Home | History | Annotate | Line # | Download | only in kern
uipc_usrreq.c revision 1.121
      1 /*	$NetBSD: uipc_usrreq.c,v 1.121 2009/03/11 06:05:29 mrg Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 2000, 2004, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
     62  */
     63 
     64 /*
     65  * Copyright (c) 1997 Christopher G. Demetriou.  All rights reserved.
     66  *
     67  * Redistribution and use in source and binary forms, with or without
     68  * modification, are permitted provided that the following conditions
     69  * are met:
     70  * 1. Redistributions of source code must retain the above copyright
     71  *    notice, this list of conditions and the following disclaimer.
     72  * 2. Redistributions in binary form must reproduce the above copyright
     73  *    notice, this list of conditions and the following disclaimer in the
     74  *    documentation and/or other materials provided with the distribution.
     75  * 3. All advertising materials mentioning features or use of this software
     76  *    must display the following acknowledgement:
     77  *	This product includes software developed by the University of
     78  *	California, Berkeley and its contributors.
     79  * 4. Neither the name of the University nor the names of its contributors
     80  *    may be used to endorse or promote products derived from this software
     81  *    without specific prior written permission.
     82  *
     83  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     84  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     85  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     86  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     87  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     88  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     89  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     90  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     91  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     92  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     93  * SUCH DAMAGE.
     94  *
     95  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
     96  */
     97 
     98 #include <sys/cdefs.h>
     99 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.121 2009/03/11 06:05:29 mrg Exp $");
    100 
    101 #include <sys/param.h>
    102 #include <sys/systm.h>
    103 #include <sys/proc.h>
    104 #include <sys/filedesc.h>
    105 #include <sys/domain.h>
    106 #include <sys/protosw.h>
    107 #include <sys/socket.h>
    108 #include <sys/socketvar.h>
    109 #include <sys/unpcb.h>
    110 #include <sys/un.h>
    111 #include <sys/namei.h>
    112 #include <sys/vnode.h>
    113 #include <sys/file.h>
    114 #include <sys/stat.h>
    115 #include <sys/mbuf.h>
    116 #include <sys/kauth.h>
    117 #include <sys/kmem.h>
    118 #include <sys/atomic.h>
    119 #include <sys/uidinfo.h>
    120 #include <sys/kernel.h>
    121 #include <sys/kthread.h>
    122 
    123 /*
    124  * Unix communications domain.
    125  *
    126  * TODO:
    127  *	SEQPACKET, RDM
    128  *	rethink name space problems
    129  *	need a proper out-of-band
    130  *
    131  * Notes on locking:
    132  *
    133  * The generic rules noted in uipc_socket2.c apply.  In addition:
    134  *
    135  * o We have a global lock, uipc_lock.
    136  *
    137  * o All datagram sockets are locked by uipc_lock.
    138  *
    139  * o For stream socketpairs, the two endpoints are created sharing the same
    140  *   independent lock.  Sockets presented to PRU_CONNECT2 must already have
    141  *   matching locks.
    142  *
    143  * o Stream sockets created via socket() start life with their own
    144  *   independent lock.
    145  *
    146  * o Stream connections to a named endpoint are slightly more complicated.
    147  *   Sockets that have called listen() have their lock pointer mutated to
    148  *   the global uipc_lock.  When establishing a connection, the connecting
    149  *   socket also has its lock mutated to uipc_lock, which matches the head
    150  *   (listening socket).  We create a new socket for accept() to return, and
    151  *   that also shares the head's lock.  Until the connection is completely
    152  *   done on both ends, all three sockets are locked by uipc_lock.  Once the
    153  *   connection is complete, the association with the head's lock is broken.
    154  *   The connecting socket and the socket returned from accept() have their
    155  *   lock pointers mutated away from uipc_lock, and back to the connecting
    156  *   socket's original, independent lock.  The head continues to be locked
    157  *   by uipc_lock.
    158  *
    159  * o If uipc_lock is determined to be a significant source of contention,
    160  *   it could easily be hashed out.  It is difficult to simply make it an
    161  *   independent lock because of visibility / garbage collection issues:
    162  *   if a socket has been associated with a lock at any point, that lock
    163  *   must remain valid until the socket is no longer visible in the system.
    164  *   The lock must not be freed or otherwise destroyed until any sockets
    165  *   that had referenced it have also been destroyed.
    166  */
    167 const struct sockaddr_un sun_noname = {
    168 	.sun_len = sizeof(sun_noname),
    169 	.sun_family = AF_LOCAL,
    170 };
    171 ino_t	unp_ino;			/* prototype for fake inode numbers */
    172 
    173 struct mbuf *unp_addsockcred(struct lwp *, struct mbuf *);
    174 static void unp_mark(file_t *);
    175 static void unp_scan(struct mbuf *, void (*)(file_t *), int);
    176 static void unp_discard_now(file_t *);
    177 static void unp_discard_later(file_t *);
    178 static void unp_thread(void *);
    179 static void unp_thread_kick(void);
    180 static kmutex_t *uipc_lock;
    181 
    182 static kcondvar_t unp_thread_cv;
    183 static lwp_t *unp_thread_lwp;
    184 static SLIST_HEAD(,file) unp_thread_discard;
    185 static int unp_defer;
    186 
    187 /*
    188  * Initialize Unix protocols.
    189  */
    190 void
    191 uipc_init(void)
    192 {
    193 	int error;
    194 
    195 	uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    196 	cv_init(&unp_thread_cv, "unpgc");
    197 
    198 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread,
    199 	    NULL, &unp_thread_lwp, "unpgc");
    200 	if (error != 0)
    201 		panic("uipc_init %d", error);
    202 }
    203 
    204 /*
    205  * A connection succeeded: disassociate both endpoints from the head's
    206  * lock, and make them share their own lock.  There is a race here: for
    207  * a very brief time one endpoint will be locked by a different lock
    208  * than the other end.  However, since the current thread holds the old
    209  * lock (the listening socket's lock, the head) access can still only be
    210  * made to one side of the connection.
    211  */
    212 static void
    213 unp_setpeerlocks(struct socket *so, struct socket *so2)
    214 {
    215 	struct unpcb *unp;
    216 	kmutex_t *lock;
    217 
    218 	KASSERT(solocked2(so, so2));
    219 
    220 	/*
    221 	 * Bail out if either end of the socket is not yet fully
    222 	 * connected or accepted.  We only break the lock association
    223 	 * with the head when the pair of sockets stand completely
    224 	 * on their own.
    225 	 */
    226 	if (so->so_head != NULL || so2->so_head != NULL)
    227 		return;
    228 
    229 	/*
    230 	 * Drop references to old lock.  A third reference (from the
    231 	 * queue head) must be held as we still hold its lock.  Bonus:
    232 	 * we don't need to worry about garbage collecting the lock.
    233 	 */
    234 	lock = so->so_lock;
    235 	KASSERT(lock == uipc_lock);
    236 	mutex_obj_free(lock);
    237 	mutex_obj_free(lock);
    238 
    239 	/*
    240 	 * Grab stream lock from the initiator and share between the two
    241 	 * endpoints.  Issue memory barrier to ensure all modifications
    242 	 * become globally visible before the lock change.  so2 is
    243 	 * assumed not to have a stream lock, because it was created
    244 	 * purely for the server side to accept this connection and
    245 	 * started out life using the domain-wide lock.
    246 	 */
    247 	unp = sotounpcb(so);
    248 	KASSERT(unp->unp_streamlock != NULL);
    249 	KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
    250 	lock = unp->unp_streamlock;
    251 	unp->unp_streamlock = NULL;
    252 	mutex_obj_hold(lock);
    253 	membar_exit();
    254 	solockreset(so, lock);
    255 	solockreset(so2, lock);
    256 }
    257 
    258 /*
    259  * Reset a socket's lock back to the domain-wide lock.
