uipc_usrreq.c revision 1.202 1 1.202 riastrad /* $NetBSD: uipc_usrreq.c,v 1.202 2022/04/09 23:52:23 riastradh Exp $ */
2 1.30 thorpej
3 1.30 thorpej /*-
4 1.197 ad * Copyright (c) 1998, 2000, 2004, 2008, 2009, 2020 The NetBSD Foundation, Inc.
5 1.30 thorpej * All rights reserved.
6 1.30 thorpej *
7 1.30 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.30 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.121 mrg * NASA Ames Research Center, and by Andrew Doran.
10 1.30 thorpej *
11 1.30 thorpej * Redistribution and use in source and binary forms, with or without
12 1.30 thorpej * modification, are permitted provided that the following conditions
13 1.30 thorpej * are met:
14 1.30 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.30 thorpej * notice, this list of conditions and the following disclaimer.
16 1.30 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.30 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.30 thorpej * documentation and/or other materials provided with the distribution.
19 1.30 thorpej *
20 1.30 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.30 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.30 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.30 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.30 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.30 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.30 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.30 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.30 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.30 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.30 thorpej * POSSIBILITY OF SUCH DAMAGE.
31 1.30 thorpej */
32 1.10 cgd
33 1.1 cgd /*
34 1.8 mycroft * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 1.8 mycroft * The Regents of the University of California. All rights reserved.
36 1.1 cgd *
37 1.1 cgd * Redistribution and use in source and binary forms, with or without
38 1.1 cgd * modification, are permitted provided that the following conditions
39 1.1 cgd * are met:
40 1.1 cgd * 1. Redistributions of source code must retain the above copyright
41 1.1 cgd * notice, this list of conditions and the following disclaimer.
42 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
43 1.1 cgd * notice, this list of conditions and the following disclaimer in the
44 1.1 cgd * documentation and/or other materials provided with the distribution.
45 1.67 agc * 3. Neither the name of the University nor the names of its contributors
46 1.67 agc * may be used to endorse or promote products derived from this software
47 1.67 agc * without specific prior written permission.
48 1.67 agc *
49 1.67 agc * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 1.67 agc * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 1.67 agc * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 1.67 agc * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 1.67 agc * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 1.67 agc * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 1.67 agc * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 1.67 agc * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 1.67 agc * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 1.67 agc * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 1.67 agc * SUCH DAMAGE.
60 1.67 agc *
61 1.67 agc * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
62 1.67 agc */
63 1.67 agc
64 1.67 agc /*
65 1.67 agc * Copyright (c) 1997 Christopher G. Demetriou. All rights reserved.
66 1.67 agc *
67 1.67 agc * Redistribution and use in source and binary forms, with or without
68 1.67 agc * modification, are permitted provided that the following conditions
69 1.67 agc * are met:
70 1.67 agc * 1. Redistributions of source code must retain the above copyright
71 1.67 agc * notice, this list of conditions and the following disclaimer.
72 1.67 agc * 2. Redistributions in binary form must reproduce the above copyright
73 1.67 agc * notice, this list of conditions and the following disclaimer in the
74 1.67 agc * documentation and/or other materials provided with the distribution.
75 1.1 cgd * 3. All advertising materials mentioning features or use of this software
76 1.1 cgd * must display the following acknowledgement:
77 1.1 cgd * This product includes software developed by the University of
78 1.1 cgd * California, Berkeley and its contributors.
79 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
80 1.1 cgd * may be used to endorse or promote products derived from this software
81 1.1 cgd * without specific prior written permission.
82 1.1 cgd *
83 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
84 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
85 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
86 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
87 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
88 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
89 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
90 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
91 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
92 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
93 1.1 cgd * SUCH DAMAGE.
94 1.1 cgd *
95 1.31 fvdl * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
96 1.1 cgd */
97 1.53 lukem
98 1.53 lukem #include <sys/cdefs.h>
99 1.202 riastrad __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.202 2022/04/09 23:52:23 riastradh Exp $");
100 1.182 mrg
101 1.182 mrg #ifdef _KERNEL_OPT
102 1.182 mrg #include "opt_compat_netbsd.h"
103 1.182 mrg #endif
104 1.1 cgd
105 1.7 mycroft #include <sys/param.h>
106 1.8 mycroft #include <sys/systm.h>
107 1.7 mycroft #include <sys/proc.h>
108 1.7 mycroft #include <sys/filedesc.h>
109 1.7 mycroft #include <sys/domain.h>
110 1.7 mycroft #include <sys/protosw.h>
111 1.7 mycroft #include <sys/socket.h>
112 1.7 mycroft #include <sys/socketvar.h>
113 1.7 mycroft #include <sys/unpcb.h>
114 1.7 mycroft #include <sys/un.h>
115 1.7 mycroft #include <sys/namei.h>
116 1.7 mycroft #include <sys/vnode.h>
117 1.7 mycroft #include <sys/file.h>
118 1.7 mycroft #include <sys/stat.h>
119 1.7 mycroft #include <sys/mbuf.h>
120 1.91 elad #include <sys/kauth.h>
121 1.101 ad #include <sys/kmem.h>
122 1.106 ad #include <sys/atomic.h>
123 1.119 pooka #include <sys/uidinfo.h>
124 1.121 mrg #include <sys/kernel.h>
125 1.121 mrg #include <sys/kthread.h>
126 1.188 pgoyette #include <sys/compat_stub.h>
127 1.1 cgd
128 1.180 roy #include <compat/sys/socket.h>
129 1.191 pgoyette #include <compat/net/route_70.h>
130 1.180 roy
131 1.1 cgd /*
132 1.1 cgd * Unix communications domain.
133 1.1 cgd *
134 1.1 cgd * TODO:
135 1.134 manu * RDM
136 1.1 cgd * rethink name space problems
137 1.1 cgd * need a proper out-of-band
138 1.112 ad *
139 1.112 ad * Notes on locking:
140 1.112 ad *
141 1.112 ad * The generic rules noted in uipc_socket2.c apply. In addition:
142 1.112 ad *
143 1.112 ad * o We have a global lock, uipc_lock.
144 1.112 ad *
145 1.112 ad * o All datagram sockets are locked by uipc_lock.
146 1.112 ad *
147 1.112 ad * o For stream socketpairs, the two endpoints are created sharing the same
148 1.112 ad * independent lock. Sockets presented to PRU_CONNECT2 must already have
149 1.112 ad * matching locks.
150 1.112 ad *
151 1.112 ad * o Stream sockets created via socket() start life with their own
152 1.112 ad * independent lock.
153 1.112 ad *
154 1.112 ad * o Stream connections to a named endpoint are slightly more complicated.
155 1.112 ad * Sockets that have called listen() have their lock pointer mutated to
156 1.112 ad * the global uipc_lock. When establishing a connection, the connecting
157 1.112 ad * socket also has its lock mutated to uipc_lock, which matches the head
158 1.112 ad * (listening socket). We create a new socket for accept() to return, and
159 1.112 ad * that also shares the head's lock. Until the connection is completely
160 1.112 ad * done on both ends, all three sockets are locked by uipc_lock. Once the
161 1.112 ad * connection is complete, the association with the head's lock is broken.
162 1.112 ad * The connecting socket and the socket returned from accept() have their
163 1.112 ad * lock pointers mutated away from uipc_lock, and back to the connecting
164 1.112 ad * socket's original, independent lock. The head continues to be locked
165 1.112 ad * by uipc_lock.
166 1.112 ad *
167 1.112 ad * o If uipc_lock is determined to be a significant source of contention,
168 1.112 ad * it could easily be hashed out. It is difficult to simply make it an
169 1.112 ad * independent lock because of visibility / garbage collection issues:
170 1.112 ad * if a socket has been associated with a lock at any point, that lock
171 1.112 ad * must remain valid until the socket is no longer visible in the system.
172 1.112 ad * The lock must not be freed or otherwise destroyed until any sockets
173 1.112 ad * that had referenced it have also been destroyed.
174 1.1 cgd */
175 1.93 christos const struct sockaddr_un sun_noname = {
176 1.145 christos .sun_len = offsetof(struct sockaddr_un, sun_path),
177 1.93 christos .sun_family = AF_LOCAL,
178 1.93 christos };
179 1.1 cgd ino_t unp_ino; /* prototype for fake inode numbers */
180 1.1 cgd
181 1.164 rtr static struct mbuf * unp_addsockcred(struct lwp *, struct mbuf *);
182 1.164 rtr static void unp_discard_later(file_t *);
183 1.164 rtr static void unp_discard_now(file_t *);
184 1.164 rtr static void unp_disconnect1(struct unpcb *);
185 1.164 rtr static bool unp_drop(struct unpcb *, int);
186 1.164 rtr static int unp_internalize(struct mbuf **);
187 1.164 rtr static void unp_mark(file_t *);
188 1.164 rtr static void unp_scan(struct mbuf *, void (*)(file_t *), int);
189 1.164 rtr static void unp_shutdown1(struct unpcb *);
190 1.164 rtr static void unp_thread(void *);
191 1.164 rtr static void unp_thread_kick(void);
192 1.164 rtr
193 1.112 ad static kmutex_t *uipc_lock;
194 1.112 ad
195 1.121 mrg static kcondvar_t unp_thread_cv;
196 1.121 mrg static lwp_t *unp_thread_lwp;
197 1.121 mrg static SLIST_HEAD(,file) unp_thread_discard;
198 1.121 mrg static int unp_defer;
199 1.200 christos static struct sysctllog *usrreq_sysctllog;
200 1.200 christos static void unp_sysctl_create(void);
201 1.121 mrg
202 1.188 pgoyette /* Compat interface */
203 1.188 pgoyette
204 1.188 pgoyette struct mbuf * stub_compat_70_unp_addsockcred(lwp_t *, struct mbuf *);
205 1.188 pgoyette
206 1.188 pgoyette struct mbuf * stub_compat_70_unp_addsockcred(struct lwp *lwp,
207 1.188 pgoyette struct mbuf *control)
208 1.188 pgoyette {
209 1.188 pgoyette
210 1.188 pgoyette /* just copy our initial argument */
211 1.188 pgoyette return control;
212 1.188 pgoyette }
213 1.188 pgoyette
214 1.191 pgoyette bool compat70_ocreds_valid = false;
215 1.188 pgoyette
216 1.112 ad /*
217 1.112 ad * Initialize Unix protocols.
218 1.112 ad */
219 1.112 ad void
220 1.112 ad uipc_init(void)
221 1.112 ad {
222 1.121 mrg int error;
223 1.112 ad
224 1.200 christos unp_sysctl_create();
225 1.200 christos
226 1.112 ad uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
227 1.121 mrg cv_init(&unp_thread_cv, "unpgc");
228 1.121 mrg
229 1.121 mrg error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread,
230 1.121 mrg NULL, &unp_thread_lwp, "unpgc");
231 1.121 mrg if (error != 0)
232 1.121 mrg panic("uipc_init %d", error);
233 1.112 ad }
234 1.112 ad
235 1.183 christos static void
236 1.183 christos unp_connid(struct lwp *l, struct unpcb *unp, int flags)
237 1.183 christos {
238 1.183 christos unp->unp_connid.unp_pid = l->l_proc->p_pid;
239 1.183 christos unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
240 1.183 christos unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
241 1.183 christos unp->unp_flags |= flags;
242 1.183 christos }
243 1.183 christos
244 1.112 ad /*
245 1.112 ad * A connection succeeded: disassociate both endpoints from the head's
246 1.112 ad * lock, and make them share their own lock. There is a race here: for
247 1.112 ad * a very brief time one endpoint will be locked by a different lock
248 1.112 ad * than the other end. However, since the current thread holds the old
249 1.112 ad * lock (the listening socket's lock, the head) access can still only be
250 1.112 ad * made to one side of the connection.
251 1.112 ad */
252 1.112 ad static void
253 1.112 ad unp_setpeerlocks(struct socket *so, struct socket *so2)
254 1.112 ad {
255 1.112 ad struct unpcb *unp;
256 1.112 ad kmutex_t *lock;
257 1.112 ad
258 1.112 ad KASSERT(solocked2(so, so2));
259 1.112 ad
260 1.112 ad /*
261 1.112 ad * Bail out if either end of the socket is not yet fully
262 1.112 ad * connected or accepted. We only break the lock association
263 1.112 ad * with the head when the pair of sockets stand completely
264 1.112 ad * on their own.
265 1.112 ad */
266 1.125 yamt KASSERT(so->so_head == NULL);
267 1.125 yamt if (so2->so_head != NULL)
268 1.112 ad return;
269 1.112 ad
270 1.112 ad /*
271 1.112 ad * Drop references to old lock. A third reference (from the
272 1.112 ad * queue head) must be held as we still hold its lock. Bonus:
273 1.112 ad * we don't need to worry about garbage collecting the lock.
