uipc_usrreq.c revision 1.121 1 /* $NetBSD: uipc_usrreq.c,v 1.121 2009/03/11 06:05:29 mrg Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2000, 2004, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
62 */
63
64 /*
65 * Copyright (c) 1997 Christopher G. Demetriou. All rights reserved.
66 *
67 * Redistribution and use in source and binary forms, with or without
68 * modification, are permitted provided that the following conditions
69 * are met:
70 * 1. Redistributions of source code must retain the above copyright
71 * notice, this list of conditions and the following disclaimer.
72 * 2. Redistributions in binary form must reproduce the above copyright
73 * notice, this list of conditions and the following disclaimer in the
74 * documentation and/or other materials provided with the distribution.
75 * 3. All advertising materials mentioning features or use of this software
76 * must display the following acknowledgement:
77 * This product includes software developed by the University of
78 * California, Berkeley and its contributors.
79 * 4. Neither the name of the University nor the names of its contributors
80 * may be used to endorse or promote products derived from this software
81 * without specific prior written permission.
82 *
83 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
84 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
85 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
86 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
87 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
88 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
89 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
90 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
91 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
92 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
93 * SUCH DAMAGE.
94 *
95 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
96 */
97
98 #include <sys/cdefs.h>
99 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.121 2009/03/11 06:05:29 mrg Exp $");
100
101 #include <sys/param.h>
102 #include <sys/systm.h>
103 #include <sys/proc.h>
104 #include <sys/filedesc.h>
105 #include <sys/domain.h>
106 #include <sys/protosw.h>
107 #include <sys/socket.h>
108 #include <sys/socketvar.h>
109 #include <sys/unpcb.h>
110 #include <sys/un.h>
111 #include <sys/namei.h>
112 #include <sys/vnode.h>
113 #include <sys/file.h>
114 #include <sys/stat.h>
115 #include <sys/mbuf.h>
116 #include <sys/kauth.h>
117 #include <sys/kmem.h>
118 #include <sys/atomic.h>
119 #include <sys/uidinfo.h>
120 #include <sys/kernel.h>
121 #include <sys/kthread.h>
122
123 /*
124 * Unix communications domain.
125 *
126 * TODO:
127 * SEQPACKET, RDM
128 * rethink name space problems
129 * need a proper out-of-band
130 *
131 * Notes on locking:
132 *
133 * The generic rules noted in uipc_socket2.c apply. In addition:
134 *
135 * o We have a global lock, uipc_lock.
136 *
137 * o All datagram sockets are locked by uipc_lock.
138 *
139 * o For stream socketpairs, the two endpoints are created sharing the same
140 * independent lock. Sockets presented to PRU_CONNECT2 must already have
141 * matching locks.
142 *
143 * o Stream sockets created via socket() start life with their own
144 * independent lock.
145 *
146 * o Stream connections to a named endpoint are slightly more complicated.
147 * Sockets that have called listen() have their lock pointer mutated to
148 * the global uipc_lock. When establishing a connection, the connecting
149 * socket also has its lock mutated to uipc_lock, which matches the head
150 * (listening socket). We create a new socket for accept() to return, and
151 * that also shares the head's lock. Until the connection is completely
152 * done on both ends, all three sockets are locked by uipc_lock. Once the
153 * connection is complete, the association with the head's lock is broken.
154 * The connecting socket and the socket returned from accept() have their
155 * lock pointers mutated away from uipc_lock, and back to the connecting
156 * socket's original, independent lock. The head continues to be locked
157 * by uipc_lock.
158 *
159 * o If uipc_lock is determined to be a significant source of contention,
160 * it could easily be hashed out. It is difficult to simply make it an
161 * independent lock because of visibility / garbage collection issues:
162 * if a socket has been associated with a lock at any point, that lock
163 * must remain valid until the socket is no longer visible in the system.
164 * The lock must not be freed or otherwise destroyed until any sockets
165 * that had referenced it have also been destroyed.
166 */
167 const struct sockaddr_un sun_noname = {
168 .sun_len = sizeof(sun_noname),
169 .sun_family = AF_LOCAL,
170 };
171 ino_t unp_ino; /* prototype for fake inode numbers */
172
173 struct mbuf *unp_addsockcred(struct lwp *, struct mbuf *);
174 static void unp_mark(file_t *);
175 static void unp_scan(struct mbuf *, void (*)(file_t *), int);
176 static void unp_discard_now(file_t *);
177 static void unp_discard_later(file_t *);
178 static void unp_thread(void *);
179 static void unp_thread_kick(void);
180 static kmutex_t *uipc_lock;
181
182 static kcondvar_t unp_thread_cv;
183 static lwp_t *unp_thread_lwp;
184 static SLIST_HEAD(,file) unp_thread_discard;
185 static int unp_defer;
186
187 /*
188 * Initialize Unix protocols.
189 */
190 void
191 uipc_init(void)
192 {
193 int error;
194
195 uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
196 cv_init(&unp_thread_cv, "unpgc");
197
198 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread,
199 NULL, &unp_thread_lwp, "unpgc");
200 if (error != 0)
201 panic("uipc_init %d", error);
202 }
203
204 /*
205 * A connection succeeded: disassociate both endpoints from the head's
206 * lock, and make them share their own lock. There is a race here: for
207 * a very brief time one endpoint will be locked by a different lock
208 * than the other end. However, since the current thread holds the old
209 * lock (the listening socket's lock, the head) access can still only be
210 * made to one side of the connection.
211 */
212 static void
213 unp_setpeerlocks(struct socket *so, struct socket *so2)
214 {
215 struct unpcb *unp;
216 kmutex_t *lock;
217
218 KASSERT(solocked2(so, so2));
219
220 /*
221 * Bail out if either end of the socket is not yet fully
222 * connected or accepted. We only break the lock association
223 * with the head when the pair of sockets stand completely
224 * on their own.
225 */
226 if (so->so_head != NULL || so2->so_head != NULL)
227 return;
228
229 /*
230 * Drop references to old lock. A third reference (from the
231 * queue head) must be held as we still hold its lock. Bonus:
232 * we don't need to worry about garbage collecting the lock.
233 */
234 lock = so->so_lock;
235 KASSERT(lock == uipc_lock);
236 mutex_obj_free(lock);
237 mutex_obj_free(lock);
238
239 /*
240 * Grab stream lock from the initiator and share between the two
241 * endpoints. Issue memory barrier to ensure all modifications
242 * become globally visible before the lock change. so2 is
243 * assumed not to have a stream lock, because it was created
244 * purely for the server side to accept this connection and
245 * started out life using the domain-wide lock.
