uipc_usrreq.c revision 1.112 1 /* $NetBSD: uipc_usrreq.c,v 1.112 2008/04/24 11:38:36 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2000, 2004, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1989, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
69 */
70
71 /*
72 * Copyright (c) 1997 Christopher G. Demetriou. All rights reserved.
73 *
74 * Redistribution and use in source and binary forms, with or without
75 * modification, are permitted provided that the following conditions
76 * are met:
77 * 1. Redistributions of source code must retain the above copyright
78 * notice, this list of conditions and the following disclaimer.
79 * 2. Redistributions in binary form must reproduce the above copyright
80 * notice, this list of conditions and the following disclaimer in the
81 * documentation and/or other materials provided with the distribution.
82 * 3. All advertising materials mentioning features or use of this software
83 * must display the following acknowledgement:
84 * This product includes software developed by the University of
85 * California, Berkeley and its contributors.
86 * 4. Neither the name of the University nor the names of its contributors
87 * may be used to endorse or promote products derived from this software
88 * without specific prior written permission.
89 *
90 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
91 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
92 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
93 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
94 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
95 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
96 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
97 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
98 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
99 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
100 * SUCH DAMAGE.
101 *
102 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
103 */
104
105 #include <sys/cdefs.h>
106 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.112 2008/04/24 11:38:36 ad Exp $");
107
108 #include <sys/param.h>
109 #include <sys/systm.h>
110 #include <sys/proc.h>
111 #include <sys/filedesc.h>
112 #include <sys/domain.h>
113 #include <sys/protosw.h>
114 #include <sys/socket.h>
115 #include <sys/socketvar.h>
116 #include <sys/unpcb.h>
117 #include <sys/un.h>
118 #include <sys/namei.h>
119 #include <sys/vnode.h>
120 #include <sys/file.h>
121 #include <sys/stat.h>
122 #include <sys/mbuf.h>
123 #include <sys/kauth.h>
124 #include <sys/kmem.h>
125 #include <sys/atomic.h>
126
127 /*
128 * Unix communications domain.
129 *
130 * TODO:
131 * SEQPACKET, RDM
132 * rethink name space problems
133 * need a proper out-of-band
134 *
135 * Notes on locking:
136 *
137 * The generic rules noted in uipc_socket2.c apply. In addition:
138 *
139 * o We have a global lock, uipc_lock.
140 *
141 * o All datagram sockets are locked by uipc_lock.
142 *
143 * o For stream socketpairs, the two endpoints are created sharing the same
144 * independent lock. Sockets presented to PRU_CONNECT2 must already have
145 * matching locks.
146 *
147 * o Stream sockets created via socket() start life with their own
148 * independent lock.
149 *
150 * o Stream connections to a named endpoint are slightly more complicated.
151 * Sockets that have called listen() have their lock pointer mutated to
152 * the global uipc_lock. When establishing a connection, the connecting
153 * socket also has its lock mutated to uipc_lock, which matches the head
154 * (listening socket). We create a new socket for accept() to return, and
155 * that also shares the head's lock. Until the connection is completely
156 * done on both ends, all three sockets are locked by uipc_lock. Once the
157 * connection is complete, the association with the head's lock is broken.
158 * The connecting socket and the socket returned from accept() have their
159 * lock pointers mutated away from uipc_lock, and back to the connecting
160 * socket's original, independent lock. The head continues to be locked
161 * by uipc_lock.
162 *
163 * o If uipc_lock is determined to be a significant source of contention,
164 * it could easily be hashed out. It is difficult to simply make it an
165 * independent lock because of visibility / garbage collection issues:
166 * if a socket has been associated with a lock at any point, that lock
167 * must remain valid until the socket is no longer visible in the system.
168 * The lock must not be freed or otherwise destroyed until any sockets
169 * that had referenced it have also been destroyed.
170 */
171 const struct sockaddr_un sun_noname = {
172 .sun_len = sizeof(sun_noname),
173 .sun_family = AF_LOCAL,
174 };
175 ino_t unp_ino; /* prototype for fake inode numbers */
176
177 struct mbuf *unp_addsockcred(struct lwp *, struct mbuf *);
178 static kmutex_t *uipc_lock;
179
180 /*
181 * Initialize Unix protocols.
182 */
183 void
184 uipc_init(void)
185 {
186
187 uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
188 }
189
190 /*
191 * A connection succeeded: disassociate both endpoints from the head's
192 * lock, and make them share their own lock. There is a race here: for
193 * a very brief time one endpoint will be locked by a different lock
194 * than the other end. However, since the current thread holds the old
195 * lock (the listening socket's lock, the head) access can still only be
196 * made to one side of the connection.
197 */
198 static void
199 unp_setpeerlocks(struct socket *so, struct socket *so2)
200 {
201 struct unpcb *unp;
202 kmutex_t *lock;
203
204 KASSERT(solocked2(so, so2));
205
206 /*
207 * Bail out if either end of the socket is not yet fully
208 * connected or accepted. We only break the lock association
209 * with the head when the pair of sockets stand completely
210 * on their own.
211 */
212 if (so->so_head != NULL || so2->so_head != NULL)
213 return;
214
215 /*
216 * Drop references to old lock. A third reference (from the
217 * queue head) must be held as we still hold its lock. Bonus:
218 * we don't need to worry about garbage collecting the lock.
219 */
220 lock = so->so_lock;
221 KASSERT(lock == uipc_lock);
222 mutex_obj_free(lock);
223 mutex_obj_free(lock);
224
225 /*
226 * Grab stream lock from the initiator and share between the two
227 * endpoints. Issue memory barrier to ensure all modifications
228 * become globally visible before the lock change. so2 is
229 * assumed not to have a stream lock, because it was created
230 * purely for the server side to accept this connection and
231 * started out life using the domain-wide lock.
232 */
233 unp = sotounpcb(so);
234 KASSERT(unp->unp_streamlock != NULL);
235 KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
236 lock = unp->unp_streamlock;
237 unp->unp_streamlock = NULL;
238 mutex_obj_hold(lock);
239 membar_exit();
240 so->so_lock = lock;
241 so2->so_lock = lock;
242 }
243
244 /*
245 * Reset a socket's lock back to the domain-wide lock.
