uipc_usrreq.c revision 1.111 1 /* $NetBSD: uipc_usrreq.c,v 1.111 2008/04/20 07:47:18 mlelstv Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2000, 2004, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1989, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
69 */
70
71 /*
72 * Copyright (c) 1997 Christopher G. Demetriou. All rights reserved.
73 *
74 * Redistribution and use in source and binary forms, with or without
75 * modification, are permitted provided that the following conditions
76 * are met:
77 * 1. Redistributions of source code must retain the above copyright
78 * notice, this list of conditions and the following disclaimer.
79 * 2. Redistributions in binary form must reproduce the above copyright
80 * notice, this list of conditions and the following disclaimer in the
81 * documentation and/or other materials provided with the distribution.
82 * 3. All advertising materials mentioning features or use of this software
83 * must display the following acknowledgement:
84 * This product includes software developed by the University of
85 * California, Berkeley and its contributors.
86 * 4. Neither the name of the University nor the names of its contributors
87 * may be used to endorse or promote products derived from this software
88 * without specific prior written permission.
89 *
90 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
91 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
92 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
93 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
94 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
95 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
96 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
97 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
98 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
99 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
100 * SUCH DAMAGE.
101 *
102 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
103 */
104
105 #include <sys/cdefs.h>
106 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.111 2008/04/20 07:47:18 mlelstv Exp $");
107
108 #include <sys/param.h>
109 #include <sys/systm.h>
110 #include <sys/proc.h>
111 #include <sys/filedesc.h>
112 #include <sys/domain.h>
113 #include <sys/protosw.h>
114 #include <sys/socket.h>
115 #include <sys/socketvar.h>
116 #include <sys/unpcb.h>
117 #include <sys/un.h>
118 #include <sys/namei.h>
119 #include <sys/vnode.h>
120 #include <sys/file.h>
121 #include <sys/stat.h>
122 #include <sys/mbuf.h>
123 #include <sys/kauth.h>
124 #include <sys/kmem.h>
125 #include <sys/atomic.h>
126
127 /*
128 * Unix communications domain.
129 *
130 * TODO:
131 * SEQPACKET, RDM
132 * rethink name space problems
133 * need a proper out-of-band
134 */
135 const struct sockaddr_un sun_noname = {
136 .sun_len = sizeof(sun_noname),
137 .sun_family = AF_LOCAL,
138 };
139 ino_t unp_ino; /* prototype for fake inode numbers */
140
141 struct mbuf *unp_addsockcred(struct lwp *, struct mbuf *);
142
143 int
144 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp,
145 struct lwp *l)
146 {
147 struct socket *so2;
148 const struct sockaddr_un *sun;
149
150 so2 = unp->unp_conn->unp_socket;
151 if (unp->unp_addr)
152 sun = unp->unp_addr;
153 else
154 sun = &sun_noname;
155 if (unp->unp_conn->unp_flags & UNP_WANTCRED)
156 control = unp_addsockcred(l, control);
157 if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
158 control) == 0) {
159 unp_dispose(control);
160 m_freem(control);
161 m_freem(m);
162 so2->so_rcv.sb_overflowed++;
163 return (ENOBUFS);
164 } else {
165 sorwakeup(so2);
166 return (0);
167 }
168 }
169
170 void
171 unp_setsockaddr(struct unpcb *unp, struct mbuf *nam)
172 {
173 const struct sockaddr_un *sun;
174
175 if (unp->unp_addr)
176 sun = unp->unp_addr;
177 else
178 sun = &sun_noname;
179 nam->m_len = sun->sun_len;
180 if (nam->m_len > MLEN)
181 MEXTMALLOC(nam, nam->m_len, M_WAITOK);
182 memcpy(mtod(nam, void *), sun, (size_t)nam->m_len);
183 }
184
185 void
186 unp_setpeeraddr(struct unpcb *unp, struct mbuf *nam)
187 {
188 const struct sockaddr_un *sun;
189
190 if (unp->unp_conn && unp->unp_conn->unp_addr)
191 sun = unp->unp_conn->unp_addr;
192 else
193 sun = &sun_noname;
194 nam->m_len = sun->sun_len;
195 if (nam->m_len > MLEN)
196 MEXTMALLOC(nam, nam->m_len, M_WAITOK);
197 memcpy(mtod(nam, void *), sun, (size_t)nam->m_len);
198 }
199
200 /*ARGSUSED*/
201 int
202 uipc_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
203 struct mbuf *control, struct lwp *l)
204 {
205 struct unpcb *unp = sotounpcb(so);
206 struct socket *so2;
207 struct proc *p;
208 u_int newhiwat;
209 int error = 0;
210
211 if (req == PRU_CONTROL)
212 return (EOPNOTSUPP);
213
214 #ifdef DIAGNOSTIC
215 if (req != PRU_SEND && req != PRU_SENDOOB && control)
216 panic("uipc_usrreq: unexpected control mbuf");
217 #endif
218 p = l ? l->l_proc : NULL;
219 if (unp == 0 && req != PRU_ATTACH) {
220 error = EINVAL;
221 goto release;
222 }
223
224 switch (req) {
225
226 case PRU_ATTACH:
227 if (unp != 0) {
228 error = EISCONN;
229 break;
230 }
231 error = unp_attach(so);
232 break;
233
234 case PRU_DETACH:
235 unp_detach(unp);
236 break;
237
238 case PRU_BIND:
239 KASSERT(l != NULL);
240 error = unp_bind(unp, nam, l);
241 break;
242
243 case PRU_LISTEN:
244 if (unp->unp_vnode == 0)
245 error = EINVAL;
246 break;
247
248 case PRU_CONNECT:
249 KASSERT(l != NULL);
250 error = unp_connect(so, nam, l);
251 break;
252
253 case PRU_CONNECT2:
254 error = unp_connect2(so, (struct socket *)nam, PRU_CONNECT2);
255 break;
256
257 case PRU_DISCONNECT:
258 unp_disconnect(unp);
259 break;
260
261 case PRU_ACCEPT:
262 unp_setpeeraddr(unp, nam);
263 /*
264 * Mark the initiating STREAM socket as connected *ONLY*
265 * after it's been accepted. This prevents a client from
266 * overrunning a server and receiving ECONNREFUSED.
