uipc_usrreq.c revision 1.106 1 /* $NetBSD: uipc_usrreq.c,v 1.106 2008/03/21 21:55:00 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2000, 2004, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1989, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
69 */
70
71 /*
72 * Copyright (c) 1997 Christopher G. Demetriou. All rights reserved.
73 *
74 * Redistribution and use in source and binary forms, with or without
75 * modification, are permitted provided that the following conditions
76 * are met:
77 * 1. Redistributions of source code must retain the above copyright
78 * notice, this list of conditions and the following disclaimer.
79 * 2. Redistributions in binary form must reproduce the above copyright
80 * notice, this list of conditions and the following disclaimer in the
81 * documentation and/or other materials provided with the distribution.
82 * 3. All advertising materials mentioning features or use of this software
83 * must display the following acknowledgement:
84 * This product includes software developed by the University of
85 * California, Berkeley and its contributors.
86 * 4. Neither the name of the University nor the names of its contributors
87 * may be used to endorse or promote products derived from this software
88 * without specific prior written permission.
89 *
90 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
91 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
92 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
93 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
94 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
95 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
96 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
97 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
98 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
99 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
100 * SUCH DAMAGE.
101 *
102 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
103 */
104
105 #include <sys/cdefs.h>
106 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.106 2008/03/21 21:55:00 ad Exp $");
107
108 #include <sys/param.h>
109 #include <sys/systm.h>
110 #include <sys/proc.h>
111 #include <sys/filedesc.h>
112 #include <sys/domain.h>
113 #include <sys/protosw.h>
114 #include <sys/socket.h>
115 #include <sys/socketvar.h>
116 #include <sys/unpcb.h>
117 #include <sys/un.h>
118 #include <sys/namei.h>
119 #include <sys/vnode.h>
120 #include <sys/file.h>
121 #include <sys/stat.h>
122 #include <sys/mbuf.h>
123 #include <sys/kauth.h>
124 #include <sys/kmem.h>
125 #include <sys/atomic.h>
126
127 /*
128 * Unix communications domain.
129 *
130 * TODO:
131 * SEQPACKET, RDM
132 * rethink name space problems
133 * need a proper out-of-band
134 */
135 const struct sockaddr_un sun_noname = {
136 .sun_len = sizeof(sun_noname),
137 .sun_family = AF_LOCAL,
138 };
139 ino_t unp_ino; /* prototype for fake inode numbers */
140
141 struct mbuf *unp_addsockcred(struct lwp *, struct mbuf *);
142
143 int
144 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp,
145 struct lwp *l)
146 {
147 struct socket *so2;
148 const struct sockaddr_un *sun;
149
150 so2 = unp->unp_conn->unp_socket;
151 if (unp->unp_addr)
152 sun = unp->unp_addr;
153 else
154 sun = &sun_noname;
155 if (unp->unp_conn->unp_flags & UNP_WANTCRED)
156 control = unp_addsockcred(l, control);
157 if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
158 control) == 0) {
159 unp_dispose(control);
160 m_freem(control);
161 m_freem(m);
162 so2->so_rcv.sb_overflowed++;
163 return (ENOBUFS);
164 } else {
165 sorwakeup(so2);
166 return (0);
167 }
168 }
169
170 void
171 unp_setsockaddr(struct unpcb *unp, struct mbuf *nam)
172 {
173 const struct sockaddr_un *sun;
174
175 if (unp->unp_addr)
176 sun = unp->unp_addr;
177 else
178 sun = &sun_noname;
179 nam->m_len = sun->sun_len;
180 if (nam->m_len > MLEN)
181 MEXTMALLOC(nam, nam->m_len, M_WAITOK);
182 memcpy(mtod(nam, void *), sun, (size_t)nam->m_len);
183 }
184
185 void
186 unp_setpeeraddr(struct unpcb *unp, struct mbuf *nam)
187 {
188 const struct sockaddr_un *sun;
189
190 if (unp->unp_conn && unp->unp_conn->unp_addr)
191 sun = unp->unp_conn->unp_addr;
192 else
193 sun = &sun_noname;
194 nam->m_len = sun->sun_len;
195 if (nam->m_len > MLEN)
196 MEXTMALLOC(nam, nam->m_len, M_WAITOK);
197 memcpy(mtod(nam, void *), sun, (size_t)nam->m_len);
198 }
199
200 /*ARGSUSED*/
201 int
202 uipc_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
203 struct mbuf *control, struct lwp *l)
204 {
205 struct unpcb *unp = sotounpcb(so);
206 struct socket *so2;
207 struct proc *p;
208 u_int newhiwat;
209 int error = 0;
210
211 if (req == PRU_CONTROL)
212 return (EOPNOTSUPP);
213
214 #ifdef DIAGNOSTIC
215 if (req != PRU_SEND && req != PRU_SENDOOB && control)
216 panic("uipc_usrreq: unexpected control mbuf");
217 #endif
218 p = l ? l->l_proc : NULL;
219 if (unp == 0 && req != PRU_ATTACH) {
220 error = EINVAL;
221 goto release;
222 }
223
224 switch (req) {
225
226 case PRU_ATTACH:
227 if (unp != 0) {
228 error = EISCONN;
229 break;
230 }
231 error = unp_attach(so);
232 break;
233
234 case PRU_DETACH:
235 unp_detach(unp);
236 break;
237
238 case PRU_BIND:
239 KASSERT(l != NULL);
240 error = unp_bind(unp, nam, l);
241 break;
242
243 case PRU_LISTEN:
244 if (unp->unp_vnode == 0)
245 error = EINVAL;
246 break;
247
248 case PRU_CONNECT:
249 KASSERT(l != NULL);
250 error = unp_connect(so, nam, l);
251 break;
252
253 case PRU_CONNECT2:
254 error = unp_connect2(so, (struct socket *)nam, PRU_CONNECT2);
255 break;
256
257 case PRU_DISCONNECT:
258 unp_disconnect(unp);
259 break;
260
261 case PRU_ACCEPT:
262 unp_setpeeraddr(unp, nam);
263 /*
264 * Mark the initiating STREAM socket as connected *ONLY*
265 * after it's been accepted. This prevents a client from
266 * overrunning a server and receiving ECONNREFUSED.