246 */
247 unp = sotounpcb(so);
248 KASSERT(unp->unp_streamlock != NULL);
249 KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
250 lock = unp->unp_streamlock;
251 unp->unp_streamlock = NULL;
252 mutex_obj_hold(lock);
253 membar_exit();
254 solockreset(so, lock);
255 solockreset(so2, lock);
256 }
257
258 /*
259 * Reset a socket's lock back to the domain-wide lock.
260 */
261 static void
262 unp_resetlock(struct socket *so)
263 {
264 kmutex_t *olock, *nlock;
265 struct unpcb *unp;
266
267 KASSERT(solocked(so));
268
269 olock = so->so_lock;
270 nlock = uipc_lock;
271 if (olock == nlock)
272 return;
273 unp = sotounpcb(so);
274 KASSERT(unp->unp_streamlock == NULL);
275 unp->unp_streamlock = olock;
276 mutex_obj_hold(nlock);
277 mutex_enter(nlock);
278 solockreset(so, nlock);
279 mutex_exit(olock);
280 }
281
282 static void
283 unp_free(struct unpcb *unp)
284 {
285
286 if (unp->unp_addr)
287 free(unp->unp_addr, M_SONAME);
288 if (unp->unp_streamlock != NULL)
289 mutex_obj_free(unp->unp_streamlock);
290 free(unp, M_PCB);
291 }
292
293 int
294 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp,
295 struct lwp *l)
296 {
297 struct socket *so2;
298 const struct sockaddr_un *sun;
299
300 so2 = unp->unp_conn->unp_socket;
301
302 KASSERT(solocked(so2));
303
304 if (unp->unp_addr)
305 sun = unp->unp_addr;
306 else
307 sun = &sun_noname;
308 if (unp->unp_conn->unp_flags & UNP_WANTCRED)
309 control = unp_addsockcred(l, control);
310 if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
311 control) == 0) {
312 so2->so_rcv.sb_overflowed++;
313 unp_dispose(control);
314 m_freem(control);
315 m_freem(m);
316 return (ENOBUFS);
317 } else {
318 sorwakeup(so2);
319 return (0);
320 }
321 }
322
323 void
324 unp_setaddr(struct socket *so, struct mbuf *nam, bool peeraddr)
325 {
326 const struct sockaddr_un *sun;
327 struct unpcb *unp;
328 bool ext;
329
330 unp = sotounpcb(so);
331 ext = false;
332
333 for (;;) {
334 sun = NULL;
335 if (peeraddr) {
336 if (unp->unp_conn && unp->unp_conn->unp_addr)
337 sun = unp->unp_conn->unp_addr;
338 } else {
339 if (unp->unp_addr)
340 sun = unp->unp_addr;
341 }
342 if (sun == NULL)
343 sun = &sun_noname;
344 nam->m_len = sun->sun_len;
345 if (nam->m_len > MLEN && !ext) {
346 sounlock(so);
347 MEXTMALLOC(nam, MAXPATHLEN * 2, M_WAITOK);
348 solock(so);
349 ext = true;
350 } else {
351 KASSERT(nam->m_len <= MAXPATHLEN * 2);
352 memcpy(mtod(nam, void *), sun, (size_t)nam->m_len);
353 break;
354 }
355 }
356 }
357
358 /*ARGSUSED*/
359 int
360 uipc_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
361 struct mbuf *control, struct lwp *l)
362 {
363 struct unpcb *unp = sotounpcb(so);
364 struct socket *so2;
365 struct proc *p;
366 u_int newhiwat;
367 int error = 0;
368
369 if (req == PRU_CONTROL)
370 return (EOPNOTSUPP);
371
372 #ifdef DIAGNOSTIC
373 if (req != PRU_SEND && req != PRU_SENDOOB && control)
374 panic("uipc_usrreq: unexpected control mbuf");
375 #endif
376 p = l ? l->l_proc : NULL;
377 if (req != PRU_ATTACH) {
378 if (unp == 0) {
379 error = EINVAL;
380 goto release;
381 }
382 KASSERT(solocked(so));
383 }
384
385 switch (req) {
386
387 case PRU_ATTACH:
388 if (unp != 0) {
389 error = EISCONN;
390 break;
391 }
392 error = unp_attach(so);
393 break;
394
395 case PRU_DETACH:
396 unp_detach(unp);
397 break;
398
399 case PRU_BIND:
400 KASSERT(l != NULL);
401 error = unp_bind(so, nam, l);
402 break;
403
404 case PRU_LISTEN:
405 /*
406 * If the socket can accept a connection, it must be
407 * locked by uipc_lock.
408 */
409 unp_resetlock(so);
410 if (unp->unp_vnode == 0)
411 error = EINVAL;
412 break;
413
414 case PRU_CONNECT:
415 KASSERT(l != NULL);
416 error = unp_connect(so, nam, l);
417 break;
418
419 case PRU_CONNECT2:
420 error = unp_connect2(so, (struct socket *)nam, PRU_CONNECT2);
421 break;
422
423 case PRU_DISCONNECT:
424 unp_disconnect(unp);
425 break;
426
427 case PRU_ACCEPT:
428 KASSERT(so->so_lock == uipc_lock);
429 /*
430 * Mark the initiating STREAM socket as connected *ONLY*
431 * after it's been accepted. This prevents a client from
432 * overrunning a server and receiving ECONNREFUSED.
433 */
434 if (unp->unp_conn == NULL)
435 break;
436 so2 = unp->unp_conn->unp_socket;
437 if (so2->so_state & SS_ISCONNECTING) {
438 KASSERT(solocked2(so, so->so_head));
439 KASSERT(solocked2(so2, so->so_head));
440 soisconnected(so2);
441 }
442 /*
443 * If the connection is fully established, break the
444 * association with uipc_lock and give the connected
445 * pair a seperate lock to share.
446 */
447 unp_setpeerlocks(so2, so);
448 /*
449 * Only now return peer's address, as we may need to
450 * block in order to allocate memory.
451 *
452 * XXX Minor race: connection can be broken while
453 * lock is dropped in unp_setaddr(). We will return
454 * error == 0 and sun_noname as the peer address.
455 */
456 unp_setaddr(so, nam, true);
457 break;
458
459 case PRU_SHUTDOWN:
460 socantsendmore(so);
461 unp_shutdown(unp);
462 break;
463
464 case PRU_RCVD:
465 switch (so->so_type) {
466
467 case SOCK_DGRAM:
468 panic("uipc 1");
469 /*NOTREACHED*/
470
471 case SOCK_STREAM:
472 #define rcv (&so->so_rcv)
473 #define snd (&so2->so_snd)
474 if (unp->unp_conn == 0)
475 break;
476 so2 = unp->unp_conn->unp_socket;
477 KASSERT(solocked2(so, so2));
478 /*
479 * Adjust backpressure on sender
480 * and wakeup any waiting to write.
