uipc_usrreq.c revision 1.115 1 /* $NetBSD: uipc_usrreq.c,v 1.115 2008/06/10 11:49:11 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2000, 2004, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
62 */
63
64 /*
65 * Copyright (c) 1997 Christopher G. Demetriou. All rights reserved.
66 *
67 * Redistribution and use in source and binary forms, with or without
68 * modification, are permitted provided that the following conditions
69 * are met:
70 * 1. Redistributions of source code must retain the above copyright
71 * notice, this list of conditions and the following disclaimer.
72 * 2. Redistributions in binary form must reproduce the above copyright
73 * notice, this list of conditions and the following disclaimer in the
74 * documentation and/or other materials provided with the distribution.
75 * 3. All advertising materials mentioning features or use of this software
76 * must display the following acknowledgement:
77 * This product includes software developed by the University of
78 * California, Berkeley and its contributors.
79 * 4. Neither the name of the University nor the names of its contributors
80 * may be used to endorse or promote products derived from this software
81 * without specific prior written permission.
82 *
83 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
84 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
85 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
86 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
87 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
88 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
89 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
90 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
91 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
92 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
93 * SUCH DAMAGE.
94 *
95 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
96 */
97
98 #include <sys/cdefs.h>
99 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.115 2008/06/10 11:49:11 ad Exp $");
100
101 #include <sys/param.h>
102 #include <sys/systm.h>
103 #include <sys/proc.h>
104 #include <sys/filedesc.h>
105 #include <sys/domain.h>
106 #include <sys/protosw.h>
107 #include <sys/socket.h>
108 #include <sys/socketvar.h>
109 #include <sys/unpcb.h>
110 #include <sys/un.h>
111 #include <sys/namei.h>
112 #include <sys/vnode.h>
113 #include <sys/file.h>
114 #include <sys/stat.h>
115 #include <sys/mbuf.h>
116 #include <sys/kauth.h>
117 #include <sys/kmem.h>
118 #include <sys/atomic.h>
119
120 /*
121 * Unix communications domain.
122 *
123 * TODO:
124 * SEQPACKET, RDM
125 * rethink name space problems
126 * need a proper out-of-band
127 *
128 * Notes on locking:
129 *
130 * The generic rules noted in uipc_socket2.c apply. In addition:
131 *
132 * o We have a global lock, uipc_lock.
133 *
134 * o All datagram sockets are locked by uipc_lock.
135 *
136 * o For stream socketpairs, the two endpoints are created sharing the same
137 * independent lock. Sockets presented to PRU_CONNECT2 must already have
138 * matching locks.
139 *
140 * o Stream sockets created via socket() start life with their own
141 * independent lock.
142 *
143 * o Stream connections to a named endpoint are slightly more complicated.
144 * Sockets that have called listen() have their lock pointer mutated to
145 * the global uipc_lock. When establishing a connection, the connecting
146 * socket also has its lock mutated to uipc_lock, which matches the head
147 * (listening socket). We create a new socket for accept() to return, and
148 * that also shares the head's lock. Until the connection is completely
149 * done on both ends, all three sockets are locked by uipc_lock. Once the
150 * connection is complete, the association with the head's lock is broken.
151 * The connecting socket and the socket returned from accept() have their
152 * lock pointers mutated away from uipc_lock, and back to the connecting
153 * socket's original, independent lock. The head continues to be locked
154 * by uipc_lock.
155 *
156 * o If uipc_lock is determined to be a significant source of contention,
157 * it could easily be hashed out. It is difficult to simply make it an
158 * independent lock because of visibility / garbage collection issues:
159 * if a socket has been associated with a lock at any point, that lock
160 * must remain valid until the socket is no longer visible in the system.
161 * The lock must not be freed or otherwise destroyed until any sockets
162 * that had referenced it have also been destroyed.
163 */
164 const struct sockaddr_un sun_noname = {
165 .sun_len = sizeof(sun_noname),
166 .sun_family = AF_LOCAL,
167 };
168 ino_t unp_ino; /* prototype for fake inode numbers */
169
170 struct mbuf *unp_addsockcred(struct lwp *, struct mbuf *);
171 static kmutex_t *uipc_lock;
172
173 /*
174 * Initialize Unix protocols.
175 */
176 void
177 uipc_init(void)
178 {
179
180 uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
181 }
182
183 /*
184 * A connection succeeded: disassociate both endpoints from the head's
185 * lock, and make them share their own lock. There is a race here: for
186 * a very brief time one endpoint will be locked by a different lock
187 * than the other end. However, since the current thread holds the old
188 * lock (the listening socket's lock, the head) access can still only be
189 * made to one side of the connection.
190 */
191 static void
192 unp_setpeerlocks(struct socket *so, struct socket *so2)
193 {
194 struct unpcb *unp;
195 kmutex_t *lock;
196
197 KASSERT(solocked2(so, so2));
198
199 /*
200 * Bail out if either end of the socket is not yet fully
201 * connected or accepted. We only break the lock association
202 * with the head when the pair of sockets stand completely
203 * on their own.
204 */
205 if (so->so_head != NULL || so2->so_head != NULL)
206 return;
207
208 /*
209 * Drop references to old lock. A third reference (from the
210 * queue head) must be held as we still hold its lock. Bonus:
211 * we don't need to worry about garbage collecting the lock.
212 */
213 lock = so->so_lock;
214 KASSERT(lock == uipc_lock);
215 mutex_obj_free(lock);
216 mutex_obj_free(lock);
217
218 /*
219 * Grab stream lock from the initiator and share between the two
220 * endpoints. Issue memory barrier to ensure all modifications
221 * become globally visible before the lock change. so2 is
222 * assumed not to have a stream lock, because it was created
223 * purely for the server side to accept this connection and
224 * started out life using the domain-wide lock.
225 */
226 unp = sotounpcb(so);
227 KASSERT(unp->unp_streamlock != NULL);
228 KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
229 lock = unp->unp_streamlock;
230 unp->unp_streamlock = NULL;
231 mutex_obj_hold(lock);
232 membar_exit();
233 solockreset(so, lock);
234 solockreset(so2, lock);
235 }
236
237 /*
238 * Reset a socket's lock back to the domain-wide lock.
