 1.112 ad solock(so);
1731 1.39 sommerfe unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
1732 1.121 mrg if ((so->so_options & SO_ACCEPTCONN) != 0) {
1733 1.54 matt TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
1734 1.39 sommerfe unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1735 1.39 sommerfe }
1736 1.54 matt TAILQ_FOREACH(so1, &so->so_q, so_qe) {
1737 1.39 sommerfe unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1738 1.39 sommerfe }
1739 1.39 sommerfe }
1740 1.112 ad sounlock(so);
1741 1.121 mrg
1742 1.121 mrg /* Re-lock and restart from where we left off. */
1743 1.121 mrg closef(fp);
1744 1.121 mrg mutex_enter(&filelist_lock);
1745 1.121 mrg np = LIST_NEXT(dp, f_list);
1746 1.121 mrg LIST_REMOVE(dp, f_list);
1747 1.1 cgd }
1748 1.121 mrg /*
1749 1.121 mrg * Bail early if we did nothing in the loop above. Could
1750 1.121 mrg * happen because of concurrent activity causing unp_defer
1751 1.121 mrg * to get out of sync.
1752 1.121 mrg */
1753 1.121 mrg } while (unp_defer != 0 && didwork);
1754 1.101 ad
1755 1.8 mycroft /*
1756 1.121 mrg * Sweep pass.
1757 1.8 mycroft *
1758 1.121 mrg * We grab an extra reference to each of the files that are
1759 1.121 mrg * not otherwise accessible and then free the rights that are
1760 1.121 mrg * stored in messages on them.
1761 1.8 mycroft */
1762 1.121 mrg for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1763 1.121 mrg KASSERT(mutex_owned(&filelist_lock));
1764 1.121 mrg np = LIST_NEXT(fp, f_list);
1765 1.106 ad mutex_enter(&fp->f_lock);
1766 1.121 mrg
1767 1.121 mrg /*
1768 1.121 mrg * Ignore non-sockets.
1769 1.121 mrg * Ignore dead sockets, or sockets with pending close.
1770 1.121 mrg * Ignore sockets obviously referenced elsewhere.
1771 1.121 mrg * Ignore sockets marked as referenced by our scan.
1772 1.121 mrg * Ignore new sockets that did not exist during the scan.
1773 1.121 mrg */
1774 1.121 mrg if (fp->f_type != DTYPE_SOCKET ||
1775 1.121 mrg fp->f_count == 0 || fp->f_unpcount != 0 ||
1776 1.121 mrg fp->f_count != fp->f_msgcount ||
1777 1.121 mrg (fp->f_flag & (FMARK | FSCAN)) != FSCAN) {
1778 1.121 mrg mutex_exit(&fp->f_lock);
1779 1.121 mrg continue;
1780 1.8 mycroft }
1781 1.121 mrg
1782 1.121 mrg /* Gain file ref, mark our position, and unlock. */
1783 1.121 mrg LIST_INSERT_AFTER(fp, dp, f_list);
1784 1.121 mrg fp->f_count++;
1785 1.106 ad mutex_exit(&fp->f_lock);
1786 1.121 mrg mutex_exit(&filelist_lock);
1787 1.121 mrg
1788 1.121 mrg /*
1789 1.121 mrg * Flush all data from the socket's receive buffer.
1790 1.121 mrg * This will cause files referenced only by the
1791 1.121 mrg * socket to be queued for close.
1792 1.121 mrg */
1793 1.171 matt so = fp->f_socket;
1794 1.121 mrg solock(so);
1795 1.121 mrg sorflush(so);
1796 1.121 mrg sounlock(so);
1797 1.121 mrg
1798 1.121 mrg /* Re-lock and restart from where we left off. */
1799 1.121 mrg closef(fp);
1800 1.121 mrg mutex_enter(&filelist_lock);
1801 1.121 mrg np = LIST_NEXT(dp, f_list);
1802 1.121 mrg LIST_REMOVE(dp, f_list);
1803 1.121 mrg }
1804 1.121 mrg }
1805 1.121 mrg
1806 1.121 mrg /*
1807 1.121 mrg * Garbage collector thread. While SCM_RIGHTS messages are in transit,
1808 1.121 mrg * wake once per second to garbage collect. Run continually while we
1809 1.121 mrg * have deferred closes to process.