267 */
268 if (unp->unp_conn != NULL &&
269 (unp->unp_conn->unp_socket->so_state & SS_ISCONNECTING))
270 soisconnected(unp->unp_conn->unp_socket);
271 break;
272
273 case PRU_SHUTDOWN:
274 socantsendmore(so);
275 unp_shutdown(unp);
276 break;
277
278 case PRU_RCVD:
279 switch (so->so_type) {
280
281 case SOCK_DGRAM:
282 panic("uipc 1");
283 /*NOTREACHED*/
284
285 case SOCK_STREAM:
286 #define rcv (&so->so_rcv)
287 #define snd (&so2->so_snd)
288 if (unp->unp_conn == 0)
289 break;
290 so2 = unp->unp_conn->unp_socket;
291 /*
292 * Adjust backpressure on sender
293 * and wakeup any waiting to write.
294 */
295 snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
296 unp->unp_mbcnt = rcv->sb_mbcnt;
297 newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
298 (void)chgsbsize(so2->so_uidinfo,
299 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
300 unp->unp_cc = rcv->sb_cc;
301 sowwakeup(so2);
302 #undef snd
303 #undef rcv
304 break;
305
306 default:
307 panic("uipc 2");
308 }
309 break;
310
311 case PRU_SEND:
312 /*
313 * Note: unp_internalize() rejects any control message
314 * other than SCM_RIGHTS, and only allows one. This
315 * has the side-effect of preventing a caller from
316 * forging SCM_CREDS.
317 */
318 if (control) {
319 KASSERT(l != NULL);
320 if ((error = unp_internalize(&control, l)) != 0) {
321 m_freem(control);
322 m_freem(m);
323 break;
324 }
325 }
326 switch (so->so_type) {
327
328 case SOCK_DGRAM: {
329 if (nam) {
330 if ((so->so_state & SS_ISCONNECTED) != 0)
331 error = EISCONN;
332 else {
333 KASSERT(l != NULL);
334 error = unp_connect(so, nam, l);
335 }
336 } else {
337 if ((so->so_state & SS_ISCONNECTED) == 0)
338 error = ENOTCONN;
339 }
340 if (error) {
341 unp_dispose(control);
342 m_freem(control);
343 m_freem(m);
344 break;
345 }
346 KASSERT(p != NULL);
347 error = unp_output(m, control, unp, l);
348 if (nam)
349 unp_disconnect(unp);
350 break;
351 }
352
353 case SOCK_STREAM:
354 #define rcv (&so2->so_rcv)
355 #define snd (&so->so_snd)
356 if (unp->unp_conn == NULL) {
357 error = ENOTCONN;
358 break;
359 }
360 so2 = unp->unp_conn->unp_socket;
361 if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
362 /*
363 * Credentials are passed only once on
364 * SOCK_STREAM.
365 */
366 unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
367 control = unp_addsockcred(l, control);
368 }
369 /*
370 * Send to paired receive port, and then reduce
371 * send buffer hiwater marks to maintain backpressure.
372 * Wake up readers.
373 */
374 if (control) {
375 if (sbappendcontrol(rcv, m, control) == 0) {
376 unp_dispose(control);
377 m_freem(control);
378 }
379 } else
380 sbappend(rcv, m);
381 snd->sb_mbmax -=
382 rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
383 unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
384 newhiwat = snd->sb_hiwat -
385 (rcv->sb_cc - unp->unp_conn->unp_cc);
386 (void)chgsbsize(so->so_uidinfo,
387 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
388 unp->unp_conn->unp_cc = rcv->sb_cc;
389 sorwakeup(so2);
390 #undef snd
391 #undef rcv
392 break;
393
394 default:
395 panic("uipc 4");
396 }
397 break;
398
399 case PRU_ABORT:
400 unp_drop(unp, ECONNABORTED);
401
402 KASSERT(so->so_head == NULL);
403 #ifdef DIAGNOSTIC
404 if (so->so_pcb == 0)
405 panic("uipc 5: drop killed pcb");
406 #endif
407 unp_detach(unp);
408 break;
409
410 case PRU_SENSE:
411 ((struct stat *) m)->st_blksize = so->so_snd.sb_hiwat;
412 if (so->so_type == SOCK_STREAM && unp->unp_conn != 0) {
413 so2 = unp->unp_conn->unp_socket;
414 ((struct stat *) m)->st_blksize += so2->so_rcv.sb_cc;
415 }
416 ((struct stat *) m)->st_dev = NODEV;
417 if (unp->unp_ino == 0)
418 unp->unp_ino = unp_ino++;
419 ((struct stat *) m)->st_atimespec =
420 ((struct stat *) m)->st_mtimespec =
421 ((struct stat *) m)->st_ctimespec = unp->unp_ctime;
422 ((struct stat *) m)->st_ino = unp->unp_ino;
423 return (0);
424
425 case PRU_RCVOOB:
426 error = EOPNOTSUPP;
427 break;
428
429 case PRU_SENDOOB:
430 m_freem(control);
431 m_freem(m);
432 error = EOPNOTSUPP;
433 break;
434
435 case PRU_SOCKADDR:
436 unp_setsockaddr(unp, nam);
437 break;
438
439 case PRU_PEERADDR:
440 unp_setpeeraddr(unp, nam);
441 break;
442
443 default:
444 panic("piusrreq");
445 }
446
447 release:
448 return (error);
449 }
450
451 /*
452 * Unix domain socket option processing.