239 */
240 static void
241 unp_resetlock(struct socket *so)
242 {
243 kmutex_t *olock, *nlock;
244 struct unpcb *unp;
245
246 KASSERT(solocked(so));
247
248 olock = so->so_lock;
249 nlock = uipc_lock;
250 if (olock == nlock)
251 return;
252 unp = sotounpcb(so);
253 KASSERT(unp->unp_streamlock == NULL);
254 unp->unp_streamlock = olock;
255 mutex_obj_hold(nlock);
256 mutex_enter(nlock);
257 solockreset(so, nlock);
258 mutex_exit(olock);
259 }
260
261 static void
262 unp_free(struct unpcb *unp)
263 {
264
265 if (unp->unp_addr)
266 free(unp->unp_addr, M_SONAME);
267 if (unp->unp_streamlock != NULL)
268 mutex_obj_free(unp->unp_streamlock);
269 free(unp, M_PCB);
270 }
271
272 int
273 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp,
274 struct lwp *l)
275 {
276 struct socket *so2;
277 const struct sockaddr_un *sun;
278
279 so2 = unp->unp_conn->unp_socket;
280
281 KASSERT(solocked(so2));
282
283 if (unp->unp_addr)
284 sun = unp->unp_addr;
285 else
286 sun = &sun_noname;
287 if (unp->unp_conn->unp_flags & UNP_WANTCRED)
288 control = unp_addsockcred(l, control);
289 if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
290 control) == 0) {
291 so2->so_rcv.sb_overflowed++;
292 sounlock(so2);
293 unp_dispose(control);
294 m_freem(control);
295 m_freem(m);
296 solock(so2);
297 return (ENOBUFS);
298 } else {
299 sorwakeup(so2);
300 return (0);
301 }
302 }
303
304 void
305 unp_setaddr(struct socket *so, struct mbuf *nam, bool peeraddr)
306 {
307 const struct sockaddr_un *sun;
308 struct unpcb *unp;
309 bool ext;
310
311 unp = sotounpcb(so);
312 ext = false;
313
314 for (;;) {
315 sun = NULL;
316 if (peeraddr) {
317 if (unp->unp_conn && unp->unp_conn->unp_addr)
318 sun = unp->unp_conn->unp_addr;
319 } else {
320 if (unp->unp_addr)
321 sun = unp->unp_addr;
322 }
323 if (sun == NULL)
324 sun = &sun_noname;
325 nam->m_len = sun->sun_len;
326 if (nam->m_len > MLEN && !ext) {
327 sounlock(so);
328 MEXTMALLOC(nam, MAXPATHLEN * 2, M_WAITOK);
329 solock(so);
330 ext = true;
331 } else {
332 KASSERT(nam->m_len <= MAXPATHLEN * 2);
333 memcpy(mtod(nam, void *), sun, (size_t)nam->m_len);
334 break;
335 }
336 }
337 }
338
339 /*ARGSUSED*/
340 int
341 uipc_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
342 struct mbuf *control, struct lwp *l)
343 {
344 struct unpcb *unp = sotounpcb(so);
345 struct socket *so2;
346 struct proc *p;
347 u_int newhiwat;
348 int error = 0;
349
350 if (req == PRU_CONTROL)
351 return (EOPNOTSUPP);
352
353 #ifdef DIAGNOSTIC
354 if (req != PRU_SEND && req != PRU_SENDOOB && control)
355 panic("uipc_usrreq: unexpected control mbuf");
356 #endif
357 p = l ? l->l_proc : NULL;
358 if (req != PRU_ATTACH) {
359 if (unp == 0) {
360 error = EINVAL;
361 goto release;
362 }
363 KASSERT(solocked(so));
364 }
365
366 switch (req) {
367
368 case PRU_ATTACH:
369 if (unp != 0) {
370 error = EISCONN;
371 break;
372 }
373 error = unp_attach(so);
374 break;
375
376 case PRU_DETACH:
377 unp_detach(unp);
378 break;
379
380 case PRU_BIND:
381 KASSERT(l != NULL);
382 error = unp_bind(so, nam, l);
383 break;
384
385 case PRU_LISTEN:
386 /*
387 * If the socket can accept a connection, it must be
388 * locked by uipc_lock.
389 */
390 unp_resetlock(so);
391 if (unp->unp_vnode == 0)
392 error = EINVAL;
393 break;
394
395 case PRU_CONNECT:
396 KASSERT(l != NULL);
397 error = unp_connect(so, nam, l);
398 break;
399
400 case PRU_CONNECT2:
401 error = unp_connect2(so, (struct socket *)nam, PRU_CONNECT2);
402 break;
403
404 case PRU_DISCONNECT:
405 unp_disconnect(unp);
406 break;
407
408 case PRU_ACCEPT:
409 KASSERT(so->so_lock == uipc_lock);
410 /*
411 * Mark the initiating STREAM socket as connected *ONLY*
412 * after it's been accepted. This prevents a client from
413 * overrunning a server and receiving ECONNREFUSED.
414 */
415 if (unp->unp_conn == NULL)
416 break;
417 so2 = unp->unp_conn->unp_socket;
418 if (so2->so_state & SS_ISCONNECTING) {
419 KASSERT(solocked2(so, so->so_head));
420 KASSERT(solocked2(so2, so->so_head));
421 soisconnected(so2);
422 }
423 /*
424 * If the connection is fully established, break the
425 * association with uipc_lock and give the connected
426 * pair a seperate lock to share.
427 */
428 unp_setpeerlocks(so2, so);
429 /*
430 * Only now return peer's address, as we may need to
431 * block in order to allocate memory.
432 *
433 * XXX Minor race: connection can be broken while
434 * lock is dropped in unp_setaddr(). We will return
435 * error == 0 and sun_noname as the peer address.
436 */
437 unp_setaddr(so, nam, true);
438 break;
439
440 case PRU_SHUTDOWN:
441 socantsendmore(so);
442 unp_shutdown(unp);
443 break;
444
445 case PRU_RCVD:
446 switch (so->so_type) {
447
448 case SOCK_DGRAM:
449 panic("uipc 1");
450 /*NOTREACHED*/
451
452 case SOCK_STREAM:
453 #define rcv (&so->so_rcv)
454 #define snd (&so2->so_snd)
455 if (unp->unp_conn == 0)
456 break;
457 so2 = unp->unp_conn->unp_socket;
458 KASSERT(solocked2(so, so2));
459 /*
460 * Adjust backpressure on sender
461 * and wakeup any waiting to write.
462 */
463 snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
464 unp->unp_mbcnt = rcv->sb_mbcnt;
465 newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
466 (void)chgsbsize(so2->so_uidinfo,
467 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
468 unp->unp_cc = rcv->sb_cc;
469 sowwakeup(so2);
470 #undef snd
471 #undef rcv
472 break;
473
474 default:
475 panic("uipc 2");
476 }
477 break;
478
479 case PRU_SEND:
480 /*
481 * Note: unp_internalize() rejects any control message
482 * other than SCM_RIGHTS, and only allows one. This
483 * has the side-effect of preventing a caller from
484 * forging SCM_CREDS.