1810 1.121 mrg */
1811 1.121 mrg static void
1812 1.121 mrg unp_thread(void *cookie)
1813 1.121 mrg {
1814 1.121 mrg file_t *dp;
1815 1.121 mrg
1816 1.121 mrg /* Allocate a dummy file for our scans. */
1817 1.121 mrg if ((dp = fgetdummy()) == NULL) {
1818 1.121 mrg panic("unp_thread");
1819 1.1 cgd }
1820 1.101 ad
1821 1.121 mrg mutex_enter(&filelist_lock);
1822 1.121 mrg for (;;) {
1823 1.121 mrg KASSERT(mutex_owned(&filelist_lock));
1824 1.121 mrg if (SLIST_EMPTY(&unp_thread_discard)) {
1825 1.121 mrg if (unp_rights != 0) {
1826 1.121 mrg (void)cv_timedwait(&unp_thread_cv,
1827 1.121 mrg &filelist_lock, hz);
1828 1.121 mrg } else {
1829 1.121 mrg cv_wait(&unp_thread_cv, &filelist_lock);
1830 1.121 mrg }
1831 1.112 ad }
1832 1.121 mrg unp_gc(dp);
1833 1.39 sommerfe }
1834 1.121 mrg /* NOTREACHED */
1835 1.121 mrg }
1836 1.121 mrg
1837 1.121 mrg /*
1838 1.121 mrg * Kick the garbage collector into action if there is something for
1839 1.121 mrg * it to process.
1840 1.121 mrg */
1841 1.121 mrg static void
1842 1.121 mrg unp_thread_kick(void)
1843 1.121 mrg {
1844 1.121 mrg
1845 1.121 mrg if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) {
1846 1.121 mrg mutex_enter(&filelist_lock);
1847 1.121 mrg cv_signal(&unp_thread_cv);
1848 1.121 mrg mutex_exit(&filelist_lock);
1849 1.44 thorpej }
1850 1.1 cgd }
1851 1.1 cgd
1852 1.5 andrew void
1853 1.76 matt unp_dispose(struct mbuf *m)
1854 1.1 cgd {
1855 1.8 mycroft
1856 1.1 cgd if (m)
1857 1.121 mrg unp_scan(m, unp_discard_later, 1);
1858 1.1 cgd }
1859 1.1 cgd
1860 1.5 andrew void
1861 1.106 ad unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
1862 1.1 cgd {
1863 1.46 augustss struct mbuf *m;
1864 1.121 mrg file_t **rp, *fp;
1865 1.46 augustss struct cmsghdr *cm;
1866 1.121 mrg int i, qfds;
1867 1.1 cgd
1868 1.1 cgd while (m0) {
1869 1.48 thorpej for (m = m0; m; m = m->m_next) {
1870 1.121 mrg if (m->m_type != MT_CONTROL ||
1871 1.121 mrg m->m_len < sizeof(*cm)) {
1872 1.121 mrg continue;
1873 1.121 mrg }
1874 1.121 mrg cm = mtod(m, struct cmsghdr *);
1875 1.121 mrg if (cm->cmsg_level != SOL_SOCKET ||
1876 1.121 mrg cm->cmsg_type != SCM_RIGHTS)
1877 1.121 mrg continue;
1878 1.121 mrg qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
1879 1.121 mrg / sizeof(file_t *);
1880 1.121 mrg rp = (file_t **)CMSG_DATA(cm);
1881 1.121 mrg for (i = 0; i < qfds; i++) {
1882 1.121 mrg fp = *rp;
1883 1.121 mrg if (discard) {
1884 1.121 mrg *rp = 0;
1885 1.39 sommerfe }
1886 1.121 mrg (*op)(fp);
1887 1.121 mrg rp++;
1888 1.1 cgd }
1889 1.48 thorpej }
1890 1.52 thorpej m0 = m0->m_nextpkt;
1891 1.1 cgd }
1892 1.1 cgd }
1893 1.1 cgd
1894 1.5 andrew void
1895 1.106 ad unp_mark(file_t *fp)
1896 1.1 cgd {
1897 1.101 ad
1898 1.39 sommerfe if (fp == NULL)
1899 1.39 sommerfe return;
1900 1.80 perry
1901 1.39 sommerfe /* If we're already deferred, don't screw up the defer count */
1902 1.106 ad mutex_enter(&fp->f_lock);
1903 1.101 ad if (fp->f_flag & (FMARK | FDEFER)) {
1904 1.106 ad mutex_exit(&fp->f_lock);
1905 1.1 cgd return;
1906 1.101 ad }
1907 1.39 sommerfe
1908 1.39 sommerfe /*
1909 1.121 mrg * Minimize the number of deferrals... Sockets are the only type of
1910 1.121 mrg * file which can hold references to another file, so just mark
1911 1.121 mrg * other files, and defer unmarked sockets for the next pass.