481 */
482 snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
483 unp->unp_mbcnt = rcv->sb_mbcnt;
484 newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
485 (void)chgsbsize(so2->so_uidinfo,
486 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
487 unp->unp_cc = rcv->sb_cc;
488 sowwakeup(so2);
489 #undef snd
490 #undef rcv
491 break;
492
493 default:
494 panic("uipc 2");
495 }
496 break;
497
498 case PRU_SEND:
499 /*
500 * Note: unp_internalize() rejects any control message
501 * other than SCM_RIGHTS, and only allows one. This
502 * has the side-effect of preventing a caller from
503 * forging SCM_CREDS.
504 */
505 if (control) {
506 sounlock(so);
507 error = unp_internalize(&control);
508 solock(so);
509 if (error != 0) {
510 m_freem(control);
511 m_freem(m);
512 break;
513 }
514 }
515 switch (so->so_type) {
516
517 case SOCK_DGRAM: {
518 KASSERT(so->so_lock == uipc_lock);
519 if (nam) {
520 if ((so->so_state & SS_ISCONNECTED) != 0)
521 error = EISCONN;
522 else {
523 /*
524 * Note: once connected, the
525 * socket's lock must not be
526 * dropped until we have sent
527 * the message and disconnected.
528 * This is necessary to prevent
529 * intervening control ops, like
530 * another connection.
531 */
532 error = unp_connect(so, nam, l);
533 }
534 } else {
535 if ((so->so_state & SS_ISCONNECTED) == 0)
536 error = ENOTCONN;
537 }
538 if (error) {
539 unp_dispose(control);
540 m_freem(control);
541 m_freem(m);
542 break;
543 }
544 KASSERT(p != NULL);
545 error = unp_output(m, control, unp, l);
546 if (nam)
547 unp_disconnect(unp);
548 break;
549 }
550
551 case SOCK_STREAM:
552 #define rcv (&so2->so_rcv)
553 #define snd (&so->so_snd)
554 if (unp->unp_conn == NULL) {
555 error = ENOTCONN;
556 break;
557 }
558 so2 = unp->unp_conn->unp_socket;
559 KASSERT(solocked2(so, so2));
560 if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
561 /*
562 * Credentials are passed only once on
563 * SOCK_STREAM.
564 */
565 unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
566 control = unp_addsockcred(l, control);
567 }
568 /*
569 * Send to paired receive port, and then reduce
570 * send buffer hiwater marks to maintain backpressure.
571 * Wake up readers.
572 */
573 if (control) {
574 if (sbappendcontrol(rcv, m, control) != 0)
575 control = NULL;
576 } else
577 sbappend(rcv, m);
578 snd->sb_mbmax -=
579 rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
580 unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
581 newhiwat = snd->sb_hiwat -
582 (rcv->sb_cc - unp->unp_conn->unp_cc);
583 (void)chgsbsize(so->so_uidinfo,
584 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
585 unp->unp_conn->unp_cc = rcv->sb_cc;
586 sorwakeup(so2);
587 #undef snd
588 #undef rcv
589 if (control != NULL) {
590 unp_dispose(control);
591 m_freem(control);
592 }
593 break;
594
595 default:
596 panic("uipc 4");
597 }
598 break;
599
600 case PRU_ABORT:
601 (void)unp_drop(unp, ECONNABORTED);
602
603 KASSERT(so->so_head == NULL);
604 #ifdef DIAGNOSTIC
605 if (so->so_pcb == 0)
606 panic("uipc 5: drop killed pcb");
607 #endif
608 unp_detach(unp);
609 break;
610
611 case PRU_SENSE:
612 ((struct stat *) m)->st_blksize = so->so_snd.sb_hiwat;
613 if (so->so_type == SOCK_STREAM && unp->unp_conn != 0) {
614 so2 = unp->unp_conn->unp_socket;
615 KASSERT(solocked2(so, so2));
616 ((struct stat *) m)->st_blksize += so2->so_rcv.sb_cc;
617 }
618 ((struct stat *) m)->st_dev = NODEV;
619 if (unp->unp_ino == 0)
620 unp->unp_ino = unp_ino++;
621 ((struct stat *) m)->st_atimespec =
622 ((struct stat *) m)->st_mtimespec =
623 ((struct stat *) m)->st_ctimespec = unp->unp_ctime;
624 ((struct stat *) m)->st_ino = unp->unp_ino;
625 return (0);
626
627 case PRU_RCVOOB:
628 error = EOPNOTSUPP;
629 break;
630
631 case PRU_SENDOOB:
632 m_freem(control);
633 m_freem(m);
634 error = EOPNOTSUPP;
635 break;
636
637 case PRU_SOCKADDR:
638 unp_setaddr(so, nam, false);
639 break;
640
641 case PRU_PEERADDR:
642 unp_setaddr(so, nam, true);
643 break;
644
645 default:
646 panic("piusrreq");
647 }
648
649 release:
650 return (error);
651 }
652
653 /*
654 * Unix domain socket option processing.
655 */
656 int
657 uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
658 {
659 struct unpcb *unp = sotounpcb(so);
660 int optval = 0, error = 0;
661
662 KASSERT(solocked(so));
663
664 if (sopt->sopt_level != 0) {
665 error = ENOPROTOOPT;
666 } else switch (op) {
667
668 case PRCO_SETOPT:
669 switch (sopt->sopt_name) {
670 case LOCAL_CREDS:
671 case LOCAL_CONNWAIT:
672 error = sockopt_getint(sopt, &optval);
673 if (error)
674 break;
675 switch (sopt->sopt_name) {
676 #define OPTSET(bit) \
677 if (optval) \
678 unp->unp_flags |= (bit); \
679 else \
680 unp->unp_flags &= ~(bit);
681
682 case LOCAL_CREDS:
683 OPTSET(UNP_WANTCRED);
684 break;
685 case LOCAL_CONNWAIT:
686 OPTSET(UNP_CONNWAIT);
687 break;
688 }
689 break;
690 #undef OPTSET
691
692 default:
693 error = ENOPROTOOPT;
694 break;
695 }
696 break;
697
698 case PRCO_GETOPT:
699 sounlock(so);
700 switch (sopt->sopt_name) {
701 case LOCAL_PEEREID:
702 if (unp->unp_flags & UNP_EIDSVALID) {
703 error = sockopt_set(sopt,
704 &unp->unp_connid, sizeof(unp->unp_connid));
705 } else {
706 error = EINVAL;
707 }
708 break;
709 case LOCAL_CREDS:
710 #define OPTBIT(bit) (unp->unp_flags & (bit) ? 1 : 0)
711
712 optval = OPTBIT(UNP_WANTCRED);
713 error = sockopt_setint(sopt, optval);
714 break;
715 #undef OPTBIT
716
717 default:
718 error = ENOPROTOOPT;
719 break;
720 }
721 solock(so);
722 break;
723 }
724 return (error);
725 }
726
727 /*
728 * Both send and receive buffers are allocated PIPSIZ bytes of buffering
729 * for stream sockets, although the total for sender and receiver is
730 * actually only PIPSIZ.