485 */
486 if (control) {
487 sounlock(so);
488 error = unp_internalize(&control);
489 solock(so);
490 if (error != 0) {
491 m_freem(control);
492 m_freem(m);
493 break;
494 }
495 }
496 switch (so->so_type) {
497
498 case SOCK_DGRAM: {
499 KASSERT(so->so_lock == uipc_lock);
500 if (nam) {
501 if ((so->so_state & SS_ISCONNECTED) != 0)
502 error = EISCONN;
503 else {
504 /*
505 * Note: once connected, the
506 * socket's lock must not be
507 * dropped until we have sent
508 * the message and disconnected.
509 * This is necessary to prevent
510 * intervening control ops, like
511 * another connection.
512 */
513 error = unp_connect(so, nam, l);
514 }
515 } else {
516 if ((so->so_state & SS_ISCONNECTED) == 0)
517 error = ENOTCONN;
518 }
519 if (error) {
520 sounlock(so);
521 unp_dispose(control);
522 m_freem(control);
523 m_freem(m);
524 solock(so);
525 break;
526 }
527 KASSERT(p != NULL);
528 error = unp_output(m, control, unp, l);
529 if (nam)
530 unp_disconnect(unp);
531 break;
532 }
533
534 case SOCK_STREAM:
535 #define rcv (&so2->so_rcv)
536 #define snd (&so->so_snd)
537 if (unp->unp_conn == NULL) {
538 error = ENOTCONN;
539 break;
540 }
541 so2 = unp->unp_conn->unp_socket;
542 KASSERT(solocked2(so, so2));
543 if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
544 /*
545 * Credentials are passed only once on
546 * SOCK_STREAM.
547 */
548 unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
549 control = unp_addsockcred(l, control);
550 }
551 /*
552 * Send to paired receive port, and then reduce
553 * send buffer hiwater marks to maintain backpressure.
554 * Wake up readers.
555 */
556 if (control) {
557 if (sbappendcontrol(rcv, m, control) != 0)
558 control = NULL;
559 } else
560 sbappend(rcv, m);
561 snd->sb_mbmax -=
562 rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
563 unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
564 newhiwat = snd->sb_hiwat -
565 (rcv->sb_cc - unp->unp_conn->unp_cc);
566 (void)chgsbsize(so->so_uidinfo,
567 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
568 unp->unp_conn->unp_cc = rcv->sb_cc;
569 sorwakeup(so2);
570 #undef snd
571 #undef rcv
572 if (control != NULL) {
573 sounlock(so);
574 unp_dispose(control);
575 m_freem(control);
576 solock(so);
577 }
578 break;
579
580 default:
581 panic("uipc 4");
582 }
583 break;
584
585 case PRU_ABORT:
586 (void)unp_drop(unp, ECONNABORTED);
587
588 KASSERT(so->so_head == NULL);
589 #ifdef DIAGNOSTIC
590 if (so->so_pcb == 0)
591 panic("uipc 5: drop killed pcb");
592 #endif
593 unp_detach(unp);
594 break;
595
596 case PRU_SENSE:
597 ((struct stat *) m)->st_blksize = so->so_snd.sb_hiwat;
598 if (so->so_type == SOCK_STREAM && unp->unp_conn != 0) {
599 so2 = unp->unp_conn->unp_socket;
600 KASSERT(solocked2(so, so2));
601 ((struct stat *) m)->st_blksize += so2->so_rcv.sb_cc;
602 }
603 ((struct stat *) m)->st_dev = NODEV;
604 if (unp->unp_ino == 0)
605 unp->unp_ino = unp_ino++;
606 ((struct stat *) m)->st_atimespec =
607 ((struct stat *) m)->st_mtimespec =
608 ((struct stat *) m)->st_ctimespec = unp->unp_ctime;
609 ((struct stat *) m)->st_ino = unp->unp_ino;
610 return (0);
611
612 case PRU_RCVOOB:
613 error = EOPNOTSUPP;
614 break;
615
616 case PRU_SENDOOB:
617 m_freem(control);
618 m_freem(m);
619 error = EOPNOTSUPP;
620 break;
621
622 case PRU_SOCKADDR:
623 unp_setaddr(so, nam, false);
624 break;
625
626 case PRU_PEERADDR:
627 unp_setaddr(so, nam, true);
628 break;
629
630 default:
631 panic("piusrreq");
632 }
633
634 release:
635 return (error);
636 }
637
638 /*
639 * Unix domain socket option processing.
640 */
641 int
642 uipc_ctloutput(int op, struct socket *so, int level, int optname,
643 struct mbuf **mp)
644 {
645 struct unpcb *unp = sotounpcb(so);
646 struct mbuf *m = *mp;
647 int optval = 0, error = 0;
648
649 KASSERT(solocked(so));
650
651 if (level != 0) {
652 error = ENOPROTOOPT;
653 if (op == PRCO_SETOPT && m)
654 (void) m_free(m);
655 } else switch (op) {
656
657 case PRCO_SETOPT:
658 switch (optname) {
659 case LOCAL_CREDS:
660 case LOCAL_CONNWAIT:
661 if (m == NULL || m->m_len != sizeof(int))
662 error = EINVAL;
663 else {
664 optval = *mtod(m, int *);
665 switch (optname) {
666 #define OPTSET(bit) \
667 if (optval) \
668 unp->unp_flags |= (bit); \
669 else \
670 unp->unp_flags &= ~(bit);
671
672 case LOCAL_CREDS:
673 OPTSET(UNP_WANTCRED);
674 break;
675 case LOCAL_CONNWAIT:
676 OPTSET(UNP_CONNWAIT);
677 break;
678 }
679 }
680 break;
681 #undef OPTSET
682
683 default:
684 error = ENOPROTOOPT;
685 break;
686 }
687 if (m)
688 (void) m_free(m);
689 break;
690
691 case PRCO_GETOPT:
692 sounlock(so);
693 switch (optname) {
694 case LOCAL_PEEREID:
695 if (unp->unp_flags & UNP_EIDSVALID) {
696 *mp = m = m_get(M_WAIT, MT_SOOPTS);
697 m->m_len = sizeof(struct unpcbid);
698 *mtod(m, struct unpcbid *) = unp->unp_connid;
699 } else {
700 error = EINVAL;
701 }
702 break;
703 case LOCAL_CREDS:
704 *mp = m = m_get(M_WAIT, MT_SOOPTS);
705 m->m_len = sizeof(int);
706
707 #define OPTBIT(bit) (unp->unp_flags & (bit) ? 1 : 0)
708
709 optval = OPTBIT(UNP_WANTCRED);
710 *mtod(m, int *) = optval;
711 break;
712 #undef OPTBIT
713
714 default:
715 error = ENOPROTOOPT;
716 break;
717 }
718 solock(so);
719 break;
720 }
721 return (error);
722 }
723
724 /*
725 * Both send and receive buffers are allocated PIPSIZ bytes of buffering
726 * for stream sockets, although the total for sender and receiver is
727 * actually only PIPSIZ.