453 */
454 int
455 uipc_ctloutput(int op, struct socket *so, int level, int optname,
456 struct mbuf **mp)
457 {
458 struct unpcb *unp = sotounpcb(so);
459 struct mbuf *m = *mp;
460 int optval = 0, error = 0;
461
462 if (level != 0) {
463 error = ENOPROTOOPT;
464 if (op == PRCO_SETOPT && m)
465 (void) m_free(m);
466 } else switch (op) {
467
468 case PRCO_SETOPT:
469 switch (optname) {
470 case LOCAL_CREDS:
471 case LOCAL_CONNWAIT:
472 if (m == NULL || m->m_len != sizeof(int))
473 error = EINVAL;
474 else {
475 optval = *mtod(m, int *);
476 switch (optname) {
477 #define OPTSET(bit) \
478 if (optval) \
479 unp->unp_flags |= (bit); \
480 else \
481 unp->unp_flags &= ~(bit);
482
483 case LOCAL_CREDS:
484 OPTSET(UNP_WANTCRED);
485 break;
486 case LOCAL_CONNWAIT:
487 OPTSET(UNP_CONNWAIT);
488 break;
489 }
490 }
491 break;
492 #undef OPTSET
493
494 default:
495 error = ENOPROTOOPT;
496 break;
497 }
498 if (m)
499 (void) m_free(m);
500 break;
501
502 case PRCO_GETOPT:
503 switch (optname) {
504 case LOCAL_PEEREID:
505 if (unp->unp_flags & UNP_EIDSVALID) {
506 *mp = m = m_get(M_WAIT, MT_SOOPTS);
507 m->m_len = sizeof(struct unpcbid);
508 *mtod(m, struct unpcbid *) = unp->unp_connid;
509 } else {
510 error = EINVAL;
511 }
512 break;
513 case LOCAL_CREDS:
514 *mp = m = m_get(M_WAIT, MT_SOOPTS);
515 m->m_len = sizeof(int);
516
517 #define OPTBIT(bit) (unp->unp_flags & (bit) ? 1 : 0)
518
519 optval = OPTBIT(UNP_WANTCRED);
520 *mtod(m, int *) = optval;
521 break;
522 #undef OPTBIT
523
524 default:
525 error = ENOPROTOOPT;
526 break;
527 }
528 break;
529 }
530 return (error);
531 }
532
533 /*
534 * Both send and receive buffers are allocated PIPSIZ bytes of buffering
535 * for stream sockets, although the total for sender and receiver is
536 * actually only PIPSIZ.
537 * Datagram sockets really use the sendspace as the maximum datagram size,
538 * and don't really want to reserve the sendspace. Their recvspace should
539 * be large enough for at least one max-size datagram plus address.
540 */
541 #define PIPSIZ 4096
542 u_long unpst_sendspace = PIPSIZ;
543 u_long unpst_recvspace = PIPSIZ;
544 u_long unpdg_sendspace = 2*1024; /* really max datagram size */
545 u_long unpdg_recvspace = 4*1024;
546
547 u_int unp_rights; /* file descriptors in flight */
548
549 int
550 unp_attach(struct socket *so)
551 {
552 struct unpcb *unp;
553 int error;
554
555 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
556 switch (so->so_type) {
557
558 case SOCK_STREAM:
559 error = soreserve(so, unpst_sendspace, unpst_recvspace);
560 break;
561
562 case SOCK_DGRAM:
563 error = soreserve(so, unpdg_sendspace, unpdg_recvspace);
564 break;
565
566 default:
567 panic("unp_attach");
568 }
569 if (error)
570 return (error);
571 }
572 unp = malloc(sizeof(*unp), M_PCB, M_NOWAIT);
573 if (unp == NULL)
574 return (ENOBUFS);
575 memset((void *)unp, 0, sizeof(*unp));
576 unp->unp_socket = so;
577 so->so_pcb = unp;
578 nanotime(&unp->unp_ctime);
579 return (0);
580 }
581
582 void
583 unp_detach(struct unpcb *unp)
584 {
585
586 if (unp->unp_vnode) {
587 unp->unp_vnode->v_socket = 0;
588 vrele(unp->unp_vnode);
589 unp->unp_vnode = 0;
590 }
591 if (unp->unp_conn)
592 unp_disconnect(unp);
593 while (unp->unp_refs)
594 unp_drop(unp->unp_refs, ECONNRESET);
595 soisdisconnected(unp->unp_socket);
596 unp->unp_socket->so_pcb = 0;
597 if (unp->unp_addr)
598 free(unp->unp_addr, M_SONAME);
599 if (unp_rights) {
600 /*
601 * Normally the receive buffer is flushed later,
602 * in sofree, but if our receive buffer holds references
603 * to descriptors that are now garbage, we will dispose
604 * of those descriptor references after the garbage collector
605 * gets them (resulting in a "panic: closef: count < 0").