274 1.112 ad */
275 1.112 ad lock = so->so_lock;
276 1.112 ad KASSERT(lock == uipc_lock);
277 1.112 ad mutex_obj_free(lock);
278 1.112 ad mutex_obj_free(lock);
279 1.112 ad
280 1.112 ad /*
281 1.112 ad * Grab stream lock from the initiator and share between the two
282 1.112 ad * endpoints. Issue memory barrier to ensure all modifications
283 1.112 ad * become globally visible before the lock change. so2 is
284 1.112 ad * assumed not to have a stream lock, because it was created
285 1.112 ad * purely for the server side to accept this connection and
286 1.112 ad * started out life using the domain-wide lock.
287 1.112 ad */
288 1.112 ad unp = sotounpcb(so);
289 1.112 ad KASSERT(unp->unp_streamlock != NULL);
290 1.112 ad KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
291 1.112 ad lock = unp->unp_streamlock;
292 1.112 ad unp->unp_streamlock = NULL;
293 1.112 ad mutex_obj_hold(lock);
294 1.202 riastrad /*
295 1.202 riastrad * Ensure lock is initialized before publishing it with
296 1.202 riastrad * solockreset. Pairs with atomic_load_consume in solock and
297 1.202 riastrad * various loops to reacquire lock after wakeup.
298 1.202 riastrad */
299 1.202 riastrad membar_release();
300 1.127 bouyer /*
301 1.127 bouyer * possible race if lock is not held - see comment in
302 1.127 bouyer * uipc_usrreq(PRU_ACCEPT).
303 1.127 bouyer */
304 1.127 bouyer KASSERT(mutex_owned(lock));
305 1.115 ad solockreset(so, lock);
306 1.115 ad solockreset(so2, lock);
307 1.112 ad }
308 1.112 ad
309 1.112 ad /*
310 1.112 ad * Reset a socket's lock back to the domain-wide lock.
311 1.112 ad */
312 1.112 ad static void
313 1.112 ad unp_resetlock(struct socket *so)
314 1.112 ad {
315 1.112 ad kmutex_t *olock, *nlock;
316 1.112 ad struct unpcb *unp;
317 1.112 ad
318 1.112 ad KASSERT(solocked(so));
319 1.112 ad
320 1.112 ad olock = so->so_lock;
321 1.112 ad nlock = uipc_lock;
322 1.112 ad if (olock == nlock)
323 1.112 ad return;
324 1.112 ad unp = sotounpcb(so);
325 1.112 ad KASSERT(unp->unp_streamlock == NULL);
326 1.112 ad unp->unp_streamlock = olock;
327 1.112 ad mutex_obj_hold(nlock);
328 1.112 ad mutex_enter(nlock);
329 1.115 ad solockreset(so, nlock);
330 1.112 ad mutex_exit(olock);
331 1.112 ad }
332 1.112 ad
333 1.112 ad static void
334 1.112 ad unp_free(struct unpcb *unp)
335 1.112 ad {
336 1.112 ad if (unp->unp_addr)
337 1.112 ad free(unp->unp_addr, M_SONAME);
338 1.112 ad if (unp->unp_streamlock != NULL)
339 1.112 ad mutex_obj_free(unp->unp_streamlock);
340 1.152 rmind kmem_free(unp, sizeof(*unp));
341 1.112 ad }
342 1.30 thorpej
343 1.164 rtr static int
344 1.164 rtr unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp)
345 1.20 mycroft {
346 1.20 mycroft struct socket *so2;
347 1.77 matt const struct sockaddr_un *sun;
348 1.20 mycroft
349 1.153 christos /* XXX: server side closed the socket */
350 1.153 christos if (unp->unp_conn == NULL)
351 1.153 christos return ECONNREFUSED;
352 1.20 mycroft so2 = unp->unp_conn->unp_socket;
353 1.112 ad
354 1.112 ad KASSERT(solocked(so2));
355 1.112 ad
356 1.20 mycroft if (unp->unp_addr)
357 1.20 mycroft sun = unp->unp_addr;
358 1.20 mycroft else
359 1.20 mycroft sun = &sun_noname;
360 1.30 thorpej if (unp->unp_conn->unp_flags & UNP_WANTCRED)
361 1.164 rtr control = unp_addsockcred(curlwp, control);
362 1.180 roy if (unp->unp_conn->unp_flags & UNP_OWANTCRED)
363 1.192 pgoyette MODULE_HOOK_CALL(uipc_unp_70_hook, (curlwp, control),
364 1.188 pgoyette stub_compat_70_unp_addsockcred(curlwp, control), control);
365 1.82 christos if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
366 1.20 mycroft control) == 0) {
367 1.98 martin unp_dispose(control);
368 1.20 mycroft m_freem(control);
369 1.20 mycroft m_freem(m);
370 1.187 roy /* Don't call soroverflow because we're returning this
371 1.187 roy * error directly to the sender. */
372 1.187 roy so2->so_rcv.sb_overflowed++;
373 1.187 roy return ENOBUFS;
374 1.20 mycroft } else {
375 1.20 mycroft sorwakeup(so2);
376 1.187 roy return 0;
377 1.20 mycroft }
378 1.20 mycroft }
379 1.20 mycroft
380 1.164 rtr static void
381 1.177 rtr unp_setaddr(struct socket *so, struct sockaddr *nam, bool peeraddr)
382 1.20 mycroft {
383 1.177 rtr const struct sockaddr_un *sun = NULL;
384 1.112 ad struct unpcb *unp;
385 1.20 mycroft
386 1.127 bouyer KASSERT(solocked(so));
387 1.112 ad unp = sotounpcb(so);
388 1.20 mycroft
389 1.177 rtr if (peeraddr) {
390 1.177 rtr if (unp->unp_conn && unp->unp_conn->unp_addr)
391 1.177 rtr sun = unp->unp_conn->unp_addr;
392 1.177 rtr } else {
393 1.177 rtr if (unp->unp_addr)
394 1.177 rtr sun = unp->unp_addr;
395 1.112 ad }
396 1.177 rtr if (sun == NULL)
397 1.177 rtr sun = &sun_noname;
398 1.177 rtr
399 1.177 rtr memcpy(nam, sun, sun->sun_len);
400 1.20 mycroft }
401 1.20 mycroft
402 1.151 rmind static int
403 1.168 rtr unp_rcvd(struct socket *so, int flags, struct lwp *l)
404 1.168 rtr {
405 1.168 rtr struct unpcb *unp = sotounpcb(so);
406 1.168 rtr struct socket *so2;
407 1.168 rtr u_int newhiwat;
408 1.168 rtr
409 1.168 rtr KASSERT(solocked(so));
410 1.168 rtr KASSERT(unp != NULL);
411 1.168 rtr
412 1.168 rtr switch (so->so_type) {
413 1.168 rtr
414 1.168 rtr case SOCK_DGRAM:
415 1.168 rtr panic("uipc 1");
416 1.168 rtr /*NOTREACHED*/
417 1.168 rtr
418 1.168 rtr case SOCK_SEQPACKET: /* FALLTHROUGH */
419 1.168 rtr case SOCK_STREAM:
420 1.168 rtr #define rcv (&so->so_rcv)
421 1.168 rtr #define snd (&so2->so_snd)
422 1.168 rtr if (unp->unp_conn == 0)
423 1.168 rtr break;
424 1.168 rtr so2 = unp->unp_conn->unp_socket;
425 1.168 rtr KASSERT(solocked2(so, so2));
426 1.168 rtr /*
427 1.168 rtr * Adjust backpressure on sender
428 1.168 rtr * and wakeup any waiting to write.
429 1.168 rtr */
430 1.168 rtr snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
431 1.168 rtr unp->unp_mbcnt = rcv->sb_mbcnt;
432 1.168 rtr newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
433 1.168 rtr (void)chgsbsize(so2->so_uidinfo,
434 1.168 rtr &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
435 1.168 rtr unp->unp_cc = rcv->sb_cc;
436 1.168 rtr sowwakeup(so2);
437 1.168 rtr #undef snd
438 1.168 rtr #undef rcv
439 1.168 rtr break;
440 1.168 rtr
441 1.168 rtr default:
442 1.168 rtr panic("uipc 2");
443 1.168 rtr }
444 1.168 rtr
445 1.168 rtr return 0;
446 1.168 rtr }
447 1.168 rtr
448 1.168 rtr static int
449 1.160 rtr unp_recvoob(struct socket *so, struct mbuf *m, int flags)
450 1.160 rtr {
451 1.160 rtr KASSERT(solocked(so));
452 1.160 rtr
453 1.160 rtr return EOPNOTSUPP;
454 1.160 rtr }
455 1.160 rtr
456 1.160 rtr static int
457 1.179 rtr unp_send(struct socket *so, struct mbuf *m, struct sockaddr *nam,
458 1.166 rtr struct mbuf *control, struct lwp *l)
459 1.166 rtr {
460 1.166 rtr struct unpcb *unp = sotounpcb(so);
461 1.166 rtr int error = 0;
462 1.166 rtr u_int newhiwat;
463 1.166 rtr struct socket *so2;
464 1.166 rtr
465 1.166 rtr KASSERT(solocked(so));
466 1.166 rtr KASSERT(unp != NULL);
467 1.166 rtr KASSERT(m != NULL);
468 1.166 rtr
469 1.166 rtr /*
470 1.166 rtr * Note: unp_internalize() rejects any control message
471 1.166 rtr * other than SCM_RIGHTS, and only allows one. This
472 1.166 rtr * has the side-effect of preventing a caller from
473 1.166 rtr * forging SCM_CREDS.
474 1.166 rtr */
475 1.166 rtr if (control) {
476 1.166 rtr sounlock(so);
477 1.166 rtr error = unp_internalize(&control);
478 1.166 rtr solock(so);
479 1.166 rtr if (error != 0) {
480 1.166 rtr m_freem(control);
481 1.166 rtr m_freem(m);
482 1.166 rtr return error;
483 1.166 rtr }
484 1.166 rtr }
485 1.166 rtr
486 1.166 rtr switch (so->so_type) {
487 1.166 rtr
488 1.166 rtr case SOCK_DGRAM: {
489 1.166 rtr KASSERT(so->so_lock == uipc_lock);
490 1.166 rtr if (nam) {
491 1.166 rtr if ((so->so_state & SS_ISCONNECTED) != 0)
492 1.166 rtr error = EISCONN;
493 1.166 rtr else {
494 1.166 rtr /*
495 1.166 rtr * Note: once connected, the
496 1.166 rtr * socket's lock must not be
497 1.166 rtr * dropped until we have sent
498 1.166 rtr * the message and disconnected.
499 1.166 rtr * This is necessary to prevent
500 1.166 rtr * intervening control ops, like
501 1.166 rtr * another connection.
502 1.166 rtr */
503 1.166 rtr error = unp_connect(so, nam, l);
504 1.166 rtr }
505 1.166 rtr } else {
506 1.166 rtr if ((so->so_state & SS_ISCONNECTED) == 0)
507 1.166 rtr error = ENOTCONN;
508 1.166 rtr }
509 1.166 rtr if (error) {
510 1.166 rtr unp_dispose(control);
511 1.166 rtr m_freem(control);
512 1.166 rtr m_freem(m);
513 1.166 rtr return error;
514 1.166 rtr }
515 1.166 rtr error = unp_output(m, control, unp);
516 1.166 rtr if (nam)
517 1.166 rtr unp_disconnect1(unp);
518 1.166 rtr break;
519 1.166 rtr }
520 1.166 rtr
521 1.166 rtr case SOCK_SEQPACKET: /* FALLTHROUGH */
522 1.166 rtr case SOCK_STREAM:
523 1.166 rtr #define rcv (&so2->so_rcv)
524 1.166 rtr #define snd (&so->so_snd)
525 1.166 rtr if (unp->unp_conn == NULL) {
526 1.166 rtr error = ENOTCONN;
527 1.166 rtr break;
528 1.166 rtr }
529 1.166 rtr so2 = unp->unp_conn->unp_socket;
530 1.166 rtr KASSERT(solocked2(so, so2));
531 1.166 rtr if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
532 1.166 rtr /*
533 1.166 rtr * Credentials are passed only once on
534 1.166 rtr * SOCK_STREAM and SOCK_SEQPACKET.
535 1.166 rtr */
536 1.166 rtr unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
537 1.166 rtr control = unp_addsockcred(l, control);
538 1.166 rtr }
539 1.180 roy if (unp->unp_conn->unp_flags & UNP_OWANTCRED) {
540 1.180 roy /*
541 1.180 roy * Credentials are passed only once on
542 1.180 roy * SOCK_STREAM and SOCK_SEQPACKET.