246 */
247 static void
248 unp_resetlock(struct socket *so)
249 {
250 kmutex_t *olock, *nlock;
251 struct unpcb *unp;
252
253 KASSERT(solocked(so));
254
255 olock = so->so_lock;
256 nlock = uipc_lock;
257 if (olock == nlock)
258 return;
259 unp = sotounpcb(so);
260 KASSERT(unp->unp_streamlock == NULL);
261 unp->unp_streamlock = olock;
262 mutex_obj_hold(nlock);
263 mutex_enter(nlock);
264 so->so_lock = nlock;
265 mutex_exit(olock);
266 }
267
268 static void
269 unp_free(struct unpcb *unp)
270 {
271
272 if (unp->unp_addr)
273 free(unp->unp_addr, M_SONAME);
274 if (unp->unp_streamlock != NULL)
275 mutex_obj_free(unp->unp_streamlock);
276 free(unp, M_PCB);
277 }
278
279 int
280 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp,
281 struct lwp *l)
282 {
283 struct socket *so2;
284 const struct sockaddr_un *sun;
285
286 so2 = unp->unp_conn->unp_socket;
287
288 KASSERT(solocked(so2));
289
290 if (unp->unp_addr)
291 sun = unp->unp_addr;
292 else
293 sun = &sun_noname;
294 if (unp->unp_conn->unp_flags & UNP_WANTCRED)
295 control = unp_addsockcred(l, control);
296 if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
297 control) == 0) {
298 so2->so_rcv.sb_overflowed++;
299 sounlock(so2);
300 unp_dispose(control);
301 m_freem(control);
302 m_freem(m);
303 solock(so2);
304 return (ENOBUFS);
305 } else {
306 sorwakeup(so2);
307 return (0);
308 }
309 }
310
311 void
312 unp_setaddr(struct socket *so, struct mbuf *nam, bool peeraddr)
313 {
314 const struct sockaddr_un *sun;
315 struct unpcb *unp;
316 bool ext;
317
318 unp = sotounpcb(so);
319 ext = false;
320
321 for (;;) {
322 sun = NULL;
323 if (peeraddr) {
324 if (unp->unp_conn && unp->unp_conn->unp_addr)
325 sun = unp->unp_conn->unp_addr;
326 } else {
327 if (unp->unp_addr)
328 sun = unp->unp_addr;
329 }
330 if (sun == NULL)
331 sun = &sun_noname;
332 nam->m_len = sun->sun_len;
333 if (nam->m_len > MLEN && !ext) {
334 sounlock(so);
335 MEXTMALLOC(nam, MAXPATHLEN * 2, M_WAITOK);
336 solock(so);
337 ext = true;
338 } else {
339 KASSERT(nam->m_len <= MAXPATHLEN * 2);
340 memcpy(mtod(nam, void *), sun, (size_t)nam->m_len);
341 break;
342 }
343 }
344 }
345
346 /*ARGSUSED*/
347 int
348 uipc_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
349 struct mbuf *control, struct lwp *l)
350 {
351 struct unpcb *unp = sotounpcb(so);
352 struct socket *so2;
353 struct proc *p;
354 u_int newhiwat;
355 int error = 0;
356
357 if (req == PRU_CONTROL)
358 return (EOPNOTSUPP);
359
360 #ifdef DIAGNOSTIC
361 if (req != PRU_SEND && req != PRU_SENDOOB && control)
362 panic("uipc_usrreq: unexpected control mbuf");
363 #endif
364 p = l ? l->l_proc : NULL;
365 if (req != PRU_ATTACH) {
366 if (unp == 0) {
367 error = EINVAL;
368 goto release;
369 }
370 KASSERT(solocked(so));
371 }
372
373 switch (req) {
374
375 case PRU_ATTACH:
376 if (unp != 0) {
377 error = EISCONN;
378 break;
379 }
380 error = unp_attach(so);
381 break;
382
383 case PRU_DETACH:
384 unp_detach(unp);
385 break;
386
387 case PRU_BIND:
388 KASSERT(l != NULL);
389 error = unp_bind(so, nam, l);
390 break;
391
392 case PRU_LISTEN:
393 /*
394 * If the socket can accept a connection, it must be
395 * locked by uipc_lock.
396 */
397 unp_resetlock(so);
398 if (unp->unp_vnode == 0)
399 error = EINVAL;
400 break;
401
402 case PRU_CONNECT:
403 KASSERT(l != NULL);
404 error = unp_connect(so, nam, l);
405 break;
406
407 case PRU_CONNECT2:
408 error = unp_connect2(so, (struct socket *)nam, PRU_CONNECT2);
409 break;
410
411 case PRU_DISCONNECT:
412 unp_disconnect(unp);
413 break;
414
415 case PRU_ACCEPT:
416 KASSERT(so->so_lock == uipc_lock);
417 /*
418 * Mark the initiating STREAM socket as connected *ONLY*
419 * after it's been accepted. This prevents a client from
420 * overrunning a server and receiving ECONNREFUSED.
421 */
422 if (unp->unp_conn == NULL)
423 break;
424 so2 = unp->unp_conn->unp_socket;
425 if (so2->so_state & SS_ISCONNECTING) {
426 KASSERT(solocked2(so, so->so_head));
427 KASSERT(solocked2(so2, so->so_head));
428 soisconnected(so2);
429 }
430 /*
431 * If the connection is fully established, break the
432 * association with uipc_lock and give the connected
433 * pair a seperate lock to share.
434 */
435 unp_setpeerlocks(so2, so);
436 /*
437 * Only now return peer's address, as we may need to
438 * block in order to allocate memory.
439 *
440 * XXX Minor race: connection can be broken while
441 * lock is dropped in unp_setaddr(). We will return
442 * error == 0 and sun_noname as the peer address.
443 */
444 unp_setaddr(so, nam, true);
445 break;
446
447 case PRU_SHUTDOWN:
448 socantsendmore(so);
449 unp_shutdown(unp);
450 break;
451
452 case PRU_RCVD:
453 switch (so->so_type) {
454
455 case SOCK_DGRAM:
456 panic("uipc 1");
457 /*NOTREACHED*/
458
459 case SOCK_STREAM:
460 #define rcv (&so->so_rcv)
461 #define snd (&so2->so_snd)
462 if (unp->unp_conn == 0)
463 break;
464 so2 = unp->unp_conn->unp_socket;
465 KASSERT(solocked2(so, so2));
466 /*
467 * Adjust backpressure on sender
468 * and wakeup any waiting to write.
469 */
470 snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
471 unp->unp_mbcnt = rcv->sb_mbcnt;
472 newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
473 (void)chgsbsize(so2->so_uidinfo,
474 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
475 unp->unp_cc = rcv->sb_cc;
476 sowwakeup(so2);
477 #undef snd
478 #undef rcv
479 break;
480
481 default:
482 panic("uipc 2");
483 }
484 break;
485
486 case PRU_SEND:
487 /*
488 * Note: unp_internalize() rejects any control message
489 * other than SCM_RIGHTS, and only allows one. This
490 * has the side-effect of preventing a caller from
491 * forging SCM_CREDS.
