Home | History | Annotate | Line # | Download | only in kern
uipc_usrreq.c revision 1.113
      1 /*	$NetBSD: uipc_usrreq.c,v 1.113 2008/04/27 11:29:12 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 2000, 2004, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
     69  */
     70 
     71 /*
     72  * Copyright (c) 1997 Christopher G. Demetriou.  All rights reserved.
     73  *
     74  * Redistribution and use in source and binary forms, with or without
     75  * modification, are permitted provided that the following conditions
     76  * are met:
     77  * 1. Redistributions of source code must retain the above copyright
     78  *    notice, this list of conditions and the following disclaimer.
     79  * 2. Redistributions in binary form must reproduce the above copyright
     80  *    notice, this list of conditions and the following disclaimer in the
     81  *    documentation and/or other materials provided with the distribution.
     82  * 3. All advertising materials mentioning features or use of this software
     83  *    must display the following acknowledgement:
     84  *	This product includes software developed by the University of
     85  *	California, Berkeley and its contributors.
     86  * 4. Neither the name of the University nor the names of its contributors
     87  *    may be used to endorse or promote products derived from this software
     88  *    without specific prior written permission.
     89  *
     90  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     91  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     92  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     93  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     94  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     95  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     96  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     97  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     98  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     99  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    100  * SUCH DAMAGE.
    101  *
    102  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
    103  */
    104 
    105 #include <sys/cdefs.h>
    106 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.113 2008/04/27 11:29:12 ad Exp $");
    107 
    108 #include <sys/param.h>
    109 #include <sys/systm.h>
    110 #include <sys/proc.h>
    111 #include <sys/filedesc.h>
    112 #include <sys/domain.h>
    113 #include <sys/protosw.h>
    114 #include <sys/socket.h>
    115 #include <sys/socketvar.h>
    116 #include <sys/unpcb.h>
    117 #include <sys/un.h>
    118 #include <sys/namei.h>
    119 #include <sys/vnode.h>
    120 #include <sys/file.h>
    121 #include <sys/stat.h>
    122 #include <sys/mbuf.h>
    123 #include <sys/kauth.h>
    124 #include <sys/kmem.h>
    125 #include <sys/atomic.h>
    126 
    127 /*
    128  * Unix communications domain.
    129  *
    130  * TODO:
    131  *	SEQPACKET, RDM
    132  *	rethink name space problems
    133  *	need a proper out-of-band
    134  *
    135  * Notes on locking:
    136  *
    137  * The generic rules noted in uipc_socket2.c apply.  In addition:
    138  *
    139  * o We have a global lock, uipc_lock.
    140  *
    141  * o All datagram sockets are locked by uipc_lock.
    142  *
    143  * o For stream socketpairs, the two endpoints are created sharing the same
    144  *   independent lock.  Sockets presented to PRU_CONNECT2 must already have
    145  *   matching locks.
    146  *
    147  * o Stream sockets created via socket() start life with their own
    148  *   independent lock.
    149  *
    150  * o Stream connections to a named endpoint are slightly more complicated.
    151  *   Sockets that have called listen() have their lock pointer mutated to
    152  *   the global uipc_lock.  When establishing a connection, the connecting
    153  *   socket also has its lock mutated to uipc_lock, which matches the head
    154  *   (listening socket).  We create a new socket for accept() to return, and
    155  *   that also shares the head's lock.  Until the connection is completely
    156  *   done on both ends, all three sockets are locked by uipc_lock.  Once the
    157  *   connection is complete, the association with the head's lock is broken.
    158  *   The connecting socket and the socket returned from accept() have their
    159  *   lock pointers mutated away from uipc_lock, and back to the connecting
    160  *   socket's original, independent lock.  The head continues to be locked
    161  *   by uipc_lock.
    162  *
    163  * o If uipc_lock is determined to be a significant source of contention,
    164  *   it could easily be hashed out.  It is difficult to simply make it an
    165  *   independent lock because of visibility / garbage collection issues:
    166  *   if a socket has been associated with a lock at any point, that lock
    167  *   must remain valid until the socket is no longer visible in the system.
    168  *   The lock must not be freed or otherwise destroyed until any sockets
    169  *   that had referenced it have also been destroyed.
    170  */
    171 const struct sockaddr_un sun_noname = {
    172 	.sun_len = sizeof(sun_noname),
    173 	.sun_family = AF_LOCAL,
    174 };
    175 ino_t	unp_ino;			/* prototype for fake inode numbers */
    176 
    177 struct mbuf *unp_addsockcred(struct lwp *, struct mbuf *);
    178 static kmutex_t *uipc_lock;
    179 
    180 /*
    181  * Initialize Unix protocols.
    182  */
    183 void
    184 uipc_init(void)
    185 {
    186 
    187 	uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    188 }
    189 
    190 /*
    191  * A connection succeeded: disassociate both endpoints from the head's
    192  * lock, and make them share their own lock.  There is a race here: for
    193  * a very brief time one endpoint will be locked by a different lock
    194  * than the other end.  However, since the current thread holds the old
    195  * lock (the listening socket's lock, the head) access can still only be
    196  * made to one side of the connection.
    197  */
    198 static void
    199 unp_setpeerlocks(struct socket *so, struct socket *so2)
    200 {
    201 	struct unpcb *unp;
    202 	kmutex_t *lock;
    203 
    204 	KASSERT(solocked2(so, so2));
    205 
    206 	/*
    207 	 * Bail out if either end of the socket is not yet fully
    208 	 * connected or accepted.  We only break the lock association
    209 	 * with the head when the pair of sockets stand completely
    210 	 * on their own.
    211 	 */
    212 	if (so->so_head != NULL || so2->so_head != NULL)
    213 		return;
    214 
    215 	/*
    216 	 * Drop references to old lock.  A third reference (from the
    217 	 * queue head) must be held as we still hold its lock.  Bonus:
    218 	 * we don't need to worry about garbage collecting the lock.
    219 	 */
    220 	lock = so->so_lock;
    221 	KASSERT(lock == uipc_lock);
    222 	mutex_obj_free(lock);
    223 	mutex_obj_free(lock);
    224 
    225 	/*
    226 	 * Grab stream lock from the initiator and share between the two
    227 	 * endpoints.  Issue memory barrier to ensure all modifications
    228 	 * become globally visible before the lock change.  so2 is
    229 	 * assumed not to have a stream lock, because it was created
    230 	 * purely for the server side to accept this connection and
    231 	 * started out life using the domain-wide lock.
    232 	 */
    233 	unp = sotounpcb(so);
    234 	KASSERT(unp->unp_streamlock != NULL);
    235 	KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
    236 	lock = unp->unp_streamlock;
    237 	unp->unp_streamlock = NULL;
    238 	mutex_obj_hold(lock);
    239 	membar_exit();
    240 	so->so_lock = lock;
    241 	so2->so_lock = lock;
    242 }
    243 
    244 /*
    245  * Reset a socket's lock back to the domain-wide lock.
