Home | History | Annotate | Line # | Download | only in kern
uipc_usrreq.c revision 1.133
      1 /*	$NetBSD: uipc_usrreq.c,v 1.133 2010/11/19 06:44:43 dholland Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 2000, 2004, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
     62  */
     63 
     64 /*
     65  * Copyright (c) 1997 Christopher G. Demetriou.  All rights reserved.
     66  *
     67  * Redistribution and use in source and binary forms, with or without
     68  * modification, are permitted provided that the following conditions
     69  * are met:
     70  * 1. Redistributions of source code must retain the above copyright
     71  *    notice, this list of conditions and the following disclaimer.
     72  * 2. Redistributions in binary form must reproduce the above copyright
     73  *    notice, this list of conditions and the following disclaimer in the
     74  *    documentation and/or other materials provided with the distribution.
     75  * 3. All advertising materials mentioning features or use of this software
     76  *    must display the following acknowledgement:
     77  *	This product includes software developed by the University of
     78  *	California, Berkeley and its contributors.
     79  * 4. Neither the name of the University nor the names of its contributors
     80  *    may be used to endorse or promote products derived from this software
     81  *    without specific prior written permission.
     82  *
     83  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     84  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     85  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     86  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     87  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     88  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     89  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     90  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     91  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     92  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     93  * SUCH DAMAGE.
     94  *
     95  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
     96  */
     97 
     98 #include <sys/cdefs.h>
     99 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.133 2010/11/19 06:44:43 dholland Exp $");
    100 
    101 #include <sys/param.h>
    102 #include <sys/systm.h>
    103 #include <sys/proc.h>
    104 #include <sys/filedesc.h>
    105 #include <sys/domain.h>
    106 #include <sys/protosw.h>
    107 #include <sys/socket.h>
    108 #include <sys/socketvar.h>
    109 #include <sys/unpcb.h>
    110 #include <sys/un.h>
    111 #include <sys/namei.h>
    112 #include <sys/vnode.h>
    113 #include <sys/file.h>
    114 #include <sys/stat.h>
    115 #include <sys/mbuf.h>
    116 #include <sys/kauth.h>
    117 #include <sys/kmem.h>
    118 #include <sys/atomic.h>
    119 #include <sys/uidinfo.h>
    120 #include <sys/kernel.h>
    121 #include <sys/kthread.h>
    122 
    123 /*
    124  * Unix communications domain.
    125  *
    126  * TODO:
    127  *	SEQPACKET, RDM
    128  *	rethink name space problems
    129  *	need a proper out-of-band
    130  *
    131  * Notes on locking:
    132  *
    133  * The generic rules noted in uipc_socket2.c apply.  In addition:
    134  *
    135  * o We have a global lock, uipc_lock.
    136  *
    137  * o All datagram sockets are locked by uipc_lock.
    138  *
    139  * o For stream socketpairs, the two endpoints are created sharing the same
    140  *   independent lock.  Sockets presented to PRU_CONNECT2 must already have
    141  *   matching locks.
    142  *
    143  * o Stream sockets created via socket() start life with their own
    144  *   independent lock.
    145  *
    146  * o Stream connections to a named endpoint are slightly more complicated.
    147  *   Sockets that have called listen() have their lock pointer mutated to
    148  *   the global uipc_lock.  When establishing a connection, the connecting
    149  *   socket also has its lock mutated to uipc_lock, which matches the head
    150  *   (listening socket).  We create a new socket for accept() to return, and
    151  *   that also shares the head's lock.  Until the connection is completely
    152  *   done on both ends, all three sockets are locked by uipc_lock.  Once the
    153  *   connection is complete, the association with the head's lock is broken.
    154  *   The connecting socket and the socket returned from accept() have their
    155  *   lock pointers mutated away from uipc_lock, and back to the connecting
    156  *   socket's original, independent lock.  The head continues to be locked
    157  *   by uipc_lock.
    158  *
    159  * o If uipc_lock is determined to be a significant source of contention,
    160  *   it could easily be hashed out.  It is difficult to simply make it an
    161  *   independent lock because of visibility / garbage collection issues:
    162  *   if a socket has been associated with a lock at any point, that lock
    163  *   must remain valid until the socket is no longer visible in the system.
    164  *   The lock must not be freed or otherwise destroyed until any sockets
    165  *   that had referenced it have also been destroyed.
    166  */
    167 const struct sockaddr_un sun_noname = {
    168 	.sun_len = sizeof(sun_noname),
    169 	.sun_family = AF_LOCAL,
    170 };
    171 ino_t	unp_ino;			/* prototype for fake inode numbers */
    172 
    173 struct mbuf *unp_addsockcred(struct lwp *, struct mbuf *);
    174 static void unp_mark(file_t *);
    175 static void unp_scan(struct mbuf *, void (*)(file_t *), int);
    176 static void unp_discard_now(file_t *);
    177 static void unp_discard_later(file_t *);
    178 static void unp_thread(void *);
    179 static void unp_thread_kick(void);
    180 static kmutex_t *uipc_lock;
    181 
    182 static kcondvar_t unp_thread_cv;
    183 static lwp_t *unp_thread_lwp;
    184 static SLIST_HEAD(,file) unp_thread_discard;
    185 static int unp_defer;
    186 
    187 /*
    188  * Initialize Unix protocols.
    189  */
    190 void
    191 uipc_init(void)
    192 {
    193 	int error;
    194 
    195 	uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    196 	cv_init(&unp_thread_cv, "unpgc");
    197 
    198 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread,
    199 	    NULL, &unp_thread_lwp, "unpgc");
    200 	if (error != 0)
    201 		panic("uipc_init %d", error);
    202 }
    203 
    204 /*
    205  * A connection succeeded: disassociate both endpoints from the head's
    206  * lock, and make them share their own lock.  There is a race here: for
    207  * a very brief time one endpoint will be locked by a different lock
    208  * than the other end.  However, since the current thread holds the old
    209  * lock (the listening socket's lock, the head) access can still only be
    210  * made to one side of the connection.
    211  */
    212 static void
    213 unp_setpeerlocks(struct socket *so, struct socket *so2)
    214 {
    215 	struct unpcb *unp;
    216 	kmutex_t *lock;
    217 
    218 	KASSERT(solocked2(so, so2));
    219 
    220 	/*
    221 	 * Bail out if either end of the socket is not yet fully
    222 	 * connected or accepted.  We only break the lock association
    223 	 * with the head when the pair of sockets stand completely
    224 	 * on their own.
    225 	 */
    226 	KASSERT(so->so_head == NULL);
    227 	if (so2->so_head != NULL)
    228 		return;
    229 
    230 	/*
    231 	 * Drop references to old lock.  A third reference (from the
    232 	 * queue head) must be held as we still hold its lock.  Bonus:
    233 	 * we don't need to worry about garbage collecting the lock.
    234 	 */
    235 	lock = so->so_lock;
    236 	KASSERT(lock == uipc_lock);
    237 	mutex_obj_free(lock);
    238 	mutex_obj_free(lock);
    239 
    240 	/*
    241 	 * Grab stream lock from the initiator and share between the two
    242 	 * endpoints.  Issue memory barrier to ensure all modifications
    243 	 * become globally visible before the lock change.  so2 is
    244 	 * assumed not to have a stream lock, because it was created
    245 	 * purely for the server side to accept this connection and
    246 	 * started out life using the domain-wide lock.
    247 	 */
    248 	unp = sotounpcb(so);
    249 	KASSERT(unp->unp_streamlock != NULL);
    250 	KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
    251 	lock = unp->unp_streamlock;
    252 	unp->unp_streamlock = NULL;
    253 	mutex_obj_hold(lock);
    254 	membar_exit();
    255 	/*
    256 	 * possible race if lock is not held - see comment in
    257 	 * uipc_usrreq(PRU_ACCEPT).
    258 	 */
    259 	KASSERT(mutex_owned(lock));
    260 	solockreset(so, lock);
    261 	solockreset(so2, lock);
    262 }
    263 
    264 /*
    265  * Reset a socket's lock back to the domain-wide lock.