267 */
268 if (unp->unp_conn != NULL &&
269 (unp->unp_conn->unp_socket->so_state & SS_ISCONNECTING))
270 soisconnected(unp->unp_conn->unp_socket);
271 break;
272
273 case PRU_SHUTDOWN:
274 socantsendmore(so);
275 unp_shutdown(unp);
276 break;
277
278 case PRU_RCVD:
279 switch (so->so_type) {
280
281 case SOCK_DGRAM:
282 panic("uipc 1");
283 /*NOTREACHED*/
284
285 case SOCK_STREAM:
286 #define rcv (&so->so_rcv)
287 #define snd (&so2->so_snd)
288 if (unp->unp_conn == 0)
289 break;
290 so2 = unp->unp_conn->unp_socket;
291 /*
292 * Adjust backpressure on sender
293 * and wakeup any waiting to write.
294 */
295 snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
296 unp->unp_mbcnt = rcv->sb_mbcnt;
297 newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
298 (void)chgsbsize(so2->so_uidinfo,
299 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
300 unp->unp_cc = rcv->sb_cc;
301 sowwakeup(so2);
302 #undef snd
303 #undef rcv
304 break;
305
306 default:
307 panic("uipc 2");
308 }
309 break;
310
311 case PRU_SEND:
312 /*
313 * Note: unp_internalize() rejects any control message
314 * other than SCM_RIGHTS, and only allows one. This
315 * has the side-effect of preventing a caller from
316 * forging SCM_CREDS.
317 */
318 if (control) {
319 KASSERT(l != NULL);
320 if ((error = unp_internalize(control, l)) != 0)
321 goto die;
322 }
323 switch (so->so_type) {
324
325 case SOCK_DGRAM: {
326 if (nam) {
327 if ((so->so_state & SS_ISCONNECTED) != 0) {
328 error = EISCONN;
329 goto die;
330 }
331 KASSERT(l != NULL);
332 error = unp_connect(so, nam, l);
333 if (error) {
334 die:
335 unp_dispose(control);
336 m_freem(control);
337 m_freem(m);
338 break;
339 }
340 } else {
341 if ((so->so_state & SS_ISCONNECTED) == 0) {
342 error = ENOTCONN;
343 goto die;
344 }
345 }
346 KASSERT(p != NULL);
347 error = unp_output(m, control, unp, l);
348 if (nam)
349 unp_disconnect(unp);
350 break;
351 }
352
353 case SOCK_STREAM:
354 #define rcv (&so2->so_rcv)
355 #define snd (&so->so_snd)
356 if (unp->unp_conn == NULL) {
357 error = ENOTCONN;
358 break;
359 }
360 so2 = unp->unp_conn->unp_socket;
361 if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
362 /*
363 * Credentials are passed only once on
364 * SOCK_STREAM.
365 */
366 unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
367 control = unp_addsockcred(l, control);
368 }
369 /*
370 * Send to paired receive port, and then reduce
371 * send buffer hiwater marks to maintain backpressure.
372 * Wake up readers.
373 */
374 if (control) {
375 if (sbappendcontrol(rcv, m, control) == 0) {
376 unp_dispose(control);
377 m_freem(control);
378 }
379 } else
380 sbappend(rcv, m);
381 snd->sb_mbmax -=
382 rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
383 unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
384 newhiwat = snd->sb_hiwat -
385 (rcv->sb_cc - unp->unp_conn->unp_cc);
386 (void)chgsbsize(so->so_uidinfo,
387 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
388 unp->unp_conn->unp_cc = rcv->sb_cc;
389 sorwakeup(so2);
390 #undef snd
391 #undef rcv
392 break;
393
394 default:
395 panic("uipc 4");
396 }
397 break;
398
399 case PRU_ABORT:
400 unp_drop(unp, ECONNABORTED);
401
402 KASSERT(so->so_head == NULL);
403 #ifdef DIAGNOSTIC
404 if (so->so_pcb == 0)
405 panic("uipc 5: drop killed pcb");
406 #endif
407 unp_detach(unp);
408 break;
409
410 case PRU_SENSE:
411 ((struct stat *) m)->st_blksize = so->so_snd.sb_hiwat;
412 if (so->so_type == SOCK_STREAM && unp->unp_conn != 0) {
413 so2 = unp->unp_conn->unp_socket;
414 ((struct stat *) m)->st_blksize += so2->so_rcv.sb_cc;
415 }
416 ((struct stat *) m)->st_dev = NODEV;
417 if (unp->unp_ino == 0)
418 unp->unp_ino = unp_ino++;
419 ((struct stat *) m)->st_atimespec =
420 ((struct stat *) m)->st_mtimespec =
421 ((struct stat *) m)->st_ctimespec = unp->unp_ctime;
422 ((struct stat *) m)->st_ino = unp->unp_ino;
423 return (0);
424
425 case PRU_RCVOOB:
426 error = EOPNOTSUPP;
427 break;
428
429 case PRU_SENDOOB:
430 m_freem(control);
431 m_freem(m);
432 error = EOPNOTSUPP;
433 break;
434
435 case PRU_SOCKADDR:
436 unp_setsockaddr(unp, nam);
437 break;
438
439 case PRU_PEERADDR:
440 unp_setpeeraddr(unp, nam);
441 break;
442
443 default:
444 panic("piusrreq");
445 }
446
447 release:
448 return (error);
449 }
450
451 /*
452 * Unix domain socket option processing.
