uipc_usrreq.c revision 1.133 1 /* $NetBSD: uipc_usrreq.c,v 1.133 2010/11/19 06:44:43 dholland Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2000, 2004, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
62 */
63
64 /*
65 * Copyright (c) 1997 Christopher G. Demetriou. All rights reserved.
66 *
67 * Redistribution and use in source and binary forms, with or without
68 * modification, are permitted provided that the following conditions
69 * are met:
70 * 1. Redistributions of source code must retain the above copyright
71 * notice, this list of conditions and the following disclaimer.
72 * 2. Redistributions in binary form must reproduce the above copyright
73 * notice, this list of conditions and the following disclaimer in the
74 * documentation and/or other materials provided with the distribution.
75 * 3. All advertising materials mentioning features or use of this software
76 * must display the following acknowledgement:
77 * This product includes software developed by the University of
78 * California, Berkeley and its contributors.
79 * 4. Neither the name of the University nor the names of its contributors
80 * may be used to endorse or promote products derived from this software
81 * without specific prior written permission.
82 *
83 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
84 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
85 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
86 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
87 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
88 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
89 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
90 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
91 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
92 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
93 * SUCH DAMAGE.
94 *
95 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
96 */
97
98 #include <sys/cdefs.h>
99 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.133 2010/11/19 06:44:43 dholland Exp $");
100
101 #include <sys/param.h>
102 #include <sys/systm.h>
103 #include <sys/proc.h>
104 #include <sys/filedesc.h>
105 #include <sys/domain.h>
106 #include <sys/protosw.h>
107 #include <sys/socket.h>
108 #include <sys/socketvar.h>
109 #include <sys/unpcb.h>
110 #include <sys/un.h>
111 #include <sys/namei.h>
112 #include <sys/vnode.h>
113 #include <sys/file.h>
114 #include <sys/stat.h>
115 #include <sys/mbuf.h>
116 #include <sys/kauth.h>
117 #include <sys/kmem.h>
118 #include <sys/atomic.h>
119 #include <sys/uidinfo.h>
120 #include <sys/kernel.h>
121 #include <sys/kthread.h>
122
123 /*
124 * Unix communications domain.
125 *
126 * TODO:
127 * SEQPACKET, RDM
128 * rethink name space problems
129 * need a proper out-of-band
130 *
131 * Notes on locking:
132 *
133 * The generic rules noted in uipc_socket2.c apply. In addition:
134 *
135 * o We have a global lock, uipc_lock.
136 *
137 * o All datagram sockets are locked by uipc_lock.
138 *
139 * o For stream socketpairs, the two endpoints are created sharing the same
140 * independent lock. Sockets presented to PRU_CONNECT2 must already have
141 * matching locks.
142 *
143 * o Stream sockets created via socket() start life with their own
144 * independent lock.
145 *
146 * o Stream connections to a named endpoint are slightly more complicated.
147 * Sockets that have called listen() have their lock pointer mutated to
148 * the global uipc_lock. When establishing a connection, the connecting
149 * socket also has its lock mutated to uipc_lock, which matches the head
150 * (listening socket). We create a new socket for accept() to return, and
151 * that also shares the head's lock. Until the connection is completely
152 * done on both ends, all three sockets are locked by uipc_lock. Once the
153 * connection is complete, the association with the head's lock is broken.
154 * The connecting socket and the socket returned from accept() have their
155 * lock pointers mutated away from uipc_lock, and back to the connecting
156 * socket's original, independent lock. The head continues to be locked
157 * by uipc_lock.
158 *
159 * o If uipc_lock is determined to be a significant source of contention,
160 * it could easily be hashed out. It is difficult to simply make it an
161 * independent lock because of visibility / garbage collection issues:
162 * if a socket has been associated with a lock at any point, that lock
163 * must remain valid until the socket is no longer visible in the system.
164 * The lock must not be freed or otherwise destroyed until any sockets
165 * that had referenced it have also been destroyed.