728 * Datagram sockets really use the sendspace as the maximum datagram size,
729 * and don't really want to reserve the sendspace. Their recvspace should
730 * be large enough for at least one max-size datagram plus address.
731 */
732 #define PIPSIZ 4096
733 u_long unpst_sendspace = PIPSIZ;
734 u_long unpst_recvspace = PIPSIZ;
735 u_long unpdg_sendspace = 2*1024; /* really max datagram size */
736 u_long unpdg_recvspace = 4*1024;
737
738 u_int unp_rights; /* file descriptors in flight */
739
740 int
741 unp_attach(struct socket *so)
742 {
743 struct unpcb *unp;
744 int error;
745
746 switch (so->so_type) {
747 case SOCK_STREAM:
748 if (so->so_lock == NULL) {
749 /*
750 * XXX Assuming that no socket locks are held,
751 * as this call may sleep.
752 */
753 so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
754 solock(so);
755 }
756 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
757 error = soreserve(so, unpst_sendspace, unpst_recvspace);
758 if (error != 0)
759 return (error);
760 }
761 break;
762
763 case SOCK_DGRAM:
764 if (so->so_lock == NULL) {
765 mutex_obj_hold(uipc_lock);
766 so->so_lock = uipc_lock;
767 solock(so);
768 }
769 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
770 error = soreserve(so, unpdg_sendspace, unpdg_recvspace);
771 if (error != 0)
772 return (error);
773 }
774 break;
775
776 default:
777 panic("unp_attach");
778 }
779 KASSERT(solocked(so));
780 unp = malloc(sizeof(*unp), M_PCB, M_NOWAIT);
781 if (unp == NULL)
782 return (ENOBUFS);
783 memset((void *)unp, 0, sizeof(*unp));
784 unp->unp_socket = so;
785 so->so_pcb = unp;
786 nanotime(&unp->unp_ctime);
787 return (0);
788 }
789
790 void
791 unp_detach(struct unpcb *unp)
792 {
793 struct socket *so;
794 vnode_t *vp;
795
796 so = unp->unp_socket;
797
798 retry:
799 if ((vp = unp->unp_vnode) != NULL) {
800 sounlock(so);
801 /* Acquire v_interlock to protect against unp_connect(). */
802 /* XXXAD racy */
803 mutex_enter(&vp->v_interlock);
804 vp->v_socket = NULL;
805 vrelel(vp, 0);
806 solock(so);
807 unp->unp_vnode = NULL;
808 }
809 if (unp->unp_conn)
810 unp_disconnect(unp);
811 while (unp->unp_refs) {
812 KASSERT(solocked2(so, unp->unp_refs->unp_socket));
813 if (unp_drop(unp->unp_refs, ECONNRESET)) {
814 solock(so);
815 goto retry;
816 }
817 }
818 soisdisconnected(so);
819 so->so_pcb = NULL;
820 if (unp_rights) {
821 /*
822 * Normally the receive buffer is flushed later,
823 * in sofree, but if our receive buffer holds references
824 * to descriptors that are now garbage, we will dispose
825 * of those descriptor references after the garbage collector
826 * gets them (resulting in a "panic: closef: count < 0").
827 */
828 sorflush(so);
829 unp_free(unp);
830 sounlock(so);
831 unp_gc();
832 solock(so);
833 } else
834 unp_free(unp);
835 }
836
837 int
838 unp_bind(struct socket *so, struct mbuf *nam, struct lwp *l)
839 {
840 struct sockaddr_un *sun;
841 struct unpcb *unp;
842 vnode_t *vp;
843 struct vattr vattr;
844 size_t addrlen;
845 int error;
846 struct nameidata nd;
847 proc_t *p;
848
849 unp = sotounpcb(so);
850 if (unp->unp_vnode != NULL)
851 return (EINVAL);
852 if ((unp->unp_flags & UNP_BUSY) != 0) {
853 /*
854 * EALREADY may not be strictly accurate, but since this
855 * is a major application error it's hardly a big deal.
856 */
857 return (EALREADY);
858 }
859 unp->unp_flags |= UNP_BUSY;
860 sounlock(so);
861
862 /*
863 * Allocate the new sockaddr. We have to allocate one
864 * extra byte so that we can ensure that the pathname
865 * is nul-terminated.
866 */
867 p = l->l_proc;
868 addrlen = nam->m_len + 1;
869 sun = malloc(addrlen, M_SONAME, M_WAITOK);
870 m_copydata(nam, 0, nam->m_len, (void *)sun);
871 *(((char *)sun) + nam->m_len) = '\0';
872
873 NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, UIO_SYSSPACE,
874 sun->sun_path);
875
876 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
877 if ((error = namei(&nd)) != 0)
878 goto bad;
879 vp = nd.ni_vp;
880 if (vp != NULL) {
881 VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
882 if (nd.ni_dvp == vp)
883 vrele(nd.ni_dvp);
884 else
885 vput(nd.ni_dvp);
886 vrele(vp);
887 error = EADDRINUSE;
888 goto bad;
889 }
890 VATTR_NULL(&vattr);
891 vattr.va_type = VSOCK;
892 vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
893 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
894 if (error)
895 goto bad;
896 vp = nd.ni_vp;
897 solock(so);
898 vp->v_socket = unp->unp_socket;
899 unp->unp_vnode = vp;
900 unp->unp_addrlen = addrlen;
901 unp->unp_addr = sun;
902 unp->unp_connid.unp_pid = p->p_pid;
903 unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
904 unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
905 unp->unp_flags |= UNP_EIDSBIND;
906 VOP_UNLOCK(vp, 0);
907 unp->unp_flags &= ~UNP_BUSY;
908 return (0);
909
910 bad:
911 free(sun, M_SONAME);
912 solock(so);
913 unp->unp_flags &= ~UNP_BUSY;
914 return (error);
915 }
916
917 int
918 unp_connect(struct socket *so, struct mbuf *nam, struct lwp *l)
919 {
920 struct sockaddr_un *sun;
921 vnode_t *vp;
922 struct socket *so2, *so3;
923 struct unpcb *unp, *unp2, *unp3;
924 size_t addrlen;
925 int error;
926 struct nameidata nd;
927
928 unp = sotounpcb(so);
929 if ((unp->unp_flags & UNP_BUSY) != 0) {
930 /*
931 * EALREADY may not be strictly accurate, but since this
932 * is a major application error it's hardly a big deal.