453 */
454 int
455 uipc_ctloutput(int op, struct socket *so, int level, int optname,
456 struct mbuf **mp)
457 {
458 struct unpcb *unp = sotounpcb(so);
459 struct mbuf *m = *mp;
460 int optval = 0, error = 0;
461
462 if (level != 0) {
463 error = ENOPROTOOPT;
464 if (op == PRCO_SETOPT && m)
465 (void) m_free(m);
466 } else switch (op) {
467
468 case PRCO_SETOPT:
469 switch (optname) {
470 case LOCAL_CREDS:
471 case LOCAL_CONNWAIT:
472 if (m == NULL || m->m_len != sizeof(int))
473 error = EINVAL;
474 else {
475 optval = *mtod(m, int *);
476 switch (optname) {
477 #define OPTSET(bit) \
478 if (optval) \
479 unp->unp_flags |= (bit); \
480 else \
481 unp->unp_flags &= ~(bit);
482
483 case LOCAL_CREDS:
484 OPTSET(UNP_WANTCRED);
485 break;
486 case LOCAL_CONNWAIT:
487 OPTSET(UNP_CONNWAIT);
488 break;
489 }
490 }
491 break;
492 #undef OPTSET
493
494 default:
495 error = ENOPROTOOPT;
496 break;
497 }
498 if (m)
499 (void) m_free(m);
500 break;
501
502 case PRCO_GETOPT:
503 switch (optname) {
504 case LOCAL_PEEREID:
505 if (unp->unp_flags & UNP_EIDSVALID) {
506 *mp = m = m_get(M_WAIT, MT_SOOPTS);
507 m->m_len = sizeof(struct unpcbid);
508 *mtod(m, struct unpcbid *) = unp->unp_connid;
509 } else {
510 error = EINVAL;
511 }
512 break;
513 case LOCAL_CREDS:
514 *mp = m = m_get(M_WAIT, MT_SOOPTS);
515 m->m_len = sizeof(int);
516
517 #define OPTBIT(bit) (unp->unp_flags & (bit) ? 1 : 0)
518
519 optval = OPTBIT(UNP_WANTCRED);
520 *mtod(m, int *) = optval;
521 break;
522 #undef OPTBIT
523
524 default:
525 error = ENOPROTOOPT;
526 break;
527 }
528 break;
529 }
530 return (error);
531 }
532
533 /*
534 * Both send and receive buffers are allocated PIPSIZ bytes of buffering
535 * for stream sockets, although the total for sender and receiver is
536 * actually only PIPSIZ.
537 * Datagram sockets really use the sendspace as the maximum datagram size,
538 * and don't really want to reserve the sendspace. Their recvspace should
539 * be large enough for at least one max-size datagram plus address.
540 */
541 #define PIPSIZ 4096
542 u_long unpst_sendspace = PIPSIZ;
543 u_long unpst_recvspace = PIPSIZ;
544 u_long unpdg_sendspace = 2*1024; /* really max datagram size */
545 u_long unpdg_recvspace = 4*1024;
546
547 u_int unp_rights; /* file descriptors in flight */
548
549 int
550 unp_attach(struct socket *so)
551 {
552 struct unpcb *unp;
553 int error;
554
555 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
556 switch (so->so_type) {
557
558 case SOCK_STREAM:
559 error = soreserve(so, unpst_sendspace, unpst_recvspace);
560 break;
561
562 case SOCK_DGRAM:
563 error = soreserve(so, unpdg_sendspace, unpdg_recvspace);
564 break;
565
566 default:
567 panic("unp_attach");
568 }
569 if (error)
570 return (error);
571 }
572 unp = malloc(sizeof(*unp), M_PCB, M_NOWAIT);
573 if (unp == NULL)
574 return (ENOBUFS);
575 memset((void *)unp, 0, sizeof(*unp));
576 unp->unp_socket = so;
577 so->so_pcb = unp;
578 nanotime(&unp->unp_ctime);
579 return (0);
580 }
581
582 void
583 unp_detach(struct unpcb *unp)
584 {
585
586 if (unp->unp_vnode) {
587 unp->unp_vnode->v_socket = 0;
588 vrele(unp->unp_vnode);
589 unp->unp_vnode = 0;
590 }
591 if (unp->unp_conn)
592 unp_disconnect(unp);
593 while (unp->unp_refs)
594 unp_drop(unp->unp_refs, ECONNRESET);
595 soisdisconnected(unp->unp_socket);
596 unp->unp_socket->so_pcb = 0;
597 if (unp->unp_addr)
598 free(unp->unp_addr, M_SONAME);
599 if (unp_rights) {
600 /*
601 * Normally the receive buffer is flushed later,
602 * in sofree, but if our receive buffer holds references
603 * to descriptors that are now garbage, we will dispose
604 * of those descriptor references after the garbage collector
605 * gets them (resulting in a "panic: closef: count < 0").