    260  */
    261 static void
    262 unp_resetlock(struct socket *so)
    263 {
    264 	kmutex_t *olock, *nlock;
    265 	struct unpcb *unp;
    266 
    267 	KASSERT(solocked(so));
    268 
    269 	olock = so->so_lock;
    270 	nlock = uipc_lock;
    271 	if (olock == nlock)
    272 		return;
    273 	unp = sotounpcb(so);
    274 	KASSERT(unp->unp_streamlock == NULL);
    275 	unp->unp_streamlock = olock;
    276 	mutex_obj_hold(nlock);
    277 	mutex_enter(nlock);
    278 	solockreset(so, nlock);
    279 	mutex_exit(olock);
    280 }
    281 
    282 static void
    283 unp_free(struct unpcb *unp)
    284 {
    285 
    286 	if (unp->unp_addr)
    287 		free(unp->unp_addr, M_SONAME);
    288 	if (unp->unp_streamlock != NULL)
    289 		mutex_obj_free(unp->unp_streamlock);
    290 	free(unp, M_PCB);
    291 }
    292 
    293 int
    294 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp,
    295 	struct lwp *l)
    296 {
    297 	struct socket *so2;
    298 	const struct sockaddr_un *sun;
    299 
    300 	so2 = unp->unp_conn->unp_socket;
    301 
    302 	KASSERT(solocked(so2));
    303 
    304 	if (unp->unp_addr)
    305 		sun = unp->unp_addr;
    306 	else
    307 		sun = &sun_noname;
    308 	if (unp->unp_conn->unp_flags & UNP_WANTCRED)
    309 		control = unp_addsockcred(l, control);
    310 	if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
    311 	    control) == 0) {
    312 		so2->so_rcv.sb_overflowed++;
    313 		unp_dispose(control);
    314 		m_freem(control);
    315 		m_freem(m);
    316 		return (ENOBUFS);
    317 	} else {
    318 		sorwakeup(so2);
    319 		return (0);
    320 	}
    321 }
    322 
    323 void
    324 unp_setaddr(struct socket *so, struct mbuf *nam, bool peeraddr)
    325 {
    326 	const struct sockaddr_un *sun;
    327 	struct unpcb *unp;
    328 	bool ext;
    329 
    330 	unp = sotounpcb(so);
    331 	ext = false;
    332 
    333 	for (;;) {
    334 		sun = NULL;
    335 		if (peeraddr) {
    336 			if (unp->unp_conn && unp->unp_conn->unp_addr)
    337 				sun = unp->unp_conn->unp_addr;
    338 		} else {
    339 			if (unp->unp_addr)
    340 				sun = unp->unp_addr;
    341 		}
    342 		if (sun == NULL)
    343 			sun = &sun_noname;
    344 		nam->m_len = sun->sun_len;
    345 		if (nam->m_len > MLEN && !ext) {
    346 			sounlock(so);
    347 			MEXTMALLOC(nam, MAXPATHLEN * 2, M_WAITOK);
    348 			solock(so);
    349 			ext = true;
    350 		} else {
    351 			KASSERT(nam->m_len <= MAXPATHLEN * 2);
    352 			memcpy(mtod(nam, void *), sun, (size_t)nam->m_len);
    353 			break;
    354 		}
    355 	}
    356 }
    357 
    358 /*ARGSUSED*/
    359 int
    360 uipc_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
    361 	struct mbuf *control, struct lwp *l)
    362 {
    363 	struct unpcb *unp = sotounpcb(so);
    364 	struct socket *so2;
    365 	struct proc *p;
    366 	u_int newhiwat;
    367 	int error = 0;
    368 
    369 	if (req == PRU_CONTROL)
    370 		return (EOPNOTSUPP);
    371 
    372 #ifdef DIAGNOSTIC
    373 	if (req != PRU_SEND && req != PRU_SENDOOB && control)
    374 		panic("uipc_usrreq: unexpected control mbuf");
    375 #endif
    376 	p = l ? l->l_proc : NULL;
    377 	if (req != PRU_ATTACH) {
    378 		if (unp == 0) {
    379 			error = EINVAL;
    380 			goto release;
    381 		}
    382 		KASSERT(solocked(so));
    383 	}
    384 
    385 	switch (req) {
    386 
    387 	case PRU_ATTACH:
    388 		if (unp != 0) {
    389 			error = EISCONN;
    390 			break;
    391 		}
    392 		error = unp_attach(so);
    393 		break;
    394 
    395 	case PRU_DETACH:
    396 		unp_detach(unp);
    397 		break;
    398 
    399 	case PRU_BIND:
    400 		KASSERT(l != NULL);
    401 		error = unp_bind(so, nam, l);
    402 		break;
    403 
    404 	case PRU_LISTEN:
    405 		/*
    406 		 * If the socket can accept a connection, it must be
    407 		 * locked by uipc_lock.
    408 		 */
    409 		unp_resetlock(so);
    410 		if (unp->unp_vnode == 0)
    411 			error = EINVAL;
    412 		break;
    413 
    414 	case PRU_CONNECT:
    415 		KASSERT(l != NULL);
    416 		error = unp_connect(so, nam, l);
    417 		break;
    418 
    419 	case PRU_CONNECT2:
    420 		error = unp_connect2(so, (struct socket *)nam, PRU_CONNECT2);
    421 		break;
    422 
    423 	case PRU_DISCONNECT:
    424 		unp_disconnect(unp);
    425 		break;
    426 
    427 	case PRU_ACCEPT:
    428 		KASSERT(so->so_lock == uipc_lock);
    429 		/*
    430 		 * Mark the initiating STREAM socket as connected *ONLY*
    431 		 * after it's been accepted.  This prevents a client from
    432 		 * overrunning a server and receiving ECONNREFUSED.
    433 		 */
    434 		if (unp->unp_conn == NULL)
    435 			break;
    436 		so2 = unp->unp_conn->unp_socket;
    437 		if (so2->so_state & SS_ISCONNECTING) {
    438 			KASSERT(solocked2(so, so->so_head));
    439 			KASSERT(solocked2(so2, so->so_head));
    440 			soisconnected(so2);
    441 		}
    442 		/*
    443 		 * If the connection is fully established, break the
    444 		 * association with uipc_lock and give the connected
    445 		 * pair a seperate lock to share.
    446 		 */
    447 		unp_setpeerlocks(so2, so);
    448 		/*
    449 		 * Only now return peer's address, as we may need to
    450 		 * block in order to allocate memory.
    451 		 *
    452 		 * XXX Minor race: connection can be broken while
    453 		 * lock is dropped in unp_setaddr().  We will return
    454 		 * error == 0 and sun_noname as the peer address.
    455 		 */
    456 		unp_setaddr(so, nam, true);
    457 		break;
    458 
    459 	case PRU_SHUTDOWN:
    460 		socantsendmore(so);
    461 		unp_shutdown(unp);
    462 		break;
    463 
    464 	case PRU_RCVD:
    465 		switch (so->so_type) {
    466 
    467 		case SOCK_DGRAM:
    468 			panic("uipc 1");
    469 			/*NOTREACHED*/
    470 
    471 		case SOCK_STREAM:
    472 #define	rcv (&so->so_rcv)
    473 #define snd (&so2->so_snd)
    474 			if (unp->unp_conn == 0)
    475 				break;
    476 			so2 = unp->unp_conn->unp_socket;
    477 			KASSERT(solocked2(so, so2));
    478 			/*
    479 			 * Adjust backpressure on sender
    480 			 * and wakeup any waiting to write.