933 */
934 return (EALREADY);
935 }
936 unp->unp_flags |= UNP_BUSY;
937 sounlock(so);
938
939 /*
940 * Allocate a temporary sockaddr. We have to allocate one extra
941 * byte so that we can ensure that the pathname is nul-terminated.
942 * When we establish the connection, we copy the other PCB's
943 * sockaddr to our own.
944 */
945 addrlen = nam->m_len + 1;
946 sun = malloc(addrlen, M_SONAME, M_WAITOK);
947 m_copydata(nam, 0, nam->m_len, (void *)sun);
948 *(((char *)sun) + nam->m_len) = '\0';
949
950 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, UIO_SYSSPACE,
951 sun->sun_path);
952
953 if ((error = namei(&nd)) != 0)
954 goto bad2;
955 vp = nd.ni_vp;
956 if (vp->v_type != VSOCK) {
957 error = ENOTSOCK;
958 goto bad;
959 }
960 if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
961 goto bad;
962 /* Acquire v_interlock to protect against unp_detach(). */
963 mutex_enter(&vp->v_interlock);
964 so2 = vp->v_socket;
965 if (so2 == NULL) {
966 mutex_exit(&vp->v_interlock);
967 error = ECONNREFUSED;
968 goto bad;
969 }
970 if (so->so_type != so2->so_type) {
971 mutex_exit(&vp->v_interlock);
972 error = EPROTOTYPE;
973 goto bad;
974 }
975 solock(so);
976 unp_resetlock(so);
977 mutex_exit(&vp->v_interlock);
978 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
979 /*
980 * This may seem somewhat fragile but is OK: if we can
981 * see SO_ACCEPTCONN set on the endpoint, then it must
982 * be locked by the domain-wide uipc_lock.
983 */
984 KASSERT((so->so_options & SO_ACCEPTCONN) == 0 ||
985 so2->so_lock == uipc_lock);
986 if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
987 (so3 = sonewconn(so2, 0)) == 0) {
988 error = ECONNREFUSED;
989 sounlock(so);
990 goto bad;
991 }
992 unp2 = sotounpcb(so2);
993 unp3 = sotounpcb(so3);
994 if (unp2->unp_addr) {
995 unp3->unp_addr = malloc(unp2->unp_addrlen,
996 M_SONAME, M_WAITOK);
997 memcpy(unp3->unp_addr, unp2->unp_addr,
998 unp2->unp_addrlen);
999 unp3->unp_addrlen = unp2->unp_addrlen;
1000 }
1001 unp3->unp_flags = unp2->unp_flags;
1002 unp3->unp_connid.unp_pid = l->l_proc->p_pid;
1003 unp3->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
1004 unp3->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
1005 unp3->unp_flags |= UNP_EIDSVALID;
1006 if (unp2->unp_flags & UNP_EIDSBIND) {
1007 unp->unp_connid = unp2->unp_connid;
1008 unp->unp_flags |= UNP_EIDSVALID;
1009 }
1010 so2 = so3;
1011 }
1012 error = unp_connect2(so, so2, PRU_CONNECT);
1013 sounlock(so);
1014 bad:
1015 vput(vp);
1016 bad2:
1017 free(sun, M_SONAME);
1018 solock(so);
1019 unp->unp_flags &= ~UNP_BUSY;
1020 return (error);
1021 }
1022
1023 int
1024 unp_connect2(struct socket *so, struct socket *so2, int req)
1025 {
1026 struct unpcb *unp = sotounpcb(so);
1027 struct unpcb *unp2;
1028
1029 if (so2->so_type != so->so_type)
1030 return (EPROTOTYPE);
1031
1032 /*
1033 * All three sockets involved must be locked by same lock:
1034 *
1035 * local endpoint (so)
1036 * remote endpoint (so2)
1037 * queue head (so->so_head, only if PR_CONNREQUIRED)
1038 */
1039 KASSERT(solocked2(so, so2));
1040 if (so->so_head != NULL) {
1041 KASSERT(so->so_lock == uipc_lock);
1042 KASSERT(solocked2(so, so->so_head));
1043 }
1044
1045 unp2 = sotounpcb(so2);
1046 unp->unp_conn = unp2;
1047 switch (so->so_type) {
1048
1049 case SOCK_DGRAM:
1050 unp->unp_nextref = unp2->unp_refs;
1051 unp2->unp_refs = unp;
1052 soisconnected(so);
1053 break;
1054
1055 case SOCK_STREAM:
1056 unp2->unp_conn = unp;
1057 if (req == PRU_CONNECT &&
1058 ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1059 soisconnecting(so);
1060 else
1061 soisconnected(so);
1062 soisconnected(so2);
1063 /*
1064 * If the connection is fully established, break the
1065 * association with uipc_lock and give the connected
1066 * pair a seperate lock to share. For CONNECT2, we
1067 * require that the locks already match (the sockets
1068 * are created that way).
