uipc_usrreq.c revision 1.120 1 /* $NetBSD: uipc_usrreq.c,v 1.120 2009/02/08 16:38:12 pooka Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2000, 2004, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
62 */
63
64 /*
65 * Copyright (c) 1997 Christopher G. Demetriou. All rights reserved.
66 *
67 * Redistribution and use in source and binary forms, with or without
68 * modification, are permitted provided that the following conditions
69 * are met:
70 * 1. Redistributions of source code must retain the above copyright
71 * notice, this list of conditions and the following disclaimer.
72 * 2. Redistributions in binary form must reproduce the above copyright
73 * notice, this list of conditions and the following disclaimer in the
74 * documentation and/or other materials provided with the distribution.
75 * 3. All advertising materials mentioning features or use of this software
76 * must display the following acknowledgement:
77 * This product includes software developed by the University of
78 * California, Berkeley and its contributors.
79 * 4. Neither the name of the University nor the names of its contributors
80 * may be used to endorse or promote products derived from this software
81 * without specific prior written permission.
82 *
83 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
84 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
85 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
86 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
87 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
88 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
89 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
90 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
91 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
92 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
93 * SUCH DAMAGE.
94 *
95 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
96 */
97
98 #include <sys/cdefs.h>
99 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.120 2009/02/08 16:38:12 pooka Exp $");
100
101 #include <sys/param.h>
102 #include <sys/systm.h>
103 #include <sys/proc.h>
104 #include <sys/filedesc.h>
105 #include <sys/domain.h>
106 #include <sys/protosw.h>
107 #include <sys/socket.h>
108 #include <sys/socketvar.h>
109 #include <sys/unpcb.h>
110 #include <sys/un.h>
111 #include <sys/namei.h>
112 #include <sys/vnode.h>
113 #include <sys/file.h>
114 #include <sys/stat.h>
115 #include <sys/mbuf.h>
116 #include <sys/kauth.h>
117 #include <sys/kmem.h>
118 #include <sys/atomic.h>
119 #include <sys/uidinfo.h>
120
121 /*
122 * Unix communications domain.
123 *
124 * TODO:
125 * SEQPACKET, RDM
126 * rethink name space problems
127 * need a proper out-of-band
128 *
129 * Notes on locking:
130 *
131 * The generic rules noted in uipc_socket2.c apply. In addition:
132 *
133 * o We have a global lock, uipc_lock.
134 *
135 * o All datagram sockets are locked by uipc_lock.
136 *
137 * o For stream socketpairs, the two endpoints are created sharing the same
138 * independent lock. Sockets presented to PRU_CONNECT2 must already have
139 * matching locks.
140 *
141 * o Stream sockets created via socket() start life with their own
142 * independent lock.
143 *
144 * o Stream connections to a named endpoint are slightly more complicated.
145 * Sockets that have called listen() have their lock pointer mutated to
146 * the global uipc_lock. When establishing a connection, the connecting
147 * socket also has its lock mutated to uipc_lock, which matches the head
148 * (listening socket). We create a new socket for accept() to return, and
149 * that also shares the head's lock. Until the connection is completely
150 * done on both ends, all three sockets are locked by uipc_lock. Once the
151 * connection is complete, the association with the head's lock is broken.
152 * The connecting socket and the socket returned from accept() have their
153 * lock pointers mutated away from uipc_lock, and back to the connecting
154 * socket's original, independent lock. The head continues to be locked
155 * by uipc_lock.
156 *
157 * o If uipc_lock is determined to be a significant source of contention,
158 * it could easily be hashed out. It is difficult to simply make it an
159 * independent lock because of visibility / garbage collection issues:
160 * if a socket has been associated with a lock at any point, that lock
161 * must remain valid until the socket is no longer visible in the system.
162 * The lock must not be freed or otherwise destroyed until any sockets
163 * that had referenced it have also been destroyed.
164 */
165 const struct sockaddr_un sun_noname = {
166 .sun_len = sizeof(sun_noname),
167 .sun_family = AF_LOCAL,
168 };
169 ino_t unp_ino; /* prototype for fake inode numbers */
170
171 struct mbuf *unp_addsockcred(struct lwp *, struct mbuf *);
172 static kmutex_t *uipc_lock;
173
174 /*
175 * Initialize Unix protocols.
176 */
177 void
178 uipc_init(void)
179 {
180
181 uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
182 }
183
184 /*
185 * A connection succeeded: disassociate both endpoints from the head's
186 * lock, and make them share their own lock. There is a race here: for
187 * a very brief time one endpoint will be locked by a different lock
188 * than the other end. However, since the current thread holds the old
189 * lock (the listening socket's lock, the head) access can still only be
190 * made to one side of the connection.
191 */
192 static void
193 unp_setpeerlocks(struct socket *so, struct socket *so2)
194 {
195 struct unpcb *unp;
196 kmutex_t *lock;
197
198 KASSERT(solocked2(so, so2));
199
200 /*
201 * Bail out if either end of the socket is not yet fully
202 * connected or accepted. We only break the lock association
203 * with the head when the pair of sockets stand completely
204 * on their own.
205 */
206 if (so->so_head != NULL || so2->so_head != NULL)
207 return;
208
209 /*
210 * Drop references to old lock. A third reference (from the
211 * queue head) must be held as we still hold its lock. Bonus:
212 * we don't need to worry about garbage collecting the lock.
213 */
214 lock = so->so_lock;
215 KASSERT(lock == uipc_lock);
216 mutex_obj_free(lock);
217 mutex_obj_free(lock);
218
219 /*
220 * Grab stream lock from the initiator and share between the two
221 * endpoints. Issue memory barrier to ensure all modifications
222 * become globally visible before the lock change. so2 is
223 * assumed not to have a stream lock, because it was created
224 * purely for the server side to accept this connection and
225 * started out life using the domain-wide lock.
226 */
227 unp = sotounpcb(so);
228 KASSERT(unp->unp_streamlock != NULL);
229 KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
230 lock = unp->unp_streamlock;
231 unp->unp_streamlock = NULL;
232 mutex_obj_hold(lock);
233 membar_exit();
234 solockreset(so, lock);
235 solockreset(so2, lock);
236 }
237
238 /*
239 * Reset a socket's lock back to the domain-wide lock.