    246  */
    247 static void
    248 unp_resetlock(struct socket *so)
    249 {
    250 	kmutex_t *olock, *nlock;
    251 	struct unpcb *unp;
    252 
    253 	KASSERT(solocked(so));
    254 
    255 	olock = so->so_lock;
    256 	nlock = uipc_lock;
    257 	if (olock == nlock)
    258 		return;
    259 	unp = sotounpcb(so);
    260 	KASSERT(unp->unp_streamlock == NULL);
    261 	unp->unp_streamlock = olock;
    262 	mutex_obj_hold(nlock);
    263 	mutex_enter(nlock);
    264 	so->so_lock = nlock;
    265 	mutex_exit(olock);
    266 }
    267 
    268 static void
    269 unp_free(struct unpcb *unp)
    270 {
    271 
    272 	if (unp->unp_addr)
    273 		free(unp->unp_addr, M_SONAME);
    274 	if (unp->unp_streamlock != NULL)
    275 		mutex_obj_free(unp->unp_streamlock);
    276 	free(unp, M_PCB);
    277 }
    278 
    279 int
    280 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp,
    281 	struct lwp *l)
    282 {
    283 	struct socket *so2;
    284 	const struct sockaddr_un *sun;
    285 
    286 	so2 = unp->unp_conn->unp_socket;
    287 
    288 	KASSERT(solocked(so2));
    289 
    290 	if (unp->unp_addr)
    291 		sun = unp->unp_addr;
    292 	else
    293 		sun = &sun_noname;
    294 	if (unp->unp_conn->unp_flags & UNP_WANTCRED)
    295 		control = unp_addsockcred(l, control);
    296 	if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
    297 	    control) == 0) {
    298 		so2->so_rcv.sb_overflowed++;
    299 	    	sounlock(so2);
    300 		unp_dispose(control);
    301 		m_freem(control);
    302 		m_freem(m);
    303 	    	solock(so2);
    304 		return (ENOBUFS);
    305 	} else {
    306 		sorwakeup(so2);
    307 		return (0);
    308 	}
    309 }
    310 
    311 void
    312 unp_setaddr(struct socket *so, struct mbuf *nam, bool peeraddr)
    313 {
    314 	const struct sockaddr_un *sun;
    315 	struct unpcb *unp;
    316 	bool ext;
    317 
    318 	unp = sotounpcb(so);
    319 	ext = false;
    320 
    321 	for (;;) {
    322 		sun = NULL;
    323 		if (peeraddr) {
    324 			if (unp->unp_conn && unp->unp_conn->unp_addr)
    325 				sun = unp->unp_conn->unp_addr;
    326 		} else {
    327 			if (unp->unp_addr)
    328 				sun = unp->unp_addr;
    329 		}
    330 		if (sun == NULL)
    331 			sun = &sun_noname;
    332 		nam->m_len = sun->sun_len;
    333 		if (nam->m_len > MLEN && !ext) {
    334 			sounlock(so);
    335 			MEXTMALLOC(nam, MAXPATHLEN * 2, M_WAITOK);
    336 			solock(so);
    337 			ext = true;
    338 		} else {
    339 			KASSERT(nam->m_len <= MAXPATHLEN * 2);
    340 			memcpy(mtod(nam, void *), sun, (size_t)nam->m_len);
    341 			break;
    342 		}
    343 	}
    344 }
    345 
    346 /*ARGSUSED*/
    347 int
    348 uipc_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
    349 	struct mbuf *control, struct lwp *l)
    350 {
    351 	struct unpcb *unp = sotounpcb(so);
    352 	struct socket *so2;
    353 	struct proc *p;
    354 	u_int newhiwat;
    355 	int error = 0;
    356 
    357 	if (req == PRU_CONTROL)
    358 		return (EOPNOTSUPP);
    359 
    360 #ifdef DIAGNOSTIC
    361 	if (req != PRU_SEND && req != PRU_SENDOOB && control)
    362 		panic("uipc_usrreq: unexpected control mbuf");
    363 #endif
    364 	p = l ? l->l_proc : NULL;
    365 	if (req != PRU_ATTACH) {
    366 		if (unp == 0) {
    367 			error = EINVAL;
    368 			goto release;
    369 		}
    370 		KASSERT(solocked(so));
    371 	}
    372 
    373 	switch (req) {
    374 
    375 	case PRU_ATTACH:
    376 		if (unp != 0) {
    377 			error = EISCONN;
    378 			break;
    379 		}
    380 		error = unp_attach(so);
    381 		break;
    382 
    383 	case PRU_DETACH:
    384 		unp_detach(unp);
    385 		break;
    386 
    387 	case PRU_BIND:
    388 		KASSERT(l != NULL);
    389 		error = unp_bind(so, nam, l);
    390 		break;
    391 
    392 	case PRU_LISTEN:
    393 		/*
    394 		 * If the socket can accept a connection, it must be
    395 		 * locked by uipc_lock.
    396 		 */
    397 		unp_resetlock(so);
    398 		if (unp->unp_vnode == 0)
    399 			error = EINVAL;
    400 		break;
    401 
    402 	case PRU_CONNECT:
    403 		KASSERT(l != NULL);
    404 		error = unp_connect(so, nam, l);
    405 		break;
    406 
    407 	case PRU_CONNECT2:
    408 		error = unp_connect2(so, (struct socket *)nam, PRU_CONNECT2);
    409 		break;
    410 
    411 	case PRU_DISCONNECT:
    412 		unp_disconnect(unp);
    413 		break;
    414 
    415 	case PRU_ACCEPT:
    416 		KASSERT(so->so_lock == uipc_lock);
    417 		/*
    418 		 * Mark the initiating STREAM socket as connected *ONLY*
    419 		 * after it's been accepted.  This prevents a client from
    420 		 * overrunning a server and receiving ECONNREFUSED.
    421 		 */
    422 		if (unp->unp_conn == NULL)
    423 			break;
    424 		so2 = unp->unp_conn->unp_socket;
    425 		if (so2->so_state & SS_ISCONNECTING) {
    426 			KASSERT(solocked2(so, so->so_head));
    427 			KASSERT(solocked2(so2, so->so_head));
    428 			soisconnected(so2);
    429 		}
    430 		/*
    431 		 * If the connection is fully established, break the
    432 		 * association with uipc_lock and give the connected
    433 		 * pair a seperate lock to share.
    434 		 */
    435 		unp_setpeerlocks(so2, so);
    436 		/*
    437 		 * Only now return peer's address, as we may need to
    438 		 * block in order to allocate memory.
    439 		 *
    440 		 * XXX Minor race: connection can be broken while
    441 		 * lock is dropped in unp_setaddr().  We will return
    442 		 * error == 0 and sun_noname as the peer address.
    443 		 */
    444 		unp_setaddr(so, nam, true);
    445 		break;
    446 
    447 	case PRU_SHUTDOWN:
    448 		socantsendmore(so);
    449 		unp_shutdown(unp);
    450 		break;
    451 
    452 	case PRU_RCVD:
    453 		switch (so->so_type) {
    454 
    455 		case SOCK_DGRAM:
    456 			panic("uipc 1");
    457 			/*NOTREACHED*/
    458 
    459 		case SOCK_STREAM:
    460 #define	rcv (&so->so_rcv)
    461 #define snd (&so2->so_snd)
    462 			if (unp->unp_conn == 0)
    463 				break;
    464 			so2 = unp->unp_conn->unp_socket;
    465 			KASSERT(solocked2(so, so2));
    466 			/*
    467 			 * Adjust backpressure on sender
    468 			 * and wakeup any waiting to write.
    469 			 */
    470 			snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
    471 			unp->unp_mbcnt = rcv->sb_mbcnt;
    472 			newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
    473 			(void)chgsbsize(so2->so_uidinfo,
    474 			    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
    475 			unp->unp_cc = rcv->sb_cc;
    476 			sowwakeup(so2);
    477 #undef snd
    478 #undef rcv
    479 			break;
    480 
    481 		default:
    482 			panic("uipc 2");
    483 		}
    484 		break;
    485 
    486 	case PRU_SEND:
    487 		/*
    488 		 * Note: unp_internalize() rejects any control message
    489 		 * other than SCM_RIGHTS, and only allows one.  This
    490 		 * has the side-effect of preventing a caller from
    491 		 * forging SCM_CREDS.