492 */
493 if (control) {
494 sounlock(so);
495 error = unp_internalize(&control);
496 solock(so);
497 if (error != 0) {
498 m_freem(control);
499 m_freem(m);
500 break;
501 }
502 }
503 switch (so->so_type) {
504
505 case SOCK_DGRAM: {
506 KASSERT(so->so_lock == uipc_lock);
507 if (nam) {
508 if ((so->so_state & SS_ISCONNECTED) != 0)
509 error = EISCONN;
510 else {
511 /*
512 * Note: once connected, the
513 * socket's lock must not be
514 * dropped until we have sent
515 * the message and disconnected.
516 * This is necessary to prevent
517 * intervening control ops, like
518 * another connection.
519 */
520 error = unp_connect(so, nam, l);
521 }
522 } else {
523 if ((so->so_state & SS_ISCONNECTED) == 0)
524 error = ENOTCONN;
525 }
526 if (error) {
527 sounlock(so);
528 unp_dispose(control);
529 m_freem(control);
530 m_freem(m);
531 solock(so);
532 break;
533 }
534 KASSERT(p != NULL);
535 error = unp_output(m, control, unp, l);
536 if (nam)
537 unp_disconnect(unp);
538 break;
539 }
540
541 case SOCK_STREAM:
542 #define rcv (&so2->so_rcv)
543 #define snd (&so->so_snd)
544 if (unp->unp_conn == NULL) {
545 error = ENOTCONN;
546 break;
547 }
548 so2 = unp->unp_conn->unp_socket;
549 KASSERT(solocked2(so, so2));
550 if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
551 /*
552 * Credentials are passed only once on
553 * SOCK_STREAM.
554 */
555 unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
556 control = unp_addsockcred(l, control);
557 }
558 /*
559 * Send to paired receive port, and then reduce
560 * send buffer hiwater marks to maintain backpressure.
561 * Wake up readers.
562 */
563 if (control) {
564 if (sbappendcontrol(rcv, m, control) != 0)
565 control = NULL;
566 } else
567 sbappend(rcv, m);
568 snd->sb_mbmax -=
569 rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
570 unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
571 newhiwat = snd->sb_hiwat -
572 (rcv->sb_cc - unp->unp_conn->unp_cc);
573 (void)chgsbsize(so->so_uidinfo,
574 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
575 unp->unp_conn->unp_cc = rcv->sb_cc;
576 sorwakeup(so2);
577 #undef snd
578 #undef rcv
579 if (control != NULL) {
580 sounlock(so);
581 unp_dispose(control);
582 m_freem(control);
583 solock(so);
584 }
585 break;
586
587 default:
588 panic("uipc 4");
589 }
590 break;
591
592 case PRU_ABORT:
593 (void)unp_drop(unp, ECONNABORTED);
594
595 KASSERT(so->so_head == NULL);
596 #ifdef DIAGNOSTIC
597 if (so->so_pcb == 0)
598 panic("uipc 5: drop killed pcb");
599 #endif
600 unp_detach(unp);
601 break;
602
603 case PRU_SENSE:
604 ((struct stat *) m)->st_blksize = so->so_snd.sb_hiwat;
605 if (so->so_type == SOCK_STREAM && unp->unp_conn != 0) {
606 so2 = unp->unp_conn->unp_socket;
607 KASSERT(solocked2(so, so2));
608 ((struct stat *) m)->st_blksize += so2->so_rcv.sb_cc;
609 }
610 ((struct stat *) m)->st_dev = NODEV;
611 if (unp->unp_ino == 0)
612 unp->unp_ino = unp_ino++;
613 ((struct stat *) m)->st_atimespec =
614 ((struct stat *) m)->st_mtimespec =
615 ((struct stat *) m)->st_ctimespec = unp->unp_ctime;
616 ((struct stat *) m)->st_ino = unp->unp_ino;
617 return (0);
618
619 case PRU_RCVOOB:
620 error = EOPNOTSUPP;
621 break;
622
623 case PRU_SENDOOB:
624 m_freem(control);
625 m_freem(m);
626 error = EOPNOTSUPP;
627 break;
628
629 case PRU_SOCKADDR:
630 unp_setaddr(so, nam, false);
631 break;
632
633 case PRU_PEERADDR:
634 unp_setaddr(so, nam, true);
635 break;
636
637 default:
638 panic("piusrreq");
639 }
640
641 release:
642 return (error);
643 }
644
645 /*
646 * Unix domain socket option processing.
647 */
648 int
649 uipc_ctloutput(int op, struct socket *so, int level, int optname,
650 struct mbuf **mp)
651 {
652 struct unpcb *unp = sotounpcb(so);
653 struct mbuf *m = *mp;
654 int optval = 0, error = 0;
655
656 KASSERT(solocked(so));
657
658 if (level != 0) {
659 error = ENOPROTOOPT;
660 if (op == PRCO_SETOPT && m)
661 (void) m_free(m);
662 } else switch (op) {
663
664 case PRCO_SETOPT:
665 switch (optname) {
666 case LOCAL_CREDS:
667 case LOCAL_CONNWAIT:
668 if (m == NULL || m->m_len != sizeof(int))
669 error = EINVAL;
670 else {
671 optval = *mtod(m, int *);
672 switch (optname) {
673 #define OPTSET(bit) \
674 if (optval) \
675 unp->unp_flags |= (bit); \
676 else \
677 unp->unp_flags &= ~(bit);
678
679 case LOCAL_CREDS:
680 OPTSET(UNP_WANTCRED);
681 break;
682 case LOCAL_CONNWAIT:
683 OPTSET(UNP_CONNWAIT);
684 break;
685 }
686 }
687 break;
688 #undef OPTSET
689
690 default:
691 error = ENOPROTOOPT;
692 break;
693 }
694 if (m)
695 (void) m_free(m);
696 break;
697
698 case PRCO_GETOPT:
699 sounlock(so);
700 switch (optname) {
701 case LOCAL_PEEREID:
702 if (unp->unp_flags & UNP_EIDSVALID) {
703 *mp = m = m_get(M_WAIT, MT_SOOPTS);
704 m->m_len = sizeof(struct unpcbid);
705 *mtod(m, struct unpcbid *) = unp->unp_connid;
706 } else {
707 error = EINVAL;
708 }
709 break;
710 case LOCAL_CREDS:
711 *mp = m = m_get(M_WAIT, MT_SOOPTS);
712 m->m_len = sizeof(int);
713
714 #define OPTBIT(bit) (unp->unp_flags & (bit) ? 1 : 0)
715
716 optval = OPTBIT(UNP_WANTCRED);
717 *mtod(m, int *) = optval;
718 break;
719 #undef OPTBIT
720
721 default:
722 error = ENOPROTOOPT;
723 break;
724 }
725 solock(so);
726 break;
727 }
728 return (error);
729 }
730
731 /*
732 * Both send and receive buffers are allocated PIPSIZ bytes of buffering
733 * for stream sockets, although the total for sender and receiver is
734 * actually only PIPSIZ.