    266  */
    267 static void
    268 unp_resetlock(struct socket *so)
    269 {
    270 	kmutex_t *olock, *nlock;
    271 	struct unpcb *unp;
    272 
    273 	KASSERT(solocked(so));
    274 
    275 	olock = so->so_lock;
    276 	nlock = uipc_lock;
    277 	if (olock == nlock)
    278 		return;
    279 	unp = sotounpcb(so);
    280 	KASSERT(unp->unp_streamlock == NULL);
    281 	unp->unp_streamlock = olock;
    282 	mutex_obj_hold(nlock);
    283 	mutex_enter(nlock);
    284 	solockreset(so, nlock);
    285 	mutex_exit(olock);
    286 }
    287 
    288 static void
    289 unp_free(struct unpcb *unp)
    290 {
    291 
    292 	if (unp->unp_addr)
    293 		free(unp->unp_addr, M_SONAME);
    294 	if (unp->unp_streamlock != NULL)
    295 		mutex_obj_free(unp->unp_streamlock);
    296 	free(unp, M_PCB);
    297 }
    298 
    299 int
    300 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp,
    301 	struct lwp *l)
    302 {
    303 	struct socket *so2;
    304 	const struct sockaddr_un *sun;
    305 
    306 	so2 = unp->unp_conn->unp_socket;
    307 
    308 	KASSERT(solocked(so2));
    309 
    310 	if (unp->unp_addr)
    311 		sun = unp->unp_addr;
    312 	else
    313 		sun = &sun_noname;
    314 	if (unp->unp_conn->unp_flags & UNP_WANTCRED)
    315 		control = unp_addsockcred(l, control);
    316 	if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
    317 	    control) == 0) {
    318 		so2->so_rcv.sb_overflowed++;
    319 		unp_dispose(control);
    320 		m_freem(control);
    321 		m_freem(m);
    322 		return (ENOBUFS);
    323 	} else {
    324 		sorwakeup(so2);
    325 		return (0);
    326 	}
    327 }
    328 
    329 void
    330 unp_setaddr(struct socket *so, struct mbuf *nam, bool peeraddr)
    331 {
    332 	const struct sockaddr_un *sun;
    333 	struct unpcb *unp;
    334 	bool ext;
    335 
    336 	KASSERT(solocked(so));
    337 	unp = sotounpcb(so);
    338 	ext = false;
    339 
    340 	for (;;) {
    341 		sun = NULL;
    342 		if (peeraddr) {
    343 			if (unp->unp_conn && unp->unp_conn->unp_addr)
    344 				sun = unp->unp_conn->unp_addr;
    345 		} else {
    346 			if (unp->unp_addr)
    347 				sun = unp->unp_addr;
    348 		}
    349 		if (sun == NULL)
    350 			sun = &sun_noname;
    351 		nam->m_len = sun->sun_len;
    352 		if (nam->m_len > MLEN && !ext) {
    353 			sounlock(so);
    354 			MEXTMALLOC(nam, MAXPATHLEN * 2, M_WAITOK);
    355 			solock(so);
    356 			ext = true;
    357 		} else {
    358 			KASSERT(nam->m_len <= MAXPATHLEN * 2);
    359 			memcpy(mtod(nam, void *), sun, (size_t)nam->m_len);
    360 			break;
    361 		}
    362 	}
    363 }
    364 
    365 /*ARGSUSED*/
    366 int
    367 uipc_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
    368 	struct mbuf *control, struct lwp *l)
    369 {
    370 	struct unpcb *unp = sotounpcb(so);
    371 	struct socket *so2;
    372 	struct proc *p;
    373 	u_int newhiwat;
    374 	int error = 0;
    375 
    376 	if (req == PRU_CONTROL)
    377 		return (EOPNOTSUPP);
    378 
    379 #ifdef DIAGNOSTIC
    380 	if (req != PRU_SEND && req != PRU_SENDOOB && control)
    381 		panic("uipc_usrreq: unexpected control mbuf");
    382 #endif
    383 	p = l ? l->l_proc : NULL;
    384 	if (req != PRU_ATTACH) {
    385 		if (unp == NULL) {
    386 			error = EINVAL;
    387 			goto release;
    388 		}
    389 		KASSERT(solocked(so));
    390 	}
    391 
    392 	switch (req) {
    393 
    394 	case PRU_ATTACH:
    395 		if (unp != NULL) {
    396 			error = EISCONN;
    397 			break;
    398 		}
    399 		error = unp_attach(so);
    400 		break;
    401 
    402 	case PRU_DETACH:
    403 		unp_detach(unp);
    404 		break;
    405 
    406 	case PRU_BIND:
    407 		KASSERT(l != NULL);
    408 		error = unp_bind(so, nam, l);
    409 		break;
    410 
    411 	case PRU_LISTEN:
    412 		/*
    413 		 * If the socket can accept a connection, it must be
    414 		 * locked by uipc_lock.
    415 		 */
    416 		unp_resetlock(so);
    417 		if (unp->unp_vnode == NULL)
    418 			error = EINVAL;
    419 		break;
    420 
    421 	case PRU_CONNECT:
    422 		KASSERT(l != NULL);
    423 		error = unp_connect(so, nam, l);
    424 		break;
    425 
    426 	case PRU_CONNECT2:
    427 		error = unp_connect2(so, (struct socket *)nam, PRU_CONNECT2);
    428 		break;
    429 
    430 	case PRU_DISCONNECT:
    431 		unp_disconnect(unp);
    432 		break;
    433 
    434 	case PRU_ACCEPT:
    435 		KASSERT(so->so_lock == uipc_lock);
    436 		/*
    437 		 * Mark the initiating STREAM socket as connected *ONLY*
    438 		 * after it's been accepted.  This prevents a client from
    439 		 * overrunning a server and receiving ECONNREFUSED.
    440 		 */
    441 		if (unp->unp_conn == NULL)
    442 			break;
    443 		so2 = unp->unp_conn->unp_socket;
    444 		if (so2->so_state & SS_ISCONNECTING) {
    445 			KASSERT(solocked2(so, so->so_head));
    446 			KASSERT(solocked2(so2, so->so_head));
    447 			soisconnected(so2);
    448 		}
    449 		/*
    450 		 * If the connection is fully established, break the
    451 		 * association with uipc_lock and give the connected
    452 		 * pair a seperate lock to share.
    453 		 * There is a race here: sotounpcb(so2)->unp_streamlock
    454 		 * is not locked, so when changing so2->so_lock
    455 		 * another thread can grab it while so->so_lock is still
    456 		 * pointing to the (locked) uipc_lock.
    457 		 * this should be harmless, except that this makes
    458 		 * solocked2() and solocked() unreliable.
    459 		 * Another problem is that unp_setaddr() expects the
    460 		 * the socket locked. Grabing sotounpcb(so2)->unp_streamlock
    461 		 * fixes both issues.
    462 		 */
    463 		mutex_enter(sotounpcb(so2)->unp_streamlock);
    464 		unp_setpeerlocks(so2, so);
    465 		/*
    466 		 * Only now return peer's address, as we may need to
    467 		 * block in order to allocate memory.
    468 		 *
    469 		 * XXX Minor race: connection can be broken while
    470 		 * lock is dropped in unp_setaddr().  We will return
    471 		 * error == 0 and sun_noname as the peer address.
    472 		 */
    473 		unp_setaddr(so, nam, true);
    474 		/* so_lock now points to unp_streamlock */
    475 		mutex_exit(so2->so_lock);
    476 		break;
    477 
    478 	case PRU_SHUTDOWN:
    479 		socantsendmore(so);
    480 		unp_shutdown(unp);
    481 		break;
    482 
    483 	case PRU_RCVD:
    484 		switch (so->so_type) {
    485 
    486 		case SOCK_DGRAM:
    487 			panic("uipc 1");
    488 			/*NOTREACHED*/
    489 
    490 		case SOCK_STREAM:
    491 #define	rcv (&so->so_rcv)
    492 #define snd (&so2->so_snd)
    493 			if (unp->unp_conn == 0)
    494 				break;
    495 			so2 = unp->unp_conn->unp_socket;
    496 			KASSERT(solocked2(so, so2));
    497 			/*
    498 			 * Adjust backpressure on sender
    499 			 * and wakeup any waiting to write.