    492 		 */
    493 		if (control) {
    494 			sounlock(so);
    495 			error = unp_internalize(&control);
    496 			solock(so);
    497 			if (error != 0) {
    498 				m_freem(control);
    499 				m_freem(m);
    500 				break;
    501 			}
    502 		}
    503 		switch (so->so_type) {
    504 
    505 		case SOCK_DGRAM: {
    506 			KASSERT(so->so_lock == uipc_lock);
    507 			if (nam) {
    508 				if ((so->so_state & SS_ISCONNECTED) != 0)
    509 					error = EISCONN;
    510 				else {
    511 					/*
    512 					 * Note: once connected, the
    513 					 * socket's lock must not be
    514 					 * dropped until we have sent
    515 					 * the message and disconnected.
    516 					 * This is necessary to prevent
    517 					 * intervening control ops, like
    518 					 * another connection.
    519 					 */
    520 					error = unp_connect(so, nam, l);
    521 				}
    522 			} else {
    523 				if ((so->so_state & SS_ISCONNECTED) == 0)
    524 					error = ENOTCONN;
    525 			}
    526 			if (error) {
    527 				sounlock(so);
    528 				unp_dispose(control);
    529 				m_freem(control);
    530 				m_freem(m);
    531 				solock(so);
    532 				break;
    533 			}
    534 			KASSERT(p != NULL);
    535 			error = unp_output(m, control, unp, l);
    536 			if (nam)
    537 				unp_disconnect(unp);
    538 			break;
    539 		}
    540 
    541 		case SOCK_STREAM:
    542 #define	rcv (&so2->so_rcv)
    543 #define	snd (&so->so_snd)
    544 			if (unp->unp_conn == NULL) {
    545 				error = ENOTCONN;
    546 				break;
    547 			}
    548 			so2 = unp->unp_conn->unp_socket;
    549 			KASSERT(solocked2(so, so2));
    550 			if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
    551 				/*
    552 				 * Credentials are passed only once on
    553 				 * SOCK_STREAM.
    554 				 */
    555 				unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
    556 				control = unp_addsockcred(l, control);
    557 			}
    558 			/*
    559 			 * Send to paired receive port, and then reduce
    560 			 * send buffer hiwater marks to maintain backpressure.
    561 			 * Wake up readers.
    562 			 */
    563 			if (control) {
    564 				if (sbappendcontrol(rcv, m, control) != 0)
    565 					control = NULL;
    566 			} else
    567 				sbappend(rcv, m);
    568 			snd->sb_mbmax -=
    569 			    rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
    570 			unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
    571 			newhiwat = snd->sb_hiwat -
    572 			    (rcv->sb_cc - unp->unp_conn->unp_cc);
    573 			(void)chgsbsize(so->so_uidinfo,
    574 			    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
    575 			unp->unp_conn->unp_cc = rcv->sb_cc;
    576 			sorwakeup(so2);
    577 #undef snd
    578 #undef rcv
    579 			if (control != NULL) {
    580 				sounlock(so);
    581 				unp_dispose(control);
    582 				m_freem(control);
    583 				solock(so);
    584 			}
    585 			break;
    586 
    587 		default:
    588 			panic("uipc 4");
    589 		}
    590 		break;
    591 
    592 	case PRU_ABORT:
    593 		(void)unp_drop(unp, ECONNABORTED);
    594 
    595 		KASSERT(so->so_head == NULL);
    596 #ifdef DIAGNOSTIC
    597 		if (so->so_pcb == 0)
    598 			panic("uipc 5: drop killed pcb");
    599 #endif
    600 		unp_detach(unp);
    601 		break;
    602 
    603 	case PRU_SENSE:
    604 		((struct stat *) m)->st_blksize = so->so_snd.sb_hiwat;
    605 		if (so->so_type == SOCK_STREAM && unp->unp_conn != 0) {
    606 			so2 = unp->unp_conn->unp_socket;
    607 			KASSERT(solocked2(so, so2));
    608 			((struct stat *) m)->st_blksize += so2->so_rcv.sb_cc;
    609 		}
    610 		((struct stat *) m)->st_dev = NODEV;
    611 		if (unp->unp_ino == 0)
    612 			unp->unp_ino = unp_ino++;
    613 		((struct stat *) m)->st_atimespec =
    614 		    ((struct stat *) m)->st_mtimespec =
    615 		    ((struct stat *) m)->st_ctimespec = unp->unp_ctime;
    616 		((struct stat *) m)->st_ino = unp->unp_ino;
    617 		return (0);
    618 
    619 	case PRU_RCVOOB:
    620 		error = EOPNOTSUPP;
    621 		break;
    622 
    623 	case PRU_SENDOOB:
    624 		m_freem(control);
    625 		m_freem(m);
    626 		error = EOPNOTSUPP;
    627 		break;
    628 
    629 	case PRU_SOCKADDR:
    630 		unp_setaddr(so, nam, false);
    631 		break;
    632 
    633 	case PRU_PEERADDR:
    634 		unp_setaddr(so, nam, true);
    635 		break;
    636 
    637 	default:
    638 		panic("piusrreq");
    639 	}
    640 
    641 release:
    642 	return (error);
    643 }
    644 
    645 /*
    646  * Unix domain socket option processing.
    647  */
    648 int
    649 uipc_ctloutput(int op, struct socket *so, int level, int optname,
    650 	struct mbuf **mp)
    651 {
    652 	struct unpcb *unp = sotounpcb(so);
    653 	struct mbuf *m = *mp;
    654 	int optval = 0, error = 0;
    655 
    656 	KASSERT(solocked(so));
    657 
    658 	if (level != 0) {
    659 		error = ENOPROTOOPT;
    660 		if (op == PRCO_SETOPT && m)
    661 			(void) m_free(m);
    662 	} else switch (op) {
    663 
    664 	case PRCO_SETOPT:
    665 		switch (optname) {
    666 		case LOCAL_CREDS:
    667 		case LOCAL_CONNWAIT:
    668 			if (m == NULL || m->m_len != sizeof(int))
    669 				error = EINVAL;
    670 			else {
    671 				optval = *mtod(m, int *);
    672 				switch (optname) {
    673 #define	OPTSET(bit) \
    674 	if (optval) \
    675 		unp->unp_flags |= (bit); \
    676 	else \
    677 		unp->unp_flags &= ~(bit);
    678 
    679 				case LOCAL_CREDS:
    680 					OPTSET(UNP_WANTCRED);
    681 					break;
    682 				case LOCAL_CONNWAIT:
    683 					OPTSET(UNP_CONNWAIT);
    684 					break;
    685 				}
    686 			}
    687 			break;
    688 #undef OPTSET
    689 
    690 		default:
    691 			error = ENOPROTOOPT;
    692 			break;
    693 		}
    694 		if (m)
    695 			(void) m_free(m);
    696 		break;
    697 
    698 	case PRCO_GETOPT:
    699 		sounlock(so);
    700 		switch (optname) {
    701 		case LOCAL_PEEREID:
    702 			if (unp->unp_flags & UNP_EIDSVALID) {
    703 				*mp = m = m_get(M_WAIT, MT_SOOPTS);
    704 				m->m_len = sizeof(struct unpcbid);
    705 				*mtod(m, struct unpcbid *) = unp->unp_connid;
    706 			} else {
    707 				error = EINVAL;
    708 			}
    709 			break;
    710 		case LOCAL_CREDS:
    711 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
    712 			m->m_len = sizeof(int);
    713 
    714 #define	OPTBIT(bit)	(unp->unp_flags & (bit) ? 1 : 0)
    715 
    716 			optval = OPTBIT(UNP_WANTCRED);
    717 			*mtod(m, int *) = optval;
    718 			break;
    719 #undef OPTBIT
    720 
    721 		default:
    722 			error = ENOPROTOOPT;
    723 			break;
    724 		}
    725 		solock(so);
    726 		break;
    727 	}
    728 	return (error);
    729 }
    730 
    731 /*
    732  * Both send and receive buffers are allocated PIPSIZ bytes of buffering
    733  * for stream sockets, although the total for sender and receiver is
    734  * actually only PIPSIZ.