240 */
241 static void
242 unp_resetlock(struct socket *so)
243 {
244 kmutex_t *olock, *nlock;
245 struct unpcb *unp;
246
247 KASSERT(solocked(so));
248
249 olock = so->so_lock;
250 nlock = uipc_lock;
251 if (olock == nlock)
252 return;
253 unp = sotounpcb(so);
254 KASSERT(unp->unp_streamlock == NULL);
255 unp->unp_streamlock = olock;
256 mutex_obj_hold(nlock);
257 mutex_enter(nlock);
258 solockreset(so, nlock);
259 mutex_exit(olock);
260 }
261
262 static void
263 unp_free(struct unpcb *unp)
264 {
265
266 if (unp->unp_addr)
267 free(unp->unp_addr, M_SONAME);
268 if (unp->unp_streamlock != NULL)
269 mutex_obj_free(unp->unp_streamlock);
270 free(unp, M_PCB);
271 }
272
273 int
274 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp,
275 struct lwp *l)
276 {
277 struct socket *so2;
278 const struct sockaddr_un *sun;
279
280 so2 = unp->unp_conn->unp_socket;
281
282 KASSERT(solocked(so2));
283
284 if (unp->unp_addr)
285 sun = unp->unp_addr;
286 else
287 sun = &sun_noname;
288 if (unp->unp_conn->unp_flags & UNP_WANTCRED)
289 control = unp_addsockcred(l, control);
290 if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
291 control) == 0) {
292 so2->so_rcv.sb_overflowed++;
293 sounlock(so2);
294 unp_dispose(control);
295 m_freem(control);
296 m_freem(m);
297 solock(so2);
298 return (ENOBUFS);
299 } else {
300 sorwakeup(so2);
301 return (0);
302 }
303 }
304
305 void
306 unp_setaddr(struct socket *so, struct mbuf *nam, bool peeraddr)
307 {
308 const struct sockaddr_un *sun;
309 struct unpcb *unp;
310 bool ext;
311
312 unp = sotounpcb(so);
313 ext = false;
314
315 for (;;) {
316 sun = NULL;
317 if (peeraddr) {
318 if (unp->unp_conn && unp->unp_conn->unp_addr)
319 sun = unp->unp_conn->unp_addr;
320 } else {
321 if (unp->unp_addr)
322 sun = unp->unp_addr;
323 }
324 if (sun == NULL)
325 sun = &sun_noname;
326 nam->m_len = sun->sun_len;
327 if (nam->m_len > MLEN && !ext) {
328 sounlock(so);
329 MEXTMALLOC(nam, MAXPATHLEN * 2, M_WAITOK);
330 solock(so);
331 ext = true;
332 } else {
333 KASSERT(nam->m_len <= MAXPATHLEN * 2);
334 memcpy(mtod(nam, void *), sun, (size_t)nam->m_len);
335 break;
336 }
337 }
338 }
339
340 /*ARGSUSED*/
341 int
342 uipc_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
343 struct mbuf *control, struct lwp *l)
344 {
345 struct unpcb *unp = sotounpcb(so);
346 struct socket *so2;
347 struct proc *p;
348 u_int newhiwat;
349 int error = 0;
350
351 if (req == PRU_CONTROL)
352 return (EOPNOTSUPP);
353
354 #ifdef DIAGNOSTIC
355 if (req != PRU_SEND && req != PRU_SENDOOB && control)
356 panic("uipc_usrreq: unexpected control mbuf");
357 #endif
358 p = l ? l->l_proc : NULL;
359 if (req != PRU_ATTACH) {
360 if (unp == 0) {
361 error = EINVAL;
362 goto release;
363 }
364 KASSERT(solocked(so));
365 }
366
367 switch (req) {
368
369 case PRU_ATTACH:
370 if (unp != 0) {
371 error = EISCONN;
372 break;
373 }
374 error = unp_attach(so);
375 break;
376
377 case PRU_DETACH:
378 unp_detach(unp);
379 break;
380
381 case PRU_BIND:
382 KASSERT(l != NULL);
383 error = unp_bind(so, nam, l);
384 break;
385
386 case PRU_LISTEN:
387 /*
388 * If the socket can accept a connection, it must be
389 * locked by uipc_lock.
390 */
391 unp_resetlock(so);
392 if (unp->unp_vnode == 0)
393 error = EINVAL;
394 break;
395
396 case PRU_CONNECT:
397 KASSERT(l != NULL);
398 error = unp_connect(so, nam, l);
399 break;
400
401 case PRU_CONNECT2:
402 error = unp_connect2(so, (struct socket *)nam, PRU_CONNECT2);
403 break;
404
405 case PRU_DISCONNECT:
406 unp_disconnect(unp);
407 break;
408
409 case PRU_ACCEPT:
410 KASSERT(so->so_lock == uipc_lock);
411 /*
412 * Mark the initiating STREAM socket as connected *ONLY*
413 * after it's been accepted. This prevents a client from
414 * overrunning a server and receiving ECONNREFUSED.
415 */
416 if (unp->unp_conn == NULL)
417 break;
418 so2 = unp->unp_conn->unp_socket;
419 if (so2->so_state & SS_ISCONNECTING) {
420 KASSERT(solocked2(so, so->so_head));
421 KASSERT(solocked2(so2, so->so_head));
422 soisconnected(so2);
423 }
424 /*
425 * If the connection is fully established, break the
426 * association with uipc_lock and give the connected
427 * pair a seperate lock to share.
428 */
429 unp_setpeerlocks(so2, so);
430 /*
431 * Only now return peer's address, as we may need to
432 * block in order to allocate memory.
433 *
434 * XXX Minor race: connection can be broken while
435 * lock is dropped in unp_setaddr(). We will return
436 * error == 0 and sun_noname as the peer address.
437 */
438 unp_setaddr(so, nam, true);
439 break;
440
441 case PRU_SHUTDOWN:
442 socantsendmore(so);
443 unp_shutdown(unp);
444 break;
445
446 case PRU_RCVD:
447 switch (so->so_type) {
448
449 case SOCK_DGRAM:
450 panic("uipc 1");
451 /*NOTREACHED*/
452
453 case SOCK_STREAM:
454 #define rcv (&so->so_rcv)
455 #define snd (&so2->so_snd)
456 if (unp->unp_conn == 0)
457 break;
458 so2 = unp->unp_conn->unp_socket;
459 KASSERT(solocked2(so, so2));
460 /*
461 * Adjust backpressure on sender
462 * and wakeup any waiting to write.
463 */
464 snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
465 unp->unp_mbcnt = rcv->sb_mbcnt;
466 newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
467 (void)chgsbsize(so2->so_uidinfo,
468 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
469 unp->unp_cc = rcv->sb_cc;
470 sowwakeup(so2);
471 #undef snd
472 #undef rcv
473 break;
474
475 default:
476 panic("uipc 2");
477 }
478 break;
479
480 case PRU_SEND:
481 /*
482 * Note: unp_internalize() rejects any control message
483 * other than SCM_RIGHTS, and only allows one. This
484 * has the side-effect of preventing a caller from
485 * forging SCM_CREDS.