1069 */
1070 if (req == PRU_CONNECT)
1071 unp_setpeerlocks(so, so2);
1072 break;
1073
1074 default:
1075 panic("unp_connect2");
1076 }
1077 return (0);
1078 }
1079
1080 void
1081 unp_disconnect(struct unpcb *unp)
1082 {
1083 struct unpcb *unp2 = unp->unp_conn;
1084 struct socket *so;
1085
1086 if (unp2 == 0)
1087 return;
1088 unp->unp_conn = 0;
1089 so = unp->unp_socket;
1090 switch (so->so_type) {
1091 case SOCK_DGRAM:
1092 if (unp2->unp_refs == unp)
1093 unp2->unp_refs = unp->unp_nextref;
1094 else {
1095 unp2 = unp2->unp_refs;
1096 for (;;) {
1097 KASSERT(solocked2(so, unp2->unp_socket));
1098 if (unp2 == 0)
1099 panic("unp_disconnect");
1100 if (unp2->unp_nextref == unp)
1101 break;
1102 unp2 = unp2->unp_nextref;
1103 }
1104 unp2->unp_nextref = unp->unp_nextref;
1105 }
1106 unp->unp_nextref = 0;
1107 so->so_state &= ~SS_ISCONNECTED;
1108 break;
1109
1110 case SOCK_STREAM:
1111 KASSERT(solocked2(so, unp2->unp_socket));
1112 soisdisconnected(so);
1113 unp2->unp_conn = 0;
1114 soisdisconnected(unp2->unp_socket);
1115 break;
1116 }
1117 }
1118
1119 #ifdef notdef
1120 unp_abort(struct unpcb *unp)
1121 {
1122 unp_detach(unp);
1123 }
1124 #endif
1125
1126 void
1127 unp_shutdown(struct unpcb *unp)
1128 {
1129 struct socket *so;
1130
1131 if (unp->unp_socket->so_type == SOCK_STREAM && unp->unp_conn &&
1132 (so = unp->unp_conn->unp_socket))
1133 socantrcvmore(so);
1134 }
1135
1136 bool
1137 unp_drop(struct unpcb *unp, int errno)
1138 {
1139 struct socket *so = unp->unp_socket;
1140
1141 KASSERT(solocked(so));
1142
1143 so->so_error = errno;
1144 unp_disconnect(unp);
1145 if (so->so_head) {
1146 so->so_pcb = NULL;
1147 /* sofree() drops the socket lock */
1148 sofree(so);
1149 unp_free(unp);
1150 return true;
1151 }
1152 return false;
1153 }
1154
1155 #ifdef notdef
1156 unp_drain(void)
1157 {
1158
1159 }
1160 #endif
1161
1162 int
1163 unp_externalize(struct mbuf *rights, struct lwp *l)
1164 {
1165 struct cmsghdr *cm = mtod(rights, struct cmsghdr *);
1166 struct proc *p = l->l_proc;
1167 int i, *fdp;
1168 file_t **rp;
1169 file_t *fp;
1170 int nfds, error = 0;
1171
1172 nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
1173 sizeof(file_t *);
1174 rp = (file_t **)CMSG_DATA(cm);
1175
1176 fdp = malloc(nfds * sizeof(int), M_TEMP, M_WAITOK);
1177 rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
1178
1179 /* Make sure the recipient should be able to see the descriptors.. */
1180 if (p->p_cwdi->cwdi_rdir != NULL) {
1181 rp = (file_t **)CMSG_DATA(cm);
1182 for (i = 0; i < nfds; i++) {
1183 fp = *rp++;
1184 /*
1185 * If we are in a chroot'ed directory, and
1186 * someone wants to pass us a directory, make
1187 * sure it's inside the subtree we're allowed
1188 * to access.
1189 */
1190 if (fp->f_type == DTYPE_VNODE) {
1191 vnode_t *vp = (vnode_t *)fp->f_data;
1192 if ((vp->v_type == VDIR) &&
1193 !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
1194 error = EPERM;
1195 break;
1196 }
1197 }
1198 }
1199 }
1200
1201 restart:
1202 rp = (file_t **)CMSG_DATA(cm);
1203 if (error != 0) {
1204 for (i = 0; i < nfds; i++) {
1205 fp = *rp;
1206 /*
1207 * zero the pointer before calling unp_discard,
1208 * since it may end up in unp_gc()..
1209 */
1210 *rp++ = 0;
1211 unp_discard(fp);
1212 }
1213 goto out;
1214 }
1215
1216 /*
1217 * First loop -- allocate file descriptor table slots for the
1218 * new descriptors.
1219 */
1220 for (i = 0; i < nfds; i++) {
1221 fp = *rp++;
1222 if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
1223 /*
1224 * Back out what we've done so far.
1225 */
1226 for (--i; i >= 0; i--) {
1227 fd_abort(p, NULL, fdp[i]);
1228 }
1229 if (error == ENOSPC) {
1230 fd_tryexpand(p);
1231 error = 0;
1232 } else {
1233 /*
1234 * This is the error that has historically
1235 * been returned, and some callers may
1236 * expect it.
1237 */
1238 error = EMSGSIZE;
1239 }
1240 goto restart;
1241 }
1242 }
1243
1244 /*
1245 * Now that adding them has succeeded, update all of the
1246 * descriptor passing state.
1247 */
1248 rp = (file_t **)CMSG_DATA(cm);
1249 for (i = 0; i < nfds; i++) {
1250 fp = *rp++;
1251 atomic_dec_uint(&unp_rights);
1252 fd_affix(p, fp, fdp[i]);
1253 mutex_enter(&fp->f_lock);
1254 fp->f_msgcount--;
1255 mutex_exit(&fp->f_lock);
1256 /*
1257 * Note that fd_affix() adds a reference to the file.
1258 * The file may already have been closed by another
1259 * LWP in the process, so we must drop the reference
1260 * added by unp_internalize() with closef().
1261 */
1262 closef(fp);
1263 }
1264
1265 /*
1266 * Copy temporary array to message and adjust length, in case of
1267 * transition from large file_t pointers to ints.
1268 */
1269 memcpy(CMSG_DATA(cm), fdp, nfds * sizeof(int));
1270 cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
1271 rights->m_len = CMSG_SPACE(nfds * sizeof(int));
1272 out:
1273 rw_exit(&p->p_cwdi->cwdi_lock);
1274 free(fdp, M_TEMP);
1275 return (error);
1276 }
1277
1278 int
1279 unp_internalize(struct mbuf **controlp)
1280 {
1281 struct filedesc *fdescp = curlwp->l_fd;
1282 struct mbuf *control = *controlp;
1283 struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
1284 file_t **rp, **files;
1285 file_t *fp;
1286 int i, fd, *fdp;
1287 int nfds, error;
1288
1289 error = 0;
1290 newcm = NULL;
1291
1292 /* Sanity check the control message header. */
1293 if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
1294 cm->cmsg_len != control->m_len)
1295 return (EINVAL);
1296
1297 /*
1298 * Verify that the file descriptors are valid, and acquire
1299 * a reference to each.
1300 */
1301 nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
1302 fdp = (int *)CMSG_DATA(cm);
1303 for (i = 0; i < nfds; i++) {
1304 fd = *fdp++;
1305 if ((fp = fd_getfile(fd)) == NULL) {
1306 nfds = i + 1;
1307 error = EBADF;
1308 goto out;
1309 }
1310 }
1311
1312 /* Allocate new space and copy header into it. */
1313 newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
1314 if (newcm == NULL) {
1315 error = E2BIG;
1316 goto out;
1317 }
1318 memcpy(newcm, cm, sizeof(struct cmsghdr));
1319 files = (file_t **)CMSG_DATA(newcm);
1320
1321 /*
1322 * Transform the file descriptors into file_t pointers, in
1323 * reverse order so that if pointers are bigger than ints, the
1324 * int won't get until we're done. No need to lock, as we have
1325 * already validated the descriptors with fd_getfile().