735 * Datagram sockets really use the sendspace as the maximum datagram size,
736 * and don't really want to reserve the sendspace. Their recvspace should
737 * be large enough for at least one max-size datagram plus address.
738 */
739 #define PIPSIZ 4096
740 u_long unpst_sendspace = PIPSIZ;
741 u_long unpst_recvspace = PIPSIZ;
742 u_long unpdg_sendspace = 2*1024; /* really max datagram size */
743 u_long unpdg_recvspace = 4*1024;
744
745 u_int unp_rights; /* file descriptors in flight */
746
747 int
748 unp_attach(struct socket *so)
749 {
750 struct unpcb *unp;
751 int error;
752
753 switch (so->so_type) {
754 case SOCK_STREAM:
755 if (so->so_lock == NULL) {
756 /*
757 * XXX Assuming that no socket locks are held,
758 * as this call may sleep.
759 */
760 so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
761 solock(so);
762 }
763 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
764 error = soreserve(so, unpst_sendspace, unpst_recvspace);
765 if (error != 0)
766 return (error);
767 }
768 break;
769
770 case SOCK_DGRAM:
771 if (so->so_lock == NULL) {
772 mutex_obj_hold(uipc_lock);
773 so->so_lock = uipc_lock;
774 solock(so);
775 }
776 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
777 error = soreserve(so, unpdg_sendspace, unpdg_recvspace);
778 if (error != 0)
779 return (error);
780 }
781 break;
782
783 default:
784 panic("unp_attach");
785 }
786 KASSERT(solocked(so));
787 unp = malloc(sizeof(*unp), M_PCB, M_NOWAIT);
788 if (unp == NULL)
789 return (ENOBUFS);
790 memset((void *)unp, 0, sizeof(*unp));
791 unp->unp_socket = so;
792 so->so_pcb = unp;
793 nanotime(&unp->unp_ctime);
794 return (0);
795 }
796
797 void
798 unp_detach(struct unpcb *unp)
799 {
800 struct socket *so;
801 vnode_t *vp;
802
803 so = unp->unp_socket;
804
805 retry:
806 if ((vp = unp->unp_vnode) != NULL) {
807 sounlock(so);
808 /* Acquire v_interlock to protect against unp_connect(). */
809 mutex_enter(&vp->v_interlock);
810 vp->v_socket = NULL;
811 vrelel(vp, 0);
812 solock(so);
813 unp->unp_vnode = NULL;
814 }
815 if (unp->unp_conn)
816 unp_disconnect(unp);
817 while (unp->unp_refs) {
818 KASSERT(solocked2(so, unp->unp_refs->unp_socket));
819 if (unp_drop(unp->unp_refs, ECONNRESET)) {
820 solock(so);
821 goto retry;
822 }
823 }
824 soisdisconnected(so);
825 so->so_pcb = NULL;
826 if (unp_rights) {
827 /*
828 * Normally the receive buffer is flushed later,
829 * in sofree, but if our receive buffer holds references
830 * to descriptors that are now garbage, we will dispose
831 * of those descriptor references after the garbage collector
832 * gets them (resulting in a "panic: closef: count < 0").
833 */
834 sorflush(so);
835 unp_free(unp);
836 sounlock(so);
837 unp_gc();
838 solock(so);
839 } else
840 unp_free(unp);
841 }
842
843 int
844 unp_bind(struct socket *so, struct mbuf *nam, struct lwp *l)
845 {
846 struct sockaddr_un *sun;
847 struct unpcb *unp;
848 vnode_t *vp;
849 struct vattr vattr;
850 size_t addrlen;
851 int error;
852 struct nameidata nd;
853 proc_t *p;
854
855 unp = sotounpcb(so);
856 if (unp->unp_vnode != NULL)
857 return (EINVAL);
858 if ((unp->unp_flags & UNP_BUSY) != 0) {
859 /*
860 * EALREADY may not be strictly accurate, but since this
861 * is a major application error it's hardly a big deal.
862 */
863 return (EALREADY);
864 }
865 unp->unp_flags |= UNP_BUSY;
866 sounlock(so);
867
868 /*
869 * Allocate the new sockaddr. We have to allocate one
870 * extra byte so that we can ensure that the pathname
871 * is nul-terminated.
872 */
873 p = l->l_proc;
874 addrlen = nam->m_len + 1;
875 sun = malloc(addrlen, M_SONAME, M_WAITOK);
876 m_copydata(nam, 0, nam->m_len, (void *)sun);
877 *(((char *)sun) + nam->m_len) = '\0';
878
879 NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, UIO_SYSSPACE,
880 sun->sun_path);
881
882 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
883 if ((error = namei(&nd)) != 0)
884 goto bad;
885 vp = nd.ni_vp;
886 if (vp != NULL) {
887 VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
888 if (nd.ni_dvp == vp)
889 vrele(nd.ni_dvp);
890 else
891 vput(nd.ni_dvp);
892 vrele(vp);
893 error = EADDRINUSE;
894 goto bad;
895 }
896 VATTR_NULL(&vattr);
897 vattr.va_type = VSOCK;
898 vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
899 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
900 if (error)
901 goto bad;
902 vp = nd.ni_vp;
903 solock(so);
904 vp->v_socket = unp->unp_socket;
905 unp->unp_vnode = vp;
906 unp->unp_addrlen = addrlen;
907 unp->unp_addr = sun;
908 unp->unp_connid.unp_pid = p->p_pid;
909 unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
910 unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
911 unp->unp_flags |= UNP_EIDSBIND;
912 VOP_UNLOCK(vp, 0);
913 unp->unp_flags &= ~UNP_BUSY;
914 return (0);
915
916 bad:
917 free(sun, M_SONAME);
918 solock(so);
919 unp->unp_flags &= ~UNP_BUSY;
920 return (error);
921 }
922
923 int
924 unp_connect(struct socket *so, struct mbuf *nam, struct lwp *l)
925 {
926 struct sockaddr_un *sun;
927 vnode_t *vp;
928 struct socket *so2, *so3;
929 struct unpcb *unp, *unp2, *unp3;
930 size_t addrlen;
931 int error;
932 struct nameidata nd;
933
934 unp = sotounpcb(so);
935 if ((unp->unp_flags & UNP_BUSY) != 0) {
936 /*
937 * EALREADY may not be strictly accurate, but since this
938 * is a major application error it's hardly a big deal.