486 */
487 if (control) {
488 sounlock(so);
489 error = unp_internalize(&control);
490 solock(so);
491 if (error != 0) {
492 m_freem(control);
493 m_freem(m);
494 break;
495 }
496 }
497 switch (so->so_type) {
498
499 case SOCK_DGRAM: {
500 KASSERT(so->so_lock == uipc_lock);
501 if (nam) {
502 if ((so->so_state & SS_ISCONNECTED) != 0)
503 error = EISCONN;
504 else {
505 /*
506 * Note: once connected, the
507 * socket's lock must not be
508 * dropped until we have sent
509 * the message and disconnected.
510 * This is necessary to prevent
511 * intervening control ops, like
512 * another connection.
513 */
514 error = unp_connect(so, nam, l);
515 }
516 } else {
517 if ((so->so_state & SS_ISCONNECTED) == 0)
518 error = ENOTCONN;
519 }
520 if (error) {
521 sounlock(so);
522 unp_dispose(control);
523 m_freem(control);
524 m_freem(m);
525 solock(so);
526 break;
527 }
528 KASSERT(p != NULL);
529 error = unp_output(m, control, unp, l);
530 if (nam)
531 unp_disconnect(unp);
532 break;
533 }
534
535 case SOCK_STREAM:
536 #define rcv (&so2->so_rcv)
537 #define snd (&so->so_snd)
538 if (unp->unp_conn == NULL) {
539 error = ENOTCONN;
540 break;
541 }
542 so2 = unp->unp_conn->unp_socket;
543 KASSERT(solocked2(so, so2));
544 if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
545 /*
546 * Credentials are passed only once on
547 * SOCK_STREAM.
548 */
549 unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
550 control = unp_addsockcred(l, control);
551 }
552 /*
553 * Send to paired receive port, and then reduce
554 * send buffer hiwater marks to maintain backpressure.
555 * Wake up readers.
556 */
557 if (control) {
558 if (sbappendcontrol(rcv, m, control) != 0)
559 control = NULL;
560 } else
561 sbappend(rcv, m);
562 snd->sb_mbmax -=
563 rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
564 unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
565 newhiwat = snd->sb_hiwat -
566 (rcv->sb_cc - unp->unp_conn->unp_cc);
567 (void)chgsbsize(so->so_uidinfo,
568 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
569 unp->unp_conn->unp_cc = rcv->sb_cc;
570 sorwakeup(so2);
571 #undef snd
572 #undef rcv
573 if (control != NULL) {
574 sounlock(so);
575 unp_dispose(control);
576 m_freem(control);
577 solock(so);
578 }
579 break;
580
581 default:
582 panic("uipc 4");
583 }
584 break;
585
586 case PRU_ABORT:
587 (void)unp_drop(unp, ECONNABORTED);
588
589 KASSERT(so->so_head == NULL);
590 #ifdef DIAGNOSTIC
591 if (so->so_pcb == 0)
592 panic("uipc 5: drop killed pcb");
593 #endif
594 unp_detach(unp);
595 break;
596
597 case PRU_SENSE:
598 ((struct stat *) m)->st_blksize = so->so_snd.sb_hiwat;
599 if (so->so_type == SOCK_STREAM && unp->unp_conn != 0) {
600 so2 = unp->unp_conn->unp_socket;
601 KASSERT(solocked2(so, so2));
602 ((struct stat *) m)->st_blksize += so2->so_rcv.sb_cc;
603 }
604 ((struct stat *) m)->st_dev = NODEV;
605 if (unp->unp_ino == 0)
606 unp->unp_ino = unp_ino++;
607 ((struct stat *) m)->st_atimespec =
608 ((struct stat *) m)->st_mtimespec =
609 ((struct stat *) m)->st_ctimespec = unp->unp_ctime;
610 ((struct stat *) m)->st_ino = unp->unp_ino;
611 return (0);
612
613 case PRU_RCVOOB:
614 error = EOPNOTSUPP;
615 break;
616
617 case PRU_SENDOOB:
618 m_freem(control);
619 m_freem(m);
620 error = EOPNOTSUPP;
621 break;
622
623 case PRU_SOCKADDR:
624 unp_setaddr(so, nam, false);
625 break;
626
627 case PRU_PEERADDR:
628 unp_setaddr(so, nam, true);
629 break;
630
631 default:
632 panic("piusrreq");
633 }
634
635 release:
636 return (error);
637 }
638
639 /*
640 * Unix domain socket option processing.
641 */
642 int
643 uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
644 {
645 struct unpcb *unp = sotounpcb(so);
646 int optval = 0, error = 0;
647
648 KASSERT(solocked(so));
649
650 if (sopt->sopt_level != 0) {
651 error = ENOPROTOOPT;
652 } else switch (op) {
653
654 case PRCO_SETOPT:
655 switch (sopt->sopt_name) {
656 case LOCAL_CREDS:
657 case LOCAL_CONNWAIT:
658 error = sockopt_getint(sopt, &optval);
659 if (error)
660 break;
661 switch (sopt->sopt_name) {
662 #define OPTSET(bit) \
663 if (optval) \
664 unp->unp_flags |= (bit); \
665 else \
666 unp->unp_flags &= ~(bit);
667
668 case LOCAL_CREDS:
669 OPTSET(UNP_WANTCRED);
670 break;
671 case LOCAL_CONNWAIT:
672 OPTSET(UNP_CONNWAIT);
673 break;
674 }
675 break;
676 #undef OPTSET
677
678 default:
679 error = ENOPROTOOPT;
680 break;
681 }
682 break;
683
684 case PRCO_GETOPT:
685 sounlock(so);
686 switch (sopt->sopt_name) {
687 case LOCAL_PEEREID:
688 if (unp->unp_flags & UNP_EIDSVALID) {
689 error = sockopt_set(sopt,
690 &unp->unp_connid, sizeof(unp->unp_connid));
691 } else {
692 error = EINVAL;
693 }
694 break;
695 case LOCAL_CREDS:
696 #define OPTBIT(bit) (unp->unp_flags & (bit) ? 1 : 0)
697
698 optval = OPTBIT(UNP_WANTCRED);
699 error = sockopt_setint(sopt, optval);
700 break;
701 #undef OPTBIT
702
703 default:
704 error = ENOPROTOOPT;
705 break;
706 }
707 solock(so);
708 break;
709 }
710 return (error);
711 }
712
713 /*
714 * Both send and receive buffers are allocated PIPSIZ bytes of buffering
715 * for stream sockets, although the total for sender and receiver is
716 * actually only PIPSIZ.