731 * Datagram sockets really use the sendspace as the maximum datagram size,
732 * and don't really want to reserve the sendspace. Their recvspace should
733 * be large enough for at least one max-size datagram plus address.
734 */
735 #define PIPSIZ 4096
736 u_long unpst_sendspace = PIPSIZ;
737 u_long unpst_recvspace = PIPSIZ;
738 u_long unpdg_sendspace = 2*1024; /* really max datagram size */
739 u_long unpdg_recvspace = 4*1024;
740
741 u_int unp_rights; /* files in flight */
742 u_int unp_rights_ratio = 2; /* limit, fraction of maxfiles */
743
744 int
745 unp_attach(struct socket *so)
746 {
747 struct unpcb *unp;
748 int error;
749
750 switch (so->so_type) {
751 case SOCK_STREAM:
752 if (so->so_lock == NULL) {
753 /*
754 * XXX Assuming that no socket locks are held,
755 * as this call may sleep.
756 */
757 so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
758 solock(so);
759 }
760 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
761 error = soreserve(so, unpst_sendspace, unpst_recvspace);
762 if (error != 0)
763 return (error);
764 }
765 break;
766
767 case SOCK_DGRAM:
768 if (so->so_lock == NULL) {
769 mutex_obj_hold(uipc_lock);
770 so->so_lock = uipc_lock;
771 solock(so);
772 }
773 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
774 error = soreserve(so, unpdg_sendspace, unpdg_recvspace);
775 if (error != 0)
776 return (error);
777 }
778 break;
779
780 default:
781 panic("unp_attach");
782 }
783 KASSERT(solocked(so));
784 unp = malloc(sizeof(*unp), M_PCB, M_NOWAIT);
785 if (unp == NULL)
786 return (ENOBUFS);
787 memset((void *)unp, 0, sizeof(*unp));
788 unp->unp_socket = so;
789 so->so_pcb = unp;
790 nanotime(&unp->unp_ctime);
791 return (0);
792 }
793
794 void
795 unp_detach(struct unpcb *unp)
796 {
797 struct socket *so;
798 vnode_t *vp;
799
800 so = unp->unp_socket;
801
802 retry:
803 if ((vp = unp->unp_vnode) != NULL) {
804 sounlock(so);
805 /* Acquire v_interlock to protect against unp_connect(). */
806 /* XXXAD racy */
807 mutex_enter(&vp->v_interlock);
808 vp->v_socket = NULL;
809 vrelel(vp, 0);
810 solock(so);
811 unp->unp_vnode = NULL;
812 }
813 if (unp->unp_conn)
814 unp_disconnect(unp);
815 while (unp->unp_refs) {
816 KASSERT(solocked2(so, unp->unp_refs->unp_socket));
817 if (unp_drop(unp->unp_refs, ECONNRESET)) {
818 solock(so);
819 goto retry;
820 }
821 }
822 soisdisconnected(so);
823 so->so_pcb = NULL;
824 if (unp_rights) {
825 /*
826 * Normally the receive buffer is flushed later, in sofree,
827 * but if our receive buffer holds references to files that
828 * are now garbage, we will enqueue those file references to
829 * the garbage collector and kick it into action.
830 */
831 sorflush(so);
832 unp_free(unp);
833 unp_thread_kick();
834 } else
835 unp_free(unp);
836 }
837
838 int
839 unp_bind(struct socket *so, struct mbuf *nam, struct lwp *l)
840 {
841 struct sockaddr_un *sun;
842 struct unpcb *unp;
843 vnode_t *vp;
844 struct vattr vattr;
845 size_t addrlen;
846 int error;
847 struct nameidata nd;
848 proc_t *p;
849
850 unp = sotounpcb(so);
851 if (unp->unp_vnode != NULL)
852 return (EINVAL);
853 if ((unp->unp_flags & UNP_BUSY) != 0) {
854 /*
855 * EALREADY may not be strictly accurate, but since this
856 * is a major application error it's hardly a big deal.
857 */
858 return (EALREADY);
859 }
860 unp->unp_flags |= UNP_BUSY;
861 sounlock(so);
862
863 /*
864 * Allocate the new sockaddr. We have to allocate one
865 * extra byte so that we can ensure that the pathname
866 * is nul-terminated.
867 */
868 p = l->l_proc;
869 addrlen = nam->m_len + 1;
870 sun = malloc(addrlen, M_SONAME, M_WAITOK);
871 m_copydata(nam, 0, nam->m_len, (void *)sun);
872 *(((char *)sun) + nam->m_len) = '\0';
873
874 NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, UIO_SYSSPACE,
875 sun->sun_path);
876
877 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
878 if ((error = namei(&nd)) != 0)
879 goto bad;
880 vp = nd.ni_vp;
881 if (vp != NULL) {
882 VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
883 if (nd.ni_dvp == vp)
884 vrele(nd.ni_dvp);
885 else
886 vput(nd.ni_dvp);
887 vrele(vp);
888 error = EADDRINUSE;
889 goto bad;
890 }
891 VATTR_NULL(&vattr);
892 vattr.va_type = VSOCK;
893 vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
894 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
895 if (error)
896 goto bad;
897 vp = nd.ni_vp;
898 solock(so);
899 vp->v_socket = unp->unp_socket;
900 unp->unp_vnode = vp;
901 unp->unp_addrlen = addrlen;
902 unp->unp_addr = sun;
903 unp->unp_connid.unp_pid = p->p_pid;
904 unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
905 unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
906 unp->unp_flags |= UNP_EIDSBIND;
907 VOP_UNLOCK(vp, 0);
908 unp->unp_flags &= ~UNP_BUSY;
909 return (0);
910
911 bad:
912 free(sun, M_SONAME);
913 solock(so);
914 unp->unp_flags &= ~UNP_BUSY;
915 return (error);
916 }
917
918 int
919 unp_connect(struct socket *so, struct mbuf *nam, struct lwp *l)
920 {
921 struct sockaddr_un *sun;
922 vnode_t *vp;
923 struct socket *so2, *so3;
924 struct unpcb *unp, *unp2, *unp3;
925 size_t addrlen;
926 int error;
927 struct nameidata nd;
928
929 unp = sotounpcb(so);
930 if ((unp->unp_flags & UNP_BUSY) != 0) {
931 /*
932 * EALREADY may not be strictly accurate, but since this
933 * is a major application error it's hardly a big deal.
934 */
935 return (EALREADY);
936 }
937 unp->unp_flags |= UNP_BUSY;
938 sounlock(so);
939
940 /*
941 * Allocate a temporary sockaddr. We have to allocate one extra
942 * byte so that we can ensure that the pathname is nul-terminated.