543 1.180 roy */
544 1.180 roy unp->unp_conn->unp_flags &= ~UNP_OWANTCRED;
545 1.192 pgoyette MODULE_HOOK_CALL(uipc_unp_70_hook, (curlwp, control),
546 1.188 pgoyette stub_compat_70_unp_addsockcred(curlwp, control),
547 1.188 pgoyette control);
548 1.180 roy }
549 1.166 rtr /*
550 1.166 rtr * Send to paired receive port, and then reduce
551 1.166 rtr * send buffer hiwater marks to maintain backpressure.
552 1.166 rtr * Wake up readers.
553 1.166 rtr */
554 1.166 rtr if (control) {
555 1.166 rtr if (sbappendcontrol(rcv, m, control) != 0)
556 1.166 rtr control = NULL;
557 1.166 rtr } else {
558 1.166 rtr switch(so->so_type) {
559 1.166 rtr case SOCK_SEQPACKET:
560 1.166 rtr sbappendrecord(rcv, m);
561 1.166 rtr break;
562 1.166 rtr case SOCK_STREAM:
563 1.166 rtr sbappend(rcv, m);
564 1.166 rtr break;
565 1.166 rtr default:
566 1.166 rtr panic("uipc_usrreq");
567 1.166 rtr break;
568 1.166 rtr }
569 1.166 rtr }
570 1.166 rtr snd->sb_mbmax -=
571 1.166 rtr rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
572 1.166 rtr unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
573 1.166 rtr newhiwat = snd->sb_hiwat -
574 1.166 rtr (rcv->sb_cc - unp->unp_conn->unp_cc);
575 1.166 rtr (void)chgsbsize(so->so_uidinfo,
576 1.166 rtr &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
577 1.166 rtr unp->unp_conn->unp_cc = rcv->sb_cc;
578 1.166 rtr sorwakeup(so2);
579 1.166 rtr #undef snd
580 1.166 rtr #undef rcv
581 1.166 rtr if (control != NULL) {
582 1.166 rtr unp_dispose(control);
583 1.166 rtr m_freem(control);
584 1.166 rtr }
585 1.166 rtr break;
586 1.166 rtr
587 1.166 rtr default:
588 1.166 rtr panic("uipc 4");
589 1.166 rtr }
590 1.166 rtr
591 1.166 rtr return error;
592 1.166 rtr }
593 1.166 rtr
594 1.166 rtr static int
595 1.160 rtr unp_sendoob(struct socket *so, struct mbuf *m, struct mbuf * control)
596 1.160 rtr {
597 1.160 rtr KASSERT(solocked(so));
598 1.160 rtr
599 1.160 rtr m_freem(m);
600 1.160 rtr m_freem(control);
601 1.160 rtr
602 1.160 rtr return EOPNOTSUPP;
603 1.160 rtr }
604 1.160 rtr
605 1.1 cgd /*
606 1.30 thorpej * Unix domain socket option processing.
607 1.30 thorpej */
608 1.30 thorpej int
609 1.118 plunky uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
610 1.30 thorpej {
611 1.30 thorpej struct unpcb *unp = sotounpcb(so);
612 1.30 thorpej int optval = 0, error = 0;
613 1.30 thorpej
614 1.112 ad KASSERT(solocked(so));
615 1.112 ad
616 1.201 nia if (sopt->sopt_level != SOL_LOCAL) {
617 1.100 dyoung error = ENOPROTOOPT;
618 1.30 thorpej } else switch (op) {
619 1.30 thorpej
620 1.30 thorpej case PRCO_SETOPT:
621 1.118 plunky switch (sopt->sopt_name) {
622 1.188 pgoyette case LOCAL_OCREDS:
623 1.191 pgoyette if (!compat70_ocreds_valid) {
624 1.188 pgoyette error = ENOPROTOOPT;
625 1.188 pgoyette break;
626 1.188 pgoyette }
627 1.188 pgoyette /* FALLTHROUGH */
628 1.30 thorpej case LOCAL_CREDS:
629 1.72 matt case LOCAL_CONNWAIT:
630 1.118 plunky error = sockopt_getint(sopt, &optval);
631 1.118 plunky if (error)
632 1.118 plunky break;
633 1.118 plunky switch (sopt->sopt_name) {
634 1.30 thorpej #define OPTSET(bit) \
635 1.30 thorpej if (optval) \
636 1.30 thorpej unp->unp_flags |= (bit); \
637 1.30 thorpej else \
638 1.30 thorpej unp->unp_flags &= ~(bit);
639 1.30 thorpej
640 1.118 plunky case LOCAL_CREDS:
641 1.118 plunky OPTSET(UNP_WANTCRED);
642 1.118 plunky break;
643 1.118 plunky case LOCAL_CONNWAIT:
644 1.118 plunky OPTSET(UNP_CONNWAIT);
645 1.118 plunky break;
646 1.180 roy case LOCAL_OCREDS:
647 1.180 roy OPTSET(UNP_OWANTCRED);
648 1.180 roy break;
649 1.30 thorpej }
650 1.30 thorpej break;
651 1.30 thorpej #undef OPTSET
652 1.30 thorpej
653 1.30 thorpej default:
654 1.30 thorpej error = ENOPROTOOPT;
655 1.30 thorpej break;
656 1.30 thorpej }
657 1.30 thorpej break;
658 1.30 thorpej
659 1.30 thorpej case PRCO_GETOPT:
660 1.112 ad sounlock(so);
661 1.118 plunky switch (sopt->sopt_name) {
662 1.99 he case LOCAL_PEEREID:
663 1.99 he if (unp->unp_flags & UNP_EIDSVALID) {
664 1.183 christos error = sockopt_set(sopt, &unp->unp_connid,
665 1.183 christos sizeof(unp->unp_connid));
666 1.99 he } else {
667 1.99 he error = EINVAL;
668 1.99 he }
669 1.99 he break;
670 1.30 thorpej case LOCAL_CREDS:
671 1.30 thorpej #define OPTBIT(bit) (unp->unp_flags & (bit) ? 1 : 0)
672 1.30 thorpej
673 1.99 he optval = OPTBIT(UNP_WANTCRED);
674 1.118 plunky error = sockopt_setint(sopt, optval);
675 1.30 thorpej break;
676 1.180 roy case LOCAL_OCREDS:
677 1.191 pgoyette if (compat70_ocreds_valid) {
678 1.188 pgoyette optval = OPTBIT(UNP_OWANTCRED);
679 1.188 pgoyette error = sockopt_setint(sopt, optval);
680 1.188 pgoyette break;
681 1.188 pgoyette }
682 1.190 mrg #undef OPTBIT
683 1.188 pgoyette /* FALLTHROUGH */
684 1.30 thorpej default:
685 1.30 thorpej error = ENOPROTOOPT;
686 1.30 thorpej break;
687 1.30 thorpej }
688 1.112 ad solock(so);
689 1.30 thorpej break;
690 1.30 thorpej }
691 1.30 thorpej return (error);
692 1.30 thorpej }
693 1.30 thorpej
694 1.30 thorpej /*
695 1.1 cgd * Both send and receive buffers are allocated PIPSIZ bytes of buffering
696 1.1 cgd * for stream sockets, although the total for sender and receiver is
697 1.1 cgd * actually only PIPSIZ.
698 1.1 cgd * Datagram sockets really use the sendspace as the maximum datagram size,
699 1.1 cgd * and don't really want to reserve the sendspace. Their recvspace should
700 1.1 cgd * be large enough for at least one max-size datagram plus address.
701 1.1 cgd */
702 1.185 christos #ifndef PIPSIZ
703 1.185 christos #define PIPSIZ 8192
704 1.185 christos #endif
705 1.1 cgd u_long unpst_sendspace = PIPSIZ;
706 1.1 cgd u_long unpst_recvspace = PIPSIZ;
707 1.1 cgd u_long unpdg_sendspace = 2*1024; /* really max datagram size */
708 1.186 roy u_long unpdg_recvspace = 16*1024;
709 1.1 cgd
710 1.121 mrg u_int unp_rights; /* files in flight */
711 1.121 mrg u_int unp_rights_ratio = 2; /* limit, fraction of maxfiles */
712 1.1 cgd
713 1.152 rmind static int
714 1.152 rmind unp_attach(struct socket *so, int proto)
715 1.1 cgd {
716 1.152 rmind struct unpcb *unp = sotounpcb(so);
717 1.152 rmind u_long sndspc, rcvspc;
718 1.1 cgd int error;
719 1.80 perry
720 1.152 rmind KASSERT(unp == NULL);
721 1.152 rmind
722 1.112 ad switch (so->so_type) {
723 1.152 rmind case SOCK_SEQPACKET:
724 1.152 rmind /* FALLTHROUGH */
725 1.112 ad case SOCK_STREAM:
726 1.112 ad if (so->so_lock == NULL) {
727 1.112 ad so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
728 1.112 ad solock(so);
729 1.112 ad }
730 1.152 rmind sndspc = unpst_sendspace;
731 1.152 rmind rcvspc = unpst_recvspace;
732 1.112 ad break;
733 1.1 cgd
734 1.112 ad case SOCK_DGRAM:
735 1.112 ad if (so->so_lock == NULL) {
736 1.112 ad mutex_obj_hold(uipc_lock);
737 1.112 ad so->so_lock = uipc_lock;
738 1.112 ad solock(so);
739 1.112 ad }
740 1.152 rmind sndspc = unpdg_sendspace;
741 1.152 rmind rcvspc = unpdg_recvspace;
742 1.112 ad break;
743 1.8 mycroft
744 1.112 ad default:
745 1.112 ad panic("unp_attach");
746 1.1 cgd }
747 1.152 rmind
748 1.152 rmind if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
749 1.152 rmind error = soreserve(so, sndspc, rcvspc);
750 1.152 rmind if (error) {
751 1.152 rmind return error;
752 1.152 rmind }
753 1.152 rmind }
754 1.152 rmind
755 1.152 rmind unp = kmem_zalloc(sizeof(*unp), KM_SLEEP);
756 1.152 rmind nanotime(&unp->unp_ctime);
757 1.14 mycroft unp->unp_socket = so;
758 1.15 mycroft so->so_pcb = unp;
759 1.152 rmind
760 1.152 rmind KASSERT(solocked(so));
761 1.152 rmind return 0;
762 1.1 cgd }
763 1.1 cgd
764 1.152 rmind static void
765 1.152 rmind unp_detach(struct socket *so)
766 1.1 cgd {
767 1.152 rmind struct unpcb *unp;
768 1.112 ad vnode_t *vp;
769 1.112 ad
770 1.152 rmind unp = sotounpcb(so);
771 1.152 rmind KASSERT(unp != NULL);
772 1.152 rmind KASSERT(solocked(so));
773 1.112 ad retry:
774 1.112 ad if ((vp = unp->unp_vnode) != NULL) {
775 1.112 ad sounlock(so);
776 1.112 ad /* Acquire v_interlock to protect against unp_connect(). */
777 1.113 ad /* XXXAD racy */
778 1.135 rmind mutex_enter(vp->v_interlock);
779 1.112 ad vp->v_socket = NULL;
780 1.148 hannken mutex_exit(vp->v_interlock);
781 1.148 hannken vrele(vp);
782 1.112 ad solock(so);
783 1.112 ad unp->unp_vnode = NULL;
784 1.1 cgd }
785 1.1 cgd if (unp->unp_conn)
786 1.163 rtr unp_disconnect1(unp);
787 1.112 ad while (unp->unp_refs) {
788 1.112 ad KASSERT(solocked2(so, unp->unp_refs->unp_socket));
789 1.112 ad if (unp_drop(unp->unp_refs, ECONNRESET)) {
790 1.112 ad solock(so);
791 1.112 ad goto retry;
792 1.112 ad }
793 1.112 ad }
794 1.112 ad soisdisconnected(so);
795 1.112 ad so->so_pcb = NULL;
796 1.8 mycroft if (unp_rights) {
797 1.8 mycroft /*
798 1.121 mrg * Normally the receive buffer is flushed later, in sofree,
799 1.121 mrg * but if our receive buffer holds references to files that
800 1.121 mrg * are now garbage, we will enqueue those file references to
801 1.121 mrg * the garbage collector and kick it into action.