717 * Datagram sockets really use the sendspace as the maximum datagram size,
718 * and don't really want to reserve the sendspace. Their recvspace should
719 * be large enough for at least one max-size datagram plus address.
720 */
721 #define PIPSIZ 4096
722 u_long unpst_sendspace = PIPSIZ;
723 u_long unpst_recvspace = PIPSIZ;
724 u_long unpdg_sendspace = 2*1024; /* really max datagram size */
725 u_long unpdg_recvspace = 4*1024;
726
727 u_int unp_rights; /* file descriptors in flight */
728
729 int
730 unp_attach(struct socket *so)
731 {
732 struct unpcb *unp;
733 int error;
734
735 switch (so->so_type) {
736 case SOCK_STREAM:
737 if (so->so_lock == NULL) {
738 /*
739 * XXX Assuming that no socket locks are held,
740 * as this call may sleep.
741 */
742 so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
743 solock(so);
744 }
745 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
746 error = soreserve(so, unpst_sendspace, unpst_recvspace);
747 if (error != 0)
748 return (error);
749 }
750 break;
751
752 case SOCK_DGRAM:
753 if (so->so_lock == NULL) {
754 mutex_obj_hold(uipc_lock);
755 so->so_lock = uipc_lock;
756 solock(so);
757 }
758 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
759 error = soreserve(so, unpdg_sendspace, unpdg_recvspace);
760 if (error != 0)
761 return (error);
762 }
763 break;
764
765 default:
766 panic("unp_attach");
767 }
768 KASSERT(solocked(so));
769 unp = malloc(sizeof(*unp), M_PCB, M_NOWAIT);
770 if (unp == NULL)
771 return (ENOBUFS);
772 memset((void *)unp, 0, sizeof(*unp));
773 unp->unp_socket = so;
774 so->so_pcb = unp;
775 nanotime(&unp->unp_ctime);
776 return (0);
777 }
778
779 void
780 unp_detach(struct unpcb *unp)
781 {
782 struct socket *so;
783 vnode_t *vp;
784
785 so = unp->unp_socket;
786
787 retry:
788 if ((vp = unp->unp_vnode) != NULL) {
789 sounlock(so);
790 /* Acquire v_interlock to protect against unp_connect(). */
791 /* XXXAD racy */
792 mutex_enter(&vp->v_interlock);
793 vp->v_socket = NULL;
794 vrelel(vp, 0);
795 solock(so);
796 unp->unp_vnode = NULL;
797 }
798 if (unp->unp_conn)
799 unp_disconnect(unp);
800 while (unp->unp_refs) {
801 KASSERT(solocked2(so, unp->unp_refs->unp_socket));
802 if (unp_drop(unp->unp_refs, ECONNRESET)) {
803 solock(so);
804 goto retry;
805 }
806 }
807 soisdisconnected(so);
808 so->so_pcb = NULL;
809 if (unp_rights) {
810 /*
811 * Normally the receive buffer is flushed later,
812 * in sofree, but if our receive buffer holds references
813 * to descriptors that are now garbage, we will dispose
814 * of those descriptor references after the garbage collector
815 * gets them (resulting in a "panic: closef: count < 0").
816 */
817 sorflush(so);
818 unp_free(unp);
819 sounlock(so);
820 unp_gc();
821 solock(so);
822 } else
823 unp_free(unp);
824 }
825
826 int
827 unp_bind(struct socket *so, struct mbuf *nam, struct lwp *l)
828 {
829 struct sockaddr_un *sun;
830 struct unpcb *unp;
831 vnode_t *vp;
832 struct vattr vattr;
833 size_t addrlen;
834 int error;
835 struct nameidata nd;
836 proc_t *p;
837
838 unp = sotounpcb(so);
839 if (unp->unp_vnode != NULL)
840 return (EINVAL);
841 if ((unp->unp_flags & UNP_BUSY) != 0) {
842 /*
843 * EALREADY may not be strictly accurate, but since this
844 * is a major application error it's hardly a big deal.
845 */
846 return (EALREADY);
847 }
848 unp->unp_flags |= UNP_BUSY;
849 sounlock(so);
850
851 /*
852 * Allocate the new sockaddr. We have to allocate one
853 * extra byte so that we can ensure that the pathname
854 * is nul-terminated.
855 */
856 p = l->l_proc;
857 addrlen = nam->m_len + 1;
858 sun = malloc(addrlen, M_SONAME, M_WAITOK);
859 m_copydata(nam, 0, nam->m_len, (void *)sun);
860 *(((char *)sun) + nam->m_len) = '\0';
861
862 NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, UIO_SYSSPACE,
863 sun->sun_path);
864
865 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
866 if ((error = namei(&nd)) != 0)
867 goto bad;
868 vp = nd.ni_vp;
869 if (vp != NULL) {
870 VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
871 if (nd.ni_dvp == vp)
872 vrele(nd.ni_dvp);
873 else
874 vput(nd.ni_dvp);
875 vrele(vp);
876 error = EADDRINUSE;
877 goto bad;
878 }
879 VATTR_NULL(&vattr);
880 vattr.va_type = VSOCK;
881 vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
882 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
883 if (error)
884 goto bad;
885 vp = nd.ni_vp;
886 solock(so);
887 vp->v_socket = unp->unp_socket;
888 unp->unp_vnode = vp;
889 unp->unp_addrlen = addrlen;
890 unp->unp_addr = sun;
891 unp->unp_connid.unp_pid = p->p_pid;
892 unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
893 unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
894 unp->unp_flags |= UNP_EIDSBIND;
895 VOP_UNLOCK(vp, 0);
896 unp->unp_flags &= ~UNP_BUSY;
897 return (0);
898
899 bad:
900 free(sun, M_SONAME);
901 solock(so);
902 unp->unp_flags &= ~UNP_BUSY;
903 return (error);
904 }
905
906 int
907 unp_connect(struct socket *so, struct mbuf *nam, struct lwp *l)
908 {
909 struct sockaddr_un *sun;
910 vnode_t *vp;
911 struct socket *so2, *so3;
912 struct unpcb *unp, *unp2, *unp3;
913 size_t addrlen;
914 int error;
915 struct nameidata nd;
916
917 unp = sotounpcb(so);
918 if ((unp->unp_flags & UNP_BUSY) != 0) {
919 /*
920 * EALREADY may not be strictly accurate, but since this
921 * is a major application error it's hardly a big deal.
922 */
923 return (EALREADY);
924 }
925 unp->unp_flags |= UNP_BUSY;
926 sounlock(so);
927
928 /*
929 * Allocate a temporary sockaddr. We have to allocate one extra
930 * byte so that we can ensure that the pathname is nul-terminated.