    735  * Datagram sockets really use the sendspace as the maximum datagram size,
    736  * and don't really want to reserve the sendspace.  Their recvspace should
    737  * be large enough for at least one max-size datagram plus address.
    738  */
    739 #define	PIPSIZ	4096
    740 u_long	unpst_sendspace = PIPSIZ;
    741 u_long	unpst_recvspace = PIPSIZ;
    742 u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
    743 u_long	unpdg_recvspace = 4*1024;
    744 
    745 u_int	unp_rights;			/* file descriptors in flight */
    746 
    747 int
    748 unp_attach(struct socket *so)
    749 {
    750 	struct unpcb *unp;
    751 	int error;
    752 
    753 	switch (so->so_type) {
    754 	case SOCK_STREAM:
    755 		if (so->so_lock == NULL) {
    756 			/*
    757 			 * XXX Assuming that no socket locks are held,
    758 			 * as this call may sleep.
    759 			 */
    760 			so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    761 			solock(so);
    762 		}
    763 		if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
    764 			error = soreserve(so, unpst_sendspace, unpst_recvspace);
    765 			if (error != 0)
    766 				return (error);
    767 		}
    768 		break;
    769 
    770 	case SOCK_DGRAM:
    771 		if (so->so_lock == NULL) {
    772 			mutex_obj_hold(uipc_lock);
    773 			so->so_lock = uipc_lock;
    774 			solock(so);
    775 		}
    776 		if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
    777 			error = soreserve(so, unpdg_sendspace, unpdg_recvspace);
    778 			if (error != 0)
    779 				return (error);
    780 		}
    781 		break;
    782 
    783 	default:
    784 		panic("unp_attach");
    785 	}
    786 	KASSERT(solocked(so));
    787 	unp = malloc(sizeof(*unp), M_PCB, M_NOWAIT);
    788 	if (unp == NULL)
    789 		return (ENOBUFS);
    790 	memset((void *)unp, 0, sizeof(*unp));
    791 	unp->unp_socket = so;
    792 	so->so_pcb = unp;
    793 	nanotime(&unp->unp_ctime);
    794 	return (0);
    795 }
    796 
    797 void
    798 unp_detach(struct unpcb *unp)
    799 {
    800 	struct socket *so;
    801 	vnode_t *vp;
    802 
    803 	so = unp->unp_socket;
    804 
    805  retry:
    806 	if ((vp = unp->unp_vnode) != NULL) {
    807 		sounlock(so);
    808 		/* Acquire v_interlock to protect against unp_connect(). */
    809 		/* XXXAD racy */
    810 		mutex_enter(&vp->v_interlock);
    811 		vp->v_socket = NULL;
    812 		vrelel(vp, 0);
    813 		solock(so);
    814 		unp->unp_vnode = NULL;
    815 	}
    816 	if (unp->unp_conn)
    817 		unp_disconnect(unp);
    818 	while (unp->unp_refs) {
    819 		KASSERT(solocked2(so, unp->unp_refs->unp_socket));
    820 		if (unp_drop(unp->unp_refs, ECONNRESET)) {
    821 			solock(so);
    822 			goto retry;
    823 		}
    824 	}
    825 	soisdisconnected(so);
    826 	so->so_pcb = NULL;
    827 	if (unp_rights) {
    828 		/*
    829 		 * Normally the receive buffer is flushed later,
    830 		 * in sofree, but if our receive buffer holds references
    831 		 * to descriptors that are now garbage, we will dispose
    832 		 * of those descriptor references after the garbage collector
    833 		 * gets them (resulting in a "panic: closef: count < 0").
    834 		 */
    835 		sorflush(so);
    836 		unp_free(unp);
    837 		sounlock(so);
    838 		unp_gc();
    839 		solock(so);
    840 	} else
    841 		unp_free(unp);
    842 }
    843 
    844 int
    845 unp_bind(struct socket *so, struct mbuf *nam, struct lwp *l)
    846 {
    847 	struct sockaddr_un *sun;
    848 	struct unpcb *unp;
    849 	vnode_t *vp;
    850 	struct vattr vattr;
    851 	size_t addrlen;
    852 	int error;
    853 	struct nameidata nd;
    854 	proc_t *p;
    855 
    856 	unp = sotounpcb(so);
    857 	if (unp->unp_vnode != NULL)
    858 		return (EINVAL);
    859 	if ((unp->unp_flags & UNP_BUSY) != 0) {
    860 		/*
    861 		 * EALREADY may not be strictly accurate, but since this
    862 		 * is a major application error it's hardly a big deal.
    863 		 */
    864 		return (EALREADY);
    865 	}
    866 	unp->unp_flags |= UNP_BUSY;
    867 	sounlock(so);
    868 
    869 	/*
    870 	 * Allocate the new sockaddr.  We have to allocate one
    871 	 * extra byte so that we can ensure that the pathname
    872 	 * is nul-terminated.
    873 	 */
    874 	p = l->l_proc;
    875 	addrlen = nam->m_len + 1;
    876 	sun = malloc(addrlen, M_SONAME, M_WAITOK);
    877 	m_copydata(nam, 0, nam->m_len, (void *)sun);
    878 	*(((char *)sun) + nam->m_len) = '\0';
    879 
    880 	NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, UIO_SYSSPACE,
    881 	    sun->sun_path);
    882 
    883 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
    884 	if ((error = namei(&nd)) != 0)
    885 		goto bad;
    886 	vp = nd.ni_vp;
    887 	if (vp != NULL) {
    888 		VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
    889 		if (nd.ni_dvp == vp)
    890 			vrele(nd.ni_dvp);
    891 		else
    892 			vput(nd.ni_dvp);
    893 		vrele(vp);
    894 		error = EADDRINUSE;
    895 		goto bad;
    896 	}
    897 	VATTR_NULL(&vattr);
    898 	vattr.va_type = VSOCK;
    899 	vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
    900 	error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
    901 	if (error)
    902 		goto bad;
    903 	vp = nd.ni_vp;
    904 	solock(so);
    905 	vp->v_socket = unp->unp_socket;
    906 	unp->unp_vnode = vp;
    907 	unp->unp_addrlen = addrlen;
    908 	unp->unp_addr = sun;
    909 	unp->unp_connid.unp_pid = p->p_pid;
    910 	unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
    911 	unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
    912 	unp->unp_flags |= UNP_EIDSBIND;
    913 	VOP_UNLOCK(vp, 0);
    914 	unp->unp_flags &= ~UNP_BUSY;
    915 	return (0);
    916 
    917  bad:
    918 	free(sun, M_SONAME);
    919 	solock(so);
    920 	unp->unp_flags &= ~UNP_BUSY;
    921 	return (error);
    922 }
    923 
    924 int
    925 unp_connect(struct socket *so, struct mbuf *nam, struct lwp *l)
    926 {
    927 	struct sockaddr_un *sun;
    928 	vnode_t *vp;
    929 	struct socket *so2, *so3;
    930 	struct unpcb *unp, *unp2, *unp3;
    931 	size_t addrlen;
    932 	int error;
    933 	struct nameidata nd;
    934 
    935 	unp = sotounpcb(so);
    936 	if ((unp->unp_flags & UNP_BUSY) != 0) {
    937 		/*
    938 		 * EALREADY may not be strictly accurate, but since this
    939 		 * is a major application error it's hardly a big deal.