    500 			 */
    501 			snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
    502 			unp->unp_mbcnt = rcv->sb_mbcnt;
    503 			newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
    504 			(void)chgsbsize(so2->so_uidinfo,
    505 			    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
    506 			unp->unp_cc = rcv->sb_cc;
    507 			sowwakeup(so2);
    508 #undef snd
    509 #undef rcv
    510 			break;
    511 
    512 		default:
    513 			panic("uipc 2");
    514 		}
    515 		break;
    516 
    517 	case PRU_SEND:
    518 		/*
    519 		 * Note: unp_internalize() rejects any control message
    520 		 * other than SCM_RIGHTS, and only allows one.  This
    521 		 * has the side-effect of preventing a caller from
    522 		 * forging SCM_CREDS.
    523 		 */
    524 		if (control) {
    525 			sounlock(so);
    526 			error = unp_internalize(&control);
    527 			solock(so);
    528 			if (error != 0) {
    529 				m_freem(control);
    530 				m_freem(m);
    531 				break;
    532 			}
    533 		}
    534 		switch (so->so_type) {
    535 
    536 		case SOCK_DGRAM: {
    537 			KASSERT(so->so_lock == uipc_lock);
    538 			if (nam) {
    539 				if ((so->so_state & SS_ISCONNECTED) != 0)
    540 					error = EISCONN;
    541 				else {
    542 					/*
    543 					 * Note: once connected, the
    544 					 * socket's lock must not be
    545 					 * dropped until we have sent
    546 					 * the message and disconnected.
    547 					 * This is necessary to prevent
    548 					 * intervening control ops, like
    549 					 * another connection.
    550 					 */
    551 					error = unp_connect(so, nam, l);
    552 				}
    553 			} else {
    554 				if ((so->so_state & SS_ISCONNECTED) == 0)
    555 					error = ENOTCONN;
    556 			}
    557 			if (error) {
    558 				unp_dispose(control);
    559 				m_freem(control);
    560 				m_freem(m);
    561 				break;
    562 			}
    563 			KASSERT(p != NULL);
    564 			error = unp_output(m, control, unp, l);
    565 			if (nam)
    566 				unp_disconnect(unp);
    567 			break;
    568 		}
    569 
    570 		case SOCK_STREAM:
    571 #define	rcv (&so2->so_rcv)
    572 #define	snd (&so->so_snd)
    573 			if (unp->unp_conn == NULL) {
    574 				error = ENOTCONN;
    575 				break;
    576 			}
    577 			so2 = unp->unp_conn->unp_socket;
    578 			KASSERT(solocked2(so, so2));
    579 			if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
    580 				/*
    581 				 * Credentials are passed only once on
    582 				 * SOCK_STREAM.
    583 				 */
    584 				unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
    585 				control = unp_addsockcred(l, control);
    586 			}
    587 			/*
    588 			 * Send to paired receive port, and then reduce
    589 			 * send buffer hiwater marks to maintain backpressure.
    590 			 * Wake up readers.
    591 			 */
    592 			if (control) {
    593 				if (sbappendcontrol(rcv, m, control) != 0)
    594 					control = NULL;
    595 			} else
    596 				sbappend(rcv, m);
    597 			snd->sb_mbmax -=
    598 			    rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
    599 			unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
    600 			newhiwat = snd->sb_hiwat -
    601 			    (rcv->sb_cc - unp->unp_conn->unp_cc);
    602 			(void)chgsbsize(so->so_uidinfo,
    603 			    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
    604 			unp->unp_conn->unp_cc = rcv->sb_cc;
    605 			sorwakeup(so2);
    606 #undef snd
    607 #undef rcv
    608 			if (control != NULL) {
    609 				unp_dispose(control);
    610 				m_freem(control);
    611 			}
    612 			break;
    613 
    614 		default:
    615 			panic("uipc 4");
    616 		}
    617 		break;
    618 
    619 	case PRU_ABORT:
    620 		(void)unp_drop(unp, ECONNABORTED);
    621 
    622 		KASSERT(so->so_head == NULL);
    623 #ifdef DIAGNOSTIC
    624 		if (so->so_pcb == NULL)
    625 			panic("uipc 5: drop killed pcb");
    626 #endif
    627 		unp_detach(unp);
    628 		break;
    629 
    630 	case PRU_SENSE:
    631 		((struct stat *) m)->st_blksize = so->so_snd.sb_hiwat;
    632 		if (so->so_type == SOCK_STREAM && unp->unp_conn != 0) {
    633 			so2 = unp->unp_conn->unp_socket;
    634 			KASSERT(solocked2(so, so2));
    635 			((struct stat *) m)->st_blksize += so2->so_rcv.sb_cc;
    636 		}
    637 		((struct stat *) m)->st_dev = NODEV;
    638 		if (unp->unp_ino == 0)
    639 			unp->unp_ino = unp_ino++;
    640 		((struct stat *) m)->st_atimespec =
    641 		    ((struct stat *) m)->st_mtimespec =
    642 		    ((struct stat *) m)->st_ctimespec = unp->unp_ctime;
    643 		((struct stat *) m)->st_ino = unp->unp_ino;
    644 		return (0);
    645 
    646 	case PRU_RCVOOB:
    647 		error = EOPNOTSUPP;
    648 		break;
    649 
    650 	case PRU_SENDOOB:
    651 		m_freem(control);
    652 		m_freem(m);
    653 		error = EOPNOTSUPP;
    654 		break;
    655 
    656 	case PRU_SOCKADDR:
    657 		unp_setaddr(so, nam, false);
    658 		break;
    659 
    660 	case PRU_PEERADDR:
    661 		unp_setaddr(so, nam, true);
    662 		break;
    663 
    664 	default:
    665 		panic("piusrreq");
    666 	}
    667 
    668 release:
    669 	return (error);
    670 }
    671 
    672 /*
    673  * Unix domain socket option processing.
    674  */
    675 int
    676 uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
    677 {
    678 	struct unpcb *unp = sotounpcb(so);
    679 	int optval = 0, error = 0;
    680 
    681 	KASSERT(solocked(so));
    682 
    683 	if (sopt->sopt_level != 0) {
    684 		error = ENOPROTOOPT;
    685 	} else switch (op) {
    686 
    687 	case PRCO_SETOPT:
    688 		switch (sopt->sopt_name) {
    689 		case LOCAL_CREDS:
    690 		case LOCAL_CONNWAIT:
    691 			error = sockopt_getint(sopt, &optval);
    692 			if (error)
    693 				break;
    694 			switch (sopt->sopt_name) {
    695 #define	OPTSET(bit) \
    696 	if (optval) \
    697 		unp->unp_flags |= (bit); \
    698 	else \
    699 		unp->unp_flags &= ~(bit);
    700 
    701 			case LOCAL_CREDS:
    702 				OPTSET(UNP_WANTCRED);
    703 				break;
    704 			case LOCAL_CONNWAIT:
    705 				OPTSET(UNP_CONNWAIT);
    706 				break;
    707 			}
    708 			break;
    709 #undef OPTSET
    710 
    711 		default:
    712 			error = ENOPROTOOPT;
    713 			break;
    714 		}
    715 		break;
    716 
    717 	case PRCO_GETOPT:
    718 		sounlock(so);
    719 		switch (sopt->sopt_name) {
    720 		case LOCAL_PEEREID:
    721 			if (unp->unp_flags & UNP_EIDSVALID) {
    722 				error = sockopt_set(sopt,
    723 				    &unp->unp_connid, sizeof(unp->unp_connid));
    724 			} else {
    725 				error = EINVAL;
    726 			}
    727 			break;
    728 		case LOCAL_CREDS:
    729 #define	OPTBIT(bit)	(unp->unp_flags & (bit) ? 1 : 0)
    730 
    731 			optval = OPTBIT(UNP_WANTCRED);
    732 			error = sockopt_setint(sopt, optval);
    733 			break;
    734 #undef OPTBIT
    735 
    736 		default:
    737 			error = ENOPROTOOPT;
    738 			break;
    739 		}
    740 		solock(so);
    741 		break;
    742 	}
    743 	return (error);
    744 }
    745 
    746 /*
    747  * Both send and receive buffers are allocated PIPSIZ bytes of buffering
    748  * for stream sockets, although the total for sender and receiver is
    749  * actually only PIPSIZ.