166 */
167 const struct sockaddr_un sun_noname = {
168 .sun_len = sizeof(sun_noname),
169 .sun_family = AF_LOCAL,
170 };
171 ino_t unp_ino; /* prototype for fake inode numbers */
172
173 struct mbuf *unp_addsockcred(struct lwp *, struct mbuf *);
174 static void unp_mark(file_t *);
175 static void unp_scan(struct mbuf *, void (*)(file_t *), int);
176 static void unp_discard_now(file_t *);
177 static void unp_discard_later(file_t *);
178 static void unp_thread(void *);
179 static void unp_thread_kick(void);
180 static kmutex_t *uipc_lock;
181
182 static kcondvar_t unp_thread_cv;
183 static lwp_t *unp_thread_lwp;
184 static SLIST_HEAD(,file) unp_thread_discard;
185 static int unp_defer;
186
187 /*
188 * Initialize Unix protocols.
189 */
190 void
191 uipc_init(void)
192 {
193 int error;
194
195 uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
196 cv_init(&unp_thread_cv, "unpgc");
197
198 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread,
199 NULL, &unp_thread_lwp, "unpgc");
200 if (error != 0)
201 panic("uipc_init %d", error);
202 }
203
204 /*
205 * A connection succeeded: disassociate both endpoints from the head's
206 * lock, and make them share their own lock. There is a race here: for
207 * a very brief time one endpoint will be locked by a different lock
208 * than the other end. However, since the current thread holds the old
209 * lock (the listening socket's lock, the head) access can still only be
210 * made to one side of the connection.
211 */
212 static void
213 unp_setpeerlocks(struct socket *so, struct socket *so2)
214 {
215 struct unpcb *unp;
216 kmutex_t *lock;
217
218 KASSERT(solocked2(so, so2));
219
220 /*
221 * Bail out if either end of the socket is not yet fully
222 * connected or accepted. We only break the lock association
223 * with the head when the pair of sockets stand completely
224 * on their own.
225 */
226 KASSERT(so->so_head == NULL);
227 if (so2->so_head != NULL)
228 return;
229
230 /*
231 * Drop references to old lock. A third reference (from the
232 * queue head) must be held as we still hold its lock. Bonus:
233 * we don't need to worry about garbage collecting the lock.
234 */
235 lock = so->so_lock;
236 KASSERT(lock == uipc_lock);
237 mutex_obj_free(lock);
238 mutex_obj_free(lock);
239
240 /*
241 * Grab stream lock from the initiator and share between the two
242 * endpoints. Issue memory barrier to ensure all modifications
243 * become globally visible before the lock change. so2 is
244 * assumed not to have a stream lock, because it was created
245 * purely for the server side to accept this connection and
246 * started out life using the domain-wide lock.
247 */
248 unp = sotounpcb(so);
249 KASSERT(unp->unp_streamlock != NULL);
250 KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
251 lock = unp->unp_streamlock;
252 unp->unp_streamlock = NULL;
253 mutex_obj_hold(lock);
254 membar_exit();
255 /*
256 * possible race if lock is not held - see comment in
257 * uipc_usrreq(PRU_ACCEPT).
258 */
259 KASSERT(mutex_owned(lock));
260 solockreset(so, lock);
261 solockreset(so2, lock);
262 }
263
264 /*
265 * Reset a socket's lock back to the domain-wide lock.
266 */
267 static void
268 unp_resetlock(struct socket *so)
269 {
270 kmutex_t *olock, *nlock;
271 struct unpcb *unp;
272
273 KASSERT(solocked(so));
274
275 olock = so->so_lock;
276 nlock = uipc_lock;
277 if (olock == nlock)
278 return;
279 unp = sotounpcb(so);
280 KASSERT(unp->unp_streamlock == NULL);
281 unp->unp_streamlock = olock;
282 mutex_obj_hold(nlock);
283 mutex_enter(nlock);
284 solockreset(so, nlock);
285 mutex_exit(olock);
286 }
287
288 static void
289 unp_free(struct unpcb *unp)
290 {
291
292 if (unp->unp_addr)
293 free(unp->unp_addr, M_SONAME);