943 * When we establish the connection, we copy the other PCB's
944 * sockaddr to our own.
945 */
946 addrlen = nam->m_len + 1;
947 sun = malloc(addrlen, M_SONAME, M_WAITOK);
948 m_copydata(nam, 0, nam->m_len, (void *)sun);
949 *(((char *)sun) + nam->m_len) = '\0';
950
951 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, UIO_SYSSPACE,
952 sun->sun_path);
953
954 if ((error = namei(&nd)) != 0)
955 goto bad2;
956 vp = nd.ni_vp;
957 if (vp->v_type != VSOCK) {
958 error = ENOTSOCK;
959 goto bad;
960 }
961 if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
962 goto bad;
963 /* Acquire v_interlock to protect against unp_detach(). */
964 mutex_enter(&vp->v_interlock);
965 so2 = vp->v_socket;
966 if (so2 == NULL) {
967 mutex_exit(&vp->v_interlock);
968 error = ECONNREFUSED;
969 goto bad;
970 }
971 if (so->so_type != so2->so_type) {
972 mutex_exit(&vp->v_interlock);
973 error = EPROTOTYPE;
974 goto bad;
975 }
976 solock(so);
977 unp_resetlock(so);
978 mutex_exit(&vp->v_interlock);
979 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
980 /*
981 * This may seem somewhat fragile but is OK: if we can
982 * see SO_ACCEPTCONN set on the endpoint, then it must
983 * be locked by the domain-wide uipc_lock.
984 */
985 KASSERT((so->so_options & SO_ACCEPTCONN) == 0 ||
986 so2->so_lock == uipc_lock);
987 if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
988 (so3 = sonewconn(so2, 0)) == 0) {
989 error = ECONNREFUSED;
990 sounlock(so);
991 goto bad;
992 }
993 unp2 = sotounpcb(so2);
994 unp3 = sotounpcb(so3);
995 if (unp2->unp_addr) {
996 unp3->unp_addr = malloc(unp2->unp_addrlen,
997 M_SONAME, M_WAITOK);
998 memcpy(unp3->unp_addr, unp2->unp_addr,
999 unp2->unp_addrlen);
1000 unp3->unp_addrlen = unp2->unp_addrlen;
1001 }
1002 unp3->unp_flags = unp2->unp_flags;
1003 unp3->unp_connid.unp_pid = l->l_proc->p_pid;
1004 unp3->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
1005 unp3->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
1006 unp3->unp_flags |= UNP_EIDSVALID;
1007 if (unp2->unp_flags & UNP_EIDSBIND) {
1008 unp->unp_connid = unp2->unp_connid;
1009 unp->unp_flags |= UNP_EIDSVALID;
1010 }
1011 so2 = so3;
1012 }
1013 error = unp_connect2(so, so2, PRU_CONNECT);
1014 sounlock(so);
1015 bad:
1016 vput(vp);
1017 bad2:
1018 free(sun, M_SONAME);
1019 solock(so);
1020 unp->unp_flags &= ~UNP_BUSY;
1021 return (error);
1022 }
1023
1024 int
1025 unp_connect2(struct socket *so, struct socket *so2, int req)
1026 {
1027 struct unpcb *unp = sotounpcb(so);
1028 struct unpcb *unp2;
1029
1030 if (so2->so_type != so->so_type)
1031 return (EPROTOTYPE);
1032
1033 /*
1034 * All three sockets involved must be locked by same lock:
1035 *
1036 * local endpoint (so)
1037 * remote endpoint (so2)
1038 * queue head (so->so_head, only if PR_CONNREQUIRED)
1039 */
1040 KASSERT(solocked2(so, so2));
1041 if (so->so_head != NULL) {
1042 KASSERT(so->so_lock == uipc_lock);
1043 KASSERT(solocked2(so, so->so_head));
1044 }
1045
1046 unp2 = sotounpcb(so2);
1047 unp->unp_conn = unp2;
1048 switch (so->so_type) {
1049
1050 case SOCK_DGRAM:
1051 unp->unp_nextref = unp2->unp_refs;
1052 unp2->unp_refs = unp;
1053 soisconnected(so);
1054 break;
1055
1056 case SOCK_STREAM:
1057 unp2->unp_conn = unp;
1058 if (req == PRU_CONNECT &&
1059 ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1060 soisconnecting(so);
1061 else
1062 soisconnected(so);
1063 soisconnected(so2);
1064 /*
1065 * If the connection is fully established, break the
1066 * association with uipc_lock and give the connected
1067 * pair a seperate lock to share. For CONNECT2, we
1068 * require that the locks already match (the sockets
1069 * are created that way).
1070 */
1071 if (req == PRU_CONNECT)
1072 unp_setpeerlocks(so, so2);
1073 break;
1074
1075 default:
1076 panic("unp_connect2");
1077 }
1078 return (0);
1079 }
1080
1081 void
1082 unp_disconnect(struct unpcb *unp)
1083 {
1084 struct unpcb *unp2 = unp->unp_conn;
1085 struct socket *so;
1086
1087 if (unp2 == 0)
1088 return;
1089 unp->unp_conn = 0;
1090 so = unp->unp_socket;
1091 switch (so->so_type) {
1092 case SOCK_DGRAM:
1093 if (unp2->unp_refs == unp)
1094 unp2->unp_refs = unp->unp_nextref;
1095 else {
1096 unp2 = unp2->unp_refs;
1097 for (;;) {
1098 KASSERT(solocked2(so, unp2->unp_socket));
1099 if (unp2 == 0)
1100 panic("unp_disconnect");
1101 if (unp2->unp_nextref == unp)
1102 break;
1103 unp2 = unp2->unp_nextref;
1104 }
1105 unp2->unp_nextref = unp->unp_nextref;
1106 }
1107 unp->unp_nextref = 0;
1108 so->so_state &= ~SS_ISCONNECTED;
1109 break;
1110
1111 case SOCK_STREAM:
1112 KASSERT(solocked2(so, unp2->unp_socket));
1113 soisdisconnected(so);
1114 unp2->unp_conn = 0;
1115 soisdisconnected(unp2->unp_socket);
1116 break;
1117 }
1118 }
1119
1120 #ifdef notdef
1121 unp_abort(struct unpcb *unp)
1122 {
1123 unp_detach(unp);
1124 }
1125 #endif
1126
1127 void
1128 unp_shutdown(struct unpcb *unp)
1129 {
1130 struct socket *so;
1131
1132 if (unp->unp_socket->so_type == SOCK_STREAM && unp->unp_conn &&
1133 (so = unp->unp_conn->unp_socket))
1134 socantrcvmore(so);
1135 }
1136
1137 bool
1138 unp_drop(struct unpcb *unp, int errno)
1139 {
1140 struct socket *so = unp->unp_socket;
1141
1142 KASSERT(solocked(so));
1143
1144 so->so_error = errno;
1145 unp_disconnect(unp);
1146 if (so->so_head) {
1147 so->so_pcb = NULL;
1148 /* sofree() drops the socket lock */
1149 sofree(so);
1150 unp_free(unp);
1151 return true;
1152 }
1153 return false;
1154 }
1155
1156 #ifdef notdef
1157 unp_drain(void)
1158 {
1159
1160 }
1161 #endif
1162
1163 int
1164 unp_externalize(struct mbuf *rights, struct lwp *l)
1165 {
1166 struct cmsghdr *cm = mtod(rights, struct cmsghdr *);
1167 struct proc *p = l->l_proc;
1168 int i, *fdp;
1169 file_t **rp;
1170 file_t *fp;
1171 int nfds, error = 0;
1172
1173 nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
1174 sizeof(file_t *);
1175 rp = (file_t **)CMSG_DATA(cm);
1176
1177 fdp = malloc(nfds * sizeof(int), M_TEMP, M_WAITOK);
1178 rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
1179
1180 /* Make sure the recipient should be able to see the files.. */
1181 if (p->p_cwdi->cwdi_rdir != NULL) {
1182 rp = (file_t **)CMSG_DATA(cm);
1183 for (i = 0; i < nfds; i++) {
1184 fp = *rp++;
1185 /*
1186 * If we are in a chroot'ed directory, and
1187 * someone wants to pass us a directory, make
1188 * sure it's inside the subtree we're allowed
1189 * to access.