606 */
607 sorflush(unp->unp_socket);
608 free(unp, M_PCB);
609 unp_gc();
610 } else
611 free(unp, M_PCB);
612 }
613
614 int
615 unp_bind(struct unpcb *unp, struct mbuf *nam, struct lwp *l)
616 {
617 struct sockaddr_un *sun;
618 vnode_t *vp;
619 struct vattr vattr;
620 size_t addrlen;
621 struct proc *p;
622 int error;
623 struct nameidata nd;
624
625 if (unp->unp_vnode != 0)
626 return (EINVAL);
627
628 if ((unp->unp_flags & UNP_BUSY) != 0) {
629 /*
630 * EALREADY may not be strictly accurate, but since this
631 * is a major application error it's hardly a big deal.
632 */
633 return (EALREADY);
634 }
635 unp->unp_flags |= UNP_BUSY;
636
637 p = l->l_proc;
638 /*
639 * Allocate the new sockaddr. We have to allocate one
640 * extra byte so that we can ensure that the pathname
641 * is nul-terminated.
642 */
643 addrlen = nam->m_len + 1;
644 sun = malloc(addrlen, M_SONAME, M_WAITOK);
645 m_copydata(nam, 0, nam->m_len, (void *)sun);
646 *(((char *)sun) + nam->m_len) = '\0';
647
648 NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, UIO_SYSSPACE,
649 sun->sun_path);
650
651 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
652 if ((error = namei(&nd)) != 0)
653 goto bad;
654 vp = nd.ni_vp;
655 if (vp != NULL) {
656 VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
657 if (nd.ni_dvp == vp)
658 vrele(nd.ni_dvp);
659 else
660 vput(nd.ni_dvp);
661 vrele(vp);
662 error = EADDRINUSE;
663 goto bad;
664 }
665 VATTR_NULL(&vattr);
666 vattr.va_type = VSOCK;
667 vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
668 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
669 if (error)
670 goto bad;
671 vp = nd.ni_vp;
672 vp->v_socket = unp->unp_socket;
673 unp->unp_vnode = vp;
674 unp->unp_addrlen = addrlen;
675 unp->unp_addr = sun;
676 unp->unp_connid.unp_pid = p->p_pid;
677 unp->unp_connid.unp_euid = kauth_cred_geteuid(p->p_cred);
678 unp->unp_connid.unp_egid = kauth_cred_getegid(p->p_cred);
679 unp->unp_flags |= UNP_EIDSBIND;
680 VOP_UNLOCK(vp, 0);
681 unp->unp_flags &= ~UNP_BUSY;
682 return (0);
683
684 bad:
685 free(sun, M_SONAME);
686 unp->unp_flags &= ~UNP_BUSY;
687 return (error);
688 }
689
690 int
691 unp_connect(struct socket *so, struct mbuf *nam, struct lwp *l)
692 {
693 struct sockaddr_un *sun;
694 vnode_t *vp;
695 struct socket *so2, *so3;
696 struct unpcb *unp, *unp2, *unp3;
697 size_t addrlen;
698 struct proc *p;
699 int error;
700 struct nameidata nd;
701
702 unp = sotounpcb(so);
703 if ((unp->unp_flags & UNP_BUSY) != 0) {
704 /*
705 * EALREADY may not be strictly accurate, but since this
706 * is a major application error it's hardly a big deal.
707 */
708 return (EALREADY);
709 }
710 unp->unp_flags |= UNP_BUSY;
711
712 p = l->l_proc;
713 /*
714 * Allocate a temporary sockaddr. We have to allocate one extra
715 * byte so that we can ensure that the pathname is nul-terminated.
716 * When we establish the connection, we copy the other PCB's
717 * sockaddr to our own.
718 */
719 addrlen = nam->m_len + 1;
720 sun = malloc(addrlen, M_SONAME, M_WAITOK);
721 m_copydata(nam, 0, nam->m_len, (void *)sun);
722 *(((char *)sun) + nam->m_len) = '\0';
723
724 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, UIO_SYSSPACE,
725 sun->sun_path);
726
727 if ((error = namei(&nd)) != 0)
728 goto bad2;
729 vp = nd.ni_vp;
730 if (vp->v_type != VSOCK) {
731 error = ENOTSOCK;
732 goto bad;
733 }
734 if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
735 goto bad;
736 so2 = vp->v_socket;
737 if (so2 == 0) {
738 error = ECONNREFUSED;
739 goto bad;
740 }
741 if (so->so_type != so2->so_type) {
742 error = EPROTOTYPE;
743 goto bad;
744 }
745 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
746 if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
747 (so3 = sonewconn(so2, 0)) == 0) {
748 error = ECONNREFUSED;
749 goto bad;
750 }
751 unp2 = sotounpcb(so2);
752 unp3 = sotounpcb(so3);
753 if (unp2->unp_addr) {
754 unp3->unp_addr = malloc(unp2->unp_addrlen,
755 M_SONAME, M_WAITOK);
756 memcpy(unp3->unp_addr, unp2->unp_addr,
757 unp2->unp_addrlen);
758 unp3->unp_addrlen = unp2->unp_addrlen;
759 }
760 unp3->unp_flags = unp2->unp_flags;
761 unp3->unp_connid.unp_pid = p->p_pid;
762 unp3->unp_connid.unp_euid = kauth_cred_geteuid(p->p_cred);
763 unp3->unp_connid.unp_egid = kauth_cred_getegid(p->p_cred);
764 unp3->unp_flags |= UNP_EIDSVALID;
765 so2 = so3;