    750  * Datagram sockets really use the sendspace as the maximum datagram size,
    751  * and don't really want to reserve the sendspace.  Their recvspace should
    752  * be large enough for at least one max-size datagram plus address.
    753  */
    754 #define	PIPSIZ	4096
    755 u_long	unpst_sendspace = PIPSIZ;
    756 u_long	unpst_recvspace = PIPSIZ;
    757 u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
    758 u_long	unpdg_recvspace = 4*1024;
    759 
    760 u_int	unp_rights;			/* files in flight */
    761 u_int	unp_rights_ratio = 2;		/* limit, fraction of maxfiles */
    762 
    763 int
    764 unp_attach(struct socket *so)
    765 {
    766 	struct unpcb *unp;
    767 	int error;
    768 
    769 	switch (so->so_type) {
    770 	case SOCK_STREAM:
    771 		if (so->so_lock == NULL) {
    772 			/*
    773 			 * XXX Assuming that no socket locks are held,
    774 			 * as this call may sleep.
    775 			 */
    776 			so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    777 			solock(so);
    778 		}
    779 		if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
    780 			error = soreserve(so, unpst_sendspace, unpst_recvspace);
    781 			if (error != 0)
    782 				return (error);
    783 		}
    784 		break;
    785 
    786 	case SOCK_DGRAM:
    787 		if (so->so_lock == NULL) {
    788 			mutex_obj_hold(uipc_lock);
    789 			so->so_lock = uipc_lock;
    790 			solock(so);
    791 		}
    792 		if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
    793 			error = soreserve(so, unpdg_sendspace, unpdg_recvspace);
    794 			if (error != 0)
    795 				return (error);
    796 		}
    797 		break;
    798 
    799 	default:
    800 		panic("unp_attach");
    801 	}
    802 	KASSERT(solocked(so));
    803 	unp = malloc(sizeof(*unp), M_PCB, M_NOWAIT);
    804 	if (unp == NULL)
    805 		return (ENOBUFS);
    806 	memset(unp, 0, sizeof(*unp));
    807 	unp->unp_socket = so;
    808 	so->so_pcb = unp;
    809 	nanotime(&unp->unp_ctime);
    810 	return (0);
    811 }
    812 
    813 void
    814 unp_detach(struct unpcb *unp)
    815 {
    816 	struct socket *so;
    817 	vnode_t *vp;
    818 
    819 	so = unp->unp_socket;
    820 
    821  retry:
    822 	if ((vp = unp->unp_vnode) != NULL) {
    823 		sounlock(so);
    824 		/* Acquire v_interlock to protect against unp_connect(). */
    825 		/* XXXAD racy */
    826 		mutex_enter(&vp->v_interlock);
    827 		vp->v_socket = NULL;
    828 		vrelel(vp, 0);
    829 		solock(so);
    830 		unp->unp_vnode = NULL;
    831 	}
    832 	if (unp->unp_conn)
    833 		unp_disconnect(unp);
    834 	while (unp->unp_refs) {
    835 		KASSERT(solocked2(so, unp->unp_refs->unp_socket));
    836 		if (unp_drop(unp->unp_refs, ECONNRESET)) {
    837 			solock(so);
    838 			goto retry;
    839 		}
    840 	}
    841 	soisdisconnected(so);
    842 	so->so_pcb = NULL;
    843 	if (unp_rights) {
    844 		/*
    845 		 * Normally the receive buffer is flushed later, in sofree,
    846 		 * but if our receive buffer holds references to files that
    847 		 * are now garbage, we will enqueue those file references to
    848 		 * the garbage collector and kick it into action.
    849 		 */
    850 		sorflush(so);
    851 		unp_free(unp);
    852 		unp_thread_kick();
    853 	} else
    854 		unp_free(unp);
    855 }
    856 
    857 int
    858 unp_bind(struct socket *so, struct mbuf *nam, struct lwp *l)
    859 {
    860 	struct sockaddr_un *sun;
    861 	struct unpcb *unp;
    862 	vnode_t *vp;
    863 	struct vattr vattr;
    864 	size_t addrlen;
    865 	int error;
    866 	struct pathbuf *pb;
    867 	struct nameidata nd;
    868 	proc_t *p;
    869 
    870 	unp = sotounpcb(so);
    871 	if (unp->unp_vnode != NULL)
    872 		return (EINVAL);
    873 	if ((unp->unp_flags & UNP_BUSY) != 0) {
    874 		/*
    875 		 * EALREADY may not be strictly accurate, but since this
    876 		 * is a major application error it's hardly a big deal.
    877 		 */
    878 		return (EALREADY);
    879 	}
    880 	unp->unp_flags |= UNP_BUSY;
    881 	sounlock(so);
    882 
    883 	/*
    884 	 * Allocate the new sockaddr.  We have to allocate one
    885 	 * extra byte so that we can ensure that the pathname
    886 	 * is nul-terminated.
    887 	 */
    888 	p = l->l_proc;
    889 	addrlen = nam->m_len + 1;
    890 	sun = malloc(addrlen, M_SONAME, M_WAITOK);
    891 	m_copydata(nam, 0, nam->m_len, (void *)sun);
    892 	*(((char *)sun) + nam->m_len) = '\0';
    893 
    894 	pb = pathbuf_create(sun->sun_path);
    895 	if (pb == NULL) {
    896 		error = ENOMEM;
    897 		goto bad;
    898 	}
    899 	NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, pb);
    900 
    901 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
    902 	if ((error = namei(&nd)) != 0) {
    903 		pathbuf_destroy(pb);
    904 		goto bad;
    905 	}
    906 	vp = nd.ni_vp;
    907 	if (vp != NULL) {
    908 		VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
    909 		if (nd.ni_dvp == vp)
    910 			vrele(nd.ni_dvp);
    911 		else
    912 			vput(nd.ni_dvp);
    913 		vrele(vp);
    914 		pathbuf_destroy(pb);
    915 		error = EADDRINUSE;
    916 		goto bad;
    917 	}
    918 	vattr_null(&vattr);
    919 	vattr.va_type = VSOCK;
    920 	vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
    921 	error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
    922 	if (error) {
    923 		pathbuf_destroy(pb);
    924 		goto bad;
    925 	}
    926 	vp = nd.ni_vp;
    927 	solock(so);
    928 	vp->v_socket = unp->unp_socket;
    929 	unp->unp_vnode = vp;
    930 	unp->unp_addrlen = addrlen;
    931 	unp->unp_addr = sun;
    932 	unp->unp_connid.unp_pid = p->p_pid;
    933 	unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
    934 	unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
    935 	unp->unp_flags |= UNP_EIDSBIND;
    936 	VOP_UNLOCK(vp);
    937 	unp->unp_flags &= ~UNP_BUSY;
    938 	pathbuf_destroy(pb);
    939 	return (0);
    940 
    941  bad:
    942 	free(sun, M_SONAME);
    943 	solock(so);
    944 	unp->unp_flags &= ~UNP_BUSY;
    945 	return (error);
    946 }
    947 
    948 int
    949 unp_connect(struct socket *so, struct mbuf *nam, struct lwp *l)
    950 {
    951 	struct sockaddr_un *sun;
    952 	vnode_t *vp;
    953 	struct socket *so2, *so3;
    954 	struct unpcb *unp, *unp2, *unp3;
    955 	size_t addrlen;
    956 	int error;
    957 	struct pathbuf *pb;
    958 	struct nameidata nd;
    959 
    960 	unp = sotounpcb(so);
    961 	if ((unp->unp_flags & UNP_BUSY) != 0) {
    962 		/*
    963 		 * EALREADY may not be strictly accurate, but since this
    964 		 * is a major application error it's hardly a big deal.