1190 */
1191 if (fp->f_type == DTYPE_VNODE) {
1192 vnode_t *vp = (vnode_t *)fp->f_data;
1193 if ((vp->v_type == VDIR) &&
1194 !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
1195 error = EPERM;
1196 break;
1197 }
1198 }
1199 }
1200 }
1201
1202 restart:
1203 rp = (file_t **)CMSG_DATA(cm);
1204 if (error != 0) {
1205 for (i = 0; i < nfds; i++) {
1206 fp = *rp;
1207 *rp++ = 0;
1208 unp_discard_now(fp);
1209 }
1210 goto out;
1211 }
1212
1213 /*
1214 * First loop -- allocate file descriptor table slots for the
1215 * new files.
1216 */
1217 for (i = 0; i < nfds; i++) {
1218 fp = *rp++;
1219 if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
1220 /*
1221 * Back out what we've done so far.
1222 */
1223 for (--i; i >= 0; i--) {
1224 fd_abort(p, NULL, fdp[i]);
1225 }
1226 if (error == ENOSPC) {
1227 fd_tryexpand(p);
1228 error = 0;
1229 } else {
1230 /*
1231 * This is the error that has historically
1232 * been returned, and some callers may
1233 * expect it.
1234 */
1235 error = EMSGSIZE;
1236 }
1237 goto restart;
1238 }
1239 }
1240
1241 /*
1242 * Now that adding them has succeeded, update all of the
1243 * file passing state and affix the descriptors.
1244 */
1245 rp = (file_t **)CMSG_DATA(cm);
1246 for (i = 0; i < nfds; i++) {
1247 fp = *rp++;
1248 atomic_dec_uint(&unp_rights);
1249 fd_affix(p, fp, fdp[i]);
1250 mutex_enter(&fp->f_lock);
1251 fp->f_msgcount--;
1252 mutex_exit(&fp->f_lock);
1253 /*
1254 * Note that fd_affix() adds a reference to the file.
1255 * The file may already have been closed by another
1256 * LWP in the process, so we must drop the reference
1257 * added by unp_internalize() with closef().
1258 */
1259 closef(fp);
1260 }
1261
1262 /*
1263 * Copy temporary array to message and adjust length, in case of
1264 * transition from large file_t pointers to ints.
1265 */
1266 memcpy(CMSG_DATA(cm), fdp, nfds * sizeof(int));
1267 cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
1268 rights->m_len = CMSG_SPACE(nfds * sizeof(int));
1269 out:
1270 rw_exit(&p->p_cwdi->cwdi_lock);
1271 free(fdp, M_TEMP);
1272 return (error);
1273 }
1274
1275 int
1276 unp_internalize(struct mbuf **controlp)
1277 {
1278 filedesc_t *fdescp = curlwp->l_fd;
1279 struct mbuf *control = *controlp;
1280 struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
1281 file_t **rp, **files;
1282 file_t *fp;
1283 int i, fd, *fdp;
1284 int nfds, error;
1285 u_int maxmsg;
1286
1287 error = 0;
1288 newcm = NULL;
1289
1290 /* Sanity check the control message header. */
1291 if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
1292 cm->cmsg_len > control->m_len ||
1293 cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
1294 return (EINVAL);
1295
1296 /*
1297 * Verify that the file descriptors are valid, and acquire
1298 * a reference to each.
1299 */
1300 nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
1301 fdp = (int *)CMSG_DATA(cm);
1302 maxmsg = maxfiles / unp_rights_ratio;
1303 for (i = 0; i < nfds; i++) {
1304 fd = *fdp++;
1305 if (atomic_inc_uint_nv(&unp_rights) > maxmsg) {
1306 atomic_dec_uint(&unp_rights);
1307 nfds = i;
1308 error = EAGAIN;
1309 goto out;
1310 }
1311 if ((fp = fd_getfile(fd)) == NULL) {
1312 atomic_dec_uint(&unp_rights);
1313 nfds = i;
1314 error = EBADF;
1315 goto out;
1316 }
1317 }
1318
1319 /* Allocate new space and copy header into it. */
1320 newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
1321 if (newcm == NULL) {
1322 error = E2BIG;
1323 goto out;
1324 }
1325 memcpy(newcm, cm, sizeof(struct cmsghdr));
1326 files = (file_t **)CMSG_DATA(newcm);
1327
1328 /*
1329 * Transform the file descriptors into file_t pointers, in
1330 * reverse order so that if pointers are bigger than ints, the
1331 * int won't get until we're done. No need to lock, as we have
1332 * already validated the descriptors with fd_getfile().
1333 */
1334 fdp = (int *)CMSG_DATA(cm) + nfds;
1335 rp = files + nfds;
1336 for (i = 0; i < nfds; i++) {
1337 fp = fdescp->fd_ofiles[*--fdp]->ff_file;
1338 KASSERT(fp != NULL);
1339 mutex_enter(&fp->f_lock);
1340 *--rp = fp;
1341 fp->f_count++;
1342 fp->f_msgcount++;
1343 mutex_exit(&fp->f_lock);
1344 }
1345
1346 out:
1347 /* Release descriptor references. */
1348 fdp = (int *)CMSG_DATA(cm);
1349 for (i = 0; i < nfds; i++) {
1350 fd_putfile(*fdp++);
1351 if (error != 0) {
1352 atomic_dec_uint(&unp_rights);
1353 }
1354 }
1355
1356 if (error == 0) {
1357 if (control->m_flags & M_EXT) {
1358 m_freem(control);
1359 *controlp = control = m_get(M_WAIT, MT_CONTROL);
1360 }
1361 MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
1362 M_MBUF, NULL, NULL);
1363 cm = newcm;
1364 /*
1365 * Adjust message & mbuf to note amount of space
1366 * actually used.