766 if (unp2->unp_flags & UNP_EIDSBIND) {
767 unp->unp_connid = unp2->unp_connid;
768 unp->unp_flags |= UNP_EIDSVALID;
769 }
770 }
771 error = unp_connect2(so, so2, PRU_CONNECT);
772 bad:
773 vput(vp);
774 bad2:
775 free(sun, M_SONAME);
776 unp->unp_flags &= ~UNP_BUSY;
777 return (error);
778 }
779
780 int
781 unp_connect2(struct socket *so, struct socket *so2, int req)
782 {
783 struct unpcb *unp = sotounpcb(so);
784 struct unpcb *unp2;
785
786 if (so2->so_type != so->so_type)
787 return (EPROTOTYPE);
788 unp2 = sotounpcb(so2);
789 unp->unp_conn = unp2;
790 switch (so->so_type) {
791
792 case SOCK_DGRAM:
793 unp->unp_nextref = unp2->unp_refs;
794 unp2->unp_refs = unp;
795 soisconnected(so);
796 break;
797
798 case SOCK_STREAM:
799 unp2->unp_conn = unp;
800 if (req == PRU_CONNECT &&
801 ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
802 soisconnecting(so);
803 else
804 soisconnected(so);
805 soisconnected(so2);
806 break;
807
808 default:
809 panic("unp_connect2");
810 }
811 return (0);
812 }
813
814 void
815 unp_disconnect(struct unpcb *unp)
816 {
817 struct unpcb *unp2 = unp->unp_conn;
818
819 if (unp2 == 0)
820 return;
821 unp->unp_conn = 0;
822 switch (unp->unp_socket->so_type) {
823
824 case SOCK_DGRAM:
825 if (unp2->unp_refs == unp)
826 unp2->unp_refs = unp->unp_nextref;
827 else {
828 unp2 = unp2->unp_refs;
829 for (;;) {
830 if (unp2 == 0)
831 panic("unp_disconnect");
832 if (unp2->unp_nextref == unp)
833 break;
834 unp2 = unp2->unp_nextref;
835 }
836 unp2->unp_nextref = unp->unp_nextref;
837 }
838 unp->unp_nextref = 0;
839 unp->unp_socket->so_state &= ~SS_ISCONNECTED;
840 break;
841
842 case SOCK_STREAM:
843 soisdisconnected(unp->unp_socket);
844 unp2->unp_conn = 0;
845 soisdisconnected(unp2->unp_socket);
846 break;
847 }
848 }
849
850 #ifdef notdef
851 unp_abort(struct unpcb *unp)
852 {
853 unp_detach(unp);
854 }
855 #endif
856
857 void
858 unp_shutdown(struct unpcb *unp)
859 {
860 struct socket *so;
861
862 if (unp->unp_socket->so_type == SOCK_STREAM && unp->unp_conn &&
863 (so = unp->unp_conn->unp_socket))
864 socantrcvmore(so);
865 }
866
867 void
868 unp_drop(struct unpcb *unp, int errno)
869 {
870 struct socket *so = unp->unp_socket;
871
872 so->so_error = errno;
873 unp_disconnect(unp);
874 if (so->so_head) {
875 so->so_pcb = 0;
876 sofree(so);
877 if (unp->unp_addr)
878 free(unp->unp_addr, M_SONAME);
879 free(unp, M_PCB);
880 }
881 }
882
883 #ifdef notdef
884 unp_drain(void)
885 {
886
887 }
888 #endif
889
890 int
891 unp_externalize(struct mbuf *rights, struct lwp *l)
892 {
893 struct cmsghdr *cm = mtod(rights, struct cmsghdr *);
894 struct proc *p = l->l_proc;
895 int i, *fdp;
896 file_t **rp;
897 file_t *fp;
898 int nfds, error = 0;
899
900 nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
901 sizeof(file_t *);
902 rp = (file_t **)CMSG_DATA(cm);
903
904 fdp = malloc(nfds * sizeof(int), M_TEMP, M_WAITOK);
905 rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
906
907 /* Make sure the recipient should be able to see the descriptors.. */
908 if (p->p_cwdi->cwdi_rdir != NULL) {
909 rp = (file_t **)CMSG_DATA(cm);
910 for (i = 0; i < nfds; i++) {
911 fp = *rp++;
912 /*
913 * If we are in a chroot'ed directory, and
914 * someone wants to pass us a directory, make
915 * sure it's inside the subtree we're allowed
916 * to access.
917 */
918 if (fp->f_type == DTYPE_VNODE) {
919 vnode_t *vp = (vnode_t *)fp->f_data;
920 if ((vp->v_type == VDIR) &&
921 !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
922 error = EPERM;
923 break;
924 }
925 }
926 }
927 }
928
929 restart:
930 rp = (file_t **)CMSG_DATA(cm);
931 if (error != 0) {
932 for (i = 0; i < nfds; i++) {
933 fp = *rp;
934 /*
935 * zero the pointer before calling unp_discard,
936 * since it may end up in unp_gc()..
937 */
938 *rp++ = 0;
939 unp_discard(fp);
940 }
941 goto out;
942 }
943
944 /*
945 * First loop -- allocate file descriptor table slots for the
946 * new descriptors.
947 */
948 for (i = 0; i < nfds; i++) {
949 fp = *rp++;
950 if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
951 /*
952 * Back out what we've done so far.
953 */
954 for (--i; i >= 0; i--) {
955 fd_abort(p, NULL, fdp[i]);
956 }
957 if (error == ENOSPC) {
958 fd_tryexpand(p);
959 error = 0;
960 } else {
961 /*
962 * This is the error that has historically
963 * been returned, and some callers may
964 * expect it.