    965 		 */
    966 		return (EALREADY);
    967 	}
    968 	unp->unp_flags |= UNP_BUSY;
    969 	sounlock(so);
    970 
    971 	/*
    972 	 * Allocate a temporary sockaddr.  We have to allocate one extra
    973 	 * byte so that we can ensure that the pathname is nul-terminated.
    974 	 * When we establish the connection, we copy the other PCB's
    975 	 * sockaddr to our own.
    976 	 */
    977 	addrlen = nam->m_len + 1;
    978 	sun = malloc(addrlen, M_SONAME, M_WAITOK);
    979 	m_copydata(nam, 0, nam->m_len, (void *)sun);
    980 	*(((char *)sun) + nam->m_len) = '\0';
    981 
    982 	pb = pathbuf_create(sun->sun_path);
    983 	if (pb == NULL) {
    984 		error = ENOMEM;
    985 		goto bad2;
    986 	}
    987 
    988 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
    989 
    990 	if ((error = namei(&nd)) != 0) {
    991 		pathbuf_destroy(pb);
    992 		goto bad2;
    993 	}
    994 	vp = nd.ni_vp;
    995 	if (vp->v_type != VSOCK) {
    996 		error = ENOTSOCK;
    997 		goto bad;
    998 	}
    999 	pathbuf_destroy(pb);
   1000 	if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
   1001 		goto bad;
   1002 	/* Acquire v_interlock to protect against unp_detach(). */
   1003 	mutex_enter(&vp->v_interlock);
   1004 	so2 = vp->v_socket;
   1005 	if (so2 == NULL) {
   1006 		mutex_exit(&vp->v_interlock);
   1007 		error = ECONNREFUSED;
   1008 		goto bad;
   1009 	}
   1010 	if (so->so_type != so2->so_type) {
   1011 		mutex_exit(&vp->v_interlock);
   1012 		error = EPROTOTYPE;
   1013 		goto bad;
   1014 	}
   1015 	solock(so);
   1016 	unp_resetlock(so);
   1017 	mutex_exit(&vp->v_interlock);
   1018 	if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
   1019 		/*
   1020 		 * This may seem somewhat fragile but is OK: if we can
   1021 		 * see SO_ACCEPTCONN set on the endpoint, then it must
   1022 		 * be locked by the domain-wide uipc_lock.
   1023 		 */
   1024 		KASSERT((so2->so_options & SO_ACCEPTCONN) == 0 ||
   1025 		    so2->so_lock == uipc_lock);
   1026 		if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
   1027 		    (so3 = sonewconn(so2, 0)) == NULL) {
   1028 			error = ECONNREFUSED;
   1029 			sounlock(so);
   1030 			goto bad;
   1031 		}
   1032 		unp2 = sotounpcb(so2);
   1033 		unp3 = sotounpcb(so3);
   1034 		if (unp2->unp_addr) {
   1035 			unp3->unp_addr = malloc(unp2->unp_addrlen,
   1036 			    M_SONAME, M_WAITOK);
   1037 			memcpy(unp3->unp_addr, unp2->unp_addr,
   1038 			    unp2->unp_addrlen);
   1039 			unp3->unp_addrlen = unp2->unp_addrlen;
   1040 		}
   1041 		unp3->unp_flags = unp2->unp_flags;
   1042 		unp3->unp_connid.unp_pid = l->l_proc->p_pid;
   1043 		unp3->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
   1044 		unp3->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
   1045 		unp3->unp_flags |= UNP_EIDSVALID;
   1046 		if (unp2->unp_flags & UNP_EIDSBIND) {
   1047 			unp->unp_connid = unp2->unp_connid;
   1048 			unp->unp_flags |= UNP_EIDSVALID;
   1049 		}
   1050 		so2 = so3;
   1051 	}
   1052 	error = unp_connect2(so, so2, PRU_CONNECT);
   1053 	sounlock(so);
   1054  bad:
   1055 	vput(vp);
   1056  bad2:
   1057 	free(sun, M_SONAME);
   1058 	solock(so);
   1059 	unp->unp_flags &= ~UNP_BUSY;
   1060 	return (error);
   1061 }
   1062 
   1063 int
   1064 unp_connect2(struct socket *so, struct socket *so2, int req)
   1065 {
   1066 	struct unpcb *unp = sotounpcb(so);
   1067 	struct unpcb *unp2;
   1068 
   1069 	if (so2->so_type != so->so_type)
   1070 		return (EPROTOTYPE);
   1071 
   1072 	/*
   1073 	 * All three sockets involved must be locked by same lock:
   1074 	 *
   1075 	 * local endpoint (so)
   1076 	 * remote endpoint (so2)
   1077 	 * queue head (so2->so_head, only if PR_CONNREQUIRED)
   1078 	 */
   1079 	KASSERT(solocked2(so, so2));
   1080 	KASSERT(so->so_head == NULL);
   1081 	if (so2->so_head != NULL) {
   1082 		KASSERT(so2->so_lock == uipc_lock);
   1083 		KASSERT(solocked2(so2, so2->so_head));
   1084 	}
   1085 
   1086 	unp2 = sotounpcb(so2);
   1087 	unp->unp_conn = unp2;
   1088 	switch (so->so_type) {
   1089 
   1090 	case SOCK_DGRAM:
   1091 		unp->unp_nextref = unp2->unp_refs;
   1092 		unp2->unp_refs = unp;
   1093 		soisconnected(so);
   1094 		break;
   1095 
   1096 	case SOCK_STREAM:
   1097 		unp2->unp_conn = unp;
   1098 		if (req == PRU_CONNECT &&
   1099 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
   1100 			soisconnecting(so);
   1101 		else
   1102 			soisconnected(so);
   1103 		soisconnected(so2);
   1104 		/*
   1105 		 * If the connection is fully established, break the
   1106 		 * association with uipc_lock and give the connected
   1107 		 * pair a seperate lock to share.  For CONNECT2, we
   1108 		 * require that the locks already match (the sockets
   1109 		 * are created that way).