606 */
607 sorflush(unp->unp_socket);
608 free(unp, M_PCB);
609 unp_gc();
610 } else
611 free(unp, M_PCB);
612 }
613
614 int
615 unp_bind(struct unpcb *unp, struct mbuf *nam, struct lwp *l)
616 {
617 struct sockaddr_un *sun;
618 vnode_t *vp;
619 struct vattr vattr;
620 size_t addrlen;
621 struct proc *p;
622 int error;
623 struct nameidata nd;
624
625 if (unp->unp_vnode != 0)
626 return (EINVAL);
627
628 p = l->l_proc;
629 /*
630 * Allocate the new sockaddr. We have to allocate one
631 * extra byte so that we can ensure that the pathname
632 * is nul-terminated.
633 */
634 addrlen = nam->m_len + 1;
635 sun = malloc(addrlen, M_SONAME, M_WAITOK);
636 m_copydata(nam, 0, nam->m_len, (void *)sun);
637 *(((char *)sun) + nam->m_len) = '\0';
638
639 NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, UIO_SYSSPACE,
640 sun->sun_path);
641
642 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
643 if ((error = namei(&nd)) != 0)
644 goto bad;
645 vp = nd.ni_vp;
646 if (vp != NULL) {
647 VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
648 if (nd.ni_dvp == vp)
649 vrele(nd.ni_dvp);
650 else
651 vput(nd.ni_dvp);
652 vrele(vp);
653 error = EADDRINUSE;
654 goto bad;
655 }
656 VATTR_NULL(&vattr);
657 vattr.va_type = VSOCK;
658 vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
659 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
660 if (error)
661 goto bad;
662 vp = nd.ni_vp;
663 vp->v_socket = unp->unp_socket;
664 unp->unp_vnode = vp;
665 unp->unp_addrlen = addrlen;
666 unp->unp_addr = sun;
667 unp->unp_connid.unp_pid = p->p_pid;
668 unp->unp_connid.unp_euid = kauth_cred_geteuid(p->p_cred);
669 unp->unp_connid.unp_egid = kauth_cred_getegid(p->p_cred);
670 unp->unp_flags |= UNP_EIDSBIND;
671 VOP_UNLOCK(vp, 0);
672 return (0);
673
674 bad:
675 free(sun, M_SONAME);
676 return (error);
677 }
678
679 int
680 unp_connect(struct socket *so, struct mbuf *nam, struct lwp *l)
681 {
682 struct sockaddr_un *sun;
683 vnode_t *vp;
684 struct socket *so2, *so3;
685 struct unpcb *unp, *unp2, *unp3;
686 size_t addrlen;
687 struct proc *p;
688 int error;
689 struct nameidata nd;
690
691 p = l->l_proc;
692 /*
693 * Allocate a temporary sockaddr. We have to allocate one extra
694 * byte so that we can ensure that the pathname is nul-terminated.
695 * When we establish the connection, we copy the other PCB's
696 * sockaddr to our own.
697 */
698 addrlen = nam->m_len + 1;
699 sun = malloc(addrlen, M_SONAME, M_WAITOK);
700 m_copydata(nam, 0, nam->m_len, (void *)sun);
701 *(((char *)sun) + nam->m_len) = '\0';
702
703 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, UIO_SYSSPACE,
704 sun->sun_path);
705
706 if ((error = namei(&nd)) != 0)
707 goto bad2;
708 vp = nd.ni_vp;
709 if (vp->v_type != VSOCK) {
710 error = ENOTSOCK;
711 goto bad;
712 }
713 if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
714 goto bad;
715 so2 = vp->v_socket;
716 if (so2 == 0) {
717 error = ECONNREFUSED;
718 goto bad;
719 }
720 if (so->so_type != so2->so_type) {
721 error = EPROTOTYPE;
722 goto bad;
723 }
724 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
725 if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
726 (so3 = sonewconn(so2, 0)) == 0) {
727 error = ECONNREFUSED;
728 goto bad;
729 }
730 unp = sotounpcb(so);
731 unp2 = sotounpcb(so2);
732 unp3 = sotounpcb(so3);
733 if (unp2->unp_addr) {
734 unp3->unp_addr = malloc(unp2->unp_addrlen,
735 M_SONAME, M_WAITOK);
736 memcpy(unp3->unp_addr, unp2->unp_addr,
737 unp2->unp_addrlen);
738 unp3->unp_addrlen = unp2->unp_addrlen;
739 }
740 unp3->unp_flags = unp2->unp_flags;
741 unp3->unp_connid.unp_pid = p->p_pid;
742 unp3->unp_connid.unp_euid = kauth_cred_geteuid(p->p_cred);
743 unp3->unp_connid.unp_egid = kauth_cred_getegid(p->p_cred);
744 unp3->unp_flags |= UNP_EIDSVALID;
745 so2 = so3;
746 if (unp2->unp_flags & UNP_EIDSBIND) {
747 unp->unp_connid = unp2->unp_connid;
748 unp->unp_flags |= UNP_EIDSVALID;
749 }
750 }
751 error = unp_connect2(so, so2, PRU_CONNECT);
752 bad:
753 vput(vp);
754 bad2:
755 free(sun, M_SONAME);
756 return (error);
757 }
758