939 */
940 return (EALREADY);
941 }
942 unp->unp_flags |= UNP_BUSY;
943 sounlock(so);
944
945 /*
946 * Allocate a temporary sockaddr. We have to allocate one extra
947 * byte so that we can ensure that the pathname is nul-terminated.
948 * When we establish the connection, we copy the other PCB's
949 * sockaddr to our own.
950 */
951 addrlen = nam->m_len + 1;
952 sun = malloc(addrlen, M_SONAME, M_WAITOK);
953 m_copydata(nam, 0, nam->m_len, (void *)sun);
954 *(((char *)sun) + nam->m_len) = '\0';
955
956 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, UIO_SYSSPACE,
957 sun->sun_path);
958
959 if ((error = namei(&nd)) != 0)
960 goto bad2;
961 vp = nd.ni_vp;
962 if (vp->v_type != VSOCK) {
963 error = ENOTSOCK;
964 goto bad;
965 }
966 if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
967 goto bad;
968 /* Acquire v_interlock to protect against unp_detach(). */
969 mutex_enter(&vp->v_interlock);
970 so2 = vp->v_socket;
971 if (so2 == NULL) {
972 mutex_exit(&vp->v_interlock);
973 error = ECONNREFUSED;
974 goto bad;
975 }
976 if (so->so_type != so2->so_type) {
977 mutex_exit(&vp->v_interlock);
978 error = EPROTOTYPE;
979 goto bad;
980 }
981 solock(so);
982 unp_resetlock(so);
983 mutex_exit(&vp->v_interlock);
984 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
985 /*
986 * This may seem somewhat fragile but is OK: if we can
987 * see SO_ACCEPTCONN set on the endpoint, then it must
988 * be locked by the domain-wide uipc_lock.
989 */
990 KASSERT((so->so_options & SO_ACCEPTCONN) == 0 ||
991 so2->so_lock == uipc_lock);
992 if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
993 (so3 = sonewconn(so2, 0)) == 0) {
994 error = ECONNREFUSED;
995 sounlock(so);
996 goto bad;
997 }
998 unp2 = sotounpcb(so2);
999 unp3 = sotounpcb(so3);
1000 if (unp2->unp_addr) {
1001 unp3->unp_addr = malloc(unp2->unp_addrlen,
1002 M_SONAME, M_WAITOK);
1003 memcpy(unp3->unp_addr, unp2->unp_addr,
1004 unp2->unp_addrlen);
1005 unp3->unp_addrlen = unp2->unp_addrlen;
1006 }
1007 unp3->unp_flags = unp2->unp_flags;
1008 unp3->unp_connid.unp_pid = l->l_proc->p_pid;
1009 unp3->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
1010 unp3->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
1011 unp3->unp_flags |= UNP_EIDSVALID;
1012 if (unp2->unp_flags & UNP_EIDSBIND) {
1013 unp->unp_connid = unp2->unp_connid;
1014 unp->unp_flags |= UNP_EIDSVALID;
1015 }
1016 so2 = so3;
1017 }
1018 error = unp_connect2(so, so2, PRU_CONNECT);
1019 sounlock(so);
1020 bad:
1021 vput(vp);
1022 bad2:
1023 free(sun, M_SONAME);
1024 solock(so);
1025 unp->unp_flags &= ~UNP_BUSY;
1026 return (error);
1027 }
1028
1029 int
1030 unp_connect2(struct socket *so, struct socket *so2, int req)
1031 {
1032 struct unpcb *unp = sotounpcb(so);
1033 struct unpcb *unp2;
1034
1035 if (so2->so_type != so->so_type)
1036 return (EPROTOTYPE);
1037
1038 /*
1039 * All three sockets involved must be locked by same lock:
1040 *
1041 * local endpoint (so)
1042 * remote endpoint (so2)
1043 * queue head (so->so_head, only if PR_CONNREQUIRED)
1044 */
1045 KASSERT(solocked2(so, so2));
1046 if (so->so_head != NULL) {
1047 KASSERT(so->so_lock == uipc_lock);
1048 KASSERT(solocked2(so, so->so_head));
1049 }
1050
1051 unp2 = sotounpcb(so2);
1052 unp->unp_conn = unp2;
1053 switch (so->so_type) {
1054
1055 case SOCK_DGRAM:
1056 unp->unp_nextref = unp2->unp_refs;
1057 unp2->unp_refs = unp;
1058 soisconnected(so);
1059 break;
1060
1061 case SOCK_STREAM:
1062 unp2->unp_conn = unp;
1063 if (req == PRU_CONNECT &&
1064 ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1065 soisconnecting(so);
1066 else
1067 soisconnected(so);
1068 soisconnected(so2);
1069 /*
1070 * If the connection is fully established, break the
1071 * association with uipc_lock and give the connected
1072 * pair a seperate lock to share. For CONNECT2, we
1073 * require that the locks already match (the sockets
1074 * are created that way).