   1110 		 */
   1111 		if (req == PRU_CONNECT) {
   1112 			KASSERT(so2->so_head != NULL);
   1113 			unp_setpeerlocks(so, so2);
   1114 		}
   1115 		break;
   1116 
   1117 	default:
   1118 		panic("unp_connect2");
   1119 	}
   1120 	return (0);
   1121 }
   1122 
   1123 void
   1124 unp_disconnect(struct unpcb *unp)
   1125 {
   1126 	struct unpcb *unp2 = unp->unp_conn;
   1127 	struct socket *so;
   1128 
   1129 	if (unp2 == 0)
   1130 		return;
   1131 	unp->unp_conn = 0;
   1132 	so = unp->unp_socket;
   1133 	switch (so->so_type) {
   1134 	case SOCK_DGRAM:
   1135 		if (unp2->unp_refs == unp)
   1136 			unp2->unp_refs = unp->unp_nextref;
   1137 		else {
   1138 			unp2 = unp2->unp_refs;
   1139 			for (;;) {
   1140 				KASSERT(solocked2(so, unp2->unp_socket));
   1141 				if (unp2 == 0)
   1142 					panic("unp_disconnect");
   1143 				if (unp2->unp_nextref == unp)
   1144 					break;
   1145 				unp2 = unp2->unp_nextref;
   1146 			}
   1147 			unp2->unp_nextref = unp->unp_nextref;
   1148 		}
   1149 		unp->unp_nextref = 0;
   1150 		so->so_state &= ~SS_ISCONNECTED;
   1151 		break;
   1152 
   1153 	case SOCK_STREAM:
   1154 		KASSERT(solocked2(so, unp2->unp_socket));
   1155 		soisdisconnected(so);
   1156 		unp2->unp_conn = 0;
   1157 		soisdisconnected(unp2->unp_socket);
   1158 		break;
   1159 	}
   1160 }
   1161 
   1162 #ifdef notdef
   1163 unp_abort(struct unpcb *unp)
   1164 {
   1165 	unp_detach(unp);
   1166 }
   1167 #endif
   1168 
   1169 void
   1170 unp_shutdown(struct unpcb *unp)
   1171 {
   1172 	struct socket *so;
   1173 
   1174 	if (unp->unp_socket->so_type == SOCK_STREAM && unp->unp_conn &&
   1175 	    (so = unp->unp_conn->unp_socket))
   1176 		socantrcvmore(so);
   1177 }
   1178 
   1179 bool
   1180 unp_drop(struct unpcb *unp, int errno)
   1181 {
   1182 	struct socket *so = unp->unp_socket;
   1183 
   1184 	KASSERT(solocked(so));
   1185 
   1186 	so->so_error = errno;
   1187 	unp_disconnect(unp);
   1188 	if (so->so_head) {
   1189 		so->so_pcb = NULL;
   1190 		/* sofree() drops the socket lock */
   1191 		sofree(so);
   1192 		unp_free(unp);
   1193 		return true;
   1194 	}
   1195 	return false;
   1196 }
   1197 
   1198 #ifdef notdef
   1199 unp_drain(void)
   1200 {
   1201 
   1202 }
   1203 #endif
   1204 
   1205 int
   1206 unp_externalize(struct mbuf *rights, struct lwp *l)
   1207 {
   1208 	struct cmsghdr *cm = mtod(rights, struct cmsghdr *);
   1209 	struct proc *p = l->l_proc;
   1210 	int i, *fdp;
   1211 	file_t **rp;
   1212 	file_t *fp;
   1213 	int nfds, error = 0;
   1214 
   1215 	nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
   1216 	    sizeof(file_t *);
   1217 	rp = (file_t **)CMSG_DATA(cm);
   1218 
   1219 	fdp = malloc(nfds * sizeof(int), M_TEMP, M_WAITOK);
   1220 	rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
   1221 
   1222 	/* Make sure the recipient should be able to see the files.. */
   1223 	if (p->p_cwdi->cwdi_rdir != NULL) {
   1224 		rp = (file_t **)CMSG_DATA(cm);
   1225 		for (i = 0; i < nfds; i++) {
   1226 			fp = *rp++;
   1227 			/*
   1228 			 * If we are in a chroot'ed directory, and
   1229 			 * someone wants to pass us a directory, make
   1230 			 * sure it's inside the subtree we're allowed
   1231 			 * to access.
   1232 			 */
   1233 			if (fp->f_type == DTYPE_VNODE) {
   1234 				vnode_t *vp = (vnode_t *)fp->f_data;
   1235 				if ((vp->v_type == VDIR) &&
   1236 				    !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
   1237 					error = EPERM;
   1238 					break;
   1239 				}
   1240 			}
   1241 		}
   1242 	}
   1243 
   1244  restart:
   1245 	rp = (file_t **)CMSG_DATA(cm);
   1246 	if (error != 0) {
   1247 		for (i = 0; i < nfds; i++) {
   1248 			fp = *rp;
   1249 			*rp++ = 0;
   1250 			unp_discard_now(fp);
   1251 		}
   1252 		goto out;
   1253 	}
   1254 
   1255 	/*
   1256 	 * First loop -- allocate file descriptor table slots for the
   1257 	 * new files.
   1258 	 */
   1259 	for (i = 0; i < nfds; i++) {
   1260 		fp = *rp++;
   1261 		if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
   1262 			/*
   1263 			 * Back out what we've done so far.
   1264 			 */
   1265 			for (--i; i >= 0; i--) {
   1266 				fd_abort(p, NULL, fdp[i]);
   1267 			}
   1268 			if (error == ENOSPC) {
   1269 				fd_tryexpand(p);
   1270 				error = 0;
   1271 			} else {
   1272 				/*
   1273 				 * This is the error that has historically
   1274 				 * been returned, and some callers may
   1275 				 * expect it.
   1276 				 */
   1277 				error = EMSGSIZE;
   1278 			}
   1279 			goto restart;
   1280 		}
   1281 	}
   1282 
   1283 	/*
   1284 	 * Now that adding them has succeeded, update all of the
   1285 	 * file passing state and affix the descriptors.
   1286 	 */
   1287 	rp = (file_t **)CMSG_DATA(cm);
   1288 	for (i = 0; i < nfds; i++) {
   1289 		fp = *rp++;
   1290 		atomic_dec_uint(&unp_rights);
   1291 		fd_affix(p, fp, fdp[i]);
   1292 		mutex_enter(&fp->f_lock);
   1293 		fp->f_msgcount--;
   1294 		mutex_exit(&fp->f_lock);
   1295 		/*
   1296 		 * Note that fd_affix() adds a reference to the file.
   1297 		 * The file may already have been closed by another
   1298 		 * LWP in the process, so we must drop the reference
   1299 		 * added by unp_internalize() with closef().
   1300 		 */
   1301 		closef(fp);
   1302 	}
   1303 
   1304 	/*
   1305 	 * Copy temporary array to message and adjust length, in case of
   1306 	 * transition from large file_t pointers to ints.
   1307 	 */
   1308 	memcpy(CMSG_DATA(cm), fdp, nfds * sizeof(int));
   1309 	cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
   1310 	rights->m_len = CMSG_SPACE(nfds * sizeof(int));
   1311  out:
   1312 	rw_exit(&p->p_cwdi->cwdi_lock);
   1313 	free(fdp, M_TEMP);
   1314 	return (error);
   1315 }
   1316 
   1317 int
   1318 unp_internalize(struct mbuf **controlp)
   1319 {
   1320 	filedesc_t *fdescp = curlwp->l_fd;
   1321 	struct mbuf *control = *controlp;
   1322 	struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
   1323 	file_t **rp, **files;
   1324 	file_t *fp;
   1325 	int i, fd, *fdp;
   1326 	int nfds, error;
   1327 	u_int maxmsg;
   1328 
   1329 	error = 0;
   1330 	newcm = NULL;
   1331 
   1332 	/* Sanity check the control message header. */
   1333 	if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
   1334 	    cm->cmsg_len > control->m_len ||
   1335 	    cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
   1336 		return (EINVAL);
   1337 
   1338 	/*
   1339 	 * Verify that the file descriptors are valid, and acquire
   1340 	 * a reference to each.
   1341 	 */
   1342 	nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
   1343 	fdp = (int *)CMSG_DATA(cm);
   1344 	maxmsg = maxfiles / unp_rights_ratio;
   1345 	for (i = 0; i < nfds; i++) {
   1346 		fd = *fdp++;
   1347 		if (atomic_inc_uint_nv(&unp_rights) > maxmsg) {
   1348 			atomic_dec_uint(&unp_rights);
   1349 			nfds = i;
   1350 			error = EAGAIN;
   1351 			goto out;
   1352 		}
   1353 		if ((fp = fd_getfile(fd)) == NULL) {
   1354 			atomic_dec_uint(&unp_rights);
   1355 			nfds = i;
   1356 			error = EBADF;
   1357 			goto out;
   1358 		}
   1359 	}
   1360 
   1361 	/* Allocate new space and copy header into it. */
   1362 	newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
   1363 	if (newcm == NULL) {
   1364 		error = E2BIG;
   1365 		goto out;
   1366 	}
   1367 	memcpy(newcm, cm, sizeof(struct cmsghdr));
   1368 	files = (file_t **)CMSG_DATA(newcm);
   1369 
   1370 	/*
   1371 	 * Transform the file descriptors into file_t pointers, in
   1372 	 * reverse order so that if pointers are bigger than ints, the
   1373 	 * int won't get until we're done.  No need to lock, as we have
   1374 	 * already validated the descriptors with fd_getfile().