965 */
966 error = EMSGSIZE;
967 }
968 goto restart;
969 }
970 }
971
972 /*
973 * Now that adding them has succeeded, update all of the
974 * descriptor passing state. */
975 rp = (file_t **)CMSG_DATA(cm);
976 for (i = 0; i < nfds; i++) {
977 fp = *rp++;
978 atomic_dec_uint(&unp_rights);
979 fd_affix(p, fp, fdp[i]);
980 mutex_enter(&fp->f_lock);
981 fp->f_msgcount--;
982 mutex_exit(&fp->f_lock);
983 /*
984 * Note that fd_affix() adds a reference to the file.
985 * The file may already have been closed by another
986 * LWP in the process, so we must drop the reference
987 * added by unp_internalize() with closef().
988 */
989 closef(fp);
990 }
991
992 /*
993 * Copy temporary array to message and adjust length, in case of
994 * transition from large file_t pointers to ints.
995 */
996 memcpy(CMSG_DATA(cm), fdp, nfds * sizeof(int));
997 cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
998 rights->m_len = CMSG_SPACE(nfds * sizeof(int));
999 out:
1000 rw_exit(&p->p_cwdi->cwdi_lock);
1001 free(fdp, M_TEMP);
1002 return (error);
1003 }
1004
1005 int
1006 unp_internalize(struct mbuf **controlp, struct lwp *l)
1007 {
1008 struct filedesc *fdescp = curlwp->l_fd;
1009 struct mbuf *control = *controlp;
1010 struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
1011 file_t **rp, **files;
1012 file_t *fp;
1013 int i, fd, *fdp;
1014 int nfds, error;
1015
1016 KASSERT(l == curlwp);
1017
1018 error = 0;
1019 newcm = NULL;
1020
1021 /* Sanity check the control message header. */
1022 if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
1023 cm->cmsg_len != control->m_len)
1024 return (EINVAL);
1025
1026 /*
1027 * Verify that the file descriptors are valid, and acquire
1028 * a reference to each.
1029 */
1030 nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
1031 fdp = (int *)CMSG_DATA(cm);
1032 for (i = 0; i < nfds; i++) {
1033 fd = *fdp++;
1034 if ((fp = fd_getfile(fd)) == NULL) {
1035 nfds = i + 1;
1036 error = EBADF;
1037 goto out;
1038 }
1039 }
1040
1041 /* Allocate new space and copy header into it. */
1042 newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
1043 if (newcm == NULL) {
1044 error = E2BIG;
1045 goto out;
1046 }
1047 memcpy(newcm, cm, sizeof(struct cmsghdr));
1048 files = (file_t **)CMSG_DATA(newcm);
1049
1050 /*
1051 * Transform the file descriptors into file_t pointers, in
1052 * reverse order so that if pointers are bigger than ints, the
1053 * int won't get until we're done. No need to lock, as we have
1054 * already validated the descriptors with fd_getfile().
1055 */
1056 fdp = (int *)CMSG_DATA(cm) + nfds;
1057 rp = files + nfds;
1058 for (i = 0; i < nfds; i++) {
1059 fp = fdescp->fd_ofiles[*--fdp]->ff_file;
1060 KASSERT(fp != NULL);
1061 mutex_enter(&fp->f_lock);
1062 *--rp = fp;
1063 fp->f_count++;
1064 fp->f_msgcount++;
1065 mutex_exit(&fp->f_lock);
1066 atomic_inc_uint(&unp_rights);
1067 }
1068
1069 out:
1070 /* Release descriptor references. */
1071 fdp = (int *)CMSG_DATA(cm);
1072 for (i = 0; i < nfds; i++) {
1073 fd_putfile(*fdp++);
1074 }
1075
1076 if (error == 0) {
1077 if (control->m_flags & M_EXT) {
1078 m_freem(control);
1079 *controlp = control = m_get(M_WAIT, MT_CONTROL);
1080 }
1081 MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
1082 M_MBUF, NULL, NULL);
1083 cm = newcm;
1084 /*
1085 * Adjust message & mbuf to note amount of space
1086 * actually used.
1087 */
1088 cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
1089 control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
1090 }
1091
1092 return error;
1093 }
1094
1095 struct mbuf *
1096 unp_addsockcred(struct lwp *l, struct mbuf *control)
1097 {
1098 struct cmsghdr *cmp;
1099 struct sockcred *sc;
1100 struct mbuf *m, *n;
1101 int len, space, i;
1102
1103 len = CMSG_LEN(SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)));
1104 space = CMSG_SPACE(SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)));
1105
1106 m = m_get(M_WAIT, MT_CONTROL);
1107 if (space > MLEN) {
1108 if (space > MCLBYTES)
1109 MEXTMALLOC(m, space, M_WAITOK);
1110 else
1111 m_clget(m, M_WAIT);
1112 if ((m->m_flags & M_EXT) == 0) {
1113 m_free(m);
1114 return (control);
1115 }
1116 }
1117
1118 m->m_len = space;
1119 m->m_next = NULL;
1120 cmp = mtod(m, struct cmsghdr *);
1121 sc = (struct sockcred *)CMSG_DATA(cmp);
1122 cmp->cmsg_len = len;
1123 cmp->cmsg_level = SOL_SOCKET;
1124 cmp->cmsg_type = SCM_CREDS;
1125 sc->sc_uid = kauth_cred_getuid(l->l_cred);
1126 sc->sc_euid = kauth_cred_geteuid(l->l_cred);
1127 sc->sc_gid = kauth_cred_getgid(l->l_cred);
1128 sc->sc_egid = kauth_cred_getegid(l->l_cred);
1129 sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
1130 for (i = 0; i < sc->sc_ngroups; i++)
1131 sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
1132
1133 /*
1134 * If a control message already exists, append us to the end.