    940 		 */
    941 		return (EALREADY);
    942 	}
    943 	unp->unp_flags |= UNP_BUSY;
    944 	sounlock(so);
    945 
    946 	/*
    947 	 * Allocate a temporary sockaddr.  We have to allocate one extra
    948 	 * byte so that we can ensure that the pathname is nul-terminated.
    949 	 * When we establish the connection, we copy the other PCB's
    950 	 * sockaddr to our own.
    951 	 */
    952 	addrlen = nam->m_len + 1;
    953 	sun = malloc(addrlen, M_SONAME, M_WAITOK);
    954 	m_copydata(nam, 0, nam->m_len, (void *)sun);
    955 	*(((char *)sun) + nam->m_len) = '\0';
    956 
    957 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, UIO_SYSSPACE,
    958 	    sun->sun_path);
    959 
    960 	if ((error = namei(&nd)) != 0)
    961 		goto bad2;
    962 	vp = nd.ni_vp;
    963 	if (vp->v_type != VSOCK) {
    964 		error = ENOTSOCK;
    965 		goto bad;
    966 	}
    967 	if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
    968 		goto bad;
    969 	/* Acquire v_interlock to protect against unp_detach(). */
    970 	mutex_enter(&vp->v_interlock);
    971 	so2 = vp->v_socket;
    972 	if (so2 == NULL) {
    973 		mutex_exit(&vp->v_interlock);
    974 		error = ECONNREFUSED;
    975 		goto bad;
    976 	}
    977 	if (so->so_type != so2->so_type) {
    978 		mutex_exit(&vp->v_interlock);
    979 		error = EPROTOTYPE;
    980 		goto bad;
    981 	}
    982 	solock(so);
    983 	unp_resetlock(so);
    984 	mutex_exit(&vp->v_interlock);
    985 	if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
    986 		/*
    987 		 * This may seem somewhat fragile but is OK: if we can
    988 		 * see SO_ACCEPTCONN set on the endpoint, then it must
    989 		 * be locked by the domain-wide uipc_lock.
    990 		 */
    991 		KASSERT((so->so_options & SO_ACCEPTCONN) == 0 ||
    992 		    so2->so_lock == uipc_lock);
    993 		if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
    994 		    (so3 = sonewconn(so2, 0)) == 0) {
    995 			error = ECONNREFUSED;
    996 			sounlock(so);
    997 			goto bad;
    998 		}
    999 		unp2 = sotounpcb(so2);
   1000 		unp3 = sotounpcb(so3);
   1001 		if (unp2->unp_addr) {
   1002 			unp3->unp_addr = malloc(unp2->unp_addrlen,
   1003 			    M_SONAME, M_WAITOK);
   1004 			memcpy(unp3->unp_addr, unp2->unp_addr,
   1005 			    unp2->unp_addrlen);
   1006 			unp3->unp_addrlen = unp2->unp_addrlen;
   1007 		}
   1008 		unp3->unp_flags = unp2->unp_flags;
   1009 		unp3->unp_connid.unp_pid = l->l_proc->p_pid;
   1010 		unp3->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
   1011 		unp3->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
   1012 		unp3->unp_flags |= UNP_EIDSVALID;
   1013 		if (unp2->unp_flags & UNP_EIDSBIND) {
   1014 			unp->unp_connid = unp2->unp_connid;
   1015 			unp->unp_flags |= UNP_EIDSVALID;
   1016 		}
   1017 		so2 = so3;
   1018 	}
   1019 	error = unp_connect2(so, so2, PRU_CONNECT);
   1020 	sounlock(so);
   1021  bad:
   1022 	vput(vp);
   1023  bad2:
   1024 	free(sun, M_SONAME);
   1025 	solock(so);
   1026 	unp->unp_flags &= ~UNP_BUSY;
   1027 	return (error);
   1028 }
   1029 
   1030 int
   1031 unp_connect2(struct socket *so, struct socket *so2, int req)
   1032 {
   1033 	struct unpcb *unp = sotounpcb(so);
   1034 	struct unpcb *unp2;
   1035 
   1036 	if (so2->so_type != so->so_type)
   1037 		return (EPROTOTYPE);
   1038 
   1039 	/*
   1040 	 * All three sockets involved must be locked by same lock:
   1041 	 *
   1042 	 * local endpoint (so)
   1043 	 * remote endpoint (so2)
   1044 	 * queue head (so->so_head, only if PR_CONNREQUIRED)
   1045 	 */
   1046 	KASSERT(solocked2(so, so2));
   1047 	if (so->so_head != NULL) {
   1048 		KASSERT(so->so_lock == uipc_lock);
   1049 		KASSERT(solocked2(so, so->so_head));
   1050 	}
   1051 
   1052 	unp2 = sotounpcb(so2);
   1053 	unp->unp_conn = unp2;
   1054 	switch (so->so_type) {
   1055 
   1056 	case SOCK_DGRAM:
   1057 		unp->unp_nextref = unp2->unp_refs;
   1058 		unp2->unp_refs = unp;
   1059 		soisconnected(so);
   1060 		break;
   1061 
   1062 	case SOCK_STREAM:
   1063 		unp2->unp_conn = unp;
   1064 		if (req == PRU_CONNECT &&
   1065 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
   1066 			soisconnecting(so);
   1067 		else
   1068 			soisconnected(so);
   1069 		soisconnected(so2);
   1070 		/*
   1071 		 * If the connection is fully established, break the
   1072 		 * association with uipc_lock and give the connected
   1073 		 * pair a seperate lock to share.  For CONNECT2, we
   1074 		 * require that the locks already match (the sockets
   1075 		 * are created that way).