931 * When we establish the connection, we copy the other PCB's
932 * sockaddr to our own.
933 */
934 addrlen = nam->m_len + 1;
935 sun = malloc(addrlen, M_SONAME, M_WAITOK);
936 m_copydata(nam, 0, nam->m_len, (void *)sun);
937 *(((char *)sun) + nam->m_len) = '\0';
938
939 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, UIO_SYSSPACE,
940 sun->sun_path);
941
942 if ((error = namei(&nd)) != 0)
943 goto bad2;
944 vp = nd.ni_vp;
945 if (vp->v_type != VSOCK) {
946 error = ENOTSOCK;
947 goto bad;
948 }
949 if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
950 goto bad;
951 /* Acquire v_interlock to protect against unp_detach(). */
952 mutex_enter(&vp->v_interlock);
953 so2 = vp->v_socket;
954 if (so2 == NULL) {
955 mutex_exit(&vp->v_interlock);
956 error = ECONNREFUSED;
957 goto bad;
958 }
959 if (so->so_type != so2->so_type) {
960 mutex_exit(&vp->v_interlock);
961 error = EPROTOTYPE;
962 goto bad;
963 }
964 solock(so);
965 unp_resetlock(so);
966 mutex_exit(&vp->v_interlock);
967 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
968 /*
969 * This may seem somewhat fragile but is OK: if we can
970 * see SO_ACCEPTCONN set on the endpoint, then it must
971 * be locked by the domain-wide uipc_lock.
972 */
973 KASSERT((so->so_options & SO_ACCEPTCONN) == 0 ||
974 so2->so_lock == uipc_lock);
975 if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
976 (so3 = sonewconn(so2, 0)) == 0) {
977 error = ECONNREFUSED;
978 sounlock(so);
979 goto bad;
980 }
981 unp2 = sotounpcb(so2);
982 unp3 = sotounpcb(so3);
983 if (unp2->unp_addr) {
984 unp3->unp_addr = malloc(unp2->unp_addrlen,
985 M_SONAME, M_WAITOK);
986 memcpy(unp3->unp_addr, unp2->unp_addr,
987 unp2->unp_addrlen);
988 unp3->unp_addrlen = unp2->unp_addrlen;
989 }
990 unp3->unp_flags = unp2->unp_flags;
991 unp3->unp_connid.unp_pid = l->l_proc->p_pid;
992 unp3->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
993 unp3->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
994 unp3->unp_flags |= UNP_EIDSVALID;
995 if (unp2->unp_flags & UNP_EIDSBIND) {
996 unp->unp_connid = unp2->unp_connid;
997 unp->unp_flags |= UNP_EIDSVALID;
998 }
999 so2 = so3;
1000 }
1001 error = unp_connect2(so, so2, PRU_CONNECT);
1002 sounlock(so);
1003 bad:
1004 vput(vp);
1005 bad2:
1006 free(sun, M_SONAME);
1007 solock(so);
1008 unp->unp_flags &= ~UNP_BUSY;
1009 return (error);
1010 }
1011
1012 int
1013 unp_connect2(struct socket *so, struct socket *so2, int req)
1014 {
1015 struct unpcb *unp = sotounpcb(so);
1016 struct unpcb *unp2;
1017
1018 if (so2->so_type != so->so_type)
1019 return (EPROTOTYPE);
1020
1021 /*
1022 * All three sockets involved must be locked by same lock:
1023 *
1024 * local endpoint (so)
1025 * remote endpoint (so2)
1026 * queue head (so->so_head, only if PR_CONNREQUIRED)
1027 */
1028 KASSERT(solocked2(so, so2));
1029 if (so->so_head != NULL) {
1030 KASSERT(so->so_lock == uipc_lock);
1031 KASSERT(solocked2(so, so->so_head));
1032 }
1033
1034 unp2 = sotounpcb(so2);
1035 unp->unp_conn = unp2;
1036 switch (so->so_type) {
1037
1038 case SOCK_DGRAM:
1039 unp->unp_nextref = unp2->unp_refs;
1040 unp2->unp_refs = unp;
1041 soisconnected(so);
1042 break;
1043
1044 case SOCK_STREAM:
1045 unp2->unp_conn = unp;
1046 if (req == PRU_CONNECT &&
1047 ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1048 soisconnecting(so);
1049 else
1050 soisconnected(so);
1051 soisconnected(so2);
1052 /*
1053 * If the connection is fully established, break the
1054 * association with uipc_lock and give the connected
1055 * pair a seperate lock to share. For CONNECT2, we
1056 * require that the locks already match (the sockets
1057 * are created that way).
1058 */
1059 if (req == PRU_CONNECT)
1060 unp_setpeerlocks(so, so2);
1061 break;
1062
1063 default:
1064 panic("unp_connect2");
1065 }
1066 return (0);
1067 }
1068
1069 void
1070 unp_disconnect(struct unpcb *unp)
1071 {
1072 struct unpcb *unp2 = unp->unp_conn;
1073 struct socket *so;
1074
1075 if (unp2 == 0)
1076 return;
1077 unp->unp_conn = 0;
1078 so = unp->unp_socket;
1079 switch (so->so_type) {
1080 case SOCK_DGRAM:
1081 if (unp2->unp_refs == unp)
1082 unp2->unp_refs = unp->unp_nextref;
1083 else {
1084 unp2 = unp2->unp_refs;
1085 for (;;) {
1086 KASSERT(solocked2(so, unp2->unp_socket));
1087 if (unp2 == 0)
1088 panic("unp_disconnect");
1089 if (unp2->unp_nextref == unp)
1090 break;
1091 unp2 = unp2->unp_nextref;
1092 }
1093 unp2->unp_nextref = unp->unp_nextref;
1094 }
1095 unp->unp_nextref = 0;
1096 so->so_state &= ~SS_ISCONNECTED;
1097 break;
1098
1099 case SOCK_STREAM:
1100 KASSERT(solocked2(so, unp2->unp_socket));
1101 soisdisconnected(so);
1102 unp2->unp_conn = 0;
1103 soisdisconnected(unp2->unp_socket);
1104 break;
1105 }
1106 }
1107
1108 #ifdef notdef
1109 unp_abort(struct unpcb *unp)
1110 {
1111 unp_detach(unp);
1112 }
1113 #endif
1114
1115 void
1116 unp_shutdown(struct unpcb *unp)
1117 {
1118 struct socket *so;
1119
1120 if (unp->unp_socket->so_type == SOCK_STREAM && unp->unp_conn &&
1121 (so = unp->unp_conn->unp_socket))
1122 socantrcvmore(so);
1123 }
1124
1125 bool
1126 unp_drop(struct unpcb *unp, int errno)
1127 {
1128 struct socket *so = unp->unp_socket;
1129
1130 KASSERT(solocked(so));
1131
1132 so->so_error = errno;
1133 unp_disconnect(unp);
1134 if (so->so_head) {
1135 so->so_pcb = NULL;
1136 /* sofree() drops the socket lock */
1137 sofree(so);
1138 unp_free(unp);
1139 return true;
1140 }
1141 return false;
1142 }
1143
1144 #ifdef notdef
1145 unp_drain(void)
1146 {
1147
1148 }
1149 #endif
1150
1151 int
1152 unp_externalize(struct mbuf *rights, struct lwp *l)
1153 {
1154 struct cmsghdr *cm = mtod(rights, struct cmsghdr *);
1155 struct proc *p = l->l_proc;
1156 int i, *fdp;
1157 file_t **rp;
1158 file_t *fp;
1159 int nfds, error = 0;
1160
1161 nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
1162 sizeof(file_t *);
1163 rp = (file_t **)CMSG_DATA(cm);
1164
1165 fdp = malloc(nfds * sizeof(int), M_TEMP, M_WAITOK);
1166 rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
1167
1168 /* Make sure the recipient should be able to see the descriptors.. */
1169 if (p->p_cwdi->cwdi_rdir != NULL) {
1170 rp = (file_t **)CMSG_DATA(cm);
1171 for (i = 0; i < nfds; i++) {
1172 fp = *rp++;
1173 /*
1174 * If we are in a chroot'ed directory, and
1175 * someone wants to pass us a directory, make
1176 * sure it's inside the subtree we're allowed
1177 * to access.