802 1.8 mycroft */
803 1.112 ad sorflush(so);
804 1.112 ad unp_free(unp);
805 1.121 mrg unp_thread_kick();
806 1.14 mycroft } else
807 1.112 ad unp_free(unp);
808 1.1 cgd }
809 1.1 cgd
810 1.154 rtr static int
811 1.177 rtr unp_accept(struct socket *so, struct sockaddr *nam)
812 1.159 rtr {
813 1.159 rtr struct unpcb *unp = sotounpcb(so);
814 1.159 rtr struct socket *so2;
815 1.159 rtr
816 1.159 rtr KASSERT(solocked(so));
817 1.159 rtr KASSERT(nam != NULL);
818 1.159 rtr
819 1.159 rtr /* XXX code review required to determine if unp can ever be NULL */
820 1.159 rtr if (unp == NULL)
821 1.159 rtr return EINVAL;
822 1.159 rtr
823 1.159 rtr KASSERT(so->so_lock == uipc_lock);
824 1.159 rtr /*
825 1.159 rtr * Mark the initiating STREAM socket as connected *ONLY*
826 1.159 rtr * after it's been accepted. This prevents a client from
827 1.159 rtr * overrunning a server and receiving ECONNREFUSED.
828 1.159 rtr */
829 1.159 rtr if (unp->unp_conn == NULL) {
830 1.159 rtr /*
831 1.159 rtr * This will use the empty socket and will not
832 1.159 rtr * allocate.
833 1.159 rtr */
834 1.159 rtr unp_setaddr(so, nam, true);
835 1.159 rtr return 0;
836 1.159 rtr }
837 1.159 rtr so2 = unp->unp_conn->unp_socket;
838 1.159 rtr if (so2->so_state & SS_ISCONNECTING) {
839 1.159 rtr KASSERT(solocked2(so, so->so_head));
840 1.159 rtr KASSERT(solocked2(so2, so->so_head));
841 1.159 rtr soisconnected(so2);
842 1.159 rtr }
843 1.159 rtr /*
844 1.159 rtr * If the connection is fully established, break the
845 1.159 rtr * association with uipc_lock and give the connected
846 1.159 rtr * pair a separate lock to share.
847 1.159 rtr * There is a race here: sotounpcb(so2)->unp_streamlock
848 1.159 rtr * is not locked, so when changing so2->so_lock
849 1.159 rtr * another thread can grab it while so->so_lock is still
850 1.159 rtr * pointing to the (locked) uipc_lock.
851 1.159 rtr * this should be harmless, except that this makes
852 1.159 rtr * solocked2() and solocked() unreliable.
853 1.159 rtr * Another problem is that unp_setaddr() expects the
854 1.159 rtr * the socket locked. Grabing sotounpcb(so2)->unp_streamlock
855 1.159 rtr * fixes both issues.
856 1.159 rtr */
857 1.159 rtr mutex_enter(sotounpcb(so2)->unp_streamlock);
858 1.159 rtr unp_setpeerlocks(so2, so);
859 1.159 rtr /*
860 1.159 rtr * Only now return peer's address, as we may need to
861 1.159 rtr * block in order to allocate memory.
862 1.159 rtr *
863 1.159 rtr * XXX Minor race: connection can be broken while
864 1.159 rtr * lock is dropped in unp_setaddr(). We will return
865 1.159 rtr * error == 0 and sun_noname as the peer address.
866 1.159 rtr */
867 1.159 rtr unp_setaddr(so, nam, true);
868 1.159 rtr /* so_lock now points to unp_streamlock */
869 1.159 rtr mutex_exit(so2->so_lock);
870 1.159 rtr return 0;
871 1.159 rtr }
872 1.159 rtr
873 1.159 rtr static int
874 1.155 rtr unp_ioctl(struct socket *so, u_long cmd, void *nam, struct ifnet *ifp)
875 1.154 rtr {
876 1.154 rtr return EOPNOTSUPP;
877 1.154 rtr }
878 1.154 rtr
879 1.156 rtr static int
880 1.156 rtr unp_stat(struct socket *so, struct stat *ub)
881 1.156 rtr {
882 1.156 rtr struct unpcb *unp;
883 1.156 rtr struct socket *so2;
884 1.156 rtr
885 1.157 rtr KASSERT(solocked(so));
886 1.157 rtr
887 1.156 rtr unp = sotounpcb(so);
888 1.156 rtr if (unp == NULL)
889 1.156 rtr return EINVAL;
890 1.156 rtr
891 1.156 rtr ub->st_blksize = so->so_snd.sb_hiwat;
892 1.156 rtr switch (so->so_type) {
893 1.156 rtr case SOCK_SEQPACKET: /* FALLTHROUGH */
894 1.156 rtr case SOCK_STREAM:
895 1.156 rtr if (unp->unp_conn == 0)
896 1.156 rtr break;
897 1.156 rtr
898 1.156 rtr so2 = unp->unp_conn->unp_socket;
899 1.156 rtr KASSERT(solocked2(so, so2));
900 1.156 rtr ub->st_blksize += so2->so_rcv.sb_cc;
901 1.156 rtr break;
902 1.156 rtr default:
903 1.156 rtr break;
904 1.156 rtr }
905 1.156 rtr ub->st_dev = NODEV;
906 1.156 rtr if (unp->unp_ino == 0)
907 1.156 rtr unp->unp_ino = unp_ino++;
908 1.156 rtr ub->st_atimespec = ub->st_mtimespec = ub->st_ctimespec = unp->unp_ctime;
909 1.156 rtr ub->st_ino = unp->unp_ino;
910 1.199 christos ub->st_uid = so->so_uidinfo->ui_uid;
911 1.199 christos ub->st_gid = so->so_egid;
912 1.156 rtr return (0);
913 1.156 rtr }
914 1.156 rtr
915 1.158 rtr static int
916 1.177 rtr unp_peeraddr(struct socket *so, struct sockaddr *nam)
917 1.158 rtr {
918 1.158 rtr KASSERT(solocked(so));
919 1.158 rtr KASSERT(sotounpcb(so) != NULL);
920 1.158 rtr KASSERT(nam != NULL);
921 1.158 rtr
922 1.158 rtr unp_setaddr(so, nam, true);
923 1.158 rtr return 0;
924 1.158 rtr }
925 1.158 rtr
926 1.158 rtr static int
927 1.177 rtr unp_sockaddr(struct socket *so, struct sockaddr *nam)
928 1.158 rtr {
929 1.158 rtr KASSERT(solocked(so));
930 1.158 rtr KASSERT(sotounpcb(so) != NULL);
931 1.158 rtr KASSERT(nam != NULL);
932 1.158 rtr
933 1.158 rtr unp_setaddr(so, nam, false);
934 1.158 rtr return 0;
935 1.158 rtr }
936 1.158 rtr
937 1.146 christos /*
938 1.176 rtr * we only need to perform this allocation until syscalls other than
939 1.176 rtr * bind are adjusted to use sockaddr_big.
940 1.176 rtr */
941 1.176 rtr static struct sockaddr_un *
942 1.176 rtr makeun_sb(struct sockaddr *nam, size_t *addrlen)
943 1.176 rtr {
944 1.176 rtr struct sockaddr_un *sun;
945 1.176 rtr
946 1.176 rtr *addrlen = nam->sa_len + 1;
947 1.176 rtr sun = malloc(*addrlen, M_SONAME, M_WAITOK);
948 1.176 rtr memcpy(sun, nam, nam->sa_len);
949 1.176 rtr *(((char *)sun) + nam->sa_len) = '\0';
950 1.176 rtr return sun;
951 1.176 rtr }
952 1.176 rtr
953 1.164 rtr static int
954 1.176 rtr unp_bind(struct socket *so, struct sockaddr *nam, struct lwp *l)
955 1.1 cgd {
956 1.27 thorpej struct sockaddr_un *sun;
957 1.112 ad struct unpcb *unp;
958 1.106 ad vnode_t *vp;
959 1.1 cgd struct vattr vattr;
960 1.27 thorpej size_t addrlen;
961 1.1 cgd int error;
962 1.133 dholland struct pathbuf *pb;
963 1.1 cgd struct nameidata nd;
964 1.112 ad proc_t *p;
965 1.1 cgd
966 1.112 ad unp = sotounpcb(so);
967 1.161 rtr
968 1.161 rtr KASSERT(solocked(so));
969 1.161 rtr KASSERT(unp != NULL);
970 1.161 rtr KASSERT(nam != NULL);
971 1.161 rtr
972 1.112 ad if (unp->unp_vnode != NULL)
973 1.20 mycroft return (EINVAL);
974 1.109 ad if ((unp->unp_flags & UNP_BUSY) != 0) {
975 1.109 ad /*
976 1.109 ad * EALREADY may not be strictly accurate, but since this
977 1.109 ad * is a major application error it's hardly a big deal.
978 1.109 ad */
979 1.109 ad return (EALREADY);
980 1.109 ad }
981 1.109 ad unp->unp_flags |= UNP_BUSY;
982 1.112 ad sounlock(so);
983 1.109 ad
984 1.165 rtr p = l->l_proc;
985 1.176 rtr sun = makeun_sb(nam, &addrlen);
986 1.27 thorpej
987 1.133 dholland pb = pathbuf_create(sun->sun_path);
988 1.133 dholland if (pb == NULL) {
989 1.133 dholland error = ENOMEM;
990 1.133 dholland goto bad;
991 1.133 dholland }
992 1.133 dholland NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, pb);
993 1.27 thorpej
994 1.1 cgd /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
995 1.133 dholland if ((error = namei(&nd)) != 0) {
996 1.133 dholland pathbuf_destroy(pb);
997 1.27 thorpej goto bad;
998 1.133 dholland }
999 1.9 mycroft vp = nd.ni_vp;
1000 1.96 hannken if (vp != NULL) {
1001 1.9 mycroft VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
1002 1.9 mycroft if (nd.ni_dvp == vp)
1003 1.9 mycroft vrele(nd.ni_dvp);
1004 1.1 cgd else
1005 1.9 mycroft vput(nd.ni_dvp);
1006 1.1 cgd vrele(vp);
1007 1.133 dholland pathbuf_destroy(pb);
1008 1.96 hannken error = EADDRINUSE;
1009 1.96 hannken goto bad;
1010 1.1 cgd }
1011 1.128 pooka vattr_null(&vattr);
1012 1.1 cgd vattr.va_type = VSOCK;
1013 1.84 jmmv vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
1014 1.16 christos error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
1015 1.133 dholland if (error) {
1016 1.149 hannken vput(nd.ni_dvp);
1017 1.133 dholland pathbuf_destroy(pb);
1018 1.27 thorpej goto bad;
1019 1.133 dholland }
1020 1.9 mycroft vp = nd.ni_vp;
1021 1.150 hannken vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1022 1.112 ad solock(so);
1023 1.1 cgd vp->v_socket = unp->unp_socket;
1024 1.1 cgd unp->unp_vnode = vp;
1025 1.27 thorpej unp->unp_addrlen = addrlen;
1026 1.27 thorpej unp->unp_addr = sun;
1027 1.130 hannken VOP_UNLOCK(vp);
1028 1.149 hannken vput(nd.ni_dvp);
1029 1.109 ad unp->unp_flags &= ~UNP_BUSY;
1030 1.133 dholland pathbuf_destroy(pb);
1031 1.1 cgd return (0);
1032 1.27 thorpej
1033 1.27 thorpej bad:
1034 1.27 thorpej free(sun, M_SONAME);
1035 1.112 ad solock(so);
1036 1.109 ad unp->unp_flags &= ~UNP_BUSY;
1037 1.27 thorpej return (error);
1038 1.1 cgd }
1039 1.1 cgd
1040 1.161 rtr static int
1041 1.165 rtr unp_listen(struct socket *so, struct lwp *l)
1042 1.161 rtr {
1043 1.161 rtr struct unpcb *unp = sotounpcb(so);
1044 1.161 rtr
1045 1.161 rtr KASSERT(solocked(so));
1046 1.161 rtr KASSERT(unp != NULL);
1047 1.161 rtr
1048 1.161 rtr /*
1049 1.161 rtr * If the socket can accept a connection, it must be
1050 1.161 rtr * locked by uipc_lock.