1135 */
1136 if (control != NULL) {
1137 for (n = control; n->m_next != NULL; n = n->m_next)
1138 ;
1139 n->m_next = m;
1140 } else
1141 control = m;
1142
1143 return (control);
1144 }
1145
1146 int unp_defer, unp_gcing;
1147 extern struct domain unixdomain;
1148
1149 /*
1150 * Comment added long after the fact explaining what's going on here.
1151 * Do a mark-sweep GC of file descriptors on the system, to free up
1152 * any which are caught in flight to an about-to-be-closed socket.
1153 *
1154 * Traditional mark-sweep gc's start at the "root", and mark
1155 * everything reachable from the root (which, in our case would be the
1156 * process table). The mark bits are cleared during the sweep.
1157 *
1158 * XXX For some inexplicable reason (perhaps because the file
1159 * descriptor tables used to live in the u area which could be swapped
1160 * out and thus hard to reach), we do multiple scans over the set of
1161 * descriptors, using use *two* mark bits per object (DEFER and MARK).
1162 * Whenever we find a descriptor which references other descriptors,
1163 * the ones it references are marked with both bits, and we iterate
1164 * over the whole file table until there are no more DEFER bits set.
1165 * We also make an extra pass *before* the GC to clear the mark bits,
1166 * which could have been cleared at almost no cost during the previous
1167 * sweep.
1168 */
1169 void
1170 unp_gc(void)
1171 {
1172 file_t *fp, *nextfp;
1173 struct socket *so, *so1;
1174 file_t **extra_ref, **fpp;
1175 int nunref, nslots, i;
1176
1177 if (atomic_swap_uint(&unp_gcing, 1) == 1)
1178 return;
1179
1180 restart:
1181 nslots = nfiles * 2;
1182 extra_ref = kmem_alloc(nslots * sizeof(file_t *), KM_SLEEP);
1183
1184 mutex_enter(&filelist_lock);
1185 unp_defer = 0;
1186
1187 /* Clear mark bits */
1188 LIST_FOREACH(fp, &filehead, f_list) {
1189 atomic_and_uint(&fp->f_flag, ~(FMARK|FDEFER));
1190 }
1191
1192 /*
1193 * Iterate over the set of descriptors, marking ones believed
1194 * (based on refcount) to be referenced from a process, and
1195 * marking for rescan descriptors which are queued on a socket.
1196 */
1197 do {
1198 LIST_FOREACH(fp, &filehead, f_list) {
1199 mutex_enter(&fp->f_lock);
1200 if (fp->f_flag & FDEFER) {
1201 atomic_and_uint(&fp->f_flag, ~FDEFER);
1202 unp_defer--;
1203 KASSERT(fp->f_count != 0);
1204 } else {
1205 if (fp->f_count == 0 ||
1206 (fp->f_flag & FMARK) ||
1207 fp->f_count == fp->f_msgcount) {
1208 mutex_exit(&fp->f_lock);
1209 continue;
1210 }
1211 }
1212 atomic_or_uint(&fp->f_flag, FMARK);
1213
1214 if (fp->f_type != DTYPE_SOCKET ||
1215 (so = (struct socket *)fp->f_data) == NULL ||
1216 so->so_proto->pr_domain != &unixdomain ||
1217 (so->so_proto->pr_flags&PR_RIGHTS) == 0) {
1218 mutex_exit(&fp->f_lock);
1219 continue;
1220 }
1221 #ifdef notdef
1222 if (so->so_rcv.sb_flags & SB_LOCK) {
1223 mutex_exit(&fp->f_lock);
1224 mutex_exit(&filelist_lock);
1225 kmem_free(extra_ref, nslots * sizeof(file_t *));
1226 /*
1227 * This is problematical; it's not clear
1228 * we need to wait for the sockbuf to be
1229 * unlocked (on a uniprocessor, at least),
1230 * and it's also not clear what to do
1231 * if sbwait returns an error due to receipt
1232 * of a signal. If sbwait does return
1233 * an error, we'll go into an infinite
1234 * loop. Delete all of this for now.
1235 */
1236 (void) sbwait(&so->so_rcv);
1237 goto restart;
1238 }
1239 #endif
1240 mutex_exit(&fp->f_lock);
1241
1242 unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
1243 /*
1244 * Mark descriptors referenced from sockets queued
1245 * on the accept queue as well.
1246 */
1247 if (so->so_options & SO_ACCEPTCONN) {
1248 TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
1249 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1250 }
1251 TAILQ_FOREACH(so1, &so->so_q, so_qe) {
1252 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1253 }
1254 }
1255 }
1256 } while (unp_defer);
1257
1258 /*
1259 * Sweep pass. Find unmarked descriptors, and free them.
1260 *
1261 * We grab an extra reference to each of the file table entries
1262 * that are not otherwise accessible and then free the rights
1263 * that are stored in messages on them.
1264 *
1265 * The bug in the original code is a little tricky, so I'll describe
1266 * what's wrong with it here.