1912 1.39 sommerfe */
1913 1.39 sommerfe if (fp->f_type == DTYPE_SOCKET) {
1914 1.39 sommerfe unp_defer++;
1915 1.106 ad KASSERT(fp->f_count != 0);
1916 1.106 ad atomic_or_uint(&fp->f_flag, FDEFER);
1917 1.39 sommerfe } else {
1918 1.106 ad atomic_or_uint(&fp->f_flag, FMARK);
1919 1.39 sommerfe }
1920 1.106 ad mutex_exit(&fp->f_lock);
1921 1.1 cgd }
1922 1.1 cgd
1923 1.121 mrg static void
1924 1.121 mrg unp_discard_now(file_t *fp)
1925 1.1 cgd {
1926 1.106 ad
1927 1.39 sommerfe if (fp == NULL)
1928 1.39 sommerfe return;
1929 1.106 ad
1930 1.121 mrg KASSERT(fp->f_count > 0);
1931 1.121 mrg KASSERT(fp->f_msgcount > 0);
1932 1.121 mrg
1933 1.106 ad mutex_enter(&fp->f_lock);
1934 1.1 cgd fp->f_msgcount--;
1935 1.106 ad mutex_exit(&fp->f_lock);
1936 1.106 ad atomic_dec_uint(&unp_rights);
1937 1.106 ad (void)closef(fp);
1938 1.1 cgd }
1939 1.121 mrg
1940 1.121 mrg static void
1941 1.121 mrg unp_discard_later(file_t *fp)
1942 1.121 mrg {
1943 1.121 mrg
1944 1.121 mrg if (fp == NULL)
1945 1.121 mrg return;
1946 1.121 mrg
1947 1.121 mrg KASSERT(fp->f_count > 0);
1948 1.121 mrg KASSERT(fp->f_msgcount > 0);
1949 1.121 mrg
1950 1.121 mrg mutex_enter(&filelist_lock);
1951 1.121 mrg if (fp->f_unpcount++ == 0) {
1952 1.121 mrg SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist);
1953 1.121 mrg }
1954 1.121 mrg mutex_exit(&filelist_lock);
1955 1.121 mrg }
1956 1.151 rmind
1957 1.151 rmind const struct pr_usrreqs unp_usrreqs = {
1958 1.152 rmind .pr_attach = unp_attach,
1959 1.152 rmind .pr_detach = unp_detach,
1960 1.159 rtr .pr_accept = unp_accept,
1961 1.161 rtr .pr_bind = unp_bind,
1962 1.161 rtr .pr_listen = unp_listen,
1963 1.162 rtr .pr_connect = unp_connect,
1964 1.169 rtr .pr_connect2 = unp_connect2,
1965 1.163 rtr .pr_disconnect = unp_disconnect,
1966 1.163 rtr .pr_shutdown = unp_shutdown,
1967 1.163 rtr .pr_abort = unp_abort,
1968 1.154 rtr .pr_ioctl = unp_ioctl,
1969 1.156 rtr .pr_stat = unp_stat,
1970 1.158 rtr .pr_peeraddr = unp_peeraddr,
1971 1.158 rtr .pr_sockaddr = unp_sockaddr,
1972 1.168 rtr .pr_rcvd = unp_rcvd,
1973 1.160 rtr .pr_recvoob = unp_recvoob,
1974 1.166 rtr .pr_send = unp_send,
1975 1.160 rtr .pr_sendoob = unp_sendoob,
1976 1.151 rmind };
1977