1051 1.161 rtr */
1052 1.161 rtr unp_resetlock(so);
1053 1.161 rtr if (unp->unp_vnode == NULL)
1054 1.161 rtr return EINVAL;
1055 1.161 rtr
1056 1.183 christos unp_connid(l, unp, UNP_EIDSBIND);
1057 1.161 rtr return 0;
1058 1.161 rtr }
1059 1.161 rtr
1060 1.163 rtr static int
1061 1.163 rtr unp_disconnect(struct socket *so)
1062 1.163 rtr {
1063 1.163 rtr KASSERT(solocked(so));
1064 1.163 rtr KASSERT(sotounpcb(so) != NULL);
1065 1.163 rtr
1066 1.163 rtr unp_disconnect1(sotounpcb(so));
1067 1.163 rtr return 0;
1068 1.163 rtr }
1069 1.163 rtr
1070 1.163 rtr static int
1071 1.163 rtr unp_shutdown(struct socket *so)
1072 1.163 rtr {
1073 1.163 rtr KASSERT(solocked(so));
1074 1.163 rtr KASSERT(sotounpcb(so) != NULL);
1075 1.163 rtr
1076 1.163 rtr socantsendmore(so);
1077 1.163 rtr unp_shutdown1(sotounpcb(so));
1078 1.163 rtr return 0;
1079 1.163 rtr }
1080 1.163 rtr
1081 1.163 rtr static int
1082 1.163 rtr unp_abort(struct socket *so)
1083 1.163 rtr {
1084 1.163 rtr KASSERT(solocked(so));
1085 1.163 rtr KASSERT(sotounpcb(so) != NULL);
1086 1.163 rtr
1087 1.163 rtr (void)unp_drop(sotounpcb(so), ECONNABORTED);
1088 1.163 rtr KASSERT(so->so_head == NULL);
1089 1.163 rtr KASSERT(so->so_pcb != NULL);
1090 1.163 rtr unp_detach(so);
1091 1.163 rtr return 0;
1092 1.163 rtr }
1093 1.163 rtr
1094 1.169 rtr static int
1095 1.173 christos unp_connect1(struct socket *so, struct socket *so2, struct lwp *l)
1096 1.169 rtr {
1097 1.169 rtr struct unpcb *unp = sotounpcb(so);
1098 1.169 rtr struct unpcb *unp2;
1099 1.169 rtr
1100 1.169 rtr if (so2->so_type != so->so_type)
1101 1.169 rtr return EPROTOTYPE;
1102 1.169 rtr
1103 1.169 rtr /*
1104 1.169 rtr * All three sockets involved must be locked by same lock:
1105 1.169 rtr *
1106 1.169 rtr * local endpoint (so)
1107 1.169 rtr * remote endpoint (so2)
1108 1.169 rtr * queue head (so2->so_head, only if PR_CONNREQUIRED)
1109 1.169 rtr */
1110 1.169 rtr KASSERT(solocked2(so, so2));
1111 1.169 rtr KASSERT(so->so_head == NULL);
1112 1.169 rtr if (so2->so_head != NULL) {
1113 1.169 rtr KASSERT(so2->so_lock == uipc_lock);
1114 1.169 rtr KASSERT(solocked2(so2, so2->so_head));
1115 1.169 rtr }
1116 1.169 rtr
1117 1.169 rtr unp2 = sotounpcb(so2);
1118 1.169 rtr unp->unp_conn = unp2;
1119 1.173 christos
1120 1.169 rtr switch (so->so_type) {
1121 1.169 rtr
1122 1.169 rtr case SOCK_DGRAM:
1123 1.169 rtr unp->unp_nextref = unp2->unp_refs;
1124 1.169 rtr unp2->unp_refs = unp;
1125 1.169 rtr soisconnected(so);
1126 1.169 rtr break;
1127 1.169 rtr
1128 1.169 rtr case SOCK_SEQPACKET: /* FALLTHROUGH */
1129 1.169 rtr case SOCK_STREAM:
1130 1.169 rtr
1131 1.169 rtr /*
1132 1.169 rtr * SOCK_SEQPACKET and SOCK_STREAM cases are handled by callers
1133 1.169 rtr * which are unp_connect() or unp_connect2().
1134 1.169 rtr */
1135 1.169 rtr
1136 1.169 rtr break;
1137 1.169 rtr
1138 1.169 rtr default:
1139 1.169 rtr panic("unp_connect1");
1140 1.169 rtr }
1141 1.169 rtr
1142 1.169 rtr return 0;
1143 1.169 rtr }
1144 1.169 rtr
1145 1.5 andrew int
1146 1.179 rtr unp_connect(struct socket *so, struct sockaddr *nam, struct lwp *l)
1147 1.1 cgd {
1148 1.46 augustss struct sockaddr_un *sun;
1149 1.106 ad vnode_t *vp;
1150 1.46 augustss struct socket *so2, *so3;
1151 1.99 he struct unpcb *unp, *unp2, *unp3;
1152 1.27 thorpej size_t addrlen;
1153 1.1 cgd int error;
1154 1.133 dholland struct pathbuf *pb;
1155 1.1 cgd struct nameidata nd;
1156 1.1 cgd
1157 1.109 ad unp = sotounpcb(so);
1158 1.109 ad if ((unp->unp_flags & UNP_BUSY) != 0) {
1159 1.109 ad /*
1160 1.109 ad * EALREADY may not be strictly accurate, but since this
1161 1.109 ad * is a major application error it's hardly a big deal.
1162 1.109 ad */
1163 1.109 ad return (EALREADY);
1164 1.109 ad }
1165 1.109 ad unp->unp_flags |= UNP_BUSY;
1166 1.112 ad sounlock(so);
1167 1.109 ad
1168 1.179 rtr sun = makeun_sb(nam, &addrlen);
1169 1.133 dholland pb = pathbuf_create(sun->sun_path);
1170 1.133 dholland if (pb == NULL) {
1171 1.133 dholland error = ENOMEM;
1172 1.133 dholland goto bad2;
1173 1.133 dholland }
1174 1.27 thorpej
1175 1.133 dholland NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
1176 1.133 dholland
1177 1.133 dholland if ((error = namei(&nd)) != 0) {
1178 1.133 dholland pathbuf_destroy(pb);
1179 1.27 thorpej goto bad2;
1180 1.133 dholland }
1181 1.9 mycroft vp = nd.ni_vp;
1182 1.181 maxv pathbuf_destroy(pb);
1183 1.1 cgd if (vp->v_type != VSOCK) {
1184 1.1 cgd error = ENOTSOCK;
1185 1.1 cgd goto bad;
1186 1.1 cgd }
1187 1.167 rtr if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
1188 1.1 cgd goto bad;
1189 1.112 ad /* Acquire v_interlock to protect against unp_detach(). */
1190 1.135 rmind mutex_enter(vp->v_interlock);
1191 1.1 cgd so2 = vp->v_socket;
1192 1.112 ad if (so2 == NULL) {
1193 1.135 rmind mutex_exit(vp->v_interlock);
1194 1.1 cgd error = ECONNREFUSED;
1195 1.1 cgd goto bad;
1196 1.1 cgd }
1197 1.1 cgd if (so->so_type != so2->so_type) {
1198 1.135 rmind mutex_exit(vp->v_interlock);
1199 1.1 cgd error = EPROTOTYPE;
1200 1.1 cgd goto bad;
1201 1.1 cgd }
1202 1.112 ad solock(so);
1203 1.112 ad unp_resetlock(so);
1204 1.135 rmind mutex_exit(vp->v_interlock);
1205 1.112 ad if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
1206 1.112 ad /*
1207 1.112 ad * This may seem somewhat fragile but is OK: if we can
1208 1.112 ad * see SO_ACCEPTCONN set on the endpoint, then it must
1209 1.112 ad * be locked by the domain-wide uipc_lock.
1210 1.112 ad */
1211 1.132 yamt KASSERT((so2->so_options & SO_ACCEPTCONN) == 0 ||
1212 1.112 ad so2->so_lock == uipc_lock);
1213 1.1 cgd if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
1214 1.144 rmind (so3 = sonewconn(so2, false)) == NULL) {
1215 1.1 cgd error = ECONNREFUSED;
1216 1.112 ad sounlock(so);
1217 1.1 cgd goto bad;
1218 1.1 cgd }
1219 1.1 cgd unp2 = sotounpcb(so2);
1220 1.1 cgd unp3 = sotounpcb(so3);
1221 1.26 thorpej if (unp2->unp_addr) {
1222 1.26 thorpej unp3->unp_addr = malloc(unp2->unp_addrlen,
1223 1.26 thorpej M_SONAME, M_WAITOK);
1224 1.36 perry memcpy(unp3->unp_addr, unp2->unp_addr,
1225 1.26 thorpej unp2->unp_addrlen);
1226 1.26 thorpej unp3->unp_addrlen = unp2->unp_addrlen;
1227 1.26 thorpej }
1228 1.30 thorpej unp3->unp_flags = unp2->unp_flags;
1229 1.112 ad so2 = so3;
1230 1.183 christos /*
1231 1.183 christos * The connector's (client's) credentials are copied from its
1232 1.183 christos * process structure at the time of connect() (which is now).
1233 1.183 christos */
1234 1.183 christos unp_connid(l, unp3, UNP_EIDSVALID);
1235 1.183 christos /*
1236 1.183 christos * The receiver's (server's) credentials are copied from the
1237 1.183 christos * unp_peercred member of socket on which the former called
1238 1.183 christos * listen(); unp_listen() cached that process's credentials
1239 1.183 christos * at that time so we can use them now.
1240 1.183 christos */
1241 1.183 christos if (unp2->unp_flags & UNP_EIDSBIND) {
1242 1.183 christos memcpy(&unp->unp_connid, &unp2->unp_connid,
1243 1.183 christos sizeof(unp->unp_connid));
1244 1.183 christos unp->unp_flags |= UNP_EIDSVALID;
1245 1.183 christos }
1246 1.33 thorpej }
1247 1.173 christos error = unp_connect1(so, so2, l);
1248 1.169 rtr if (error) {
1249 1.169 rtr sounlock(so);
1250 1.169 rtr goto bad;
1251 1.169 rtr }
1252 1.169 rtr unp2 = sotounpcb(so2);
1253 1.169 rtr switch (so->so_type) {
1254 1.169 rtr
1255 1.169 rtr /*
1256 1.169 rtr * SOCK_DGRAM and default cases are handled in prior call to
1257 1.169 rtr * unp_connect1(), do not add a default case without fixing
1258 1.169 rtr * unp_connect1().
1259 1.169 rtr */
1260 1.169 rtr
1261 1.169 rtr case SOCK_SEQPACKET: /* FALLTHROUGH */
1262 1.169 rtr case SOCK_STREAM:
1263 1.169 rtr unp2->unp_conn = unp;
1264 1.169 rtr if ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT)
1265 1.169 rtr soisconnecting(so);
1266 1.169 rtr else
1267 1.169 rtr soisconnected(so);
1268 1.169 rtr soisconnected(so2);
1269 1.169 rtr /*
1270 1.169 rtr * If the connection is fully established, break the
1271 1.169 rtr * association with uipc_lock and give the connected
1272 1.193 msaitoh * pair a separate lock to share.
1273 1.169 rtr */
1274 1.169 rtr KASSERT(so2->so_head != NULL);
1275 1.169 rtr unp_setpeerlocks(so, so2);
1276 1.169 rtr break;
1277 1.169 rtr
1278 1.169 rtr }
1279 1.112 ad sounlock(so);
1280 1.27 thorpej bad:
1281 1.1 cgd vput(vp);
1282 1.27 thorpej bad2:
1283 1.27 thorpej free(sun, M_SONAME);
1284 1.112 ad solock(so);
1285 1.109 ad unp->unp_flags &= ~UNP_BUSY;
1286 1.1 cgd return (error);
1287 1.1 cgd }
1288 1.1 cgd
1289 1.5 andrew int
1290 1.169 rtr unp_connect2(struct socket *so, struct socket *so2)
1291 1.1 cgd {
1292 1.46 augustss struct unpcb *unp = sotounpcb(so);
1293 1.46 augustss struct unpcb *unp2;
1294 1.169 rtr int error = 0;
1295 1.1 cgd
1296 1.169 rtr KASSERT(solocked2(so, so2));
1297 1.112 ad
1298 1.173 christos error = unp_connect1(so, so2, curlwp);
1299 1.169 rtr if (error)
1300 1.169 rtr return error;
1301 1.112 ad
1302 1.1 cgd unp2 = sotounpcb(so2);
1303 1.1 cgd switch (so->so_type) {
1304 1.1 cgd
1305 1.169 rtr /*
1306 1.169 rtr * SOCK_DGRAM and default cases are handled in prior call to
1307 1.169 rtr * unp_connect1(), do not add a default case without fixing
1308 1.169 rtr * unp_connect1().