1075 */
1076 if (req == PRU_CONNECT)
1077 unp_setpeerlocks(so, so2);
1078 break;
1079
1080 default:
1081 panic("unp_connect2");
1082 }
1083 return (0);
1084 }
1085
1086 void
1087 unp_disconnect(struct unpcb *unp)
1088 {
1089 struct unpcb *unp2 = unp->unp_conn;
1090 struct socket *so;
1091
1092 if (unp2 == 0)
1093 return;
1094 unp->unp_conn = 0;
1095 so = unp->unp_socket;
1096 switch (so->so_type) {
1097 case SOCK_DGRAM:
1098 if (unp2->unp_refs == unp)
1099 unp2->unp_refs = unp->unp_nextref;
1100 else {
1101 unp2 = unp2->unp_refs;
1102 for (;;) {
1103 KASSERT(solocked2(so, unp2->unp_socket));
1104 if (unp2 == 0)
1105 panic("unp_disconnect");
1106 if (unp2->unp_nextref == unp)
1107 break;
1108 unp2 = unp2->unp_nextref;
1109 }
1110 unp2->unp_nextref = unp->unp_nextref;
1111 }
1112 unp->unp_nextref = 0;
1113 so->so_state &= ~SS_ISCONNECTED;
1114 break;
1115
1116 case SOCK_STREAM:
1117 KASSERT(solocked2(so, unp2->unp_socket));
1118 soisdisconnected(so);
1119 unp2->unp_conn = 0;
1120 soisdisconnected(unp2->unp_socket);
1121 break;
1122 }
1123 }
1124
1125 #ifdef notdef
1126 unp_abort(struct unpcb *unp)
1127 {
1128 unp_detach(unp);
1129 }
1130 #endif
1131
1132 void
1133 unp_shutdown(struct unpcb *unp)
1134 {
1135 struct socket *so;
1136
1137 if (unp->unp_socket->so_type == SOCK_STREAM && unp->unp_conn &&
1138 (so = unp->unp_conn->unp_socket))
1139 socantrcvmore(so);
1140 }
1141
1142 bool
1143 unp_drop(struct unpcb *unp, int errno)
1144 {
1145 struct socket *so = unp->unp_socket;
1146
1147 KASSERT(solocked(so));
1148
1149 so->so_error = errno;
1150 unp_disconnect(unp);
1151 if (so->so_head) {
1152 so->so_pcb = NULL;
1153 /* sofree() drops the socket lock */
1154 sofree(so);
1155 unp_free(unp);
1156 return true;
1157 }
1158 return false;
1159 }
1160
1161 #ifdef notdef
1162 unp_drain(void)
1163 {
1164
1165 }
1166 #endif
1167
1168 int
1169 unp_externalize(struct mbuf *rights, struct lwp *l)
1170 {
1171 struct cmsghdr *cm = mtod(rights, struct cmsghdr *);
1172 struct proc *p = l->l_proc;
1173 int i, *fdp;
1174 file_t **rp;
1175 file_t *fp;
1176 int nfds, error = 0;
1177
1178 nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
1179 sizeof(file_t *);
1180 rp = (file_t **)CMSG_DATA(cm);
1181
1182 fdp = malloc(nfds * sizeof(int), M_TEMP, M_WAITOK);
1183 rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
1184
1185 /* Make sure the recipient should be able to see the descriptors.. */
1186 if (p->p_cwdi->cwdi_rdir != NULL) {
1187 rp = (file_t **)CMSG_DATA(cm);
1188 for (i = 0; i < nfds; i++) {
1189 fp = *rp++;
1190 /*
1191 * If we are in a chroot'ed directory, and
1192 * someone wants to pass us a directory, make
1193 * sure it's inside the subtree we're allowed
1194 * to access.
1195 */
1196 if (fp->f_type == DTYPE_VNODE) {
1197 vnode_t *vp = (vnode_t *)fp->f_data;
1198 if ((vp->v_type == VDIR) &&
1199 !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
1200 error = EPERM;
1201 break;
1202 }
1203 }
1204 }
1205 }
1206
1207 restart:
1208 rp = (file_t **)CMSG_DATA(cm);
1209 if (error != 0) {
1210 for (i = 0; i < nfds; i++) {
1211 fp = *rp;
1212 /*
1213 * zero the pointer before calling unp_discard,
1214 * since it may end up in unp_gc()..
1215 */
1216 *rp++ = 0;
1217 unp_discard(fp);
1218 }
1219 goto out;
1220 }
1221
1222 /*
1223 * First loop -- allocate file descriptor table slots for the
1224 * new descriptors.
1225 */
1226 for (i = 0; i < nfds; i++) {
1227 fp = *rp++;
1228 if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
1229 /*
1230 * Back out what we've done so far.
1231 */
1232 for (--i; i >= 0; i--) {
1233 fd_abort(p, NULL, fdp[i]);
1234 }
1235 if (error == ENOSPC) {
1236 fd_tryexpand(p);
1237 error = 0;
1238 } else {
1239 /*
1240 * This is the error that has historically
1241 * been returned, and some callers may
1242 * expect it.
1243 */
1244 error = EMSGSIZE;
1245 }
1246 goto restart;
1247 }
1248 }
1249
1250 /*
1251 * Now that adding them has succeeded, update all of the
1252 * descriptor passing state.
1253 */
1254 rp = (file_t **)CMSG_DATA(cm);
1255 for (i = 0; i < nfds; i++) {
1256 fp = *rp++;
1257 atomic_dec_uint(&unp_rights);
1258 fd_affix(p, fp, fdp[i]);
1259 mutex_enter(&fp->f_lock);
1260 fp->f_msgcount--;
1261 mutex_exit(&fp->f_lock);
1262 /*
1263 * Note that fd_affix() adds a reference to the file.
1264 * The file may already have been closed by another
1265 * LWP in the process, so we must drop the reference
1266 * added by unp_internalize() with closef().
1267 */
1268 closef(fp);
1269 }
1270
1271 /*
1272 * Copy temporary array to message and adjust length, in case of
1273 * transition from large file_t pointers to ints.
1274 */
1275 memcpy(CMSG_DATA(cm), fdp, nfds * sizeof(int));
1276 cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
1277 rights->m_len = CMSG_SPACE(nfds * sizeof(int));
1278 out:
1279 rw_exit(&p->p_cwdi->cwdi_lock);
1280 free(fdp, M_TEMP);
1281 return (error);
1282 }
1283
1284 int
1285 unp_internalize(struct mbuf **controlp)
1286 {
1287 struct filedesc *fdescp = curlwp->l_fd;
1288 struct mbuf *control = *controlp;
1289 struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
1290 file_t **rp, **files;
1291 file_t *fp;
1292 int i, fd, *fdp;
1293 int nfds, error;
1294
1295 error = 0;
1296 newcm = NULL;
1297
1298 /* Sanity check the control message header. */
1299 if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
1300 cm->cmsg_len != control->m_len)
1301 return (EINVAL);
1302
1303 /*
1304 * Verify that the file descriptors are valid, and acquire
1305 * a reference to each.
1306 */
1307 nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
1308 fdp = (int *)CMSG_DATA(cm);
1309 for (i = 0; i < nfds; i++) {
1310 fd = *fdp++;
1311 if ((fp = fd_getfile(fd)) == NULL) {
1312 nfds = i + 1;
1313 error = EBADF;
1314 goto out;
1315 }
1316 }
1317
1318 /* Allocate new space and copy header into it. */
1319 newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
1320 if (newcm == NULL) {
1321 error = E2BIG;
1322 goto out;
1323 }
1324 memcpy(newcm, cm, sizeof(struct cmsghdr));
1325 files = (file_t **)CMSG_DATA(newcm);
1326
1327 /*
1328 * Transform the file descriptors into file_t pointers, in
1329 * reverse order so that if pointers are bigger than ints, the
1330 * int won't get until we're done. No need to lock, as we have
1331 * already validated the descriptors with fd_getfile().