    481 			 */
    482 			snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
    483 			unp->unp_mbcnt = rcv->sb_mbcnt;
    484 			newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
    485 			(void)chgsbsize(so2->so_uidinfo,
    486 			    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
    487 			unp->unp_cc = rcv->sb_cc;
    488 			sowwakeup(so2);
    489 #undef snd
    490 #undef rcv
    491 			break;
    492 
    493 		default:
    494 			panic("uipc 2");
    495 		}
    496 		break;
    497 
    498 	case PRU_SEND:
    499 		/*
    500 		 * Note: unp_internalize() rejects any control message
    501 		 * other than SCM_RIGHTS, and only allows one.  This
    502 		 * has the side-effect of preventing a caller from
    503 		 * forging SCM_CREDS.
    504 		 */
    505 		if (control) {
    506 			sounlock(so);
    507 			error = unp_internalize(&control);
    508 			solock(so);
    509 			if (error != 0) {
    510 				m_freem(control);
    511 				m_freem(m);
    512 				break;
    513 			}
    514 		}
    515 		switch (so->so_type) {
    516 
    517 		case SOCK_DGRAM: {
    518 			KASSERT(so->so_lock == uipc_lock);
    519 			if (nam) {
    520 				if ((so->so_state & SS_ISCONNECTED) != 0)
    521 					error = EISCONN;
    522 				else {
    523 					/*
    524 					 * Note: once connected, the
    525 					 * socket's lock must not be
    526 					 * dropped until we have sent
    527 					 * the message and disconnected.
    528 					 * This is necessary to prevent
    529 					 * intervening control ops, like
    530 					 * another connection.
    531 					 */
    532 					error = unp_connect(so, nam, l);
    533 				}
    534 			} else {
    535 				if ((so->so_state & SS_ISCONNECTED) == 0)
    536 					error = ENOTCONN;
    537 			}
    538 			if (error) {
    539 				unp_dispose(control);
    540 				m_freem(control);
    541 				m_freem(m);
    542 				break;
    543 			}
    544 			KASSERT(p != NULL);
    545 			error = unp_output(m, control, unp, l);
    546 			if (nam)
    547 				unp_disconnect(unp);
    548 			break;
    549 		}
    550 
    551 		case SOCK_STREAM:
    552 #define	rcv (&so2->so_rcv)
    553 #define	snd (&so->so_snd)
    554 			if (unp->unp_conn == NULL) {
    555 				error = ENOTCONN;
    556 				break;
    557 			}
    558 			so2 = unp->unp_conn->unp_socket;
    559 			KASSERT(solocked2(so, so2));
    560 			if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
    561 				/*
    562 				 * Credentials are passed only once on
    563 				 * SOCK_STREAM.
    564 				 */
    565 				unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
    566 				control = unp_addsockcred(l, control);
    567 			}
    568 			/*
    569 			 * Send to paired receive port, and then reduce
    570 			 * send buffer hiwater marks to maintain backpressure.
    571 			 * Wake up readers.
    572 			 */
    573 			if (control) {
    574 				if (sbappendcontrol(rcv, m, control) != 0)
    575 					control = NULL;
    576 			} else
    577 				sbappend(rcv, m);
    578 			snd->sb_mbmax -=
    579 			    rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
    580 			unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
    581 			newhiwat = snd->sb_hiwat -
    582 			    (rcv->sb_cc - unp->unp_conn->unp_cc);
    583 			(void)chgsbsize(so->so_uidinfo,
    584 			    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
    585 			unp->unp_conn->unp_cc = rcv->sb_cc;
    586 			sorwakeup(so2);
    587 #undef snd
    588 #undef rcv
    589 			if (control != NULL) {
    590 				unp_dispose(control);
    591 				m_freem(control);
    592 			}
    593 			break;
    594 
    595 		default:
    596 			panic("uipc 4");
    597 		}
    598 		break;
    599 
    600 	case PRU_ABORT:
    601 		(void)unp_drop(unp, ECONNABORTED);
    602 
    603 		KASSERT(so->so_head == NULL);
    604 #ifdef DIAGNOSTIC
    605 		if (so->so_pcb == 0)
    606 			panic("uipc 5: drop killed pcb");
    607 #endif
    608 		unp_detach(unp);
    609 		break;
    610 
    611 	case PRU_SENSE:
    612 		((struct stat *) m)->st_blksize = so->so_snd.sb_hiwat;
    613 		if (so->so_type == SOCK_STREAM && unp->unp_conn != 0) {
    614 			so2 = unp->unp_conn->unp_socket;
    615 			KASSERT(solocked2(so, so2));
    616 			((struct stat *) m)->st_blksize += so2->so_rcv.sb_cc;
    617 		}
    618 		((struct stat *) m)->st_dev = NODEV;
    619 		if (unp->unp_ino == 0)
    620 			unp->unp_ino = unp_ino++;
    621 		((struct stat *) m)->st_atimespec =
    622 		    ((struct stat *) m)->st_mtimespec =
    623 		    ((struct stat *) m)->st_ctimespec = unp->unp_ctime;
    624 		((struct stat *) m)->st_ino = unp->unp_ino;
    625 		return (0);
    626 
    627 	case PRU_RCVOOB:
    628 		error = EOPNOTSUPP;
    629 		break;
    630 
    631 	case PRU_SENDOOB:
    632 		m_freem(control);
    633 		m_freem(m);
    634 		error = EOPNOTSUPP;
    635 		break;
    636 
    637 	case PRU_SOCKADDR:
    638 		unp_setaddr(so, nam, false);
    639 		break;
    640 
    641 	case PRU_PEERADDR:
    642 		unp_setaddr(so, nam, true);
    643 		break;
    644 
    645 	default:
    646 		panic("piusrreq");
    647 	}
    648 
    649 release:
    650 	return (error);
    651 }
    652 
    653 /*
    654  * Unix domain socket option processing.
    655  */
    656 int
    657 uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
    658 {
    659 	struct unpcb *unp = sotounpcb(so);
    660 	int optval = 0, error = 0;
    661 
    662 	KASSERT(solocked(so));
    663 
    664 	if (sopt->sopt_level != 0) {
    665 		error = ENOPROTOOPT;
    666 	} else switch (op) {
    667 
    668 	case PRCO_SETOPT:
    669 		switch (sopt->sopt_name) {
    670 		case LOCAL_CREDS:
    671 		case LOCAL_CONNWAIT:
    672 			error = sockopt_getint(sopt, &optval);
    673 			if (error)
    674 				break;
    675 			switch (sopt->sopt_name) {
    676 #define	OPTSET(bit) \
    677 	if (optval) \
    678 		unp->unp_flags |= (bit); \
    679 	else \
    680 		unp->unp_flags &= ~(bit);
    681 
    682 			case LOCAL_CREDS:
    683 				OPTSET(UNP_WANTCRED);
    684 				break;
    685 			case LOCAL_CONNWAIT:
    686 				OPTSET(UNP_CONNWAIT);
    687 				break;
    688 			}
    689 			break;
    690 #undef OPTSET
    691 
    692 		default:
    693 			error = ENOPROTOOPT;
    694 			break;
    695 		}
    696 		break;
    697 
    698 	case PRCO_GETOPT:
    699 		sounlock(so);
    700 		switch (sopt->sopt_name) {
    701 		case LOCAL_PEEREID:
    702 			if (unp->unp_flags & UNP_EIDSVALID) {
    703 				error = sockopt_set(sopt,
    704 				    &unp->unp_connid, sizeof(unp->unp_connid));
    705 			} else {
    706 				error = EINVAL;
    707 			}
    708 			break;
    709 		case LOCAL_CREDS:
    710 #define	OPTBIT(bit)	(unp->unp_flags & (bit) ? 1 : 0)
    711 
    712 			optval = OPTBIT(UNP_WANTCRED);
    713 			error = sockopt_setint(sopt, optval);
    714 			break;
    715 #undef OPTBIT
    716 
    717 		default:
    718 			error = ENOPROTOOPT;
    719 			break;
    720 		}
    721 		solock(so);
    722 		break;
    723 	}
    724 	return (error);
    725 }
    726 
    727 /*
    728  * Both send and receive buffers are allocated PIPSIZ bytes of buffering
    729  * for stream sockets, although the total for sender and receiver is
    730  * actually only PIPSIZ.