759 int
760 unp_connect2(struct socket *so, struct socket *so2, int req)
761 {
762 struct unpcb *unp = sotounpcb(so);
763 struct unpcb *unp2;
764
765 if (so2->so_type != so->so_type)
766 return (EPROTOTYPE);
767 unp2 = sotounpcb(so2);
768 unp->unp_conn = unp2;
769 switch (so->so_type) {
770
771 case SOCK_DGRAM:
772 unp->unp_nextref = unp2->unp_refs;
773 unp2->unp_refs = unp;
774 soisconnected(so);
775 break;
776
777 case SOCK_STREAM:
778 unp2->unp_conn = unp;
779 if (req == PRU_CONNECT &&
780 ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
781 soisconnecting(so);
782 else
783 soisconnected(so);
784 soisconnected(so2);
785 break;
786
787 default:
788 panic("unp_connect2");
789 }
790 return (0);
791 }
792
793 void
794 unp_disconnect(struct unpcb *unp)
795 {
796 struct unpcb *unp2 = unp->unp_conn;
797
798 if (unp2 == 0)
799 return;
800 unp->unp_conn = 0;
801 switch (unp->unp_socket->so_type) {
802
803 case SOCK_DGRAM:
804 if (unp2->unp_refs == unp)
805 unp2->unp_refs = unp->unp_nextref;
806 else {
807 unp2 = unp2->unp_refs;
808 for (;;) {
809 if (unp2 == 0)
810 panic("unp_disconnect");
811 if (unp2->unp_nextref == unp)
812 break;
813 unp2 = unp2->unp_nextref;
814 }
815 unp2->unp_nextref = unp->unp_nextref;
816 }
817 unp->unp_nextref = 0;
818 unp->unp_socket->so_state &= ~SS_ISCONNECTED;
819 break;
820
821 case SOCK_STREAM:
822 soisdisconnected(unp->unp_socket);
823 unp2->unp_conn = 0;
824 soisdisconnected(unp2->unp_socket);
825 break;
826 }
827 }
828
829 #ifdef notdef
830 unp_abort(struct unpcb *unp)
831 {
832 unp_detach(unp);
833 }
834 #endif
835
836 void
837 unp_shutdown(struct unpcb *unp)
838 {
839 struct socket *so;
840
841 if (unp->unp_socket->so_type == SOCK_STREAM && unp->unp_conn &&
842 (so = unp->unp_conn->unp_socket))
843 socantrcvmore(so);
844 }
845
846 void
847 unp_drop(struct unpcb *unp, int errno)
848 {
849 struct socket *so = unp->unp_socket;
850
851 so->so_error = errno;
852 unp_disconnect(unp);
853 if (so->so_head) {
854 so->so_pcb = 0;
855 sofree(so);
856 if (unp->unp_addr)
857 free(unp->unp_addr, M_SONAME);
858 free(unp, M_PCB);
859 }
860 }
861
862 #ifdef notdef
863 unp_drain(void)
864 {
865
866 }
867 #endif
868
869 int
870 unp_externalize(struct mbuf *rights, struct lwp *l)
871 {
872 struct cmsghdr *cm = mtod(rights, struct cmsghdr *);
873 struct proc *p = l->l_proc;
874 int i, *fdp;
875 file_t **rp;
876 file_t *fp;
877 int nfds, error = 0;
878
879 nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
880 sizeof(file_t *);
881 rp = (file_t **)CMSG_DATA(cm);
882
883 fdp = malloc(nfds * sizeof(int), M_TEMP, M_WAITOK);
884 rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
885
886 /* Make sure the recipient should be able to see the descriptors.. */
887 if (p->p_cwdi->cwdi_rdir != NULL) {
888 rp = (file_t **)CMSG_DATA(cm);
889 for (i = 0; i < nfds; i++) {
890 fp = *rp++;
891 /*
892 * If we are in a chroot'ed directory, and
893 * someone wants to pass us a directory, make
894 * sure it's inside the subtree we're allowed
895 * to access.
896 */
897 if (fp->f_type == DTYPE_VNODE) {
898 vnode_t *vp = (vnode_t *)fp->f_data;
899 if ((vp->v_type == VDIR) &&
900 !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
901 error = EPERM;
902 break;
903 }
904 }
905 }
906 }
907
908 restart:
909 rp = (file_t **)CMSG_DATA(cm);
910 if (error != 0) {
911 for (i = 0; i < nfds; i++) {
912 fp = *rp;
913 /*
914 * zero the pointer before calling unp_discard,
915 * since it may end up in unp_gc()..
916 */
917 *rp++ = 0;
918 unp_discard(fp);
919 }
920 goto out;
921 }
922
923 /*
924 * First loop -- allocate file descriptor table slots for the
925 * new descriptors.
926 */
927 for (i = 0; i < nfds; i++) {
928 fp = *rp++;
929 if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
930 /*
931 * Back out what we've done so far.
932 */
933 for (--i; i >= 0; i--) {
934 fd_abort(p, NULL, fdp[i]);
935 }
936 if (error == ENOSPC) {
937 fd_tryexpand(p);
938 error = 0;
939 } else {
940 /*
941 * This is the error that has historically
942 * been returned, and some callers may
943 * expect it.