1332 */
1333 fdp = (int *)CMSG_DATA(cm) + nfds;
1334 rp = files + nfds;
1335 for (i = 0; i < nfds; i++) {
1336 fp = fdescp->fd_ofiles[*--fdp]->ff_file;
1337 KASSERT(fp != NULL);
1338 mutex_enter(&fp->f_lock);
1339 *--rp = fp;
1340 fp->f_count++;
1341 fp->f_msgcount++;
1342 mutex_exit(&fp->f_lock);
1343 atomic_inc_uint(&unp_rights);
1344 }
1345
1346 out:
1347 /* Release descriptor references. */
1348 fdp = (int *)CMSG_DATA(cm);
1349 for (i = 0; i < nfds; i++) {
1350 fd_putfile(*fdp++);
1351 }
1352
1353 if (error == 0) {
1354 if (control->m_flags & M_EXT) {
1355 m_freem(control);
1356 *controlp = control = m_get(M_WAIT, MT_CONTROL);
1357 }
1358 MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
1359 M_MBUF, NULL, NULL);
1360 cm = newcm;
1361 /*
1362 * Adjust message & mbuf to note amount of space
1363 * actually used.
1364 */
1365 cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
1366 control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
1367 }
1368
1369 return error;
1370 }
1371
1372 struct mbuf *
1373 unp_addsockcred(struct lwp *l, struct mbuf *control)
1374 {
1375 struct cmsghdr *cmp;
1376 struct sockcred *sc;
1377 struct mbuf *m, *n;
1378 int len, space, i;
1379
1380 len = CMSG_LEN(SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)));
1381 space = CMSG_SPACE(SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)));
1382
1383 m = m_get(M_WAIT, MT_CONTROL);
1384 if (space > MLEN) {
1385 if (space > MCLBYTES)
1386 MEXTMALLOC(m, space, M_WAITOK);
1387 else
1388 m_clget(m, M_WAIT);
1389 if ((m->m_flags & M_EXT) == 0) {
1390 m_free(m);
1391 return (control);
1392 }
1393 }
1394
1395 m->m_len = space;
1396 m->m_next = NULL;
1397 cmp = mtod(m, struct cmsghdr *);
1398 sc = (struct sockcred *)CMSG_DATA(cmp);
1399 cmp->cmsg_len = len;
1400 cmp->cmsg_level = SOL_SOCKET;
1401 cmp->cmsg_type = SCM_CREDS;
1402 sc->sc_uid = kauth_cred_getuid(l->l_cred);
1403 sc->sc_euid = kauth_cred_geteuid(l->l_cred);
1404 sc->sc_gid = kauth_cred_getgid(l->l_cred);
1405 sc->sc_egid = kauth_cred_getegid(l->l_cred);
1406 sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
1407 for (i = 0; i < sc->sc_ngroups; i++)
1408 sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
1409
1410 /*
1411 * If a control message already exists, append us to the end.
1412 */
1413 if (control != NULL) {
1414 for (n = control; n->m_next != NULL; n = n->m_next)
1415 ;
1416 n->m_next = m;
1417 } else
1418 control = m;
1419
1420 return (control);
1421 }
1422
1423 int unp_defer, unp_gcing;
1424 extern struct domain unixdomain;
1425
1426 /*
1427 * Comment added long after the fact explaining what's going on here.
1428 * Do a mark-sweep GC of file descriptors on the system, to free up
1429 * any which are caught in flight to an about-to-be-closed socket.
1430 *
1431 * Traditional mark-sweep gc's start at the "root", and mark
1432 * everything reachable from the root (which, in our case would be the
1433 * process table). The mark bits are cleared during the sweep.
1434 *
1435 * XXX For some inexplicable reason (perhaps because the file
1436 * descriptor tables used to live in the u area which could be swapped
1437 * out and thus hard to reach), we do multiple scans over the set of
1438 * descriptors, using use *two* mark bits per object (DEFER and MARK).
1439 * Whenever we find a descriptor which references other descriptors,
1440 * the ones it references are marked with both bits, and we iterate
1441 * over the whole file table until there are no more DEFER bits set.
1442 * We also make an extra pass *before* the GC to clear the mark bits,
1443 * which could have been cleared at almost no cost during the previous
1444 * sweep.
1445 */
1446 void
1447 unp_gc(void)
1448 {
1449 file_t *fp, *nextfp;
1450 struct socket *so, *so1;
1451 file_t **extra_ref, **fpp;
1452 int nunref, nslots, i;
1453
1454 if (atomic_swap_uint(&unp_gcing, 1) == 1)
1455 return;
1456
1457 restart:
1458 nslots = nfiles * 2;
1459 extra_ref = kmem_alloc(nslots * sizeof(file_t *), KM_SLEEP);
1460
1461 mutex_enter(&filelist_lock);
1462 unp_defer = 0;
1463
1464 /* Clear mark bits */
1465 LIST_FOREACH(fp, &filehead, f_list) {
1466 atomic_and_uint(&fp->f_flag, ~(FMARK|FDEFER));
1467 }
1468
1469 /*
1470 * Iterate over the set of descriptors, marking ones believed
1471 * (based on refcount) to be referenced from a process, and
1472 * marking for rescan descriptors which are queued on a socket.
1473 */
1474 do {
1475 LIST_FOREACH(fp, &filehead, f_list) {
1476 mutex_enter(&fp->f_lock);
1477 if (fp->f_flag & FDEFER) {
1478 atomic_and_uint(&fp->f_flag, ~FDEFER);
1479 unp_defer--;
1480 KASSERT(fp->f_count != 0);
1481 } else {
1482 if (fp->f_count == 0 ||
1483 (fp->f_flag & FMARK) ||
1484 fp->f_count == fp->f_msgcount) {
1485 mutex_exit(&fp->f_lock);
1486 continue;
1487 }
1488 }
1489 atomic_or_uint(&fp->f_flag, FMARK);
1490
1491 if (fp->f_type != DTYPE_SOCKET ||
1492 (so = fp->f_data) == NULL ||
1493 so->so_proto->pr_domain != &unixdomain ||
1494 (so->so_proto->pr_flags&PR_RIGHTS) == 0) {
1495 mutex_exit(&fp->f_lock);
1496 continue;
1497 }
1498 #ifdef notdef
1499 if (so->so_rcv.sb_flags & SB_LOCK) {
1500 mutex_exit(&fp->f_lock);
1501 mutex_exit(&filelist_lock);
1502 kmem_free(extra_ref, nslots * sizeof(file_t *));
1503 /*
1504 * This is problematical; it's not clear
1505 * we need to wait for the sockbuf to be
1506 * unlocked (on a uniprocessor, at least),
1507 * and it's also not clear what to do
1508 * if sbwait returns an error due to receipt
1509 * of a signal. If sbwait does return
1510 * an error, we'll go into an infinite
1511 * loop. Delete all of this for now.
1512 */
1513 (void) sbwait(&so->so_rcv);
1514 goto restart;
1515 }
1516 #endif
1517 mutex_exit(&fp->f_lock);
1518
1519 /*
1520 * XXX Locking a socket with filelist_lock held
1521 * is ugly. filelist_lock can be taken by the
1522 * pagedaemon when reclaiming items from file_cache.