1178 */
1179 if (fp->f_type == DTYPE_VNODE) {
1180 vnode_t *vp = (vnode_t *)fp->f_data;
1181 if ((vp->v_type == VDIR) &&
1182 !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
1183 error = EPERM;
1184 break;
1185 }
1186 }
1187 }
1188 }
1189
1190 restart:
1191 rp = (file_t **)CMSG_DATA(cm);
1192 if (error != 0) {
1193 for (i = 0; i < nfds; i++) {
1194 fp = *rp;
1195 /*
1196 * zero the pointer before calling unp_discard,
1197 * since it may end up in unp_gc()..
1198 */
1199 *rp++ = 0;
1200 unp_discard(fp);
1201 }
1202 goto out;
1203 }
1204
1205 /*
1206 * First loop -- allocate file descriptor table slots for the
1207 * new descriptors.
1208 */
1209 for (i = 0; i < nfds; i++) {
1210 fp = *rp++;
1211 if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
1212 /*
1213 * Back out what we've done so far.
1214 */
1215 for (--i; i >= 0; i--) {
1216 fd_abort(p, NULL, fdp[i]);
1217 }
1218 if (error == ENOSPC) {
1219 fd_tryexpand(p);
1220 error = 0;
1221 } else {
1222 /*
1223 * This is the error that has historically
1224 * been returned, and some callers may
1225 * expect it.
1226 */
1227 error = EMSGSIZE;
1228 }
1229 goto restart;
1230 }
1231 }
1232
1233 /*
1234 * Now that adding them has succeeded, update all of the
1235 * descriptor passing state.
1236 */
1237 rp = (file_t **)CMSG_DATA(cm);
1238 for (i = 0; i < nfds; i++) {
1239 fp = *rp++;
1240 atomic_dec_uint(&unp_rights);
1241 fd_affix(p, fp, fdp[i]);
1242 mutex_enter(&fp->f_lock);
1243 fp->f_msgcount--;
1244 mutex_exit(&fp->f_lock);
1245 /*
1246 * Note that fd_affix() adds a reference to the file.
1247 * The file may already have been closed by another
1248 * LWP in the process, so we must drop the reference
1249 * added by unp_internalize() with closef().
1250 */
1251 closef(fp);
1252 }
1253
1254 /*
1255 * Copy temporary array to message and adjust length, in case of
1256 * transition from large file_t pointers to ints.
1257 */
1258 memcpy(CMSG_DATA(cm), fdp, nfds * sizeof(int));
1259 cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
1260 rights->m_len = CMSG_SPACE(nfds * sizeof(int));
1261 out:
1262 rw_exit(&p->p_cwdi->cwdi_lock);
1263 free(fdp, M_TEMP);
1264 return (error);
1265 }
1266
1267 int
1268 unp_internalize(struct mbuf **controlp)
1269 {
1270 struct filedesc *fdescp = curlwp->l_fd;
1271 struct mbuf *control = *controlp;
1272 struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
1273 file_t **rp, **files;
1274 file_t *fp;
1275 int i, fd, *fdp;
1276 int nfds, error;
1277
1278 error = 0;
1279 newcm = NULL;
1280
1281 /* Sanity check the control message header. */
1282 if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
1283 cm->cmsg_len > control->m_len ||
1284 cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
1285 return (EINVAL);
1286
1287 /*
1288 * Verify that the file descriptors are valid, and acquire
1289 * a reference to each.
1290 */
1291 nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
1292 fdp = (int *)CMSG_DATA(cm);
1293 for (i = 0; i < nfds; i++) {
1294 fd = *fdp++;
1295 if ((fp = fd_getfile(fd)) == NULL) {
1296 nfds = i;
1297 error = EBADF;
1298 goto out;
1299 }
1300 }
1301
1302 /* Allocate new space and copy header into it. */
1303 newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
1304 if (newcm == NULL) {
1305 error = E2BIG;
1306 goto out;
1307 }
1308 memcpy(newcm, cm, sizeof(struct cmsghdr));
1309 files = (file_t **)CMSG_DATA(newcm);
1310
1311 /*
1312 * Transform the file descriptors into file_t pointers, in
1313 * reverse order so that if pointers are bigger than ints, the
1314 * int won't get until we're done. No need to lock, as we have
1315 * already validated the descriptors with fd_getfile().
1316 */
1317 fdp = (int *)CMSG_DATA(cm) + nfds;
1318 rp = files + nfds;
1319 for (i = 0; i < nfds; i++) {
1320 fp = fdescp->fd_ofiles[*--fdp]->ff_file;
1321 KASSERT(fp != NULL);
1322 mutex_enter(&fp->f_lock);
1323 *--rp = fp;
1324 fp->f_count++;
1325 fp->f_msgcount++;
1326 mutex_exit(&fp->f_lock);
1327 atomic_inc_uint(&unp_rights);
1328 }
1329
1330 out:
1331 /* Release descriptor references. */
1332 fdp = (int *)CMSG_DATA(cm);
1333 for (i = 0; i < nfds; i++) {
1334 fd_putfile(*fdp++);
1335 }
1336
1337 if (error == 0) {
1338 if (control->m_flags & M_EXT) {
1339 m_freem(control);
1340 *controlp = control = m_get(M_WAIT, MT_CONTROL);
1341 }
1342 MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
1343 M_MBUF, NULL, NULL);
1344 cm = newcm;
1345 /*
1346 * Adjust message & mbuf to note amount of space
1347 * actually used.