    731  * Datagram sockets really use the sendspace as the maximum datagram size,
    732  * and don't really want to reserve the sendspace.  Their recvspace should
    733  * be large enough for at least one max-size datagram plus address.
    734  */
    735 #define	PIPSIZ	4096
    736 u_long	unpst_sendspace = PIPSIZ;
    737 u_long	unpst_recvspace = PIPSIZ;
    738 u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
    739 u_long	unpdg_recvspace = 4*1024;
    740 
    741 u_int	unp_rights;			/* files in flight */
    742 u_int	unp_rights_ratio = 2;		/* limit, fraction of maxfiles */
    743 
    744 int
    745 unp_attach(struct socket *so)
    746 {
    747 	struct unpcb *unp;
    748 	int error;
    749 
    750 	switch (so->so_type) {
    751 	case SOCK_STREAM:
    752 		if (so->so_lock == NULL) {
    753 			/*
    754 			 * XXX Assuming that no socket locks are held,
    755 			 * as this call may sleep.
    756 			 */
    757 			so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    758 			solock(so);
    759 		}
    760 		if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
    761 			error = soreserve(so, unpst_sendspace, unpst_recvspace);
    762 			if (error != 0)
    763 				return (error);
    764 		}
    765 		break;
    766 
    767 	case SOCK_DGRAM:
    768 		if (so->so_lock == NULL) {
    769 			mutex_obj_hold(uipc_lock);
    770 			so->so_lock = uipc_lock;
    771 			solock(so);
    772 		}
    773 		if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
    774 			error = soreserve(so, unpdg_sendspace, unpdg_recvspace);
    775 			if (error != 0)
    776 				return (error);
    777 		}
    778 		break;
    779 
    780 	default:
    781 		panic("unp_attach");
    782 	}
    783 	KASSERT(solocked(so));
    784 	unp = malloc(sizeof(*unp), M_PCB, M_NOWAIT);
    785 	if (unp == NULL)
    786 		return (ENOBUFS);
    787 	memset((void *)unp, 0, sizeof(*unp));
    788 	unp->unp_socket = so;
    789 	so->so_pcb = unp;
    790 	nanotime(&unp->unp_ctime);
    791 	return (0);
    792 }
    793 
    794 void
    795 unp_detach(struct unpcb *unp)
    796 {
    797 	struct socket *so;
    798 	vnode_t *vp;
    799 
    800 	so = unp->unp_socket;
    801 
    802  retry:
    803 	if ((vp = unp->unp_vnode) != NULL) {
    804 		sounlock(so);
    805 		/* Acquire v_interlock to protect against unp_connect(). */
    806 		/* XXXAD racy */
    807 		mutex_enter(&vp->v_interlock);
    808 		vp->v_socket = NULL;
    809 		vrelel(vp, 0);
    810 		solock(so);
    811 		unp->unp_vnode = NULL;
    812 	}
    813 	if (unp->unp_conn)
    814 		unp_disconnect(unp);
    815 	while (unp->unp_refs) {
    816 		KASSERT(solocked2(so, unp->unp_refs->unp_socket));
    817 		if (unp_drop(unp->unp_refs, ECONNRESET)) {
    818 			solock(so);
    819 			goto retry;
    820 		}
    821 	}
    822 	soisdisconnected(so);
    823 	so->so_pcb = NULL;
    824 	if (unp_rights) {
    825 		/*
    826 		 * Normally the receive buffer is flushed later, in sofree,
    827 		 * but if our receive buffer holds references to files that
    828 		 * are now garbage, we will enqueue those file references to
    829 		 * the garbage collector and kick it into action.
    830 		 */
    831 		sorflush(so);
    832 		unp_free(unp);
    833 		unp_thread_kick();
    834 	} else
    835 		unp_free(unp);
    836 }
    837 
    838 int
    839 unp_bind(struct socket *so, struct mbuf *nam, struct lwp *l)
    840 {
    841 	struct sockaddr_un *sun;
    842 	struct unpcb *unp;
    843 	vnode_t *vp;
    844 	struct vattr vattr;
    845 	size_t addrlen;
    846 	int error;
    847 	struct nameidata nd;
    848 	proc_t *p;
    849 
    850 	unp = sotounpcb(so);
    851 	if (unp->unp_vnode != NULL)
    852 		return (EINVAL);
    853 	if ((unp->unp_flags & UNP_BUSY) != 0) {
    854 		/*
    855 		 * EALREADY may not be strictly accurate, but since this
    856 		 * is a major application error it's hardly a big deal.
    857 		 */
    858 		return (EALREADY);
    859 	}
    860 	unp->unp_flags |= UNP_BUSY;
    861 	sounlock(so);
    862 
    863 	/*
    864 	 * Allocate the new sockaddr.  We have to allocate one
    865 	 * extra byte so that we can ensure that the pathname
    866 	 * is nul-terminated.
    867 	 */
    868 	p = l->l_proc;
    869 	addrlen = nam->m_len + 1;
    870 	sun = malloc(addrlen, M_SONAME, M_WAITOK);
    871 	m_copydata(nam, 0, nam->m_len, (void *)sun);
    872 	*(((char *)sun) + nam->m_len) = '\0';
    873 
    874 	NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, UIO_SYSSPACE,
    875 	    sun->sun_path);
    876 
    877 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
    878 	if ((error = namei(&nd)) != 0)
    879 		goto bad;
    880 	vp = nd.ni_vp;
    881 	if (vp != NULL) {
    882 		VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
    883 		if (nd.ni_dvp == vp)
    884 			vrele(nd.ni_dvp);
    885 		else
    886 			vput(nd.ni_dvp);
    887 		vrele(vp);
    888 		error = EADDRINUSE;
    889 		goto bad;
    890 	}
    891 	VATTR_NULL(&vattr);
    892 	vattr.va_type = VSOCK;
    893 	vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
    894 	error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
    895 	if (error)
    896 		goto bad;
    897 	vp = nd.ni_vp;
    898 	solock(so);
    899 	vp->v_socket = unp->unp_socket;
    900 	unp->unp_vnode = vp;
    901 	unp->unp_addrlen = addrlen;
    902 	unp->unp_addr = sun;
    903 	unp->unp_connid.unp_pid = p->p_pid;
    904 	unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
    905 	unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
    906 	unp->unp_flags |= UNP_EIDSBIND;
    907 	VOP_UNLOCK(vp, 0);
    908 	unp->unp_flags &= ~UNP_BUSY;
    909 	return (0);
    910 
    911  bad:
    912 	free(sun, M_SONAME);
    913 	solock(so);
    914 	unp->unp_flags &= ~UNP_BUSY;
    915 	return (error);
    916 }
    917 
    918 int
    919 unp_connect(struct socket *so, struct mbuf *nam, struct lwp *l)
    920 {
    921 	struct sockaddr_un *sun;
    922 	vnode_t *vp;
    923 	struct socket *so2, *so3;
    924 	struct unpcb *unp, *unp2, *unp3;
    925 	size_t addrlen;
    926 	int error;
    927 	struct nameidata nd;
    928 
    929 	unp = sotounpcb(so);
    930 	if ((unp->unp_flags & UNP_BUSY) != 0) {
    931 		/*
    932 		 * EALREADY may not be strictly accurate, but since this
    933 		 * is a major application error it's hardly a big deal.
    934 		 */
    935 		return (EALREADY);
    936 	}
    937 	unp->unp_flags |= UNP_BUSY;
    938 	sounlock(so);
    939 
    940 	/*
    941 	 * Allocate a temporary sockaddr.  We have to allocate one extra
    942 	 * byte so that we can ensure that the pathname is nul-terminated.