   1375 	 */
   1376 	fdp = (int *)CMSG_DATA(cm) + nfds;
   1377 	rp = files + nfds;
   1378 	for (i = 0; i < nfds; i++) {
   1379 		fp = fdescp->fd_dt->dt_ff[*--fdp]->ff_file;
   1380 		KASSERT(fp != NULL);
   1381 		mutex_enter(&fp->f_lock);
   1382 		*--rp = fp;
   1383 		fp->f_count++;
   1384 		fp->f_msgcount++;
   1385 		mutex_exit(&fp->f_lock);
   1386 	}
   1387 
   1388  out:
   1389  	/* Release descriptor references. */
   1390 	fdp = (int *)CMSG_DATA(cm);
   1391 	for (i = 0; i < nfds; i++) {
   1392 		fd_putfile(*fdp++);
   1393 		if (error != 0) {
   1394 			atomic_dec_uint(&unp_rights);
   1395 		}
   1396 	}
   1397 
   1398 	if (error == 0) {
   1399 		if (control->m_flags & M_EXT) {
   1400 			m_freem(control);
   1401 			*controlp = control = m_get(M_WAIT, MT_CONTROL);
   1402 		}
   1403 		MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
   1404 		    M_MBUF, NULL, NULL);
   1405 		cm = newcm;
   1406 		/*
   1407 		 * Adjust message & mbuf to note amount of space
   1408 		 * actually used.
   1409 		 */
   1410 		cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
   1411 		control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
   1412 	}
   1413 
   1414 	return error;
   1415 }
   1416 
   1417 struct mbuf *
   1418 unp_addsockcred(struct lwp *l, struct mbuf *control)
   1419 {
   1420 	struct cmsghdr *cmp;
   1421 	struct sockcred *sc;
   1422 	struct mbuf *m, *n;
   1423 	int len, space, i;
   1424 
   1425 	len = CMSG_LEN(SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)));
   1426 	space = CMSG_SPACE(SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)));
   1427 
   1428 	m = m_get(M_WAIT, MT_CONTROL);
   1429 	if (space > MLEN) {
   1430 		if (space > MCLBYTES)
   1431 			MEXTMALLOC(m, space, M_WAITOK);
   1432 		else
   1433 			m_clget(m, M_WAIT);
   1434 		if ((m->m_flags & M_EXT) == 0) {
   1435 			m_free(m);
   1436 			return (control);
   1437 		}
   1438 	}
   1439 
   1440 	m->m_len = space;
   1441 	m->m_next = NULL;
   1442 	cmp = mtod(m, struct cmsghdr *);
   1443 	sc = (struct sockcred *)CMSG_DATA(cmp);
   1444 	cmp->cmsg_len = len;
   1445 	cmp->cmsg_level = SOL_SOCKET;
   1446 	cmp->cmsg_type = SCM_CREDS;
   1447 	sc->sc_uid = kauth_cred_getuid(l->l_cred);
   1448 	sc->sc_euid = kauth_cred_geteuid(l->l_cred);
   1449 	sc->sc_gid = kauth_cred_getgid(l->l_cred);
   1450 	sc->sc_egid = kauth_cred_getegid(l->l_cred);
   1451 	sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
   1452 	for (i = 0; i < sc->sc_ngroups; i++)
   1453 		sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
   1454 
   1455 	/*
   1456 	 * If a control message already exists, append us to the end.
   1457 	 */
   1458 	if (control != NULL) {
   1459 		for (n = control; n->m_next != NULL; n = n->m_next)
   1460 			;
   1461 		n->m_next = m;
   1462 	} else
   1463 		control = m;
   1464 
   1465 	return (control);
   1466 }
   1467 
   1468 /*
   1469  * Do a mark-sweep GC of files in the system, to free up any which are
   1470  * caught in flight to an about-to-be-closed socket.  Additionally,
   1471  * process deferred file closures.
   1472  */
   1473 static void
   1474 unp_gc(file_t *dp)
   1475 {
   1476 	extern	struct domain unixdomain;
   1477 	file_t *fp, *np;
   1478 	struct socket *so, *so1;
   1479 	u_int i, old, new;
   1480 	bool didwork;
   1481 
   1482 	KASSERT(curlwp == unp_thread_lwp);
   1483 	KASSERT(mutex_owned(&filelist_lock));
   1484 
   1485 	/*
   1486 	 * First, process deferred file closures.
   1487 	 */
   1488 	while (!SLIST_EMPTY(&unp_thread_discard)) {
   1489 		fp = SLIST_FIRST(&unp_thread_discard);
   1490 		KASSERT(fp->f_unpcount > 0);
   1491 		KASSERT(fp->f_count > 0);
   1492 		KASSERT(fp->f_msgcount > 0);
   1493 		KASSERT(fp->f_count >= fp->f_unpcount);
   1494 		KASSERT(fp->f_count >= fp->f_msgcount);
   1495 		KASSERT(fp->f_msgcount >= fp->f_unpcount);
   1496 		SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist);
   1497 		i = fp->f_unpcount;
   1498 		fp->f_unpcount = 0;
   1499 		mutex_exit(&filelist_lock);
   1500 		for (; i != 0; i--) {
   1501 			unp_discard_now(fp);
   1502 		}
   1503 		mutex_enter(&filelist_lock);
   1504 	}
   1505 
   1506 	/*
   1507 	 * Clear mark bits.  Ensure that we don't consider new files
   1508 	 * entering the file table during this loop (they will not have
   1509 	 * FSCAN set).
   1510 	 */
   1511 	unp_defer = 0;
   1512 	LIST_FOREACH(fp, &filehead, f_list) {
   1513 		for (old = fp->f_flag;; old = new) {
   1514 			new = atomic_cas_uint(&fp->f_flag, old,
   1515 			    (old | FSCAN) & ~(FMARK|FDEFER));
   1516 			if (__predict_true(old == new)) {
   1517 				break;
   1518 			}
   1519 		}
   1520 	}
   1521 
   1522 	/*
   1523 	 * Iterate over the set of sockets, marking ones believed (based on
   1524 	 * refcount) to be referenced from a process, and marking for rescan
   1525 	 * sockets which are queued on a socket.  Recan continues descending
   1526 	 * and searching for sockets referenced by sockets (FDEFER), until
   1527 	 * there are no more socket->socket references to be discovered.
   1528 	 */
   1529 	do {
   1530 		didwork = false;
   1531 		for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
   1532 			KASSERT(mutex_owned(&filelist_lock));
   1533 			np = LIST_NEXT(fp, f_list);
   1534 			mutex_enter(&fp->f_lock);
   1535 			if ((fp->f_flag & FDEFER) != 0) {
   1536 				atomic_and_uint(&fp->f_flag, ~FDEFER);
   1537 				unp_defer--;
   1538 				KASSERT(fp->f_count != 0);
   1539 			} else {
   1540 				if (fp->f_count == 0 ||
   1541 				    (fp->f_flag & FMARK) != 0 ||
   1542 				    fp->f_count == fp->f_msgcount ||
   1543 				    fp->f_unpcount != 0) {
   1544 					mutex_exit(&fp->f_lock);
   1545 					continue;
   1546 				}
   1547 			}
   1548 			atomic_or_uint(&fp->f_flag, FMARK);
   1549 
   1550 			if (fp->f_type != DTYPE_SOCKET ||
   1551 			    (so = fp->f_data) == NULL ||
   1552 			    so->so_proto->pr_domain != &unixdomain ||
   1553 			    (so->so_proto->pr_flags & PR_RIGHTS) == 0) {
   1554 				mutex_exit(&fp->f_lock);
   1555 				continue;
   1556 			}
   1557 
   1558 			/* Gain file ref, mark our position, and unlock. */
   1559 			didwork = true;
   1560 			LIST_INSERT_AFTER(fp, dp, f_list);
   1561 			fp->f_count++;
   1562 			mutex_exit(&fp->f_lock);
   1563 			mutex_exit(&filelist_lock);
   1564 
   1565 			/*
   1566 			 * Mark files referenced from sockets queued on the
   1567 			 * accept queue as well.