1348 */
1349 cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
1350 control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
1351 }
1352
1353 return error;
1354 }
1355
1356 struct mbuf *
1357 unp_addsockcred(struct lwp *l, struct mbuf *control)
1358 {
1359 struct cmsghdr *cmp;
1360 struct sockcred *sc;
1361 struct mbuf *m, *n;
1362 int len, space, i;
1363
1364 len = CMSG_LEN(SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)));
1365 space = CMSG_SPACE(SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)));
1366
1367 m = m_get(M_WAIT, MT_CONTROL);
1368 if (space > MLEN) {
1369 if (space > MCLBYTES)
1370 MEXTMALLOC(m, space, M_WAITOK);
1371 else
1372 m_clget(m, M_WAIT);
1373 if ((m->m_flags & M_EXT) == 0) {
1374 m_free(m);
1375 return (control);
1376 }
1377 }
1378
1379 m->m_len = space;
1380 m->m_next = NULL;
1381 cmp = mtod(m, struct cmsghdr *);
1382 sc = (struct sockcred *)CMSG_DATA(cmp);
1383 cmp->cmsg_len = len;
1384 cmp->cmsg_level = SOL_SOCKET;
1385 cmp->cmsg_type = SCM_CREDS;
1386 sc->sc_uid = kauth_cred_getuid(l->l_cred);
1387 sc->sc_euid = kauth_cred_geteuid(l->l_cred);
1388 sc->sc_gid = kauth_cred_getgid(l->l_cred);
1389 sc->sc_egid = kauth_cred_getegid(l->l_cred);
1390 sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
1391 for (i = 0; i < sc->sc_ngroups; i++)
1392 sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
1393
1394 /*
1395 * If a control message already exists, append us to the end.
1396 */
1397 if (control != NULL) {
1398 for (n = control; n->m_next != NULL; n = n->m_next)
1399 ;
1400 n->m_next = m;
1401 } else
1402 control = m;
1403
1404 return (control);
1405 }
1406
1407 int unp_defer, unp_gcing;
1408 extern struct domain unixdomain;
1409
1410 /*
1411 * Comment added long after the fact explaining what's going on here.
1412 * Do a mark-sweep GC of file descriptors on the system, to free up
1413 * any which are caught in flight to an about-to-be-closed socket.
1414 *
1415 * Traditional mark-sweep gc's start at the "root", and mark
1416 * everything reachable from the root (which, in our case would be the
1417 * process table). The mark bits are cleared during the sweep.
1418 *
1419 * XXX For some inexplicable reason (perhaps because the file
1420 * descriptor tables used to live in the u area which could be swapped
1421 * out and thus hard to reach), we do multiple scans over the set of
1422 * descriptors, using use *two* mark bits per object (DEFER and MARK).
1423 * Whenever we find a descriptor which references other descriptors,
1424 * the ones it references are marked with both bits, and we iterate
1425 * over the whole file table until there are no more DEFER bits set.
1426 * We also make an extra pass *before* the GC to clear the mark bits,
1427 * which could have been cleared at almost no cost during the previous
1428 * sweep.
1429 */
1430 void
1431 unp_gc(void)
1432 {
1433 file_t *fp, *nextfp;
1434 struct socket *so, *so1;
1435 file_t **extra_ref, **fpp;
1436 int nunref, nslots, i;
1437
1438 if (atomic_swap_uint(&unp_gcing, 1) == 1)
1439 return;
1440
1441 restart:
1442 nslots = nfiles * 2;
1443 extra_ref = kmem_alloc(nslots * sizeof(file_t *), KM_SLEEP);
1444
1445 mutex_enter(&filelist_lock);
1446 unp_defer = 0;
1447
1448 /* Clear mark bits */
1449 LIST_FOREACH(fp, &filehead, f_list) {
1450 atomic_and_uint(&fp->f_flag, ~(FMARK|FDEFER));
1451 }
1452
1453 /*
1454 * Iterate over the set of descriptors, marking ones believed
1455 * (based on refcount) to be referenced from a process, and
1456 * marking for rescan descriptors which are queued on a socket.
1457 */
1458 do {
1459 LIST_FOREACH(fp, &filehead, f_list) {
1460 mutex_enter(&fp->f_lock);
1461 if (fp->f_flag & FDEFER) {
1462 atomic_and_uint(&fp->f_flag, ~FDEFER);
1463 unp_defer--;
1464 KASSERT(fp->f_count != 0);
1465 } else {
1466 if (fp->f_count == 0 ||
1467 (fp->f_flag & FMARK) ||
1468 fp->f_count == fp->f_msgcount) {
1469 mutex_exit(&fp->f_lock);
1470 continue;
1471 }
1472 }
1473 atomic_or_uint(&fp->f_flag, FMARK);
1474
1475 if (fp->f_type != DTYPE_SOCKET ||
1476 (so = fp->f_data) == NULL ||
1477 so->so_proto->pr_domain != &unixdomain ||
1478 (so->so_proto->pr_flags&PR_RIGHTS) == 0) {
1479 mutex_exit(&fp->f_lock);
1480 continue;
1481 }
1482 #ifdef notdef
1483 if (so->so_rcv.sb_flags & SB_LOCK) {
1484 mutex_exit(&fp->f_lock);
1485 mutex_exit(&filelist_lock);
1486 kmem_free(extra_ref, nslots * sizeof(file_t *));
1487 /*
1488 * This is problematical; it's not clear
1489 * we need to wait for the sockbuf to be
1490 * unlocked (on a uniprocessor, at least),
1491 * and it's also not clear what to do
1492 * if sbwait returns an error due to receipt
1493 * of a signal. If sbwait does return
1494 * an error, we'll go into an infinite
1495 * loop. Delete all of this for now.
1496 */
1497 (void) sbwait(&so->so_rcv);
1498 goto restart;
1499 }
1500 #endif
1501 mutex_exit(&fp->f_lock);
1502
1503 /*
1504 * XXX Locking a socket with filelist_lock held
1505 * is ugly. filelist_lock can be taken by the
1506 * pagedaemon when reclaiming items from file_cache.