    943 	 * When we establish the connection, we copy the other PCB's
    944 	 * sockaddr to our own.
    945 	 */
    946 	addrlen = nam->m_len + 1;
    947 	sun = malloc(addrlen, M_SONAME, M_WAITOK);
    948 	m_copydata(nam, 0, nam->m_len, (void *)sun);
    949 	*(((char *)sun) + nam->m_len) = '\0';
    950 
    951 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, UIO_SYSSPACE,
    952 	    sun->sun_path);
    953 
    954 	if ((error = namei(&nd)) != 0)
    955 		goto bad2;
    956 	vp = nd.ni_vp;
    957 	if (vp->v_type != VSOCK) {
    958 		error = ENOTSOCK;
    959 		goto bad;
    960 	}
    961 	if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
    962 		goto bad;
    963 	/* Acquire v_interlock to protect against unp_detach(). */
    964 	mutex_enter(&vp->v_interlock);
    965 	so2 = vp->v_socket;
    966 	if (so2 == NULL) {
    967 		mutex_exit(&vp->v_interlock);
    968 		error = ECONNREFUSED;
    969 		goto bad;
    970 	}
    971 	if (so->so_type != so2->so_type) {
    972 		mutex_exit(&vp->v_interlock);
    973 		error = EPROTOTYPE;
    974 		goto bad;
    975 	}
    976 	solock(so);
    977 	unp_resetlock(so);
    978 	mutex_exit(&vp->v_interlock);
    979 	if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
    980 		/*
    981 		 * This may seem somewhat fragile but is OK: if we can
    982 		 * see SO_ACCEPTCONN set on the endpoint, then it must
    983 		 * be locked by the domain-wide uipc_lock.
    984 		 */
    985 		KASSERT((so->so_options & SO_ACCEPTCONN) == 0 ||
    986 		    so2->so_lock == uipc_lock);
    987 		if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
    988 		    (so3 = sonewconn(so2, 0)) == 0) {
    989 			error = ECONNREFUSED;
    990 			sounlock(so);
    991 			goto bad;
    992 		}
    993 		unp2 = sotounpcb(so2);
    994 		unp3 = sotounpcb(so3);
    995 		if (unp2->unp_addr) {
    996 			unp3->unp_addr = malloc(unp2->unp_addrlen,
    997 			    M_SONAME, M_WAITOK);
    998 			memcpy(unp3->unp_addr, unp2->unp_addr,
    999 			    unp2->unp_addrlen);
   1000 			unp3->unp_addrlen = unp2->unp_addrlen;
   1001 		}
   1002 		unp3->unp_flags = unp2->unp_flags;
   1003 		unp3->unp_connid.unp_pid = l->l_proc->p_pid;
   1004 		unp3->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
   1005 		unp3->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
   1006 		unp3->unp_flags |= UNP_EIDSVALID;
   1007 		if (unp2->unp_flags & UNP_EIDSBIND) {
   1008 			unp->unp_connid = unp2->unp_connid;
   1009 			unp->unp_flags |= UNP_EIDSVALID;
   1010 		}
   1011 		so2 = so3;
   1012 	}
   1013 	error = unp_connect2(so, so2, PRU_CONNECT);
   1014 	sounlock(so);
   1015  bad:
   1016 	vput(vp);
   1017  bad2:
   1018 	free(sun, M_SONAME);
   1019 	solock(so);
   1020 	unp->unp_flags &= ~UNP_BUSY;
   1021 	return (error);
   1022 }
   1023 
   1024 int
   1025 unp_connect2(struct socket *so, struct socket *so2, int req)
   1026 {
   1027 	struct unpcb *unp = sotounpcb(so);
   1028 	struct unpcb *unp2;
   1029 
   1030 	if (so2->so_type != so->so_type)
   1031 		return (EPROTOTYPE);
   1032 
   1033 	/*
   1034 	 * All three sockets involved must be locked by same lock:
   1035 	 *
   1036 	 * local endpoint (so)
   1037 	 * remote endpoint (so2)
   1038 	 * queue head (so->so_head, only if PR_CONNREQUIRED)
   1039 	 */
   1040 	KASSERT(solocked2(so, so2));
   1041 	if (so->so_head != NULL) {
   1042 		KASSERT(so->so_lock == uipc_lock);
   1043 		KASSERT(solocked2(so, so->so_head));
   1044 	}
   1045 
   1046 	unp2 = sotounpcb(so2);
   1047 	unp->unp_conn = unp2;
   1048 	switch (so->so_type) {
   1049 
   1050 	case SOCK_DGRAM:
   1051 		unp->unp_nextref = unp2->unp_refs;
   1052 		unp2->unp_refs = unp;
   1053 		soisconnected(so);
   1054 		break;
   1055 
   1056 	case SOCK_STREAM:
   1057 		unp2->unp_conn = unp;
   1058 		if (req == PRU_CONNECT &&
   1059 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
   1060 			soisconnecting(so);
   1061 		else
   1062 			soisconnected(so);
   1063 		soisconnected(so2);
   1064 		/*
   1065 		 * If the connection is fully established, break the
   1066 		 * association with uipc_lock and give the connected
   1067 		 * pair a seperate lock to share.  For CONNECT2, we
   1068 		 * require that the locks already match (the sockets
   1069 		 * are created that way).
   1070 		 */
   1071 		if (req == PRU_CONNECT)
   1072 			unp_setpeerlocks(so, so2);
   1073 		break;
   1074 
   1075 	default:
   1076 		panic("unp_connect2");
   1077 	}
   1078 	return (0);
   1079 }
   1080 
   1081 void
   1082 unp_disconnect(struct unpcb *unp)
   1083 {
   1084 	struct unpcb *unp2 = unp->unp_conn;
   1085 	struct socket *so;
   1086 
   1087 	if (unp2 == 0)
   1088 		return;
   1089 	unp->unp_conn = 0;
   1090 	so = unp->unp_socket;
   1091 	switch (so->so_type) {
   1092 	case SOCK_DGRAM:
   1093 		if (unp2->unp_refs == unp)
   1094 			unp2->unp_refs = unp->unp_nextref;
   1095 		else {
   1096 			unp2 = unp2->unp_refs;
   1097 			for (;;) {
   1098 				KASSERT(solocked2(so, unp2->unp_socket));
   1099 				if (unp2 == 0)
   1100 					panic("unp_disconnect");
   1101 				if (unp2->unp_nextref == unp)
   1102 					break;
   1103 				unp2 = unp2->unp_nextref;
   1104 			}
   1105 			unp2->unp_nextref = unp->unp_nextref;
   1106 		}
   1107 		unp->unp_nextref = 0;
   1108 		so->so_state &= ~SS_ISCONNECTED;
   1109 		break;
   1110 
   1111 	case SOCK_STREAM:
   1112 		KASSERT(solocked2(so, unp2->unp_socket));
   1113 		soisdisconnected(so);
   1114 		unp2->unp_conn = 0;
   1115 		soisdisconnected(unp2->unp_socket);
   1116 		break;
   1117 	}
   1118 }
   1119 
   1120 #ifdef notdef
   1121 unp_abort(struct unpcb *unp)
   1122 {
   1123 	unp_detach(unp);
   1124 }
   1125 #endif
   1126 
   1127 void
   1128 unp_shutdown(struct unpcb *unp)
   1129 {
   1130 	struct socket *so;
   1131 
   1132 	if (unp->unp_socket->so_type == SOCK_STREAM && unp->unp_conn &&
   1133 	    (so = unp->unp_conn->unp_socket))
   1134 		socantrcvmore(so);
   1135 }
   1136 
   1137 bool
   1138 unp_drop(struct unpcb *unp, int errno)
   1139 {
   1140 	struct socket *so = unp->unp_socket;
   1141 
   1142 	KASSERT(solocked(so));
   1143 
   1144 	so->so_error = errno;
   1145 	unp_disconnect(unp);
   1146 	if (so->so_head) {
   1147 		so->so_pcb = NULL;
   1148 		/* sofree() drops the socket lock */
   1149 		sofree(so);
   1150 		unp_free(unp);
   1151 		return true;
   1152 	}
   1153 	return false;
   1154 }
   1155 
   1156 #ifdef notdef
   1157 unp_drain(void)
   1158 {
   1159 
   1160 }
   1161 #endif
   1162 
   1163 int
   1164 unp_externalize(struct mbuf *rights, struct lwp *l)
   1165 {
   1166 	struct cmsghdr *cm = mtod(rights, struct cmsghdr *);
   1167 	struct proc *p = l->l_proc;
   1168 	int i, *fdp;
   1169 	file_t **rp;
   1170 	file_t *fp;
   1171 	int nfds, error = 0;
   1172 
   1173 	nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
   1174 	    sizeof(file_t *);
   1175 	rp = (file_t **)CMSG_DATA(cm);
   1176 
   1177 	fdp = malloc(nfds * sizeof(int), M_TEMP, M_WAITOK);
   1178 	rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
   1179 
   1180 	/* Make sure the recipient should be able to see the files.. */
   1181 	if (p->p_cwdi->cwdi_rdir != NULL) {
   1182 		rp = (file_t **)CMSG_DATA(cm);
   1183 		for (i = 0; i < nfds; i++) {
   1184 			fp = *rp++;
   1185 			/*
   1186 			 * If we are in a chroot'ed directory, and
   1187 			 * someone wants to pass us a directory, make
   1188 			 * sure it's inside the subtree we're allowed
   1189 			 * to access.