   1076 		 */
   1077 		if (req == PRU_CONNECT)
   1078 			unp_setpeerlocks(so, so2);
   1079 		break;
   1080 
   1081 	default:
   1082 		panic("unp_connect2");
   1083 	}
   1084 	return (0);
   1085 }
   1086 
   1087 void
   1088 unp_disconnect(struct unpcb *unp)
   1089 {
   1090 	struct unpcb *unp2 = unp->unp_conn;
   1091 	struct socket *so;
   1092 
   1093 	if (unp2 == 0)
   1094 		return;
   1095 	unp->unp_conn = 0;
   1096 	so = unp->unp_socket;
   1097 	switch (so->so_type) {
   1098 	case SOCK_DGRAM:
   1099 		if (unp2->unp_refs == unp)
   1100 			unp2->unp_refs = unp->unp_nextref;
   1101 		else {
   1102 			unp2 = unp2->unp_refs;
   1103 			for (;;) {
   1104 				KASSERT(solocked2(so, unp2->unp_socket));
   1105 				if (unp2 == 0)
   1106 					panic("unp_disconnect");
   1107 				if (unp2->unp_nextref == unp)
   1108 					break;
   1109 				unp2 = unp2->unp_nextref;
   1110 			}
   1111 			unp2->unp_nextref = unp->unp_nextref;
   1112 		}
   1113 		unp->unp_nextref = 0;
   1114 		so->so_state &= ~SS_ISCONNECTED;
   1115 		break;
   1116 
   1117 	case SOCK_STREAM:
   1118 		KASSERT(solocked2(so, unp2->unp_socket));
   1119 		soisdisconnected(so);
   1120 		unp2->unp_conn = 0;
   1121 		soisdisconnected(unp2->unp_socket);
   1122 		break;
   1123 	}
   1124 }
   1125 
   1126 #ifdef notdef
   1127 unp_abort(struct unpcb *unp)
   1128 {
   1129 	unp_detach(unp);
   1130 }
   1131 #endif
   1132 
   1133 void
   1134 unp_shutdown(struct unpcb *unp)
   1135 {
   1136 	struct socket *so;
   1137 
   1138 	if (unp->unp_socket->so_type == SOCK_STREAM && unp->unp_conn &&
   1139 	    (so = unp->unp_conn->unp_socket))
   1140 		socantrcvmore(so);
   1141 }
   1142 
   1143 bool
   1144 unp_drop(struct unpcb *unp, int errno)
   1145 {
   1146 	struct socket *so = unp->unp_socket;
   1147 
   1148 	KASSERT(solocked(so));
   1149 
   1150 	so->so_error = errno;
   1151 	unp_disconnect(unp);
   1152 	if (so->so_head) {
   1153 		so->so_pcb = NULL;
   1154 		/* sofree() drops the socket lock */
   1155 		sofree(so);
   1156 		unp_free(unp);
   1157 		return true;
   1158 	}
   1159 	return false;
   1160 }
   1161 
   1162 #ifdef notdef
   1163 unp_drain(void)
   1164 {
   1165 
   1166 }
   1167 #endif
   1168 
   1169 int
   1170 unp_externalize(struct mbuf *rights, struct lwp *l)
   1171 {
   1172 	struct cmsghdr *cm = mtod(rights, struct cmsghdr *);
   1173 	struct proc *p = l->l_proc;
   1174 	int i, *fdp;
   1175 	file_t **rp;
   1176 	file_t *fp;
   1177 	int nfds, error = 0;
   1178 
   1179 	nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
   1180 	    sizeof(file_t *);
   1181 	rp = (file_t **)CMSG_DATA(cm);
   1182 
   1183 	fdp = malloc(nfds * sizeof(int), M_TEMP, M_WAITOK);
   1184 	rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
   1185 
   1186 	/* Make sure the recipient should be able to see the descriptors.. */
   1187 	if (p->p_cwdi->cwdi_rdir != NULL) {
   1188 		rp = (file_t **)CMSG_DATA(cm);
   1189 		for (i = 0; i < nfds; i++) {
   1190 			fp = *rp++;
   1191 			/*
   1192 			 * If we are in a chroot'ed directory, and
   1193 			 * someone wants to pass us a directory, make
   1194 			 * sure it's inside the subtree we're allowed
   1195 			 * to access.
   1196 			 */
   1197 			if (fp->f_type == DTYPE_VNODE) {
   1198 				vnode_t *vp = (vnode_t *)fp->f_data;
   1199 				if ((vp->v_type == VDIR) &&
   1200 				    !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
   1201 					error = EPERM;
   1202 					break;
   1203 				}
   1204 			}
   1205 		}
   1206 	}
   1207 
   1208  restart:
   1209 	rp = (file_t **)CMSG_DATA(cm);
   1210 	if (error != 0) {
   1211 		for (i = 0; i < nfds; i++) {
   1212 			fp = *rp;
   1213 			/*
   1214 			 * zero the pointer before calling unp_discard,
   1215 			 * since it may end up in unp_gc()..
   1216 			 */
   1217 			*rp++ = 0;
   1218 			unp_discard(fp);
   1219 		}
   1220 		goto out;
   1221 	}
   1222 
   1223 	/*
   1224 	 * First loop -- allocate file descriptor table slots for the
   1225 	 * new descriptors.
   1226 	 */
   1227 	for (i = 0; i < nfds; i++) {
   1228 		fp = *rp++;
   1229 		if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
   1230 			/*
   1231 			 * Back out what we've done so far.
   1232 			 */
   1233 			for (--i; i >= 0; i--) {
   1234 				fd_abort(p, NULL, fdp[i]);
   1235 			}
   1236 			if (error == ENOSPC) {
   1237 				fd_tryexpand(p);
   1238 				error = 0;
   1239 			} else {
   1240 				/*
   1241 				 * This is the error that has historically
   1242 				 * been returned, and some callers may
   1243 				 * expect it.
   1244 				 */
   1245 				error = EMSGSIZE;
   1246 			}
   1247 			goto restart;
   1248 		}
   1249 	}
   1250 
   1251 	/*
   1252 	 * Now that adding them has succeeded, update all of the
   1253 	 * descriptor passing state.
   1254 	 */
   1255 	rp = (file_t **)CMSG_DATA(cm);
   1256 	for (i = 0; i < nfds; i++) {
   1257 		fp = *rp++;
   1258 		atomic_dec_uint(&unp_rights);
   1259 		fd_affix(p, fp, fdp[i]);
   1260 		mutex_enter(&fp->f_lock);
   1261 		fp->f_msgcount--;
   1262 		mutex_exit(&fp->f_lock);
   1263 		/*
   1264 		 * Note that fd_affix() adds a reference to the file.
   1265 		 * The file may already have been closed by another
   1266 		 * LWP in the process, so we must drop the reference
   1267 		 * added by unp_internalize() with closef().
   1268 		 */
   1269 		closef(fp);
   1270 	}
   1271 
   1272 	/*
   1273 	 * Copy temporary array to message and adjust length, in case of
   1274 	 * transition from large file_t pointers to ints.
   1275 	 */
   1276 	memcpy(CMSG_DATA(cm), fdp, nfds * sizeof(int));
   1277 	cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
   1278 	rights->m_len = CMSG_SPACE(nfds * sizeof(int));
   1279  out:
   1280 	rw_exit(&p->p_cwdi->cwdi_lock);
   1281 	free(fdp, M_TEMP);
   1282 	return (error);
   1283 }
   1284 
   1285 int
   1286 unp_internalize(struct mbuf **controlp)
   1287 {
   1288 	struct filedesc *fdescp = curlwp->l_fd;
   1289 	struct mbuf *control = *controlp;
   1290 	struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
   1291 	file_t **rp, **files;
   1292 	file_t *fp;
   1293 	int i, fd, *fdp;
   1294 	int nfds, error;
   1295 
   1296 	error = 0;
   1297 	newcm = NULL;
   1298 
   1299 	/* Sanity check the control message header. */
   1300 	if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
   1301 	    cm->cmsg_len != control->m_len)
   1302 		return (EINVAL);
   1303 
   1304 	/*
   1305 	 * Verify that the file descriptors are valid, and acquire
   1306 	 * a reference to each.
   1307 	 */
   1308 	nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
   1309 	fdp = (int *)CMSG_DATA(cm);
   1310 	for (i = 0; i < nfds; i++) {
   1311 		fd = *fdp++;
   1312 		if ((fp = fd_getfile(fd)) == NULL) {
   1313 			nfds = i + 1;
   1314 			error = EBADF;
   1315 			goto out;
   1316 		}
   1317 	}
   1318 
   1319 	/* Allocate new space and copy header into it. */
   1320 	newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
   1321 	if (newcm == NULL) {
   1322 		error = E2BIG;
   1323 		goto out;
   1324 	}
   1325 	memcpy(newcm, cm, sizeof(struct cmsghdr));
   1326 	files = (file_t **)CMSG_DATA(newcm);
   1327 
   1328 	/*
   1329 	 * Transform the file descriptors into file_t pointers, in
   1330 	 * reverse order so that if pointers are bigger than ints, the
   1331 	 * int won't get until we're done.  No need to lock, as we have
   1332 	 * already validated the descriptors with fd_getfile().