944 */
945 error = EMSGSIZE;
946 }
947 goto restart;
948 }
949 }
950
951 /*
952 * Now that adding them has succeeded, update all of the
953 * descriptor passing state. */
954 rp = (file_t **)CMSG_DATA(cm);
955 for (i = 0; i < nfds; i++) {
956 fp = *rp++;
957 atomic_dec_uint(&unp_rights);
958 fd_affix(p, fp, fdp[i]);
959 mutex_enter(&fp->f_lock);
960 fp->f_msgcount--;
961 mutex_exit(&fp->f_lock);
962 /*
963 * Note that fd_affix() adds a reference to the file.
964 * The file may already have been closed by another
965 * LWP in the process, so we must drop the reference
966 * added by unp_internalize() with closef().
967 */
968 closef(fp);
969 }
970
971 /*
972 * Copy temporary array to message and adjust length, in case of
973 * transition from large file_t pointers to ints.
974 */
975 memcpy(CMSG_DATA(cm), fdp, nfds * sizeof(int));
976 cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
977 rights->m_len = CMSG_SPACE(nfds * sizeof(int));
978 out:
979 rw_exit(&p->p_cwdi->cwdi_lock);
980 free(fdp, M_TEMP);
981 return (error);
982 }
983
984 int
985 unp_internalize(struct mbuf *control, struct lwp *l)
986 {
987 struct filedesc *fdescp = curlwp->l_fd;
988 struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
989 file_t **rp, **files;
990 file_t *fp;
991 int i, fd, *fdp;
992 int nfds, error;
993
994 KASSERT(l == curlwp);
995
996 error = 0;
997 newcm = NULL;
998
999 /* Sanity check the control message header. */
1000 if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
1001 cm->cmsg_len != control->m_len)
1002 return (EINVAL);
1003
1004 /*
1005 * Verify that the file descriptors are valid, and acquire
1006 * a reference to each.
1007 */
1008 nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
1009 fdp = (int *)CMSG_DATA(cm);
1010 for (i = 0; i < nfds; i++) {
1011 fd = *fdp++;
1012 if ((fp = fd_getfile(fd)) == NULL) {
1013 nfds = i + 1;
1014 error = EBADF;
1015 goto out;
1016 }
1017 }
1018
1019 /* Allocate new space and copy header into it. */
1020 newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
1021 if (newcm == NULL) {
1022 error = E2BIG;
1023 goto out;
1024 }
1025 memcpy(newcm, cm, sizeof(struct cmsghdr));
1026 files = (file_t **)CMSG_DATA(newcm);
1027
1028 /*
1029 * Transform the file descriptors into file_t pointers, in
1030 * reverse order so that if pointers are bigger than ints, the
1031 * int won't get until we're done. No need to lock, as we have
1032 * already validated the descriptors with fd_getfile().
1033 */
1034 fdp = (int *)CMSG_DATA(cm) + nfds;
1035 rp = files + nfds;
1036 for (i = 0; i < nfds; i++) {
1037 fp = fdescp->fd_ofiles[*--fdp]->ff_file;
1038 KASSERT(fp != NULL);
1039 mutex_enter(&fp->f_lock);
1040 *--rp = fp;
1041 fp->f_count++;
1042 fp->f_msgcount++;
1043 mutex_exit(&fp->f_lock);
1044 atomic_inc_uint(&unp_rights);
1045 }
1046
1047 out:
1048 /* Release descriptor references. */
1049 fdp = (int *)CMSG_DATA(cm);
1050 for (i = 0; i < nfds; i++) {
1051 fd_putfile(*fdp++);
1052 }
1053
1054 if (error == 0) {
1055 if (control->m_flags & M_EXT)
1056 MEXTREMOVE(control);
1057 MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
1058 M_MBUF, NULL, NULL);
1059 cm = newcm;
1060 /*
1061 * Adjust message & mbuf to note amount of space
1062 * actually used.
1063 */
1064 cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
1065 control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
1066 }
1067
1068 return error;
1069 }
1070
1071 struct mbuf *
1072 unp_addsockcred(struct lwp *l, struct mbuf *control)
1073 {
1074 struct cmsghdr *cmp;
1075 struct sockcred *sc;
1076 struct mbuf *m, *n;
1077 int len, space, i;
1078
1079 len = CMSG_LEN(SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)));
1080 space = CMSG_SPACE(SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)));
1081
1082 m = m_get(M_WAIT, MT_CONTROL);
1083 if (space > MLEN) {
1084 if (space > MCLBYTES)
1085 MEXTMALLOC(m, space, M_WAITOK);
1086 else
1087 m_clget(m, M_WAIT);
1088 if ((m->m_flags & M_EXT) == 0) {
1089 m_free(m);
1090 return (control);
1091 }
1092 }
1093
1094 m->m_len = space;
1095 m->m_next = NULL;
1096 cmp = mtod(m, struct cmsghdr *);
1097 sc = (struct sockcred *)CMSG_DATA(cmp);
1098 cmp->cmsg_len = len;
1099 cmp->cmsg_level = SOL_SOCKET;
1100 cmp->cmsg_type = SCM_CREDS;
1101 sc->sc_uid = kauth_cred_getuid(l->l_cred);
1102 sc->sc_euid = kauth_cred_geteuid(l->l_cred);
1103 sc->sc_gid = kauth_cred_getgid(l->l_cred);
1104 sc->sc_egid = kauth_cred_getegid(l->l_cred);
1105 sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
1106 for (i = 0; i < sc->sc_ngroups; i++)
1107 sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
1108
1109 /*
1110 * If a control message already exists, append us to the end.