1326 */
1327 fdp = (int *)CMSG_DATA(cm) + nfds;
1328 rp = files + nfds;
1329 for (i = 0; i < nfds; i++) {
1330 fp = fdescp->fd_ofiles[*--fdp]->ff_file;
1331 KASSERT(fp != NULL);
1332 mutex_enter(&fp->f_lock);
1333 *--rp = fp;
1334 fp->f_count++;
1335 fp->f_msgcount++;
1336 mutex_exit(&fp->f_lock);
1337 atomic_inc_uint(&unp_rights);
1338 }
1339
1340 out:
1341 /* Release descriptor references. */
1342 fdp = (int *)CMSG_DATA(cm);
1343 for (i = 0; i < nfds; i++) {
1344 fd_putfile(*fdp++);
1345 }
1346
1347 if (error == 0) {
1348 if (control->m_flags & M_EXT) {
1349 m_freem(control);
1350 *controlp = control = m_get(M_WAIT, MT_CONTROL);
1351 }
1352 MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
1353 M_MBUF, NULL, NULL);
1354 cm = newcm;
1355 /*
1356 * Adjust message & mbuf to note amount of space
1357 * actually used.
1358 */
1359 cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
1360 control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
1361 }
1362
1363 return error;
1364 }
1365
1366 struct mbuf *
1367 unp_addsockcred(struct lwp *l, struct mbuf *control)
1368 {
1369 struct cmsghdr *cmp;
1370 struct sockcred *sc;
1371 struct mbuf *m, *n;
1372 int len, space, i;
1373
1374 len = CMSG_LEN(SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)));
1375 space = CMSG_SPACE(SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)));
1376
1377 m = m_get(M_WAIT, MT_CONTROL);
1378 if (space > MLEN) {
1379 if (space > MCLBYTES)
1380 MEXTMALLOC(m, space, M_WAITOK);
1381 else
1382 m_clget(m, M_WAIT);
1383 if ((m->m_flags & M_EXT) == 0) {
1384 m_free(m);
1385 return (control);
1386 }
1387 }
1388
1389 m->m_len = space;
1390 m->m_next = NULL;
1391 cmp = mtod(m, struct cmsghdr *);
1392 sc = (struct sockcred *)CMSG_DATA(cmp);
1393 cmp->cmsg_len = len;
1394 cmp->cmsg_level = SOL_SOCKET;
1395 cmp->cmsg_type = SCM_CREDS;
1396 sc->sc_uid = kauth_cred_getuid(l->l_cred);
1397 sc->sc_euid = kauth_cred_geteuid(l->l_cred);
1398 sc->sc_gid = kauth_cred_getgid(l->l_cred);
1399 sc->sc_egid = kauth_cred_getegid(l->l_cred);
1400 sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
1401 for (i = 0; i < sc->sc_ngroups; i++)
1402 sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
1403
1404 /*
1405 * If a control message already exists, append us to the end.
1406 */
1407 if (control != NULL) {
1408 for (n = control; n->m_next != NULL; n = n->m_next)
1409 ;
1410 n->m_next = m;
1411 } else
1412 control = m;
1413
1414 return (control);
1415 }
1416
1417 int unp_defer, unp_gcing;
1418 extern struct domain unixdomain;
1419
1420 /*
1421 * Comment added long after the fact explaining what's going on here.
1422 * Do a mark-sweep GC of file descriptors on the system, to free up
1423 * any which are caught in flight to an about-to-be-closed socket.
1424 *
1425 * Traditional mark-sweep gc's start at the "root", and mark
1426 * everything reachable from the root (which, in our case would be the
1427 * process table). The mark bits are cleared during the sweep.
1428 *
1429 * XXX For some inexplicable reason (perhaps because the file
1430 * descriptor tables used to live in the u area which could be swapped
1431 * out and thus hard to reach), we do multiple scans over the set of
1432 * descriptors, using use *two* mark bits per object (DEFER and MARK).
1433 * Whenever we find a descriptor which references other descriptors,
1434 * the ones it references are marked with both bits, and we iterate
1435 * over the whole file table until there are no more DEFER bits set.
1436 * We also make an extra pass *before* the GC to clear the mark bits,
1437 * which could have been cleared at almost no cost during the previous
1438 * sweep.
1439 */
1440 void
1441 unp_gc(void)
1442 {
1443 file_t *fp, *nextfp;
1444 struct socket *so, *so1;
1445 file_t **extra_ref, **fpp;
1446 int nunref, nslots, i;
1447
1448 if (atomic_swap_uint(&unp_gcing, 1) == 1)
1449 return;
1450
1451 restart:
1452 nslots = nfiles * 2;
1453 extra_ref = kmem_alloc(nslots * sizeof(file_t *), KM_SLEEP);
1454
1455 mutex_enter(&filelist_lock);
1456 unp_defer = 0;
1457
1458 /* Clear mark bits */
1459 LIST_FOREACH(fp, &filehead, f_list) {
1460 atomic_and_uint(&fp->f_flag, ~(FMARK|FDEFER));
1461 }
1462
1463 /*
1464 * Iterate over the set of descriptors, marking ones believed
1465 * (based on refcount) to be referenced from a process, and
1466 * marking for rescan descriptors which are queued on a socket.
1467 */
1468 do {
1469 LIST_FOREACH(fp, &filehead, f_list) {
1470 mutex_enter(&fp->f_lock);
1471 if (fp->f_flag & FDEFER) {
1472 atomic_and_uint(&fp->f_flag, ~FDEFER);
1473 unp_defer--;
1474 KASSERT(fp->f_count != 0);
1475 } else {
1476 if (fp->f_count == 0 ||
1477 (fp->f_flag & FMARK) ||
1478 fp->f_count == fp->f_msgcount) {
1479 mutex_exit(&fp->f_lock);
1480 continue;
1481 }
1482 }
1483 atomic_or_uint(&fp->f_flag, FMARK);
1484
1485 if (fp->f_type != DTYPE_SOCKET ||
1486 (so = fp->f_data) == NULL ||
1487 so->so_proto->pr_domain != &unixdomain ||
1488 (so->so_proto->pr_flags&PR_RIGHTS) == 0) {
1489 mutex_exit(&fp->f_lock);
1490 continue;
1491 }
1492 #ifdef notdef
1493 if (so->so_rcv.sb_flags & SB_LOCK) {
1494 mutex_exit(&fp->f_lock);
1495 mutex_exit(&filelist_lock);
1496 kmem_free(extra_ref, nslots * sizeof(file_t *));
1497 /*
1498 * This is problematical; it's not clear
1499 * we need to wait for the sockbuf to be
1500 * unlocked (on a uniprocessor, at least),
1501 * and it's also not clear what to do
1502 * if sbwait returns an error due to receipt
1503 * of a signal. If sbwait does return
1504 * an error, we'll go into an infinite
1505 * loop. Delete all of this for now.
1506 */
1507 (void) sbwait(&so->so_rcv);
1508 goto restart;
1509 }
1510 #endif
1511 mutex_exit(&fp->f_lock);
1512
1513 /*
1514 * XXX Locking a socket with filelist_lock held
1515 * is ugly. filelist_lock can be taken by the
1516 * pagedaemon when reclaiming items from file_cache.