   1568 			 */
   1569 			solock(so);
   1570 			unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
   1571 			if ((so->so_options & SO_ACCEPTCONN) != 0) {
   1572 				TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
   1573 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
   1574 				}
   1575 				TAILQ_FOREACH(so1, &so->so_q, so_qe) {
   1576 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
   1577 				}
   1578 			}
   1579 			sounlock(so);
   1580 
   1581 			/* Re-lock and restart from where we left off. */
   1582 			closef(fp);
   1583 			mutex_enter(&filelist_lock);
   1584 			np = LIST_NEXT(dp, f_list);
   1585 			LIST_REMOVE(dp, f_list);
   1586 		}
   1587 		/*
   1588 		 * Bail early if we did nothing in the loop above.  Could
   1589 		 * happen because of concurrent activity causing unp_defer
   1590 		 * to get out of sync.
   1591 		 */
   1592 	} while (unp_defer != 0 && didwork);
   1593 
   1594 	/*
   1595 	 * Sweep pass.
   1596 	 *
   1597 	 * We grab an extra reference to each of the files that are
   1598 	 * not otherwise accessible and then free the rights that are
   1599 	 * stored in messages on them.
   1600 	 */
   1601 	for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
   1602 		KASSERT(mutex_owned(&filelist_lock));
   1603 		np = LIST_NEXT(fp, f_list);
   1604 		mutex_enter(&fp->f_lock);
   1605 
   1606 		/*
   1607 		 * Ignore non-sockets.
   1608 		 * Ignore dead sockets, or sockets with pending close.
   1609 		 * Ignore sockets obviously referenced elsewhere.
   1610 		 * Ignore sockets marked as referenced by our scan.
   1611 		 * Ignore new sockets that did not exist during the scan.
   1612 		 */
   1613 		if (fp->f_type != DTYPE_SOCKET ||
   1614 		    fp->f_count == 0 || fp->f_unpcount != 0 ||
   1615 		    fp->f_count != fp->f_msgcount ||
   1616 		    (fp->f_flag & (FMARK | FSCAN)) != FSCAN) {
   1617 			mutex_exit(&fp->f_lock);
   1618 			continue;
   1619 		}
   1620 
   1621 		/* Gain file ref, mark our position, and unlock. */
   1622 		LIST_INSERT_AFTER(fp, dp, f_list);
   1623 		fp->f_count++;
   1624 		mutex_exit(&fp->f_lock);
   1625 		mutex_exit(&filelist_lock);
   1626 
   1627 		/*
   1628 		 * Flush all data from the socket's receive buffer.
   1629 		 * This will cause files referenced only by the
   1630 		 * socket to be queued for close.
   1631 		 */
   1632 		so = fp->f_data;
   1633 		solock(so);
   1634 		sorflush(so);
   1635 		sounlock(so);
   1636 
   1637 		/* Re-lock and restart from where we left off. */
   1638 		closef(fp);
   1639 		mutex_enter(&filelist_lock);
   1640 		np = LIST_NEXT(dp, f_list);
   1641 		LIST_REMOVE(dp, f_list);
   1642 	}
   1643 }
   1644 
   1645 /*
   1646  * Garbage collector thread.  While SCM_RIGHTS messages are in transit,
   1647  * wake once per second to garbage collect.  Run continually while we
   1648  * have deferred closes to process.
   1649  */
   1650 static void
   1651 unp_thread(void *cookie)
   1652 {
   1653 	file_t *dp;
   1654 
   1655 	/* Allocate a dummy file for our scans. */
   1656 	if ((dp = fgetdummy()) == NULL) {
   1657 		panic("unp_thread");
   1658 	}
   1659 
   1660 	mutex_enter(&filelist_lock);
   1661 	for (;;) {
   1662 		KASSERT(mutex_owned(&filelist_lock));
   1663 		if (SLIST_EMPTY(&unp_thread_discard)) {
   1664 			if (unp_rights != 0) {
   1665 				(void)cv_timedwait(&unp_thread_cv,
   1666 				    &filelist_lock, hz);
   1667 			} else {
   1668 				cv_wait(&unp_thread_cv, &filelist_lock);
   1669 			}
   1670 		}
   1671 		unp_gc(dp);
   1672 	}
   1673 	/* NOTREACHED */
   1674 }
   1675 
   1676 /*
   1677  * Kick the garbage collector into action if there is something for
   1678  * it to process.
   1679  */
   1680 static void
   1681 unp_thread_kick(void)
   1682 {
   1683 
   1684 	if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) {
   1685 		mutex_enter(&filelist_lock);
   1686 		cv_signal(&unp_thread_cv);
   1687 		mutex_exit(&filelist_lock);
   1688 	}
   1689 }
   1690 
   1691 void
   1692 unp_dispose(struct mbuf *m)
   1693 {
   1694 
   1695 	if (m)
   1696 		unp_scan(m, unp_discard_later, 1);
   1697 }
   1698 
   1699 void
   1700 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
   1701 {
   1702 	struct mbuf *m;
   1703 	file_t **rp, *fp;
   1704 	struct cmsghdr *cm;
   1705 	int i, qfds;
   1706 
   1707 	while (m0) {
   1708 		for (m = m0; m; m = m->m_next) {
   1709 			if (m->m_type != MT_CONTROL ||
   1710 			    m->m_len < sizeof(*cm)) {
   1711 			    	continue;
   1712 			}
   1713 			cm = mtod(m, struct cmsghdr *);
   1714 			if (cm->cmsg_level != SOL_SOCKET ||
   1715 			    cm->cmsg_type != SCM_RIGHTS)
   1716 				continue;
   1717 			qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
   1718 			    / sizeof(file_t *);
   1719 			rp = (file_t **)CMSG_DATA(cm);
   1720 			for (i = 0; i < qfds; i++) {
   1721 				fp = *rp;
   1722 				if (discard) {
   1723 					*rp = 0;
   1724 				}
   1725 				(*op)(fp);
   1726 				rp++;
   1727 			}
   1728 		}
   1729 		m0 = m0->m_nextpkt;
   1730 	}
   1731 }
   1732 
   1733 void
   1734 unp_mark(file_t *fp)
   1735 {
   1736 
   1737 	if (fp == NULL)
   1738 		return;
   1739 
   1740 	/* If we're already deferred, don't screw up the defer count */
   1741 	mutex_enter(&fp->f_lock);
   1742 	if (fp->f_flag & (FMARK | FDEFER)) {
   1743 		mutex_exit(&fp->f_lock);
   1744 		return;
   1745 	}
   1746 
   1747 	/*
   1748 	 * Minimize the number of deferrals...  Sockets are the only type of
   1749 	 * file which can hold references to another file, so just mark
   1750 	 * other files, and defer unmarked sockets for the next pass.
   1751 	 */
   1752 	if (fp->f_type == DTYPE_SOCKET) {
   1753 		unp_defer++;
   1754 		KASSERT(fp->f_count != 0);
   1755 		atomic_or_uint(&fp->f_flag, FDEFER);
   1756 	} else {
   1757 		atomic_or_uint(&fp->f_flag, FMARK);
   1758 	}
   1759 	mutex_exit(&fp->f_lock);
   1760 }
   1761 
   1762 static void
   1763 unp_discard_now(file_t *fp)
   1764 {
   1765 
   1766 	if (fp == NULL)
   1767 		return;
   1768 
   1769 	KASSERT(fp->f_count > 0);
   1770 	KASSERT(fp->f_msgcount > 0);
   1771 
   1772 	mutex_enter(&fp->f_lock);
   1773 	fp->f_msgcount--;
   1774 	mutex_exit(&fp->f_lock);
   1775 	atomic_dec_uint(&unp_rights);
   1776 	(void)closef(fp);
   1777 }
   1778 
   1779 static void
   1780 unp_discard_later(file_t *fp)
   1781 {
   1782 
   1783 	if (fp == NULL)
   1784 		return;
   1785 
   1786 	KASSERT(fp->f_count > 0);
   1787 	KASSERT(fp->f_msgcount > 0);
   1788 
   1789 	mutex_enter(&filelist_lock);
   1790 	if (fp->f_unpcount++ == 0) {
   1791 		SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist);
   1792 	}
   1793 	mutex_exit(&filelist_lock);
   1794 }
   1795