   1333 	 */
   1334 	fdp = (int *)CMSG_DATA(cm) + nfds;
   1335 	rp = files + nfds;
   1336 	for (i = 0; i < nfds; i++) {
   1337 		fp = fdescp->fd_ofiles[*--fdp]->ff_file;
   1338 		KASSERT(fp != NULL);
   1339 		mutex_enter(&fp->f_lock);
   1340 		*--rp = fp;
   1341 		fp->f_count++;
   1342 		fp->f_msgcount++;
   1343 		mutex_exit(&fp->f_lock);
   1344 		atomic_inc_uint(&unp_rights);
   1345 	}
   1346 
   1347  out:
   1348  	/* Release descriptor references. */
   1349 	fdp = (int *)CMSG_DATA(cm);
   1350 	for (i = 0; i < nfds; i++) {
   1351 		fd_putfile(*fdp++);
   1352 	}
   1353 
   1354 	if (error == 0) {
   1355 		if (control->m_flags & M_EXT) {
   1356 			m_freem(control);
   1357 			*controlp = control = m_get(M_WAIT, MT_CONTROL);
   1358 		}
   1359 		MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
   1360 		    M_MBUF, NULL, NULL);
   1361 		cm = newcm;
   1362 		/*
   1363 		 * Adjust message & mbuf to note amount of space
   1364 		 * actually used.
   1365 		 */
   1366 		cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
   1367 		control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
   1368 	}
   1369 
   1370 	return error;
   1371 }
   1372 
   1373 struct mbuf *
   1374 unp_addsockcred(struct lwp *l, struct mbuf *control)
   1375 {
   1376 	struct cmsghdr *cmp;
   1377 	struct sockcred *sc;
   1378 	struct mbuf *m, *n;
   1379 	int len, space, i;
   1380 
   1381 	len = CMSG_LEN(SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)));
   1382 	space = CMSG_SPACE(SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)));
   1383 
   1384 	m = m_get(M_WAIT, MT_CONTROL);
   1385 	if (space > MLEN) {
   1386 		if (space > MCLBYTES)
   1387 			MEXTMALLOC(m, space, M_WAITOK);
   1388 		else
   1389 			m_clget(m, M_WAIT);
   1390 		if ((m->m_flags & M_EXT) == 0) {
   1391 			m_free(m);
   1392 			return (control);
   1393 		}
   1394 	}
   1395 
   1396 	m->m_len = space;
   1397 	m->m_next = NULL;
   1398 	cmp = mtod(m, struct cmsghdr *);
   1399 	sc = (struct sockcred *)CMSG_DATA(cmp);
   1400 	cmp->cmsg_len = len;
   1401 	cmp->cmsg_level = SOL_SOCKET;
   1402 	cmp->cmsg_type = SCM_CREDS;
   1403 	sc->sc_uid = kauth_cred_getuid(l->l_cred);
   1404 	sc->sc_euid = kauth_cred_geteuid(l->l_cred);
   1405 	sc->sc_gid = kauth_cred_getgid(l->l_cred);
   1406 	sc->sc_egid = kauth_cred_getegid(l->l_cred);
   1407 	sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
   1408 	for (i = 0; i < sc->sc_ngroups; i++)
   1409 		sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
   1410 
   1411 	/*
   1412 	 * If a control message already exists, append us to the end.
   1413 	 */
   1414 	if (control != NULL) {
   1415 		for (n = control; n->m_next != NULL; n = n->m_next)
   1416 			;
   1417 		n->m_next = m;
   1418 	} else
   1419 		control = m;
   1420 
   1421 	return (control);
   1422 }
   1423 
   1424 int	unp_defer, unp_gcing;
   1425 extern	struct domain unixdomain;
   1426 
   1427 /*
   1428  * Comment added long after the fact explaining what's going on here.
   1429  * Do a mark-sweep GC of file descriptors on the system, to free up
   1430  * any which are caught in flight to an about-to-be-closed socket.
   1431  *
   1432  * Traditional mark-sweep gc's start at the "root", and mark
   1433  * everything reachable from the root (which, in our case would be the
   1434  * process table).  The mark bits are cleared during the sweep.
   1435  *
   1436  * XXX For some inexplicable reason (perhaps because the file
   1437  * descriptor tables used to live in the u area which could be swapped
   1438  * out and thus hard to reach), we do multiple scans over the set of
   1439  * descriptors, using use *two* mark bits per object (DEFER and MARK).
   1440  * Whenever we find a descriptor which references other descriptors,
   1441  * the ones it references are marked with both bits, and we iterate
   1442  * over the whole file table until there are no more DEFER bits set.
   1443  * We also make an extra pass *before* the GC to clear the mark bits,
   1444  * which could have been cleared at almost no cost during the previous
   1445  * sweep.
   1446  */
   1447 void
   1448 unp_gc(void)
   1449 {
   1450 	file_t *fp, *nextfp;
   1451 	struct socket *so, *so1;
   1452 	file_t **extra_ref, **fpp;
   1453 	int nunref, nslots, i;
   1454 
   1455 	if (atomic_swap_uint(&unp_gcing, 1) == 1)
   1456 		return;
   1457 
   1458  restart:
   1459  	nslots = nfiles * 2;
   1460  	extra_ref = kmem_alloc(nslots * sizeof(file_t *), KM_SLEEP);
   1461 
   1462 	mutex_enter(&filelist_lock);
   1463 	unp_defer = 0;
   1464 
   1465 	/* Clear mark bits */
   1466 	LIST_FOREACH(fp, &filehead, f_list) {
   1467 		atomic_and_uint(&fp->f_flag, ~(FMARK|FDEFER));
   1468 	}
   1469 
   1470 	/*
   1471 	 * Iterate over the set of descriptors, marking ones believed
   1472 	 * (based on refcount) to be referenced from a process, and
   1473 	 * marking for rescan descriptors which are queued on a socket.
   1474 	 */
   1475 	do {
   1476 		LIST_FOREACH(fp, &filehead, f_list) {
   1477 			mutex_enter(&fp->f_lock);
   1478 			if (fp->f_flag & FDEFER) {
   1479 				atomic_and_uint(&fp->f_flag, ~FDEFER);
   1480 				unp_defer--;
   1481 				KASSERT(fp->f_count != 0);
   1482 			} else {
   1483 				if (fp->f_count == 0 ||
   1484 				    (fp->f_flag & FMARK) ||
   1485 				    fp->f_count == fp->f_msgcount) {
   1486 					mutex_exit(&fp->f_lock);
   1487 					continue;
   1488 				}
   1489 			}
   1490 			atomic_or_uint(&fp->f_flag, FMARK);
   1491 
   1492 			if (fp->f_type != DTYPE_SOCKET ||
   1493 			    (so = fp->f_data) == NULL ||
   1494 			    so->so_proto->pr_domain != &unixdomain ||
   1495 			    (so->so_proto->pr_flags&PR_RIGHTS) == 0) {
   1496 				mutex_exit(&fp->f_lock);
   1497 				continue;
   1498 			}
   1499 #ifdef notdef
   1500 			if (so->so_rcv.sb_flags & SB_LOCK) {
   1501 				mutex_exit(&fp->f_lock);
   1502 				mutex_exit(&filelist_lock);
   1503 				kmem_free(extra_ref, nslots * sizeof(file_t *));
   1504 				/*
   1505 				 * This is problematical; it's not clear
   1506 				 * we need to wait for the sockbuf to be
   1507 				 * unlocked (on a uniprocessor, at least),
   1508 				 * and it's also not clear what to do
   1509 				 * if sbwait returns an error due to receipt
   1510 				 * of a signal.  If sbwait does return
   1511 				 * an error, we'll go into an infinite
   1512 				 * loop.  Delete all of this for now.
   1513 				 */
   1514 				(void) sbwait(&so->so_rcv);
   1515 				goto restart;
   1516 			}
   1517 #endif
   1518 			mutex_exit(&fp->f_lock);
   1519 
   1520 			/*
   1521 			 * XXX Locking a socket with filelist_lock held
   1522 			 * is ugly.  filelist_lock can be taken by the
   1523 			 * pagedaemon when reclaiming items from file_cache.