1523 * Socket activity could delay the pagedaemon.
1524 */
1525 solock(so);
1526 unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
1527 /*
1528 * Mark descriptors referenced from sockets queued
1529 * on the accept queue as well.
1530 */
1531 if (so->so_options & SO_ACCEPTCONN) {
1532 TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
1533 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1534 }
1535 TAILQ_FOREACH(so1, &so->so_q, so_qe) {
1536 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1537 }
1538 }
1539 sounlock(so);
1540 }
1541 } while (unp_defer);
1542
1543 /*
1544 * Sweep pass. Find unmarked descriptors, and free them.
1545 *
1546 * We grab an extra reference to each of the file table entries
1547 * that are not otherwise accessible and then free the rights
1548 * that are stored in messages on them.
1549 *
1550 * The bug in the original code is a little tricky, so I'll describe
1551 * what's wrong with it here.
1552 *
1553 * It is incorrect to simply unp_discard each entry for f_msgcount
1554 * times -- consider the case of sockets A and B that contain
1555 * references to each other. On a last close of some other socket,
1556 * we trigger a gc since the number of outstanding rights (unp_rights)
1557 * is non-zero. If during the sweep phase the gc code un_discards,
1558 * we end up doing a (full) closef on the descriptor. A closef on A
1559 * results in the following chain. Closef calls soo_close, which
1560 * calls soclose. Soclose calls first (through the switch
1561 * uipc_usrreq) unp_detach, which re-invokes unp_gc. Unp_gc simply
1562 * returns because the previous instance had set unp_gcing, and
1563 * we return all the way back to soclose, which marks the socket
1564 * with SS_NOFDREF, and then calls sofree. Sofree calls sorflush
1565 * to free up the rights that are queued in messages on the socket A,
1566 * i.e., the reference on B. The sorflush calls via the dom_dispose
1567 * switch unp_dispose, which unp_scans with unp_discard. This second
1568 * instance of unp_discard just calls closef on B.
1569 *
1570 * Well, a similar chain occurs on B, resulting in a sorflush on B,
1571 * which results in another closef on A. Unfortunately, A is already
1572 * being closed, and the descriptor has already been marked with
1573 * SS_NOFDREF, and soclose panics at this point.
1574 *
1575 * Here, we first take an extra reference to each inaccessible
1576 * descriptor. Then, if the inaccessible descriptor is a
1577 * socket, we call sorflush in case it is a Unix domain
1578 * socket. After we destroy all the rights carried in
1579 * messages, we do a last closef to get rid of our extra
1580 * reference. This is the last close, and the unp_detach etc
1581 * will shut down the socket.
1582 *
1583 * 91/09/19, bsy (at) cs.cmu.edu
1584 */
1585 if (nslots < nfiles) {
1586 mutex_exit(&filelist_lock);
1587 kmem_free(extra_ref, nslots * sizeof(file_t *));
1588 goto restart;
1589 }
1590 for (nunref = 0, fp = LIST_FIRST(&filehead), fpp = extra_ref; fp != 0;
1591 fp = nextfp) {
1592 nextfp = LIST_NEXT(fp, f_list);
1593 mutex_enter(&fp->f_lock);
1594 if (fp->f_count != 0 &&
1595 fp->f_count == fp->f_msgcount && !(fp->f_flag & FMARK)) {
1596 *fpp++ = fp;
1597 nunref++;
1598 fp->f_count++;
1599 }
1600 mutex_exit(&fp->f_lock);
1601 }
1602 mutex_exit(&filelist_lock);
1603
1604 for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) {
1605 fp = *fpp;
1606 if (fp->f_type == DTYPE_SOCKET) {
1607 so = fp->f_data;
1608 solock(so);
1609 sorflush(fp->f_data);
1610 sounlock(so);
1611 }
1612 }
1613 for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) {
1614 closef(*fpp);
1615 }
1616 kmem_free(extra_ref, nslots * sizeof(file_t *));
1617 atomic_swap_uint(&unp_gcing, 0);
1618 }
1619
1620 void
1621 unp_dispose(struct mbuf *m)
1622 {
1623
1624 if (m)
1625 unp_scan(m, unp_discard, 1);
1626 }
1627
1628 void
1629 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
1630 {
1631 struct mbuf *m;
1632 file_t **rp;
1633 struct cmsghdr *cm;
1634 int i;
1635 int qfds;
1636
1637 while (m0) {
1638 for (m = m0; m; m = m->m_next) {
1639 if (m->m_type == MT_CONTROL &&
1640 m->m_len >= sizeof(*cm)) {
1641 cm = mtod(m, struct cmsghdr *);
1642 if (cm->cmsg_level != SOL_SOCKET ||
1643 cm->cmsg_type != SCM_RIGHTS)
1644 continue;
1645 qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
1646 / sizeof(file_t *);
1647 rp = (file_t **)CMSG_DATA(cm);
1648 for (i = 0; i < qfds; i++) {
1649 file_t *fp = *rp;
1650 if (discard)
1651 *rp = 0;
1652 (*op)(fp);
1653 rp++;
1654 }
1655 break; /* XXX, but saves time */
1656 }
1657 }
1658 m0 = m0->m_nextpkt;
1659 }
1660 }
1661
1662 void
1663 unp_mark(file_t *fp)
1664 {
1665
1666 if (fp == NULL)
1667 return;
1668
1669 /* If we're already deferred, don't screw up the defer count */
1670 mutex_enter(&fp->f_lock);
1671 if (fp->f_flag & (FMARK | FDEFER)) {
1672 mutex_exit(&fp->f_lock);
1673 return;
1674 }
1675
1676 /*
1677 * Minimize the number of deferrals... Sockets are the only
1678 * type of descriptor which can hold references to another
1679 * descriptor, so just mark other descriptors, and defer
1680 * unmarked sockets for the next pass.
1681 */
1682 if (fp->f_type == DTYPE_SOCKET) {
1683 unp_defer++;
1684 KASSERT(fp->f_count != 0);
1685 atomic_or_uint(&fp->f_flag, FDEFER);
1686 } else {
1687 atomic_or_uint(&fp->f_flag, FMARK);
1688 }
1689 mutex_exit(&fp->f_lock);
1690 return;
1691 }
1692
1693 void
1694 unp_discard(file_t *fp)
1695 {
1696
1697 if (fp == NULL)
1698 return;
1699
1700 mutex_enter(&fp->f_lock);
1701 KASSERT(fp->f_count > 0);
1702 fp->f_msgcount--;
1703 mutex_exit(&fp->f_lock);
1704 atomic_dec_uint(&unp_rights);
1705 (void)closef(fp);
1706 }
1707