1309 1.169 rtr */
1310 1.1 cgd
1311 1.134 manu case SOCK_SEQPACKET: /* FALLTHROUGH */
1312 1.1 cgd case SOCK_STREAM:
1313 1.1 cgd unp2->unp_conn = unp;
1314 1.169 rtr soisconnected(so);
1315 1.1 cgd soisconnected(so2);
1316 1.1 cgd break;
1317 1.1 cgd
1318 1.1 cgd }
1319 1.169 rtr return error;
1320 1.1 cgd }
1321 1.1 cgd
1322 1.164 rtr static void
1323 1.163 rtr unp_disconnect1(struct unpcb *unp)
1324 1.1 cgd {
1325 1.46 augustss struct unpcb *unp2 = unp->unp_conn;
1326 1.112 ad struct socket *so;
1327 1.1 cgd
1328 1.1 cgd if (unp2 == 0)
1329 1.1 cgd return;
1330 1.1 cgd unp->unp_conn = 0;
1331 1.112 ad so = unp->unp_socket;
1332 1.112 ad switch (so->so_type) {
1333 1.1 cgd case SOCK_DGRAM:
1334 1.1 cgd if (unp2->unp_refs == unp)
1335 1.1 cgd unp2->unp_refs = unp->unp_nextref;
1336 1.1 cgd else {
1337 1.1 cgd unp2 = unp2->unp_refs;
1338 1.1 cgd for (;;) {
1339 1.112 ad KASSERT(solocked2(so, unp2->unp_socket));
1340 1.1 cgd if (unp2 == 0)
1341 1.163 rtr panic("unp_disconnect1");
1342 1.1 cgd if (unp2->unp_nextref == unp)
1343 1.1 cgd break;
1344 1.1 cgd unp2 = unp2->unp_nextref;
1345 1.1 cgd }
1346 1.1 cgd unp2->unp_nextref = unp->unp_nextref;
1347 1.1 cgd }
1348 1.1 cgd unp->unp_nextref = 0;
1349 1.112 ad so->so_state &= ~SS_ISCONNECTED;
1350 1.1 cgd break;
1351 1.1 cgd
1352 1.134 manu case SOCK_SEQPACKET: /* FALLTHROUGH */
1353 1.1 cgd case SOCK_STREAM:
1354 1.112 ad KASSERT(solocked2(so, unp2->unp_socket));
1355 1.112 ad soisdisconnected(so);
1356 1.1 cgd unp2->unp_conn = 0;
1357 1.1 cgd soisdisconnected(unp2->unp_socket);
1358 1.1 cgd break;
1359 1.1 cgd }
1360 1.1 cgd }
1361 1.1 cgd
1362 1.164 rtr static void
1363 1.163 rtr unp_shutdown1(struct unpcb *unp)
1364 1.1 cgd {
1365 1.1 cgd struct socket *so;
1366 1.1 cgd
1367 1.134 manu switch(unp->unp_socket->so_type) {
1368 1.134 manu case SOCK_SEQPACKET: /* FALLTHROUGH */
1369 1.134 manu case SOCK_STREAM:
1370 1.134 manu if (unp->unp_conn && (so = unp->unp_conn->unp_socket))
1371 1.134 manu socantrcvmore(so);
1372 1.134 manu break;
1373 1.134 manu default:
1374 1.134 manu break;
1375 1.134 manu }
1376 1.1 cgd }
1377 1.1 cgd
1378 1.164 rtr static bool
1379 1.76 matt unp_drop(struct unpcb *unp, int errno)
1380 1.1 cgd {
1381 1.1 cgd struct socket *so = unp->unp_socket;
1382 1.1 cgd
1383 1.112 ad KASSERT(solocked(so));
1384 1.112 ad
1385 1.1 cgd so->so_error = errno;
1386 1.163 rtr unp_disconnect1(unp);
1387 1.1 cgd if (so->so_head) {
1388 1.112 ad so->so_pcb = NULL;
1389 1.112 ad /* sofree() drops the socket lock */
1390 1.14 mycroft sofree(so);
1391 1.112 ad unp_free(unp);
1392 1.112 ad return true;
1393 1.1 cgd }
1394 1.112 ad return false;
1395 1.1 cgd }
1396 1.1 cgd
1397 1.1 cgd #ifdef notdef
1398 1.76 matt unp_drain(void)
1399 1.1 cgd {
1400 1.1 cgd
1401 1.1 cgd }
1402 1.1 cgd #endif
1403 1.1 cgd
1404 1.5 andrew int
1405 1.136 christos unp_externalize(struct mbuf *rights, struct lwp *l, int flags)
1406 1.1 cgd {
1407 1.138 christos struct cmsghdr * const cm = mtod(rights, struct cmsghdr *);
1408 1.138 christos struct proc * const p = l->l_proc;
1409 1.106 ad file_t **rp;
1410 1.138 christos int error = 0;
1411 1.47 thorpej
1412 1.138 christos const size_t nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
1413 1.106 ad sizeof(file_t *);
1414 1.143 drochner if (nfds == 0)
1415 1.143 drochner goto noop;
1416 1.1 cgd
1417 1.138 christos int * const fdp = kmem_alloc(nfds * sizeof(int), KM_SLEEP);
1418 1.198 ad rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
1419 1.50 thorpej
1420 1.121 mrg /* Make sure the recipient should be able to see the files.. */
1421 1.140 christos rp = (file_t **)CMSG_DATA(cm);
1422 1.140 christos for (size_t i = 0; i < nfds; i++) {
1423 1.140 christos file_t * const fp = *rp++;
1424 1.140 christos if (fp == NULL) {
1425 1.140 christos error = EINVAL;
1426 1.140 christos goto out;
1427 1.140 christos }
1428 1.140 christos /*
1429 1.140 christos * If we are in a chroot'ed directory, and
1430 1.140 christos * someone wants to pass us a directory, make
1431 1.140 christos * sure it's inside the subtree we're allowed
1432 1.140 christos * to access.
1433 1.140 christos */
1434 1.198 ad if (p->p_cwdi->cwdi_rdir != NULL && fp->f_type == DTYPE_VNODE) {
1435 1.171 matt vnode_t *vp = fp->f_vnode;
1436 1.198 ad if ((vp->v_type == VDIR) &&
1437 1.198 ad !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
1438 1.140 christos error = EPERM;
1439 1.140 christos goto out;
1440 1.39 sommerfe }
1441 1.39 sommerfe }
1442 1.39 sommerfe }
1443 1.198 ad
1444 1.50 thorpej restart:
1445 1.24 cgd /*
1446 1.50 thorpej * First loop -- allocate file descriptor table slots for the
1447 1.121 mrg * new files.
1448 1.24 cgd */
1449 1.138 christos for (size_t i = 0; i < nfds; i++) {
1450 1.106 ad if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
1451 1.49 thorpej /*
1452 1.50 thorpej * Back out what we've done so far.
1453 1.49 thorpej */
1454 1.138 christos while (i-- > 0) {
1455 1.106 ad fd_abort(p, NULL, fdp[i]);
1456 1.106 ad }
1457 1.50 thorpej if (error == ENOSPC) {
1458 1.106 ad fd_tryexpand(p);
1459 1.50 thorpej error = 0;
1460 1.138 christos goto restart;
1461 1.50 thorpej }
1462 1.138 christos /*
1463 1.138 christos * This is the error that has historically
1464 1.138 christos * been returned, and some callers may
1465 1.138 christos * expect it.
1466 1.138 christos */
1467 1.138 christos error = EMSGSIZE;
1468 1.138 christos goto out;
1469 1.49 thorpej }
1470 1.1 cgd }
1471 1.24 cgd
1472 1.24 cgd /*
1473 1.50 thorpej * Now that adding them has succeeded, update all of the
1474 1.121 mrg * file passing state and affix the descriptors.
1475 1.112 ad */
1476 1.106 ad rp = (file_t **)CMSG_DATA(cm);
1477 1.138 christos int *ofdp = (int *)CMSG_DATA(cm);
1478 1.138 christos for (size_t i = 0; i < nfds; i++) {
1479 1.138 christos file_t * const fp = *rp++;
1480 1.138 christos const int fd = fdp[i];
1481 1.106 ad atomic_dec_uint(&unp_rights);
1482 1.136 christos fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
1483 1.136 christos fd_affix(p, fp, fd);
1484 1.138 christos /*
1485 1.138 christos * Done with this file pointer, replace it with a fd;
1486 1.138 christos */
1487 1.138 christos *ofdp++ = fd;
1488 1.106 ad mutex_enter(&fp->f_lock);
1489 1.50 thorpej fp->f_msgcount--;
1490 1.106 ad mutex_exit(&fp->f_lock);
1491 1.106 ad /*
1492 1.106 ad * Note that fd_affix() adds a reference to the file.
1493 1.106 ad * The file may already have been closed by another
1494 1.106 ad * LWP in the process, so we must drop the reference
1495 1.106 ad * added by unp_internalize() with closef().
1496 1.106 ad */
1497 1.106 ad closef(fp);
1498 1.50 thorpej }
1499 1.50 thorpej
1500 1.50 thorpej /*
1501 1.138 christos * Adjust length, in case of transition from large file_t
1502 1.138 christos * pointers to ints.
1503 1.50 thorpej */
1504 1.138 christos if (sizeof(file_t *) != sizeof(int)) {
1505 1.138 christos cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
1506 1.138 christos rights->m_len = CMSG_SPACE(nfds * sizeof(int));
1507 1.138 christos }
1508 1.50 thorpej out:
1509 1.138 christos if (__predict_false(error != 0)) {
1510 1.141 riastrad file_t **const fpp = (file_t **)CMSG_DATA(cm);
1511 1.141 riastrad for (size_t i = 0; i < nfds; i++)
1512 1.141 riastrad unp_discard_now(fpp[i]);
1513 1.141 riastrad /*
1514 1.141 riastrad * Truncate the array so that nobody will try to interpret
1515 1.141 riastrad * what is now garbage in it.
1516 1.141 riastrad */
1517 1.141 riastrad cm->cmsg_len = CMSG_LEN(0);
1518 1.141 riastrad rights->m_len = CMSG_SPACE(0);
1519 1.138 christos }
1520 1.198 ad rw_exit(&p->p_cwdi->cwdi_lock);
1521 1.143 drochner kmem_free(fdp, nfds * sizeof(int));
1522 1.138 christos
1523 1.143 drochner noop:
1524 1.141 riastrad /*
1525 1.141 riastrad * Don't disclose kernel memory in the alignment space.
1526 1.141 riastrad */
1527 1.141 riastrad KASSERT(cm->cmsg_len <= rights->m_len);
1528 1.141 riastrad memset(&mtod(rights, char *)[cm->cmsg_len], 0, rights->m_len -
1529 1.141 riastrad cm->cmsg_len);
1530 1.139 christos return error;
1531 1.1 cgd }
1532 1.1 cgd
1533 1.164 rtr static int
1534 1.112 ad unp_internalize(struct mbuf **controlp)
1535 1.1 cgd {
1536 1.121 mrg filedesc_t *fdescp = curlwp->l_fd;
1537 1.195 riastrad fdtab_t *dt;
1538 1.108 yamt struct mbuf *control = *controlp;
1539 1.73 martin struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
1540 1.106 ad file_t **rp, **files;
1541 1.106 ad file_t *fp;
1542 1.46 augustss int i, fd, *fdp;
1543 1.106 ad int nfds, error;
1544 1.121 mrg u_int maxmsg;
1545 1.106 ad
1546 1.106 ad error = 0;
1547 1.106 ad newcm = NULL;
1548 1.38 thorpej
1549 1.106 ad /* Sanity check the control message header. */
1550 1.66 jdolecek if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
1551 1.117 christos cm->cmsg_len > control->m_len ||
1552 1.117 christos cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
1553 1.1 cgd return (EINVAL);
1554 1.24 cgd
1555 1.106 ad /*
1556 1.106 ad * Verify that the file descriptors are valid, and acquire
1557 1.106 ad * a reference to each.
1558 1.106 ad */
1559 1.47 thorpej nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
1560 1.47 thorpej fdp = (int *)CMSG_DATA(cm);
1561 1.121 mrg maxmsg = maxfiles / unp_rights_ratio;
1562 1.24 cgd for (i = 0; i < nfds; i++) {
1563 1.24 cgd fd = *fdp++;
1564 1.121 mrg if (atomic_inc_uint_nv(&unp_rights) > maxmsg) {
1565 1.121 mrg atomic_dec_uint(&unp_rights);
1566 1.121 mrg nfds = i;
1567 1.121 mrg error = EAGAIN;
1568 1.121 mrg goto out;
1569 1.121 mrg }
1570 1.137 martin if ((fp = fd_getfile(fd)) == NULL
1571 1.137 martin || fp->f_type == DTYPE_KQUEUE) {
1572 1.137 martin if (fp)
1573 1.137 martin fd_putfile(fd);
1574 1.121 mrg atomic_dec_uint(&unp_rights);
1575 1.120 pooka nfds = i;
1576 1.106 ad error = EBADF;
1577 1.106 ad goto out;
1578 1.101 ad }
1579 1.24 cgd }
1580 1.24 cgd
1581 1.106 ad /* Allocate new space and copy header into it. */
1582 1.106 ad newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
1583 1.106 ad if (newcm == NULL) {
1584 1.106 ad error = E2BIG;
1585 1.106 ad goto out;
1586 1.106 ad }
1587 1.106 ad memcpy(newcm, cm, sizeof(struct cmsghdr));
1588 1.194 maxv memset(newcm + 1, 0, CMSG_LEN(0) - sizeof(struct cmsghdr));
1589 1.106 ad files = (file_t **)CMSG_DATA(newcm);
1590 1.106 ad
1591 1.24 cgd /*
1592 1.106 ad * Transform the file descriptors into file_t pointers, in
1593 1.24 cgd * reverse order so that if pointers are bigger than ints, the
1594 1.106 ad * int won't get until we're done. No need to lock, as we have
1595 1.106 ad * already validated the descriptors with fd_getfile().