1267 *
1268 * It is incorrect to simply unp_discard each entry for f_msgcount
1269 * times -- consider the case of sockets A and B that contain
1270 * references to each other. On a last close of some other socket,
1271 * we trigger a gc since the number of outstanding rights (unp_rights)
1272 * is non-zero. If during the sweep phase the gc code un_discards,
1273 * we end up doing a (full) closef on the descriptor. A closef on A
1274 * results in the following chain. Closef calls soo_close, which
1275 * calls soclose. Soclose calls first (through the switch
1276 * uipc_usrreq) unp_detach, which re-invokes unp_gc. Unp_gc simply
1277 * returns because the previous instance had set unp_gcing, and
1278 * we return all the way back to soclose, which marks the socket
1279 * with SS_NOFDREF, and then calls sofree. Sofree calls sorflush
1280 * to free up the rights that are queued in messages on the socket A,
1281 * i.e., the reference on B. The sorflush calls via the dom_dispose
1282 * switch unp_dispose, which unp_scans with unp_discard. This second
1283 * instance of unp_discard just calls closef on B.
1284 *
1285 * Well, a similar chain occurs on B, resulting in a sorflush on B,
1286 * which results in another closef on A. Unfortunately, A is already
1287 * being closed, and the descriptor has already been marked with
1288 * SS_NOFDREF, and soclose panics at this point.
1289 *
1290 * Here, we first take an extra reference to each inaccessible
1291 * descriptor. Then, if the inaccessible descriptor is a
1292 * socket, we call sorflush in case it is a Unix domain
1293 * socket. After we destroy all the rights carried in
1294 * messages, we do a last closef to get rid of our extra
1295 * reference. This is the last close, and the unp_detach etc
1296 * will shut down the socket.
1297 *
1298 * 91/09/19, bsy (at) cs.cmu.edu
1299 */
1300 if (nslots < nfiles) {
1301 mutex_exit(&filelist_lock);
1302 kmem_free(extra_ref, nslots * sizeof(file_t *));
1303 goto restart;
1304 }
1305 for (nunref = 0, fp = LIST_FIRST(&filehead), fpp = extra_ref; fp != 0;
1306 fp = nextfp) {
1307 nextfp = LIST_NEXT(fp, f_list);
1308 mutex_enter(&fp->f_lock);
1309 if (fp->f_count != 0 &&
1310 fp->f_count == fp->f_msgcount && !(fp->f_flag & FMARK)) {
1311 *fpp++ = fp;
1312 nunref++;
1313 fp->f_count++;
1314 }
1315 mutex_exit(&fp->f_lock);
1316 }
1317 mutex_exit(&filelist_lock);
1318
1319 for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) {
1320 fp = *fpp;
1321 if (fp->f_type == DTYPE_SOCKET)
1322 sorflush(fp->f_data);
1323 }
1324 for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) {
1325 closef(*fpp);
1326 }
1327 kmem_free(extra_ref, nslots * sizeof(file_t *));
1328 atomic_swap_uint(&unp_gcing, 0);
1329 }
1330
1331 void
1332 unp_dispose(struct mbuf *m)
1333 {
1334
1335 if (m)
1336 unp_scan(m, unp_discard, 1);
1337 }
1338
1339 void
1340 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
1341 {
1342 struct mbuf *m;
1343 file_t **rp;
1344 struct cmsghdr *cm;
1345 int i;
1346 int qfds;
1347
1348 while (m0) {
1349 for (m = m0; m; m = m->m_next) {
1350 if (m->m_type == MT_CONTROL &&
1351 m->m_len >= sizeof(*cm)) {
1352 cm = mtod(m, struct cmsghdr *);
1353 if (cm->cmsg_level != SOL_SOCKET ||
1354 cm->cmsg_type != SCM_RIGHTS)
1355 continue;
1356 qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
1357 / sizeof(file_t *);
1358 rp = (file_t **)CMSG_DATA(cm);
1359 for (i = 0; i < qfds; i++) {
1360 file_t *fp = *rp;
1361 if (discard)
1362 *rp = 0;
1363 (*op)(fp);
1364 rp++;
1365 }
1366 break; /* XXX, but saves time */
1367 }
1368 }
1369 m0 = m0->m_nextpkt;
1370 }
1371 }
1372
1373 void
1374 unp_mark(file_t *fp)
1375 {
1376
1377 if (fp == NULL)
1378 return;
1379
1380 /* If we're already deferred, don't screw up the defer count */
1381 mutex_enter(&fp->f_lock);
1382 if (fp->f_flag & (FMARK | FDEFER)) {
1383 mutex_exit(&fp->f_lock);
1384 return;
1385 }
1386
1387 /*
1388 * Minimize the number of deferrals... Sockets are the only
1389 * type of descriptor which can hold references to another
1390 * descriptor, so just mark other descriptors, and defer
1391 * unmarked sockets for the next pass.
1392 */
1393 if (fp->f_type == DTYPE_SOCKET) {
1394 unp_defer++;
1395 KASSERT(fp->f_count != 0);
1396 atomic_or_uint(&fp->f_flag, FDEFER);
1397 } else {
1398 atomic_or_uint(&fp->f_flag, FMARK);
1399 }
1400 mutex_exit(&fp->f_lock);
1401 return;
1402 }
1403
1404 void
1405 unp_discard(file_t *fp)
1406 {
1407
1408 if (fp == NULL)
1409 return;
1410
1411 mutex_enter(&fp->f_lock);
1412 KASSERT(fp->f_count > 0);
1413 fp->f_msgcount--;
1414 mutex_exit(&fp->f_lock);
1415 atomic_dec_uint(&unp_rights);
1416 (void)closef(fp);
1417 }
1418