   1190 			 */
   1191 			if (fp->f_type == DTYPE_VNODE) {
   1192 				vnode_t *vp = (vnode_t *)fp->f_data;
   1193 				if ((vp->v_type == VDIR) &&
   1194 				    !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
   1195 					error = EPERM;
   1196 					break;
   1197 				}
   1198 			}
   1199 		}
   1200 	}
   1201 
   1202  restart:
   1203 	rp = (file_t **)CMSG_DATA(cm);
   1204 	if (error != 0) {
   1205 		for (i = 0; i < nfds; i++) {
   1206 			fp = *rp;
   1207 			*rp++ = 0;
   1208 			unp_discard_now(fp);
   1209 		}
   1210 		goto out;
   1211 	}
   1212 
   1213 	/*
   1214 	 * First loop -- allocate file descriptor table slots for the
   1215 	 * new files.
   1216 	 */
   1217 	for (i = 0; i < nfds; i++) {
   1218 		fp = *rp++;
   1219 		if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
   1220 			/*
   1221 			 * Back out what we've done so far.
   1222 			 */
   1223 			for (--i; i >= 0; i--) {
   1224 				fd_abort(p, NULL, fdp[i]);
   1225 			}
   1226 			if (error == ENOSPC) {
   1227 				fd_tryexpand(p);
   1228 				error = 0;
   1229 			} else {
   1230 				/*
   1231 				 * This is the error that has historically
   1232 				 * been returned, and some callers may
   1233 				 * expect it.
   1234 				 */
   1235 				error = EMSGSIZE;
   1236 			}
   1237 			goto restart;
   1238 		}
   1239 	}
   1240 
   1241 	/*
   1242 	 * Now that adding them has succeeded, update all of the
   1243 	 * file passing state and affix the descriptors.
   1244 	 */
   1245 	rp = (file_t **)CMSG_DATA(cm);
   1246 	for (i = 0; i < nfds; i++) {
   1247 		fp = *rp++;
   1248 		atomic_dec_uint(&unp_rights);
   1249 		fd_affix(p, fp, fdp[i]);
   1250 		mutex_enter(&fp->f_lock);
   1251 		fp->f_msgcount--;
   1252 		mutex_exit(&fp->f_lock);
   1253 		/*
   1254 		 * Note that fd_affix() adds a reference to the file.
   1255 		 * The file may already have been closed by another
   1256 		 * LWP in the process, so we must drop the reference
   1257 		 * added by unp_internalize() with closef().
   1258 		 */
   1259 		closef(fp);
   1260 	}
   1261 
   1262 	/*
   1263 	 * Copy temporary array to message and adjust length, in case of
   1264 	 * transition from large file_t pointers to ints.
   1265 	 */
   1266 	memcpy(CMSG_DATA(cm), fdp, nfds * sizeof(int));
   1267 	cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
   1268 	rights->m_len = CMSG_SPACE(nfds * sizeof(int));
   1269  out:
   1270 	rw_exit(&p->p_cwdi->cwdi_lock);
   1271 	free(fdp, M_TEMP);
   1272 	return (error);
   1273 }
   1274 
   1275 int
   1276 unp_internalize(struct mbuf **controlp)
   1277 {
   1278 	filedesc_t *fdescp = curlwp->l_fd;
   1279 	struct mbuf *control = *controlp;
   1280 	struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
   1281 	file_t **rp, **files;
   1282 	file_t *fp;
   1283 	int i, fd, *fdp;
   1284 	int nfds, error;
   1285 	u_int maxmsg;
   1286 
   1287 	error = 0;
   1288 	newcm = NULL;
   1289 
   1290 	/* Sanity check the control message header. */
   1291 	if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
   1292 	    cm->cmsg_len > control->m_len ||
   1293 	    cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
   1294 		return (EINVAL);
   1295 
   1296 	/*
   1297 	 * Verify that the file descriptors are valid, and acquire
   1298 	 * a reference to each.
   1299 	 */
   1300 	nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
   1301 	fdp = (int *)CMSG_DATA(cm);
   1302 	maxmsg = maxfiles / unp_rights_ratio;
   1303 	for (i = 0; i < nfds; i++) {
   1304 		fd = *fdp++;
   1305 		if (atomic_inc_uint_nv(&unp_rights) > maxmsg) {
   1306 			atomic_dec_uint(&unp_rights);
   1307 			nfds = i;
   1308 			error = EAGAIN;
   1309 			goto out;
   1310 		}
   1311 		if ((fp = fd_getfile(fd)) == NULL) {
   1312 			atomic_dec_uint(&unp_rights);
   1313 			nfds = i;
   1314 			error = EBADF;
   1315 			goto out;
   1316 		}
   1317 	}
   1318 
   1319 	/* Allocate new space and copy header into it. */
   1320 	newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
   1321 	if (newcm == NULL) {
   1322 		error = E2BIG;
   1323 		goto out;
   1324 	}
   1325 	memcpy(newcm, cm, sizeof(struct cmsghdr));
   1326 	files = (file_t **)CMSG_DATA(newcm);
   1327 
   1328 	/*
   1329 	 * Transform the file descriptors into file_t pointers, in
   1330 	 * reverse order so that if pointers are bigger than ints, the
   1331 	 * int won't get until we're done.  No need to lock, as we have
   1332 	 * already validated the descriptors with fd_getfile().
   1333 	 */
   1334 	fdp = (int *)CMSG_DATA(cm) + nfds;
   1335 	rp = files + nfds;
   1336 	for (i = 0; i < nfds; i++) {
   1337 		fp = fdescp->fd_ofiles[*--fdp]->ff_file;
   1338 		KASSERT(fp != NULL);
   1339 		mutex_enter(&fp->f_lock);
   1340 		*--rp = fp;
   1341 		fp->f_count++;
   1342 		fp->f_msgcount++;
   1343 		mutex_exit(&fp->f_lock);
   1344 	}
   1345 
   1346  out:
   1347  	/* Release descriptor references. */
   1348 	fdp = (int *)CMSG_DATA(cm);
   1349 	for (i = 0; i < nfds; i++) {
   1350 		fd_putfile(*fdp++);
   1351 		if (error != 0) {
   1352 			atomic_dec_uint(&unp_rights);
   1353 		}
   1354 	}
   1355 
   1356 	if (error == 0) {
   1357 		if (control->m_flags & M_EXT) {
   1358 			m_freem(control);
   1359 			*controlp = control = m_get(M_WAIT, MT_CONTROL);
   1360 		}
   1361 		MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
   1362 		    M_MBUF, NULL, NULL);
   1363 		cm = newcm;
   1364 		/*
   1365 		 * Adjust message & mbuf to note amount of space
   1366 		 * actually used.