1596 1.24 cgd */
1597 1.94 cbiere fdp = (int *)CMSG_DATA(cm) + nfds;
1598 1.94 cbiere rp = files + nfds;
1599 1.24 cgd for (i = 0; i < nfds; i++) {
1600 1.195 riastrad dt = atomic_load_consume(&fdescp->fd_dt);
1601 1.196 riastrad fp = atomic_load_consume(&dt->dt_ff[*--fdp]->ff_file);
1602 1.106 ad KASSERT(fp != NULL);
1603 1.106 ad mutex_enter(&fp->f_lock);
1604 1.94 cbiere *--rp = fp;
1605 1.1 cgd fp->f_count++;
1606 1.1 cgd fp->f_msgcount++;
1607 1.106 ad mutex_exit(&fp->f_lock);
1608 1.106 ad }
1609 1.106 ad
1610 1.106 ad out:
1611 1.106 ad /* Release descriptor references. */
1612 1.106 ad fdp = (int *)CMSG_DATA(cm);
1613 1.106 ad for (i = 0; i < nfds; i++) {
1614 1.106 ad fd_putfile(*fdp++);
1615 1.121 mrg if (error != 0) {
1616 1.121 mrg atomic_dec_uint(&unp_rights);
1617 1.121 mrg }
1618 1.1 cgd }
1619 1.73 martin
1620 1.106 ad if (error == 0) {
1621 1.108 yamt if (control->m_flags & M_EXT) {
1622 1.108 yamt m_freem(control);
1623 1.108 yamt *controlp = control = m_get(M_WAIT, MT_CONTROL);
1624 1.108 yamt }
1625 1.106 ad MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
1626 1.73 martin M_MBUF, NULL, NULL);
1627 1.73 martin cm = newcm;
1628 1.106 ad /*
1629 1.106 ad * Adjust message & mbuf to note amount of space
1630 1.106 ad * actually used.
1631 1.106 ad */
1632 1.106 ad cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
1633 1.106 ad control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
1634 1.73 martin }
1635 1.73 martin
1636 1.106 ad return error;
1637 1.30 thorpej }
1638 1.30 thorpej
1639 1.30 thorpej struct mbuf *
1640 1.92 ad unp_addsockcred(struct lwp *l, struct mbuf *control)
1641 1.30 thorpej {
1642 1.30 thorpej struct sockcred *sc;
1643 1.142 christos struct mbuf *m;
1644 1.142 christos void *p;
1645 1.30 thorpej
1646 1.142 christos m = sbcreatecontrol1(&p, SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)),
1647 1.142 christos SCM_CREDS, SOL_SOCKET, M_WAITOK);
1648 1.142 christos if (m == NULL)
1649 1.142 christos return control;
1650 1.180 roy
1651 1.142 christos sc = p;
1652 1.180 roy sc->sc_pid = l->l_proc->p_pid;
1653 1.92 ad sc->sc_uid = kauth_cred_getuid(l->l_cred);
1654 1.92 ad sc->sc_euid = kauth_cred_geteuid(l->l_cred);
1655 1.92 ad sc->sc_gid = kauth_cred_getgid(l->l_cred);
1656 1.92 ad sc->sc_egid = kauth_cred_getegid(l->l_cred);
1657 1.92 ad sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
1658 1.142 christos
1659 1.142 christos for (int i = 0; i < sc->sc_ngroups; i++)
1660 1.92 ad sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
1661 1.30 thorpej
1662 1.142 christos return m_add(control, m);
1663 1.1 cgd }
1664 1.1 cgd
1665 1.39 sommerfe /*
1666 1.121 mrg * Do a mark-sweep GC of files in the system, to free up any which are
1667 1.121 mrg * caught in flight to an about-to-be-closed socket. Additionally,
1668 1.121 mrg * process deferred file closures.
1669 1.39 sommerfe */
1670 1.121 mrg static void
1671 1.121 mrg unp_gc(file_t *dp)
1672 1.1 cgd {
1673 1.121 mrg extern struct domain unixdomain;
1674 1.121 mrg file_t *fp, *np;
1675 1.46 augustss struct socket *so, *so1;
1676 1.170 matt u_int i, oflags, rflags;
1677 1.121 mrg bool didwork;
1678 1.1 cgd
1679 1.121 mrg KASSERT(curlwp == unp_thread_lwp);
1680 1.121 mrg KASSERT(mutex_owned(&filelist_lock));
1681 1.106 ad
1682 1.121 mrg /*
1683 1.121 mrg * First, process deferred file closures.
1684 1.121 mrg */
1685 1.121 mrg while (!SLIST_EMPTY(&unp_thread_discard)) {
1686 1.121 mrg fp = SLIST_FIRST(&unp_thread_discard);
1687 1.121 mrg KASSERT(fp->f_unpcount > 0);
1688 1.121 mrg KASSERT(fp->f_count > 0);
1689 1.121 mrg KASSERT(fp->f_msgcount > 0);
1690 1.121 mrg KASSERT(fp->f_count >= fp->f_unpcount);
1691 1.121 mrg KASSERT(fp->f_count >= fp->f_msgcount);
1692 1.121 mrg KASSERT(fp->f_msgcount >= fp->f_unpcount);
1693 1.121 mrg SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist);
1694 1.121 mrg i = fp->f_unpcount;
1695 1.121 mrg fp->f_unpcount = 0;
1696 1.121 mrg mutex_exit(&filelist_lock);
1697 1.121 mrg for (; i != 0; i--) {
1698 1.121 mrg unp_discard_now(fp);
1699 1.121 mrg }
1700 1.121 mrg mutex_enter(&filelist_lock);
1701 1.121 mrg }
1702 1.39 sommerfe
1703 1.121 mrg /*
1704 1.121 mrg * Clear mark bits. Ensure that we don't consider new files
1705 1.121 mrg * entering the file table during this loop (they will not have
1706 1.121 mrg * FSCAN set).
1707 1.121 mrg */
1708 1.106 ad unp_defer = 0;
1709 1.106 ad LIST_FOREACH(fp, &filehead, f_list) {
1710 1.170 matt for (oflags = fp->f_flag;; oflags = rflags) {
1711 1.170 matt rflags = atomic_cas_uint(&fp->f_flag, oflags,
1712 1.170 matt (oflags | FSCAN) & ~(FMARK|FDEFER));
1713 1.170 matt if (__predict_true(oflags == rflags)) {
1714 1.121 mrg break;
1715 1.121 mrg }
1716 1.121 mrg }
1717 1.106 ad }
1718 1.39 sommerfe
1719 1.39 sommerfe /*
1720 1.121 mrg * Iterate over the set of sockets, marking ones believed (based on
1721 1.121 mrg * refcount) to be referenced from a process, and marking for rescan
1722 1.121 mrg * sockets which are queued on a socket. Recan continues descending
1723 1.121 mrg * and searching for sockets referenced by sockets (FDEFER), until
1724 1.121 mrg * there are no more socket->socket references to be discovered.
1725 1.39 sommerfe */
1726 1.1 cgd do {
1727 1.121 mrg didwork = false;
1728 1.121 mrg for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1729 1.121 mrg KASSERT(mutex_owned(&filelist_lock));
1730 1.121 mrg np = LIST_NEXT(fp, f_list);
1731 1.106 ad mutex_enter(&fp->f_lock);
1732 1.121 mrg if ((fp->f_flag & FDEFER) != 0) {
1733 1.106 ad atomic_and_uint(&fp->f_flag, ~FDEFER);
1734 1.1 cgd unp_defer--;
1735 1.175 christos if (fp->f_count == 0) {
1736 1.175 christos /*
1737 1.175 christos * XXX: closef() doesn't pay attention
1738 1.175 christos * to FDEFER
1739 1.175 christos */
1740 1.175 christos mutex_exit(&fp->f_lock);
1741 1.175 christos continue;
1742 1.175 christos }
1743 1.1 cgd } else {
1744 1.101 ad if (fp->f_count == 0 ||
1745 1.121 mrg (fp->f_flag & FMARK) != 0 ||
1746 1.121 mrg fp->f_count == fp->f_msgcount ||
1747 1.121 mrg fp->f_unpcount != 0) {
1748 1.106 ad mutex_exit(&fp->f_lock);
1749 1.1 cgd continue;
1750 1.101 ad }
1751 1.1 cgd }
1752 1.106 ad atomic_or_uint(&fp->f_flag, FMARK);
1753 1.39 sommerfe
1754 1.1 cgd if (fp->f_type != DTYPE_SOCKET ||
1755 1.171 matt (so = fp->f_socket) == NULL ||
1756 1.101 ad so->so_proto->pr_domain != &unixdomain ||
1757 1.121 mrg (so->so_proto->pr_flags & PR_RIGHTS) == 0) {
1758 1.106 ad mutex_exit(&fp->f_lock);
1759 1.1 cgd continue;
1760 1.101 ad }
1761 1.121 mrg
1762 1.121 mrg /* Gain file ref, mark our position, and unlock. */
1763 1.121 mrg didwork = true;
1764 1.121 mrg LIST_INSERT_AFTER(fp, dp, f_list);
1765 1.121 mrg fp->f_count++;
1766 1.106 ad mutex_exit(&fp->f_lock);
1767 1.121 mrg mutex_exit(&filelist_lock);
1768 1.101 ad
1769 1.112 ad /*
1770 1.121 mrg * Mark files referenced from sockets queued on the
1771 1.121 mrg * accept queue as well.
1772 1.112 ad */
1773 1.112 ad solock(so);
1774 1.39 sommerfe unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
1775 1.121 mrg if ((so->so_options & SO_ACCEPTCONN) != 0) {
1776 1.54 matt TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
1777 1.39 sommerfe unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1778 1.39 sommerfe }
1779 1.54 matt TAILQ_FOREACH(so1, &so->so_q, so_qe) {
1780 1.39 sommerfe unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1781 1.39 sommerfe }
1782 1.39 sommerfe }
1783 1.112 ad sounlock(so);
1784 1.121 mrg
1785 1.121 mrg /* Re-lock and restart from where we left off. */
1786 1.121 mrg closef(fp);
1787 1.121 mrg mutex_enter(&filelist_lock);
1788 1.121 mrg np = LIST_NEXT(dp, f_list);
1789 1.121 mrg LIST_REMOVE(dp, f_list);
1790 1.1 cgd }
1791 1.121 mrg /*
1792 1.121 mrg * Bail early if we did nothing in the loop above. Could
1793 1.121 mrg * happen because of concurrent activity causing unp_defer
1794 1.121 mrg * to get out of sync.
1795 1.121 mrg */
1796 1.121 mrg } while (unp_defer != 0 && didwork);
1797 1.101 ad
1798 1.8 mycroft /*
1799 1.121 mrg * Sweep pass.
1800 1.8 mycroft *
1801 1.121 mrg * We grab an extra reference to each of the files that are
1802 1.121 mrg * not otherwise accessible and then free the rights that are
1803 1.121 mrg * stored in messages on them.
1804 1.8 mycroft */
1805 1.121 mrg for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1806 1.121 mrg KASSERT(mutex_owned(&filelist_lock));
1807 1.121 mrg np = LIST_NEXT(fp, f_list);
1808 1.106 ad mutex_enter(&fp->f_lock);
1809 1.121 mrg
1810 1.121 mrg /*
1811 1.121 mrg * Ignore non-sockets.
1812 1.121 mrg * Ignore dead sockets, or sockets with pending close.
1813 1.121 mrg * Ignore sockets obviously referenced elsewhere.
1814 1.121 mrg * Ignore sockets marked as referenced by our scan.
1815 1.121 mrg * Ignore new sockets that did not exist during the scan.
1816 1.121 mrg */
1817 1.121 mrg if (fp->f_type != DTYPE_SOCKET ||
1818 1.121 mrg fp->f_count == 0 || fp->f_unpcount != 0 ||
1819 1.121 mrg fp->f_count != fp->f_msgcount ||
1820 1.121 mrg (fp->f_flag & (FMARK | FSCAN)) != FSCAN) {
1821 1.121 mrg mutex_exit(&fp->f_lock);
1822 1.121 mrg continue;
1823 1.8 mycroft }
1824 1.121 mrg
1825 1.121 mrg /* Gain file ref, mark our position, and unlock. */
1826 1.121 mrg LIST_INSERT_AFTER(fp, dp, f_list);
1827 1.121 mrg fp->f_count++;
1828 1.106 ad mutex_exit(&fp->f_lock);
1829 1.121 mrg mutex_exit(&filelist_lock);
1830 1.121 mrg
1831 1.121 mrg /*
1832 1.121 mrg * Flush all data from the socket's receive buffer.