1367 */
1368 cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
1369 control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
1370 }
1371
1372 return error;
1373 }
1374
1375 struct mbuf *
1376 unp_addsockcred(struct lwp *l, struct mbuf *control)
1377 {
1378 struct cmsghdr *cmp;
1379 struct sockcred *sc;
1380 struct mbuf *m, *n;
1381 int len, space, i;
1382
1383 len = CMSG_LEN(SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)));
1384 space = CMSG_SPACE(SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)));
1385
1386 m = m_get(M_WAIT, MT_CONTROL);
1387 if (space > MLEN) {
1388 if (space > MCLBYTES)
1389 MEXTMALLOC(m, space, M_WAITOK);
1390 else
1391 m_clget(m, M_WAIT);
1392 if ((m->m_flags & M_EXT) == 0) {
1393 m_free(m);
1394 return (control);
1395 }
1396 }
1397
1398 m->m_len = space;
1399 m->m_next = NULL;
1400 cmp = mtod(m, struct cmsghdr *);
1401 sc = (struct sockcred *)CMSG_DATA(cmp);
1402 cmp->cmsg_len = len;
1403 cmp->cmsg_level = SOL_SOCKET;
1404 cmp->cmsg_type = SCM_CREDS;
1405 sc->sc_uid = kauth_cred_getuid(l->l_cred);
1406 sc->sc_euid = kauth_cred_geteuid(l->l_cred);
1407 sc->sc_gid = kauth_cred_getgid(l->l_cred);
1408 sc->sc_egid = kauth_cred_getegid(l->l_cred);
1409 sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
1410 for (i = 0; i < sc->sc_ngroups; i++)
1411 sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
1412
1413 /*
1414 * If a control message already exists, append us to the end.
1415 */
1416 if (control != NULL) {
1417 for (n = control; n->m_next != NULL; n = n->m_next)
1418 ;
1419 n->m_next = m;
1420 } else
1421 control = m;
1422
1423 return (control);
1424 }
1425
1426 /*
1427 * Do a mark-sweep GC of files in the system, to free up any which are
1428 * caught in flight to an about-to-be-closed socket. Additionally,
1429 * process deferred file closures.
1430 */
1431 static void
1432 unp_gc(file_t *dp)
1433 {
1434 extern struct domain unixdomain;
1435 file_t *fp, *np;
1436 struct socket *so, *so1;
1437 u_int i, old, new;
1438 bool didwork;
1439
1440 KASSERT(curlwp == unp_thread_lwp);
1441 KASSERT(mutex_owned(&filelist_lock));
1442
1443 /*
1444 * First, process deferred file closures.
1445 */
1446 while (!SLIST_EMPTY(&unp_thread_discard)) {
1447 fp = SLIST_FIRST(&unp_thread_discard);
1448 KASSERT(fp->f_unpcount > 0);
1449 KASSERT(fp->f_count > 0);
1450 KASSERT(fp->f_msgcount > 0);
1451 KASSERT(fp->f_count >= fp->f_unpcount);
1452 KASSERT(fp->f_count >= fp->f_msgcount);
1453 KASSERT(fp->f_msgcount >= fp->f_unpcount);
1454 SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist);
1455 i = fp->f_unpcount;
1456 fp->f_unpcount = 0;
1457 mutex_exit(&filelist_lock);
1458 for (; i != 0; i--) {
1459 unp_discard_now(fp);
1460 }
1461 mutex_enter(&filelist_lock);
1462 }
1463
1464 /*
1465 * Clear mark bits. Ensure that we don't consider new files
1466 * entering the file table during this loop (they will not have
1467 * FSCAN set).
1468 */
1469 unp_defer = 0;
1470 LIST_FOREACH(fp, &filehead, f_list) {
1471 for (old = fp->f_flag;; old = new) {
1472 new = atomic_cas_uint(&fp->f_flag, old,
1473 (old | FSCAN) & ~(FMARK|FDEFER));
1474 if (__predict_true(old == new)) {
1475 break;
1476 }
1477 }
1478 }
1479
1480 /*
1481 * Iterate over the set of sockets, marking ones believed (based on
1482 * refcount) to be referenced from a process, and marking for rescan
1483 * sockets which are queued on a socket. Recan continues descending
1484 * and searching for sockets referenced by sockets (FDEFER), until
1485 * there are no more socket->socket references to be discovered.
1486 */
1487 do {
1488 didwork = false;
1489 for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1490 KASSERT(mutex_owned(&filelist_lock));
1491 np = LIST_NEXT(fp, f_list);
1492 mutex_enter(&fp->f_lock);
1493 if ((fp->f_flag & FDEFER) != 0) {
1494 atomic_and_uint(&fp->f_flag, ~FDEFER);
1495 unp_defer--;
1496 KASSERT(fp->f_count != 0);
1497 } else {
1498 if (fp->f_count == 0 ||
1499 (fp->f_flag & FMARK) != 0 ||
1500 fp->f_count == fp->f_msgcount ||
1501 fp->f_unpcount != 0) {
1502 mutex_exit(&fp->f_lock);
1503 continue;
1504 }
1505 }
1506 atomic_or_uint(&fp->f_flag, FMARK);
1507
1508 if (fp->f_type != DTYPE_SOCKET ||
1509 (so = fp->f_data) == NULL ||
1510 so->so_proto->pr_domain != &unixdomain ||
1511 (so->so_proto->pr_flags & PR_RIGHTS) == 0) {
1512 mutex_exit(&fp->f_lock);
1513 continue;
1514 }
1515
1516 /* Gain file ref, mark our position, and unlock. */
1517 didwork = true;
1518 LIST_INSERT_AFTER(fp, dp, f_list);
1519 fp->f_count++;
1520 mutex_exit(&fp->f_lock);
1521 mutex_exit(&filelist_lock);
1522
1523 /*
1524 * Mark files referenced from sockets queued on the
1525 * accept queue as well.
1526 */
1527 solock(so);
1528 unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
1529 if ((so->so_options & SO_ACCEPTCONN) != 0) {
1530 TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
1531 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1532 }
1533 TAILQ_FOREACH(so1, &so->so_q, so_qe) {
1534 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1535 }
1536 }
1537 sounlock(so);
1538
1539 /* Re-lock and restart from where we left off. */
1540 closef(fp);
1541 mutex_enter(&filelist_lock);
1542 np = LIST_NEXT(dp, f_list);
1543 LIST_REMOVE(dp, f_list);
1544 }
1545 /*
1546 * Bail early if we did nothing in the loop above. Could
1547 * happen because of concurrent activity causing unp_defer
1548 * to get out of sync.