   1367 		 */
   1368 		cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
   1369 		control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
   1370 	}
   1371 
   1372 	return error;
   1373 }
   1374 
   1375 struct mbuf *
   1376 unp_addsockcred(struct lwp *l, struct mbuf *control)
   1377 {
   1378 	struct cmsghdr *cmp;
   1379 	struct sockcred *sc;
   1380 	struct mbuf *m, *n;
   1381 	int len, space, i;
   1382 
   1383 	len = CMSG_LEN(SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)));
   1384 	space = CMSG_SPACE(SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)));
   1385 
   1386 	m = m_get(M_WAIT, MT_CONTROL);
   1387 	if (space > MLEN) {
   1388 		if (space > MCLBYTES)
   1389 			MEXTMALLOC(m, space, M_WAITOK);
   1390 		else
   1391 			m_clget(m, M_WAIT);
   1392 		if ((m->m_flags & M_EXT) == 0) {
   1393 			m_free(m);
   1394 			return (control);
   1395 		}
   1396 	}
   1397 
   1398 	m->m_len = space;
   1399 	m->m_next = NULL;
   1400 	cmp = mtod(m, struct cmsghdr *);
   1401 	sc = (struct sockcred *)CMSG_DATA(cmp);
   1402 	cmp->cmsg_len = len;
   1403 	cmp->cmsg_level = SOL_SOCKET;
   1404 	cmp->cmsg_type = SCM_CREDS;
   1405 	sc->sc_uid = kauth_cred_getuid(l->l_cred);
   1406 	sc->sc_euid = kauth_cred_geteuid(l->l_cred);
   1407 	sc->sc_gid = kauth_cred_getgid(l->l_cred);
   1408 	sc->sc_egid = kauth_cred_getegid(l->l_cred);
   1409 	sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
   1410 	for (i = 0; i < sc->sc_ngroups; i++)
   1411 		sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
   1412 
   1413 	/*
   1414 	 * If a control message already exists, append us to the end.
   1415 	 */
   1416 	if (control != NULL) {
   1417 		for (n = control; n->m_next != NULL; n = n->m_next)
   1418 			;
   1419 		n->m_next = m;
   1420 	} else
   1421 		control = m;
   1422 
   1423 	return (control);
   1424 }
   1425 
   1426 /*
   1427  * Do a mark-sweep GC of files in the system, to free up any which are
   1428  * caught in flight to an about-to-be-closed socket.  Additionally,
   1429  * process deferred file closures.
   1430  */
   1431 static void
   1432 unp_gc(file_t *dp)
   1433 {
   1434 	extern	struct domain unixdomain;
   1435 	file_t *fp, *np;
   1436 	struct socket *so, *so1;
   1437 	u_int i, old, new;
   1438 	bool didwork;
   1439 
   1440 	KASSERT(curlwp == unp_thread_lwp);
   1441 	KASSERT(mutex_owned(&filelist_lock));
   1442 
   1443 	/*
   1444 	 * First, process deferred file closures.
   1445 	 */
   1446 	while (!SLIST_EMPTY(&unp_thread_discard)) {
   1447 		fp = SLIST_FIRST(&unp_thread_discard);
   1448 		KASSERT(fp->f_unpcount > 0);
   1449 		KASSERT(fp->f_count > 0);
   1450 		KASSERT(fp->f_msgcount > 0);
   1451 		KASSERT(fp->f_count >= fp->f_unpcount);
   1452 		KASSERT(fp->f_count >= fp->f_msgcount);
   1453 		KASSERT(fp->f_msgcount >= fp->f_unpcount);
   1454 		SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist);
   1455 		i = fp->f_unpcount;
   1456 		fp->f_unpcount = 0;
   1457 		mutex_exit(&filelist_lock);
   1458 		for (; i != 0; i--) {
   1459 			unp_discard_now(fp);
   1460 		}
   1461 		mutex_enter(&filelist_lock);
   1462 	}
   1463 
   1464 	/*
   1465 	 * Clear mark bits.  Ensure that we don't consider new files
   1466 	 * entering the file table during this loop (they will not have
   1467 	 * FSCAN set).
   1468 	 */
   1469 	unp_defer = 0;
   1470 	LIST_FOREACH(fp, &filehead, f_list) {
   1471 		for (old = fp->f_flag;; old = new) {
   1472 			new = atomic_cas_uint(&fp->f_flag, old,
   1473 			    (old | FSCAN) & ~(FMARK|FDEFER));
   1474 			if (__predict_true(old == new)) {
   1475 				break;
   1476 			}
   1477 		}
   1478 	}
   1479 
   1480 	/*
   1481 	 * Iterate over the set of sockets, marking ones believed (based on
   1482 	 * refcount) to be referenced from a process, and marking for rescan
   1483 	 * sockets which are queued on a socket.  Recan continues descending
   1484 	 * and searching for sockets referenced by sockets (FDEFER), until
   1485 	 * there are no more socket->socket references to be discovered.
   1486 	 */
   1487 	do {
   1488 		didwork = false;
   1489 		for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
   1490 			KASSERT(mutex_owned(&filelist_lock));
   1491 			np = LIST_NEXT(fp, f_list);
   1492 			mutex_enter(&fp->f_lock);
   1493 			if ((fp->f_flag & FDEFER) != 0) {
   1494 				atomic_and_uint(&fp->f_flag, ~FDEFER);
   1495 				unp_defer--;
   1496 				KASSERT(fp->f_count != 0);
   1497 			} else {
   1498 				if (fp->f_count == 0 ||
   1499 				    (fp->f_flag & FMARK) != 0 ||
   1500 				    fp->f_count == fp->f_msgcount ||
   1501 				    fp->f_unpcount != 0) {
   1502 					mutex_exit(&fp->f_lock);
   1503 					continue;
   1504 				}
   1505 			}
   1506 			atomic_or_uint(&fp->f_flag, FMARK);
   1507 
   1508 			if (fp->f_type != DTYPE_SOCKET ||
   1509 			    (so = fp->f_data) == NULL ||
   1510 			    so->so_proto->pr_domain != &unixdomain ||
   1511 			    (so->so_proto->pr_flags & PR_RIGHTS) == 0) {
   1512 				mutex_exit(&fp->f_lock);
   1513 				continue;
   1514 			}
   1515 
   1516 			/* Gain file ref, mark our position, and unlock. */
   1517 			didwork = true;
   1518 			LIST_INSERT_AFTER(fp, dp, f_list);
   1519 			fp->f_count++;
   1520 			mutex_exit(&fp->f_lock);
   1521 			mutex_exit(&filelist_lock);
   1522 
   1523 			/*
   1524 			 * Mark files referenced from sockets queued on the
   1525 			 * accept queue as well.
   1526 			 */
   1527 			solock(so);
   1528 			unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
   1529 			if ((so->so_options & SO_ACCEPTCONN) != 0) {
   1530 				TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
   1531 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
   1532 				}
   1533 				TAILQ_FOREACH(so1, &so->so_q, so_qe) {
   1534 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
   1535 				}
   1536 			}
   1537 			sounlock(so);
   1538 
   1539 			/* Re-lock and restart from where we left off. */
   1540 			closef(fp);
   1541 			mutex_enter(&filelist_lock);
   1542 			np = LIST_NEXT(dp, f_list);
   1543 			LIST_REMOVE(dp, f_list);
   1544 		}
   1545 		/*
   1546 		 * Bail early if we did nothing in the loop above.  Could
   1547 		 * happen because of concurrent activity causing unp_defer
   1548 		 * to get out of sync.