1833 1.121 mrg * This will cause files referenced only by the
1834 1.121 mrg * socket to be queued for close.
1835 1.121 mrg */
1836 1.171 matt so = fp->f_socket;
1837 1.121 mrg solock(so);
1838 1.121 mrg sorflush(so);
1839 1.121 mrg sounlock(so);
1840 1.121 mrg
1841 1.121 mrg /* Re-lock and restart from where we left off. */
1842 1.121 mrg closef(fp);
1843 1.121 mrg mutex_enter(&filelist_lock);
1844 1.121 mrg np = LIST_NEXT(dp, f_list);
1845 1.121 mrg LIST_REMOVE(dp, f_list);
1846 1.121 mrg }
1847 1.121 mrg }
1848 1.121 mrg
1849 1.121 mrg /*
1850 1.121 mrg * Garbage collector thread. While SCM_RIGHTS messages are in transit,
1851 1.121 mrg * wake once per second to garbage collect. Run continually while we
1852 1.121 mrg * have deferred closes to process.
1853 1.121 mrg */
1854 1.121 mrg static void
1855 1.121 mrg unp_thread(void *cookie)
1856 1.121 mrg {
1857 1.121 mrg file_t *dp;
1858 1.121 mrg
1859 1.121 mrg /* Allocate a dummy file for our scans. */
1860 1.121 mrg if ((dp = fgetdummy()) == NULL) {
1861 1.121 mrg panic("unp_thread");
1862 1.1 cgd }
1863 1.101 ad
1864 1.121 mrg mutex_enter(&filelist_lock);
1865 1.121 mrg for (;;) {
1866 1.121 mrg KASSERT(mutex_owned(&filelist_lock));
1867 1.121 mrg if (SLIST_EMPTY(&unp_thread_discard)) {
1868 1.121 mrg if (unp_rights != 0) {
1869 1.121 mrg (void)cv_timedwait(&unp_thread_cv,
1870 1.121 mrg &filelist_lock, hz);
1871 1.121 mrg } else {
1872 1.121 mrg cv_wait(&unp_thread_cv, &filelist_lock);
1873 1.121 mrg }
1874 1.112 ad }
1875 1.121 mrg unp_gc(dp);
1876 1.39 sommerfe }
1877 1.121 mrg /* NOTREACHED */
1878 1.121 mrg }
1879 1.121 mrg
1880 1.121 mrg /*
1881 1.121 mrg * Kick the garbage collector into action if there is something for
1882 1.121 mrg * it to process.
1883 1.121 mrg */
1884 1.121 mrg static void
1885 1.121 mrg unp_thread_kick(void)
1886 1.121 mrg {
1887 1.121 mrg
1888 1.121 mrg if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) {
1889 1.121 mrg mutex_enter(&filelist_lock);
1890 1.121 mrg cv_signal(&unp_thread_cv);
1891 1.121 mrg mutex_exit(&filelist_lock);
1892 1.44 thorpej }
1893 1.1 cgd }
1894 1.1 cgd
1895 1.5 andrew void
1896 1.76 matt unp_dispose(struct mbuf *m)
1897 1.1 cgd {
1898 1.8 mycroft
1899 1.1 cgd if (m)
1900 1.121 mrg unp_scan(m, unp_discard_later, 1);
1901 1.1 cgd }
1902 1.1 cgd
1903 1.5 andrew void
1904 1.106 ad unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
1905 1.1 cgd {
1906 1.46 augustss struct mbuf *m;
1907 1.121 mrg file_t **rp, *fp;
1908 1.46 augustss struct cmsghdr *cm;
1909 1.121 mrg int i, qfds;
1910 1.1 cgd
1911 1.1 cgd while (m0) {
1912 1.48 thorpej for (m = m0; m; m = m->m_next) {
1913 1.121 mrg if (m->m_type != MT_CONTROL ||
1914 1.121 mrg m->m_len < sizeof(*cm)) {
1915 1.121 mrg continue;
1916 1.121 mrg }
1917 1.121 mrg cm = mtod(m, struct cmsghdr *);
1918 1.121 mrg if (cm->cmsg_level != SOL_SOCKET ||
1919 1.121 mrg cm->cmsg_type != SCM_RIGHTS)
1920 1.121 mrg continue;
1921 1.121 mrg qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
1922 1.121 mrg / sizeof(file_t *);
1923 1.121 mrg rp = (file_t **)CMSG_DATA(cm);
1924 1.121 mrg for (i = 0; i < qfds; i++) {
1925 1.121 mrg fp = *rp;
1926 1.121 mrg if (discard) {
1927 1.121 mrg *rp = 0;
1928 1.39 sommerfe }
1929 1.121 mrg (*op)(fp);
1930 1.121 mrg rp++;
1931 1.1 cgd }
1932 1.48 thorpej }
1933 1.52 thorpej m0 = m0->m_nextpkt;
1934 1.1 cgd }
1935 1.1 cgd }
1936 1.1 cgd
1937 1.5 andrew void
1938 1.106 ad unp_mark(file_t *fp)
1939 1.1 cgd {
1940 1.101 ad
1941 1.39 sommerfe if (fp == NULL)
1942 1.39 sommerfe return;
1943 1.80 perry
1944 1.39 sommerfe /* If we're already deferred, don't screw up the defer count */
1945 1.106 ad mutex_enter(&fp->f_lock);
1946 1.101 ad if (fp->f_flag & (FMARK | FDEFER)) {
1947 1.106 ad mutex_exit(&fp->f_lock);
1948 1.1 cgd return;
1949 1.101 ad }
1950 1.39 sommerfe
1951 1.39 sommerfe /*
1952 1.121 mrg * Minimize the number of deferrals... Sockets are the only type of
1953 1.121 mrg * file which can hold references to another file, so just mark
1954 1.121 mrg * other files, and defer unmarked sockets for the next pass.
1955 1.39 sommerfe */
1956 1.39 sommerfe if (fp->f_type == DTYPE_SOCKET) {
1957 1.39 sommerfe unp_defer++;
1958 1.106 ad KASSERT(fp->f_count != 0);
1959 1.106 ad atomic_or_uint(&fp->f_flag, FDEFER);
1960 1.39 sommerfe } else {
1961 1.106 ad atomic_or_uint(&fp->f_flag, FMARK);
1962 1.39 sommerfe }
1963 1.106 ad mutex_exit(&fp->f_lock);
1964 1.1 cgd }
1965 1.1 cgd
1966 1.121 mrg static void
1967 1.121 mrg unp_discard_now(file_t *fp)
1968 1.1 cgd {
1969 1.106 ad
1970 1.39 sommerfe if (fp == NULL)
1971 1.39 sommerfe return;
1972 1.106 ad
1973 1.121 mrg KASSERT(fp->f_count > 0);
1974 1.121 mrg KASSERT(fp->f_msgcount > 0);
1975 1.121 mrg
1976 1.106 ad mutex_enter(&fp->f_lock);
1977 1.1 cgd fp->f_msgcount--;
1978 1.106 ad mutex_exit(&fp->f_lock);
1979 1.106 ad atomic_dec_uint(&unp_rights);
1980 1.106 ad (void)closef(fp);
1981 1.1 cgd }
1982 1.121 mrg
1983 1.121 mrg static void
1984 1.121 mrg unp_discard_later(file_t *fp)
1985 1.121 mrg {
1986 1.121 mrg
1987 1.121 mrg if (fp == NULL)
1988 1.121 mrg return;
1989 1.121 mrg
1990 1.121 mrg KASSERT(fp->f_count > 0);
1991 1.121 mrg KASSERT(fp->f_msgcount > 0);
1992 1.121 mrg
1993 1.121 mrg mutex_enter(&filelist_lock);
1994 1.121 mrg if (fp->f_unpcount++ == 0) {
1995 1.121 mrg SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist);
1996 1.121 mrg }
1997 1.121 mrg mutex_exit(&filelist_lock);
1998 1.121 mrg }
1999 1.151 rmind
2000 1.200 christos static void
2001 1.200 christos unp_sysctl_create(void)
2002 1.185 christos {
2003 1.200 christos
2004 1.200 christos KASSERT(usrreq_sysctllog == NULL);
2005 1.200 christos sysctl_createv(&usrreq_sysctllog, 0, NULL, NULL,
2006 1.185 christos CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2007 1.185 christos CTLTYPE_LONG, "sendspace",
2008 1.185 christos SYSCTL_DESCR("Default stream send space"),
2009 1.185 christos NULL, 0, &unpst_sendspace, 0,
2010 1.185 christos CTL_NET, PF_LOCAL, SOCK_STREAM, CTL_CREATE, CTL_EOL);
2011 1.200 christos sysctl_createv(&usrreq_sysctllog, 0, NULL, NULL,
2012 1.185 christos CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2013 1.185 christos CTLTYPE_LONG, "recvspace",
2014 1.185 christos SYSCTL_DESCR("Default stream recv space"),
2015 1.185 christos NULL, 0, &unpst_recvspace, 0,
2016 1.185 christos CTL_NET, PF_LOCAL, SOCK_STREAM, CTL_CREATE, CTL_EOL);
2017 1.200 christos sysctl_createv(&usrreq_sysctllog, 0, NULL, NULL,
2018 1.185 christos CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2019 1.185 christos CTLTYPE_LONG, "sendspace",
2020 1.185 christos SYSCTL_DESCR("Default datagram send space"),
2021 1.185 christos NULL, 0, &unpdg_sendspace, 0,
2022 1.185 christos CTL_NET, PF_LOCAL, SOCK_DGRAM, CTL_CREATE, CTL_EOL);
2023 1.200 christos sysctl_createv(&usrreq_sysctllog, 0, NULL, NULL,
2024 1.185 christos CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2025 1.185 christos CTLTYPE_LONG, "recvspace",
2026 1.185 christos SYSCTL_DESCR("Default datagram recv space"),
2027 1.185 christos NULL, 0, &unpdg_recvspace, 0,
2028 1.185 christos CTL_NET, PF_LOCAL, SOCK_DGRAM, CTL_CREATE, CTL_EOL);
2029 1.200 christos sysctl_createv(&usrreq_sysctllog, 0, NULL, NULL,
2030 1.185 christos CTLFLAG_PERMANENT|CTLFLAG_READONLY,
2031 1.185 christos CTLTYPE_INT, "inflight",
2032 1.185 christos SYSCTL_DESCR("File descriptors in flight"),
2033 1.185 christos NULL, 0, &unp_rights, 0,
2034 1.185 christos CTL_NET, PF_LOCAL, CTL_CREATE, CTL_EOL);
2035 1.200 christos sysctl_createv(&usrreq_sysctllog, 0, NULL, NULL,
2036 1.185 christos CTLFLAG_PERMANENT|CTLFLAG_READONLY,
2037 1.185 christos CTLTYPE_INT, "deferred",
2038 1.185 christos SYSCTL_DESCR("File descriptors deferred for close"),
2039 1.185 christos NULL, 0, &unp_defer, 0,
2040 1.185 christos CTL_NET, PF_LOCAL, CTL_CREATE, CTL_EOL);
2041 1.185 christos }
2042 1.185 christos
2043 1.151 rmind const struct pr_usrreqs unp_usrreqs = {
2044 1.152 rmind .pr_attach = unp_attach,
2045 1.152 rmind .pr_detach = unp_detach,
2046 1.159 rtr .pr_accept = unp_accept,
2047 1.161 rtr .pr_bind = unp_bind,
2048 1.161 rtr .pr_listen = unp_listen,
2049 1.162 rtr .pr_connect = unp_connect,
2050 1.169 rtr .pr_connect2 = unp_connect2,
2051 1.163 rtr .pr_disconnect = unp_disconnect,
2052 1.163 rtr .pr_shutdown = unp_shutdown,
2053 1.163 rtr .pr_abort = unp_abort,
2054 1.154 rtr .pr_ioctl = unp_ioctl,
2055 1.156 rtr .pr_stat = unp_stat,
2056 1.158 rtr .pr_peeraddr = unp_peeraddr,
2057 1.158 rtr .pr_sockaddr = unp_sockaddr,
2058 1.168 rtr .pr_rcvd = unp_rcvd,
2059 1.160 rtr .pr_recvoob = unp_recvoob,
2060 1.166 rtr .pr_send = unp_send,
2061 1.160 rtr .pr_sendoob = unp_sendoob,
2062 1.151 rmind };
2063