1111 */
1112 if (control != NULL) {
1113 for (n = control; n->m_next != NULL; n = n->m_next)
1114 ;
1115 n->m_next = m;
1116 } else
1117 control = m;
1118
1119 return (control);
1120 }
1121
1122 int unp_defer, unp_gcing;
1123 extern struct domain unixdomain;
1124
1125 /*
1126 * Comment added long after the fact explaining what's going on here.
1127 * Do a mark-sweep GC of file descriptors on the system, to free up
1128 * any which are caught in flight to an about-to-be-closed socket.
1129 *
1130 * Traditional mark-sweep gc's start at the "root", and mark
1131 * everything reachable from the root (which, in our case would be the
1132 * process table). The mark bits are cleared during the sweep.
1133 *
1134 * XXX For some inexplicable reason (perhaps because the file
1135 * descriptor tables used to live in the u area which could be swapped
1136 * out and thus hard to reach), we do multiple scans over the set of
1137 * descriptors, using use *two* mark bits per object (DEFER and MARK).
1138 * Whenever we find a descriptor which references other descriptors,
1139 * the ones it references are marked with both bits, and we iterate
1140 * over the whole file table until there are no more DEFER bits set.
1141 * We also make an extra pass *before* the GC to clear the mark bits,
1142 * which could have been cleared at almost no cost during the previous
1143 * sweep.
1144 */
1145 void
1146 unp_gc(void)
1147 {
1148 file_t *fp, *nextfp;
1149 struct socket *so, *so1;
1150 file_t **extra_ref, **fpp;
1151 int nunref, nslots, i;
1152
1153 if (atomic_swap_uint(&unp_gcing, 1) == 1)
1154 return;
1155
1156 restart:
1157 nslots = nfiles * 2;
1158 extra_ref = kmem_alloc(nslots * sizeof(file_t *), KM_SLEEP);
1159
1160 mutex_enter(&filelist_lock);
1161 unp_defer = 0;
1162
1163 /* Clear mark bits */
1164 LIST_FOREACH(fp, &filehead, f_list) {
1165 atomic_and_uint(&fp->f_flag, ~(FMARK|FDEFER));
1166 }
1167
1168 /*
1169 * Iterate over the set of descriptors, marking ones believed
1170 * (based on refcount) to be referenced from a process, and
1171 * marking for rescan descriptors which are queued on a socket.
1172 */
1173 do {
1174 LIST_FOREACH(fp, &filehead, f_list) {
1175 mutex_enter(&fp->f_lock);
1176 if (fp->f_flag & FDEFER) {
1177 atomic_and_uint(&fp->f_flag, ~FDEFER);
1178 unp_defer--;
1179 KASSERT(fp->f_count != 0);
1180 } else {
1181 if (fp->f_count == 0 ||
1182 (fp->f_flag & FMARK) ||
1183 fp->f_count == fp->f_msgcount) {
1184 mutex_exit(&fp->f_lock);
1185 continue;
1186 }
1187 }
1188 atomic_or_uint(&fp->f_flag, FMARK);
1189
1190 if (fp->f_type != DTYPE_SOCKET ||
1191 (so = (struct socket *)fp->f_data) == NULL ||
1192 so->so_proto->pr_domain != &unixdomain ||
1193 (so->so_proto->pr_flags&PR_RIGHTS) == 0) {
1194 mutex_exit(&fp->f_lock);
1195 continue;
1196 }
1197 #ifdef notdef
1198 if (so->so_rcv.sb_flags & SB_LOCK) {
1199 /*
1200 * This is problematical; it's not clear
1201 * we need to wait for the sockbuf to be
1202 * unlocked (on a uniprocessor, at least),
1203 * and it's also not clear what to do
1204 * if sbwait returns an error due to receipt
1205 * of a signal. If sbwait does return
1206 * an error, we'll go into an infinite
1207 * loop. Delete all of this for now.
1208 */
1209 (void) sbwait(&so->so_rcv);
1210 goto restart;
1211 }
1212 #endif
1213 mutex_exit(&fp->f_lock);
1214
1215 unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
1216 /*
1217 * Mark descriptors referenced from sockets queued
1218 * on the accept queue as well.
1219 */
1220 if (so->so_options & SO_ACCEPTCONN) {
1221 TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
1222 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1223 }
1224 TAILQ_FOREACH(so1, &so->so_q, so_qe) {
1225 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1226 }
1227 }
1228 }
1229 } while (unp_defer);
1230
1231 /*
1232 * Sweep pass. Find unmarked descriptors, and free them.
1233 *
1234 * We grab an extra reference to each of the file table entries
1235 * that are not otherwise accessible and then free the rights
1236 * that are stored in messages on them.
1237 *
1238 * The bug in the original code is a little tricky, so I'll describe
1239 * what's wrong with it here.