   1549 		 */
   1550 	} while (unp_defer != 0 && didwork);
   1551 
   1552 	/*
   1553 	 * Sweep pass.
   1554 	 *
   1555 	 * We grab an extra reference to each of the files that are
   1556 	 * not otherwise accessible and then free the rights that are
   1557 	 * stored in messages on them.
   1558 	 */
   1559 	for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
   1560 		KASSERT(mutex_owned(&filelist_lock));
   1561 		np = LIST_NEXT(fp, f_list);
   1562 		mutex_enter(&fp->f_lock);
   1563 
   1564 		/*
   1565 		 * Ignore non-sockets.
   1566 		 * Ignore dead sockets, or sockets with pending close.
   1567 		 * Ignore sockets obviously referenced elsewhere.
   1568 		 * Ignore sockets marked as referenced by our scan.
   1569 		 * Ignore new sockets that did not exist during the scan.
   1570 		 */
   1571 		if (fp->f_type != DTYPE_SOCKET ||
   1572 		    fp->f_count == 0 || fp->f_unpcount != 0 ||
   1573 		    fp->f_count != fp->f_msgcount ||
   1574 		    (fp->f_flag & (FMARK | FSCAN)) != FSCAN) {
   1575 			mutex_exit(&fp->f_lock);
   1576 			continue;
   1577 		}
   1578 
   1579 		/* Gain file ref, mark our position, and unlock. */
   1580 		LIST_INSERT_AFTER(fp, dp, f_list);
   1581 		fp->f_count++;
   1582 		mutex_exit(&fp->f_lock);
   1583 		mutex_exit(&filelist_lock);
   1584 
   1585 		/*
   1586 		 * Flush all data from the socket's receive buffer.
   1587 		 * This will cause files referenced only by the
   1588 		 * socket to be queued for close.
   1589 		 */
   1590 		so = fp->f_data;
   1591 		solock(so);
   1592 		sorflush(so);
   1593 		sounlock(so);
   1594 
   1595 		/* Re-lock and restart from where we left off. */
   1596 		closef(fp);
   1597 		mutex_enter(&filelist_lock);
   1598 		np = LIST_NEXT(dp, f_list);
   1599 		LIST_REMOVE(dp, f_list);
   1600 	}
   1601 }
   1602 
   1603 /*
   1604  * Garbage collector thread.  While SCM_RIGHTS messages are in transit,
   1605  * wake once per second to garbage collect.  Run continually while we
   1606  * have deferred closes to process.
   1607  */
   1608 static void
   1609 unp_thread(void *cookie)
   1610 {
   1611 	file_t *dp;
   1612 
   1613 	/* Allocate a dummy file for our scans. */
   1614 	if ((dp = fgetdummy()) == NULL) {
   1615 		panic("unp_thread");
   1616 	}
   1617 
   1618 	mutex_enter(&filelist_lock);
   1619 	for (;;) {
   1620 		KASSERT(mutex_owned(&filelist_lock));
   1621 		if (SLIST_EMPTY(&unp_thread_discard)) {
   1622 			if (unp_rights != 0) {
   1623 				(void)cv_timedwait(&unp_thread_cv,
   1624 				    &filelist_lock, hz);
   1625 			} else {
   1626 				cv_wait(&unp_thread_cv, &filelist_lock);
   1627 			}
   1628 		}
   1629 		unp_gc(dp);
   1630 	}
   1631 	/* NOTREACHED */
   1632 }
   1633 
   1634 /*
   1635  * Kick the garbage collector into action if there is something for
   1636  * it to process.
   1637  */
   1638 static void
   1639 unp_thread_kick(void)
   1640 {
   1641 
   1642 	if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) {
   1643 		mutex_enter(&filelist_lock);
   1644 		cv_signal(&unp_thread_cv);
   1645 		mutex_exit(&filelist_lock);
   1646 	}
   1647 }
   1648 
   1649 void
   1650 unp_dispose(struct mbuf *m)
   1651 {
   1652 
   1653 	if (m)
   1654 		unp_scan(m, unp_discard_later, 1);
   1655 }
   1656 
   1657 void
   1658 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
   1659 {
   1660 	struct mbuf *m;
   1661 	file_t **rp, *fp;
   1662 	struct cmsghdr *cm;
   1663 	int i, qfds;
   1664 
   1665 	while (m0) {
   1666 		for (m = m0; m; m = m->m_next) {
   1667 			if (m->m_type != MT_CONTROL ||
   1668 			    m->m_len < sizeof(*cm)) {
   1669 			    	continue;
   1670 			}
   1671 			cm = mtod(m, struct cmsghdr *);
   1672 			if (cm->cmsg_level != SOL_SOCKET ||
   1673 			    cm->cmsg_type != SCM_RIGHTS)
   1674 				continue;
   1675 			qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
   1676 			    / sizeof(file_t *);
   1677 			rp = (file_t **)CMSG_DATA(cm);
   1678 			for (i = 0; i < qfds; i++) {
   1679 				fp = *rp;
   1680 				if (discard) {
   1681 					*rp = 0;
   1682 				}
   1683 				(*op)(fp);
   1684 				rp++;
   1685 			}
   1686 		}
   1687 		m0 = m0->m_nextpkt;
   1688 	}
   1689 }
   1690 
   1691 void
   1692 unp_mark(file_t *fp)
   1693 {
   1694 
   1695 	if (fp == NULL)
   1696 		return;
   1697 
   1698 	/* If we're already deferred, don't screw up the defer count */
   1699 	mutex_enter(&fp->f_lock);
   1700 	if (fp->f_flag & (FMARK | FDEFER)) {
   1701 		mutex_exit(&fp->f_lock);
   1702 		return;
   1703 	}
   1704 
   1705 	/*
   1706 	 * Minimize the number of deferrals...  Sockets are the only type of
   1707 	 * file which can hold references to another file, so just mark
   1708 	 * other files, and defer unmarked sockets for the next pass.
   1709 	 */
   1710 	if (fp->f_type == DTYPE_SOCKET) {
   1711 		unp_defer++;
   1712 		KASSERT(fp->f_count != 0);
   1713 		atomic_or_uint(&fp->f_flag, FDEFER);
   1714 	} else {
   1715 		atomic_or_uint(&fp->f_flag, FMARK);
   1716 	}
   1717 	mutex_exit(&fp->f_lock);
   1718 }
   1719 
   1720 static void
   1721 unp_discard_now(file_t *fp)
   1722 {
   1723 
   1724 	if (fp == NULL)
   1725 		return;
   1726 
   1727 	KASSERT(fp->f_count > 0);
   1728 	KASSERT(fp->f_msgcount > 0);
   1729 
   1730 	mutex_enter(&fp->f_lock);
   1731 	fp->f_msgcount--;
   1732 	mutex_exit(&fp->f_lock);
   1733 	atomic_dec_uint(&unp_rights);
   1734 	(void)closef(fp);
   1735 }
   1736 
   1737 static void
   1738 unp_discard_later(file_t *fp)
   1739 {
   1740 
   1741 	if (fp == NULL)
   1742 		return;
   1743 
   1744 	KASSERT(fp->f_count > 0);
   1745 	KASSERT(fp->f_msgcount > 0);
   1746 
   1747 	mutex_enter(&filelist_lock);
   1748 	if (fp->f_unpcount++ == 0) {
   1749 		SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist);
   1750 	}
   1751 	mutex_exit(&filelist_lock);
   1752 }
   1753