1507 * Socket activity could delay the pagedaemon.
1508 */
1509 solock(so);
1510 unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
1511 /*
1512 * Mark descriptors referenced from sockets queued
1513 * on the accept queue as well.
1514 */
1515 if (so->so_options & SO_ACCEPTCONN) {
1516 TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
1517 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1518 }
1519 TAILQ_FOREACH(so1, &so->so_q, so_qe) {
1520 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1521 }
1522 }
1523 sounlock(so);
1524 }
1525 } while (unp_defer);
1526
1527 /*
1528 * Sweep pass. Find unmarked descriptors, and free them.
1529 *
1530 * We grab an extra reference to each of the file table entries
1531 * that are not otherwise accessible and then free the rights
1532 * that are stored in messages on them.
1533 *
1534 * The bug in the original code is a little tricky, so I'll describe
1535 * what's wrong with it here.
1536 *
1537 * It is incorrect to simply unp_discard each entry for f_msgcount
1538 * times -- consider the case of sockets A and B that contain
1539 * references to each other. On a last close of some other socket,
1540 * we trigger a gc since the number of outstanding rights (unp_rights)
1541 * is non-zero. If during the sweep phase the gc code un_discards,
1542 * we end up doing a (full) closef on the descriptor. A closef on A
1543 * results in the following chain. Closef calls soo_close, which
1544 * calls soclose. Soclose calls first (through the switch
1545 * uipc_usrreq) unp_detach, which re-invokes unp_gc. Unp_gc simply
1546 * returns because the previous instance had set unp_gcing, and
1547 * we return all the way back to soclose, which marks the socket
1548 * with SS_NOFDREF, and then calls sofree. Sofree calls sorflush
1549 * to free up the rights that are queued in messages on the socket A,
1550 * i.e., the reference on B. The sorflush calls via the dom_dispose
1551 * switch unp_dispose, which unp_scans with unp_discard. This second
1552 * instance of unp_discard just calls closef on B.
1553 *
1554 * Well, a similar chain occurs on B, resulting in a sorflush on B,
1555 * which results in another closef on A. Unfortunately, A is already
1556 * being closed, and the descriptor has already been marked with
1557 * SS_NOFDREF, and soclose panics at this point.
1558 *
1559 * Here, we first take an extra reference to each inaccessible
1560 * descriptor. Then, if the inaccessible descriptor is a
1561 * socket, we call sorflush in case it is a Unix domain
1562 * socket. After we destroy all the rights carried in
1563 * messages, we do a last closef to get rid of our extra
1564 * reference. This is the last close, and the unp_detach etc
1565 * will shut down the socket.
1566 *
1567 * 91/09/19, bsy (at) cs.cmu.edu
1568 */
1569 if (nslots < nfiles) {
1570 mutex_exit(&filelist_lock);
1571 kmem_free(extra_ref, nslots * sizeof(file_t *));
1572 goto restart;
1573 }
1574 for (nunref = 0, fp = LIST_FIRST(&filehead), fpp = extra_ref; fp != 0;
1575 fp = nextfp) {
1576 nextfp = LIST_NEXT(fp, f_list);
1577 mutex_enter(&fp->f_lock);
1578 if (fp->f_count != 0 &&
1579 fp->f_count == fp->f_msgcount && !(fp->f_flag & FMARK)) {
1580 *fpp++ = fp;
1581 nunref++;
1582 fp->f_count++;
1583 }
1584 mutex_exit(&fp->f_lock);
1585 }
1586 mutex_exit(&filelist_lock);
1587
1588 for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) {
1589 fp = *fpp;
1590 if (fp->f_type == DTYPE_SOCKET) {
1591 so = fp->f_data;
1592 solock(so);
1593 sorflush(fp->f_data);
1594 sounlock(so);
1595 }
1596 }
1597 for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) {
1598 closef(*fpp);
1599 }
1600 kmem_free(extra_ref, nslots * sizeof(file_t *));
1601 atomic_swap_uint(&unp_gcing, 0);
1602 }
1603
1604 void
1605 unp_dispose(struct mbuf *m)
1606 {
1607
1608 if (m)
1609 unp_scan(m, unp_discard, 1);
1610 }
1611
1612 void
1613 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
1614 {
1615 struct mbuf *m;
1616 file_t **rp;
1617 struct cmsghdr *cm;
1618 int i;
1619 int qfds;
1620
1621 while (m0) {
1622 for (m = m0; m; m = m->m_next) {
1623 if (m->m_type == MT_CONTROL &&
1624 m->m_len >= sizeof(*cm)) {
1625 cm = mtod(m, struct cmsghdr *);
1626 if (cm->cmsg_level != SOL_SOCKET ||
1627 cm->cmsg_type != SCM_RIGHTS)
1628 continue;
1629 qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
1630 / sizeof(file_t *);
1631 rp = (file_t **)CMSG_DATA(cm);
1632 for (i = 0; i < qfds; i++) {
1633 file_t *fp = *rp;
1634 if (discard)
1635 *rp = 0;
1636 (*op)(fp);
1637 rp++;
1638 }
1639 break; /* XXX, but saves time */
1640 }
1641 }
1642 m0 = m0->m_nextpkt;
1643 }
1644 }
1645
1646 void
1647 unp_mark(file_t *fp)
1648 {
1649
1650 if (fp == NULL)
1651 return;
1652
1653 /* If we're already deferred, don't screw up the defer count */
1654 mutex_enter(&fp->f_lock);
1655 if (fp->f_flag & (FMARK | FDEFER)) {
1656 mutex_exit(&fp->f_lock);
1657 return;
1658 }
1659
1660 /*
1661 * Minimize the number of deferrals... Sockets are the only
1662 * type of descriptor which can hold references to another
1663 * descriptor, so just mark other descriptors, and defer
1664 * unmarked sockets for the next pass.
1665 */
1666 if (fp->f_type == DTYPE_SOCKET) {
1667 unp_defer++;
1668 KASSERT(fp->f_count != 0);
1669 atomic_or_uint(&fp->f_flag, FDEFER);
1670 } else {
1671 atomic_or_uint(&fp->f_flag, FMARK);
1672 }
1673 mutex_exit(&fp->f_lock);
1674 return;
1675 }
1676
1677 void
1678 unp_discard(file_t *fp)
1679 {
1680
1681 if (fp == NULL)
1682 return;
1683
1684 mutex_enter(&fp->f_lock);
1685 KASSERT(fp->f_count > 0);
1686 fp->f_msgcount--;
1687 mutex_exit(&fp->f_lock);
1688 atomic_dec_uint(&unp_rights);
1689 (void)closef(fp);
1690 }
1691