   1524 			 * Socket activity could delay the pagedaemon.
   1525 			 */
   1526 			solock(so);
   1527 			unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
   1528 			/*
   1529 			 * Mark descriptors referenced from sockets queued
   1530 			 * on the accept queue as well.
   1531 			 */
   1532 			if (so->so_options & SO_ACCEPTCONN) {
   1533 				TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
   1534 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
   1535 				}
   1536 				TAILQ_FOREACH(so1, &so->so_q, so_qe) {
   1537 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
   1538 				}
   1539 			}
   1540 			sounlock(so);
   1541 		}
   1542 	} while (unp_defer);
   1543 
   1544 	/*
   1545 	 * Sweep pass.  Find unmarked descriptors, and free them.
   1546 	 *
   1547 	 * We grab an extra reference to each of the file table entries
   1548 	 * that are not otherwise accessible and then free the rights
   1549 	 * that are stored in messages on them.
   1550 	 *
   1551 	 * The bug in the original code is a little tricky, so I'll describe
   1552 	 * what's wrong with it here.
   1553 	 *
   1554 	 * It is incorrect to simply unp_discard each entry for f_msgcount
   1555 	 * times -- consider the case of sockets A and B that contain
   1556 	 * references to each other.  On a last close of some other socket,
   1557 	 * we trigger a gc since the number of outstanding rights (unp_rights)
   1558 	 * is non-zero.  If during the sweep phase the gc code un_discards,
   1559 	 * we end up doing a (full) closef on the descriptor.  A closef on A
   1560 	 * results in the following chain.  Closef calls soo_close, which
   1561 	 * calls soclose.   Soclose calls first (through the switch
   1562 	 * uipc_usrreq) unp_detach, which re-invokes unp_gc.  Unp_gc simply
   1563 	 * returns because the previous instance had set unp_gcing, and
   1564 	 * we return all the way back to soclose, which marks the socket
   1565 	 * with SS_NOFDREF, and then calls sofree.  Sofree calls sorflush
   1566 	 * to free up the rights that are queued in messages on the socket A,
   1567 	 * i.e., the reference on B.  The sorflush calls via the dom_dispose
   1568 	 * switch unp_dispose, which unp_scans with unp_discard.  This second
   1569 	 * instance of unp_discard just calls closef on B.
   1570 	 *
   1571 	 * Well, a similar chain occurs on B, resulting in a sorflush on B,
   1572 	 * which results in another closef on A.  Unfortunately, A is already
   1573 	 * being closed, and the descriptor has already been marked with
   1574 	 * SS_NOFDREF, and soclose panics at this point.
   1575 	 *
   1576 	 * Here, we first take an extra reference to each inaccessible
   1577 	 * descriptor.  Then, if the inaccessible descriptor is a
   1578 	 * socket, we call sorflush in case it is a Unix domain
   1579 	 * socket.  After we destroy all the rights carried in
   1580 	 * messages, we do a last closef to get rid of our extra
   1581 	 * reference.  This is the last close, and the unp_detach etc
   1582 	 * will shut down the socket.
   1583 	 *
   1584 	 * 91/09/19, bsy (at) cs.cmu.edu
   1585 	 */
   1586 	if (nslots < nfiles) {
   1587 		mutex_exit(&filelist_lock);
   1588 		kmem_free(extra_ref, nslots * sizeof(file_t *));
   1589 		goto restart;
   1590 	}
   1591 	for (nunref = 0, fp = LIST_FIRST(&filehead), fpp = extra_ref; fp != 0;
   1592 	    fp = nextfp) {
   1593 		nextfp = LIST_NEXT(fp, f_list);
   1594 		mutex_enter(&fp->f_lock);
   1595 		if (fp->f_count != 0 &&
   1596 		    fp->f_count == fp->f_msgcount && !(fp->f_flag & FMARK)) {
   1597 			*fpp++ = fp;
   1598 			nunref++;
   1599 			fp->f_count++;
   1600 		}
   1601 		mutex_exit(&fp->f_lock);
   1602 	}
   1603 	mutex_exit(&filelist_lock);
   1604 
   1605 	for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) {
   1606 		fp = *fpp;
   1607 		if (fp->f_type == DTYPE_SOCKET) {
   1608 			so = fp->f_data;
   1609 			solock(so);
   1610 			sorflush(fp->f_data);
   1611 			sounlock(so);
   1612 		}
   1613 	}
   1614 	for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) {
   1615 		closef(*fpp);
   1616 	}
   1617 	kmem_free(extra_ref, nslots * sizeof(file_t *));
   1618 	atomic_swap_uint(&unp_gcing, 0);
   1619 }
   1620 
   1621 void
   1622 unp_dispose(struct mbuf *m)
   1623 {
   1624 
   1625 	if (m)
   1626 		unp_scan(m, unp_discard, 1);
   1627 }
   1628 
   1629 void
   1630 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
   1631 {
   1632 	struct mbuf *m;
   1633 	file_t **rp;
   1634 	struct cmsghdr *cm;
   1635 	int i;
   1636 	int qfds;
   1637 
   1638 	while (m0) {
   1639 		for (m = m0; m; m = m->m_next) {
   1640 			if (m->m_type == MT_CONTROL &&
   1641 			    m->m_len >= sizeof(*cm)) {
   1642 				cm = mtod(m, struct cmsghdr *);
   1643 				if (cm->cmsg_level != SOL_SOCKET ||
   1644 				    cm->cmsg_type != SCM_RIGHTS)
   1645 					continue;
   1646 				qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
   1647 				    / sizeof(file_t *);
   1648 				rp = (file_t **)CMSG_DATA(cm);
   1649 				for (i = 0; i < qfds; i++) {
   1650 					file_t *fp = *rp;
   1651 					if (discard)
   1652 						*rp = 0;
   1653 					(*op)(fp);
   1654 					rp++;
   1655 				}
   1656 				break;		/* XXX, but saves time */
   1657 			}
   1658 		}
   1659 		m0 = m0->m_nextpkt;
   1660 	}
   1661 }
   1662 
   1663 void
   1664 unp_mark(file_t *fp)
   1665 {
   1666 
   1667 	if (fp == NULL)
   1668 		return;
   1669 
   1670 	/* If we're already deferred, don't screw up the defer count */
   1671 	mutex_enter(&fp->f_lock);
   1672 	if (fp->f_flag & (FMARK | FDEFER)) {
   1673 		mutex_exit(&fp->f_lock);
   1674 		return;
   1675 	}
   1676 
   1677 	/*
   1678 	 * Minimize the number of deferrals...  Sockets are the only
   1679 	 * type of descriptor which can hold references to another
   1680 	 * descriptor, so just mark other descriptors, and defer
   1681 	 * unmarked sockets for the next pass.
   1682 	 */
   1683 	if (fp->f_type == DTYPE_SOCKET) {
   1684 		unp_defer++;
   1685 		KASSERT(fp->f_count != 0);
   1686 		atomic_or_uint(&fp->f_flag, FDEFER);
   1687 	} else {
   1688 		atomic_or_uint(&fp->f_flag, FMARK);
   1689 	}
   1690 	mutex_exit(&fp->f_lock);
   1691 	return;
   1692 }
   1693 
   1694 void
   1695 unp_discard(file_t *fp)
   1696 {
   1697 
   1698 	if (fp == NULL)
   1699 		return;
   1700 
   1701 	mutex_enter(&fp->f_lock);
   1702 	KASSERT(fp->f_count > 0);
   1703 	fp->f_msgcount--;
   1704 	mutex_exit(&fp->f_lock);
   1705 	atomic_dec_uint(&unp_rights);
   1706 	(void)closef(fp);
   1707 }
   1708