1517 * Socket activity could delay the pagedaemon.
1518 */
1519 solock(so);
1520 unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
1521 /*
1522 * Mark descriptors referenced from sockets queued
1523 * on the accept queue as well.
1524 */
1525 if (so->so_options & SO_ACCEPTCONN) {
1526 TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
1527 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1528 }
1529 TAILQ_FOREACH(so1, &so->so_q, so_qe) {
1530 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1531 }
1532 }
1533 sounlock(so);
1534 }
1535 } while (unp_defer);
1536
1537 /*
1538 * Sweep pass. Find unmarked descriptors, and free them.
1539 *
1540 * We grab an extra reference to each of the file table entries
1541 * that are not otherwise accessible and then free the rights
1542 * that are stored in messages on them.
1543 *
1544 * The bug in the original code is a little tricky, so I'll describe
1545 * what's wrong with it here.
1546 *
1547 * It is incorrect to simply unp_discard each entry for f_msgcount
1548 * times -- consider the case of sockets A and B that contain
1549 * references to each other. On a last close of some other socket,
1550 * we trigger a gc since the number of outstanding rights (unp_rights)
1551 * is non-zero. If during the sweep phase the gc code un_discards,
1552 * we end up doing a (full) closef on the descriptor. A closef on A
1553 * results in the following chain. Closef calls soo_close, which
1554 * calls soclose. Soclose calls first (through the switch
1555 * uipc_usrreq) unp_detach, which re-invokes unp_gc. Unp_gc simply
1556 * returns because the previous instance had set unp_gcing, and
1557 * we return all the way back to soclose, which marks the socket
1558 * with SS_NOFDREF, and then calls sofree. Sofree calls sorflush
1559 * to free up the rights that are queued in messages on the socket A,
1560 * i.e., the reference on B. The sorflush calls via the dom_dispose
1561 * switch unp_dispose, which unp_scans with unp_discard. This second
1562 * instance of unp_discard just calls closef on B.
1563 *
1564 * Well, a similar chain occurs on B, resulting in a sorflush on B,
1565 * which results in another closef on A. Unfortunately, A is already
1566 * being closed, and the descriptor has already been marked with
1567 * SS_NOFDREF, and soclose panics at this point.
1568 *
1569 * Here, we first take an extra reference to each inaccessible
1570 * descriptor. Then, if the inaccessible descriptor is a
1571 * socket, we call sorflush in case it is a Unix domain
1572 * socket. After we destroy all the rights carried in
1573 * messages, we do a last closef to get rid of our extra
1574 * reference. This is the last close, and the unp_detach etc
1575 * will shut down the socket.
1576 *
1577 * 91/09/19, bsy (at) cs.cmu.edu
1578 */
1579 if (nslots < nfiles) {
1580 mutex_exit(&filelist_lock);
1581 kmem_free(extra_ref, nslots * sizeof(file_t *));
1582 goto restart;
1583 }
1584 for (nunref = 0, fp = LIST_FIRST(&filehead), fpp = extra_ref; fp != 0;
1585 fp = nextfp) {
1586 nextfp = LIST_NEXT(fp, f_list);
1587 mutex_enter(&fp->f_lock);
1588 if (fp->f_count != 0 &&
1589 fp->f_count == fp->f_msgcount && !(fp->f_flag & FMARK)) {
1590 *fpp++ = fp;
1591 nunref++;
1592 fp->f_count++;
1593 }
1594 mutex_exit(&fp->f_lock);
1595 }
1596 mutex_exit(&filelist_lock);
1597
1598 for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) {
1599 fp = *fpp;
1600 if (fp->f_type == DTYPE_SOCKET) {
1601 so = fp->f_data;
1602 solock(so);
1603 sorflush(fp->f_data);
1604 sounlock(so);
1605 }
1606 }
1607 for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) {
1608 closef(*fpp);
1609 }
1610 kmem_free(extra_ref, nslots * sizeof(file_t *));
1611 atomic_swap_uint(&unp_gcing, 0);
1612 }
1613
1614 void
1615 unp_dispose(struct mbuf *m)
1616 {
1617
1618 if (m)
1619 unp_scan(m, unp_discard, 1);
1620 }
1621
1622 void
1623 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
1624 {
1625 struct mbuf *m;
1626 file_t **rp;
1627 struct cmsghdr *cm;
1628 int i;
1629 int qfds;
1630
1631 while (m0) {
1632 for (m = m0; m; m = m->m_next) {
1633 if (m->m_type == MT_CONTROL &&
1634 m->m_len >= sizeof(*cm)) {
1635 cm = mtod(m, struct cmsghdr *);
1636 if (cm->cmsg_level != SOL_SOCKET ||
1637 cm->cmsg_type != SCM_RIGHTS)
1638 continue;
1639 qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
1640 / sizeof(file_t *);
1641 rp = (file_t **)CMSG_DATA(cm);
1642 for (i = 0; i < qfds; i++) {
1643 file_t *fp = *rp;
1644 if (discard)
1645 *rp = 0;
1646 (*op)(fp);
1647 rp++;
1648 }
1649 break; /* XXX, but saves time */
1650 }
1651 }
1652 m0 = m0->m_nextpkt;
1653 }
1654 }
1655
1656 void
1657 unp_mark(file_t *fp)
1658 {
1659
1660 if (fp == NULL)
1661 return;
1662
1663 /* If we're already deferred, don't screw up the defer count */
1664 mutex_enter(&fp->f_lock);
1665 if (fp->f_flag & (FMARK | FDEFER)) {
1666 mutex_exit(&fp->f_lock);
1667 return;
1668 }
1669
1670 /*
1671 * Minimize the number of deferrals... Sockets are the only
1672 * type of descriptor which can hold references to another
1673 * descriptor, so just mark other descriptors, and defer
1674 * unmarked sockets for the next pass.
1675 */
1676 if (fp->f_type == DTYPE_SOCKET) {
1677 unp_defer++;
1678 KASSERT(fp->f_count != 0);
1679 atomic_or_uint(&fp->f_flag, FDEFER);
1680 } else {
1681 atomic_or_uint(&fp->f_flag, FMARK);
1682 }
1683 mutex_exit(&fp->f_lock);
1684 return;
1685 }
1686
1687 void
1688 unp_discard(file_t *fp)
1689 {
1690
1691 if (fp == NULL)
1692 return;
1693
1694 mutex_enter(&fp->f_lock);
1695 KASSERT(fp->f_count > 0);
1696 fp->f_msgcount--;
1697 mutex_exit(&fp->f_lock);
1698 atomic_dec_uint(&unp_rights);
1699 (void)closef(fp);
1700 }
1701