1240 *
1241 * It is incorrect to simply unp_discard each entry for f_msgcount
1242 * times -- consider the case of sockets A and B that contain
1243 * references to each other. On a last close of some other socket,
1244 * we trigger a gc since the number of outstanding rights (unp_rights)
1245 * is non-zero. If during the sweep phase the gc code un_discards,
1246 * we end up doing a (full) closef on the descriptor. A closef on A
1247 * results in the following chain. Closef calls soo_close, which
1248 * calls soclose. Soclose calls first (through the switch
1249 * uipc_usrreq) unp_detach, which re-invokes unp_gc. Unp_gc simply
1250 * returns because the previous instance had set unp_gcing, and
1251 * we return all the way back to soclose, which marks the socket
1252 * with SS_NOFDREF, and then calls sofree. Sofree calls sorflush
1253 * to free up the rights that are queued in messages on the socket A,
1254 * i.e., the reference on B. The sorflush calls via the dom_dispose
1255 * switch unp_dispose, which unp_scans with unp_discard. This second
1256 * instance of unp_discard just calls closef on B.
1257 *
1258 * Well, a similar chain occurs on B, resulting in a sorflush on B,
1259 * which results in another closef on A. Unfortunately, A is already
1260 * being closed, and the descriptor has already been marked with
1261 * SS_NOFDREF, and soclose panics at this point.
1262 *
1263 * Here, we first take an extra reference to each inaccessible
1264 * descriptor. Then, if the inaccessible descriptor is a
1265 * socket, we call sorflush in case it is a Unix domain
1266 * socket. After we destroy all the rights carried in
1267 * messages, we do a last closef to get rid of our extra
1268 * reference. This is the last close, and the unp_detach etc
1269 * will shut down the socket.
1270 *
1271 * 91/09/19, bsy (at) cs.cmu.edu
1272 */
1273 if (nslots < nfiles) {
1274 kmem_free(extra_ref, nslots * sizeof(file_t *));
1275 goto restart;
1276 }
1277 for (nunref = 0, fp = LIST_FIRST(&filehead), fpp = extra_ref; fp != 0;
1278 fp = nextfp) {
1279 nextfp = LIST_NEXT(fp, f_list);
1280 mutex_enter(&fp->f_lock);
1281 if (fp->f_count != 0 &&
1282 fp->f_count == fp->f_msgcount && !(fp->f_flag & FMARK)) {
1283 *fpp++ = fp;
1284 nunref++;
1285 fp->f_count++;
1286 }
1287 mutex_exit(&fp->f_lock);
1288 }
1289 mutex_exit(&filelist_lock);
1290
1291 for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) {
1292 fp = *fpp;
1293 if (fp->f_type == DTYPE_SOCKET)
1294 sorflush(fp->f_data);
1295 }
1296 for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) {
1297 closef(*fpp);
1298 }
1299 kmem_free(extra_ref, nslots * sizeof(file_t *));
1300 atomic_swap_uint(&unp_gcing, 0);
1301 }
1302
1303 void
1304 unp_dispose(struct mbuf *m)
1305 {
1306
1307 if (m)
1308 unp_scan(m, unp_discard, 1);
1309 }
1310
1311 void
1312 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
1313 {
1314 struct mbuf *m;
1315 file_t **rp;
1316 struct cmsghdr *cm;
1317 int i;
1318 int qfds;
1319
1320 while (m0) {
1321 for (m = m0; m; m = m->m_next) {
1322 if (m->m_type == MT_CONTROL &&
1323 m->m_len >= sizeof(*cm)) {
1324 cm = mtod(m, struct cmsghdr *);
1325 if (cm->cmsg_level != SOL_SOCKET ||
1326 cm->cmsg_type != SCM_RIGHTS)
1327 continue;
1328 qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
1329 / sizeof(file_t *);
1330 rp = (file_t **)CMSG_DATA(cm);
1331 for (i = 0; i < qfds; i++) {
1332 file_t *fp = *rp;
1333 if (discard)
1334 *rp = 0;
1335 (*op)(fp);
1336 rp++;
1337 }
1338 break; /* XXX, but saves time */
1339 }
1340 }
1341 m0 = m0->m_nextpkt;
1342 }
1343 }
1344
1345 void
1346 unp_mark(file_t *fp)
1347 {
1348
1349 if (fp == NULL)
1350 return;
1351
1352 /* If we're already deferred, don't screw up the defer count */
1353 mutex_enter(&fp->f_lock);
1354 if (fp->f_flag & (FMARK | FDEFER)) {
1355 mutex_exit(&fp->f_lock);
1356 return;
1357 }
1358
1359 /*
1360 * Minimize the number of deferrals... Sockets are the only
1361 * type of descriptor which can hold references to another
1362 * descriptor, so just mark other descriptors, and defer
1363 * unmarked sockets for the next pass.
1364 */
1365 if (fp->f_type == DTYPE_SOCKET) {
1366 unp_defer++;
1367 KASSERT(fp->f_count != 0);
1368 atomic_or_uint(&fp->f_flag, FDEFER);
1369 } else {
1370 atomic_or_uint(&fp->f_flag, FMARK);
1371 }
1372 mutex_exit(&fp->f_lock);
1373 return;
1374 }
1375
1376 void
1377 unp_discard(file_t *fp)
1378 {
1379
1380 if (fp == NULL)
1381 return;
1382
1383 mutex_enter(&fp->f_lock);
1384 KASSERT(fp->f_count > 0);
1385 fp->f_msgcount--;
1386 mutex_exit(&fp->f_lock);
1387 atomic_dec_uint(&unp_rights);
1388 (void)closef(fp);
1389 }
1390