1549 */
1550 } while (unp_defer != 0 && didwork);
1551
1552 /*
1553 * Sweep pass.
1554 *
1555 * We grab an extra reference to each of the files that are
1556 * not otherwise accessible and then free the rights that are
1557 * stored in messages on them.
1558 */
1559 for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1560 KASSERT(mutex_owned(&filelist_lock));
1561 np = LIST_NEXT(fp, f_list);
1562 mutex_enter(&fp->f_lock);
1563
1564 /*
1565 * Ignore non-sockets.
1566 * Ignore dead sockets, or sockets with pending close.
1567 * Ignore sockets obviously referenced elsewhere.
1568 * Ignore sockets marked as referenced by our scan.
1569 * Ignore new sockets that did not exist during the scan.
1570 */
1571 if (fp->f_type != DTYPE_SOCKET ||
1572 fp->f_count == 0 || fp->f_unpcount != 0 ||
1573 fp->f_count != fp->f_msgcount ||
1574 (fp->f_flag & (FMARK | FSCAN)) != FSCAN) {
1575 mutex_exit(&fp->f_lock);
1576 continue;
1577 }
1578
1579 /* Gain file ref, mark our position, and unlock. */
1580 LIST_INSERT_AFTER(fp, dp, f_list);
1581 fp->f_count++;
1582 mutex_exit(&fp->f_lock);
1583 mutex_exit(&filelist_lock);
1584
1585 /*
1586 * Flush all data from the socket's receive buffer.
1587 * This will cause files referenced only by the
1588 * socket to be queued for close.
1589 */
1590 so = fp->f_data;
1591 solock(so);
1592 sorflush(so);
1593 sounlock(so);
1594
1595 /* Re-lock and restart from where we left off. */
1596 closef(fp);
1597 mutex_enter(&filelist_lock);
1598 np = LIST_NEXT(dp, f_list);
1599 LIST_REMOVE(dp, f_list);
1600 }
1601 }
1602
1603 /*
1604 * Garbage collector thread. While SCM_RIGHTS messages are in transit,
1605 * wake once per second to garbage collect. Run continually while we
1606 * have deferred closes to process.
1607 */
1608 static void
1609 unp_thread(void *cookie)
1610 {
1611 file_t *dp;
1612
1613 /* Allocate a dummy file for our scans. */
1614 if ((dp = fgetdummy()) == NULL) {
1615 panic("unp_thread");
1616 }
1617
1618 mutex_enter(&filelist_lock);
1619 for (;;) {
1620 KASSERT(mutex_owned(&filelist_lock));
1621 if (SLIST_EMPTY(&unp_thread_discard)) {
1622 if (unp_rights != 0) {
1623 (void)cv_timedwait(&unp_thread_cv,
1624 &filelist_lock, hz);
1625 } else {
1626 cv_wait(&unp_thread_cv, &filelist_lock);
1627 }
1628 }
1629 unp_gc(dp);
1630 }
1631 /* NOTREACHED */
1632 }
1633
1634 /*
1635 * Kick the garbage collector into action if there is something for
1636 * it to process.
1637 */
1638 static void
1639 unp_thread_kick(void)
1640 {
1641
1642 if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) {
1643 mutex_enter(&filelist_lock);
1644 cv_signal(&unp_thread_cv);
1645 mutex_exit(&filelist_lock);
1646 }
1647 }
1648
1649 void
1650 unp_dispose(struct mbuf *m)
1651 {
1652
1653 if (m)
1654 unp_scan(m, unp_discard_later, 1);
1655 }
1656
1657 void
1658 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
1659 {
1660 struct mbuf *m;
1661 file_t **rp, *fp;
1662 struct cmsghdr *cm;
1663 int i, qfds;
1664
1665 while (m0) {
1666 for (m = m0; m; m = m->m_next) {
1667 if (m->m_type != MT_CONTROL ||
1668 m->m_len < sizeof(*cm)) {
1669 continue;
1670 }
1671 cm = mtod(m, struct cmsghdr *);
1672 if (cm->cmsg_level != SOL_SOCKET ||
1673 cm->cmsg_type != SCM_RIGHTS)
1674 continue;
1675 qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
1676 / sizeof(file_t *);
1677 rp = (file_t **)CMSG_DATA(cm);
1678 for (i = 0; i < qfds; i++) {
1679 fp = *rp;
1680 if (discard) {
1681 *rp = 0;
1682 }
1683 (*op)(fp);
1684 rp++;
1685 }
1686 }
1687 m0 = m0->m_nextpkt;
1688 }
1689 }
1690
1691 void
1692 unp_mark(file_t *fp)
1693 {
1694
1695 if (fp == NULL)
1696 return;
1697
1698 /* If we're already deferred, don't screw up the defer count */
1699 mutex_enter(&fp->f_lock);
1700 if (fp->f_flag & (FMARK | FDEFER)) {
1701 mutex_exit(&fp->f_lock);
1702 return;
1703 }
1704
1705 /*
1706 * Minimize the number of deferrals... Sockets are the only type of
1707 * file which can hold references to another file, so just mark
1708 * other files, and defer unmarked sockets for the next pass.
1709 */
1710 if (fp->f_type == DTYPE_SOCKET) {
1711 unp_defer++;
1712 KASSERT(fp->f_count != 0);
1713 atomic_or_uint(&fp->f_flag, FDEFER);
1714 } else {
1715 atomic_or_uint(&fp->f_flag, FMARK);
1716 }
1717 mutex_exit(&fp->f_lock);
1718 }
1719
1720 static void
1721 unp_discard_now(file_t *fp)
1722 {
1723
1724 if (fp == NULL)
1725 return;
1726
1727 KASSERT(fp->f_count > 0);
1728 KASSERT(fp->f_msgcount > 0);
1729
1730 mutex_enter(&fp->f_lock);
1731 fp->f_msgcount--;
1732 mutex_exit(&fp->f_lock);
1733 atomic_dec_uint(&unp_rights);
1734 (void)closef(fp);
1735 }
1736
1737 static void
1738 unp_discard_later(file_t *fp)
1739 {
1740
1741 if (fp == NULL)
1742 return;
1743
1744 KASSERT(fp->f_count > 0);
1745 KASSERT(fp->f_msgcount > 0);
1746
1747 mutex_enter(&filelist_lock);
1748 if (fp->f_unpcount++ == 0) {
1749 SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist);
1750 }
1751 mutex_exit(&filelist_lock);
1752 }
1753