294 if (unp->unp_streamlock != NULL)
295 mutex_obj_free(unp->unp_streamlock);
296 free(unp, M_PCB);
297 }
298
299 int
300 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp,
301 struct lwp *l)
302 {
303 struct socket *so2;
304 const struct sockaddr_un *sun;
305
306 so2 = unp->unp_conn->unp_socket;
307
308 KASSERT(solocked(so2));
309
310 if (unp->unp_addr)
311 sun = unp->unp_addr;
312 else
313 sun = &sun_noname;
314 if (unp->unp_conn->unp_flags & UNP_WANTCRED)
315 control = unp_addsockcred(l, control);
316 if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
317 control) == 0) {
318 so2->so_rcv.sb_overflowed++;
319 unp_dispose(control);
320 m_freem(control);
321 m_freem(m);
322 return (ENOBUFS);
323 } else {
324 sorwakeup(so2);
325 return (0);
326 }
327 }
328
329 void
330 unp_setaddr(struct socket *so, struct mbuf *nam, bool peeraddr)
331 {
332 const struct sockaddr_un *sun;
333 struct unpcb *unp;
334 bool ext;
335
336 KASSERT(solocked(so));
337 unp = sotounpcb(so);
338 ext = false;
339
340 for (;;) {
341 sun = NULL;
342 if (peeraddr) {
343 if (unp->unp_conn && unp->unp_conn->unp_addr)
344 sun = unp->unp_conn->unp_addr;
345 } else {
346 if (unp->unp_addr)
347 sun = unp->unp_addr;
348 }
349 if (sun == NULL)
350 sun = &sun_noname;
351 nam->m_len = sun->sun_len;
352 if (nam->m_len > MLEN && !ext) {
353 sounlock(so);
354 MEXTMALLOC(nam, MAXPATHLEN * 2, M_WAITOK);
355 solock(so);
356 ext = true;
357 } else {
358 KASSERT(nam->m_len <= MAXPATHLEN * 2);
359 memcpy(mtod(nam, void *), sun, (size_t)nam->m_len);
360 break;
361 }
362 }
363 }
364
365 /*ARGSUSED*/
366 int
367 uipc_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
368 struct mbuf *control, struct lwp *l)
369 {
370 struct unpcb *unp = sotounpcb(so);
371 struct socket *so2;
372 struct proc *p;
373 u_int newhiwat;
374 int error = 0;
375
376 if (req == PRU_CONTROL)
377 return (EOPNOTSUPP);
378
379 #ifdef DIAGNOSTIC
380 if (req != PRU_SEND && req != PRU_SENDOOB && control)
381 panic("uipc_usrreq: unexpected control mbuf");
382 #endif
383 p = l ? l->l_proc : NULL;
384 if (req != PRU_ATTACH) {
385 if (unp == NULL) {
386 error = EINVAL;
387 goto release;
388 }
389 KASSERT(solocked(so));
390 }
391
392 switch (req) {
393
394 case PRU_ATTACH:
395 if (unp != NULL) {
396 error = EISCONN;
397 break;
398 }
399 error = unp_attach(so);
400 break;
401
402 case PRU_DETACH:
403 unp_detach(unp);
404 break;
405
406 case PRU_BIND:
407 KASSERT(l != NULL);
408 error = unp_bind(so, nam, l);
409 break;
410
411 case PRU_LISTEN:
412 /*
413 * If the socket can accept a connection, it must be
414 * locked by uipc_lock.
415 */
416 unp_resetlock(so);
417 if (unp->unp_vnode == NULL)
418 error = EINVAL;
419 break;
420
421 case PRU_CONNECT:
422 KASSERT(l != NULL);
423 error = unp_connect(so, nam, l);
424 break;
425
426 case PRU_CONNECT2:
427 error = unp_connect2(so, (struct socket *)nam, PRU_CONNECT2);
428 break;
429
430 case PRU_DISCONNECT:
431 unp_disconnect(unp);
432 break;
433
434 case PRU_ACCEPT:
435 KASSERT(so->so_lock == uipc_lock);
436 /*
437 * Mark the initiating STREAM socket as connected *ONLY*
438 * after it's been accepted. This prevents a client from
439 * overrunning a server and receiving ECONNREFUSED.
440 */
441 if (unp->unp_conn == NULL)
442 break;
443 so2 = unp->unp_conn->unp_socket;
444 if (so2->so_state & SS_ISCONNECTING) {
445 KASSERT(solocked2(so, so->so_head));
446 KASSERT(solocked2(so2, so->so_head));
447 soisconnected(so2);
448 }
449 /*
450 * If the connection is fully established, break the
451 * association with uipc_lock and give the connected
452 * pair a seperate lock to share.
453 * There is a race here: sotounpcb(so2)->unp_streamlock
454 * is not locked, so when changing so2->so_lock
455 * another thread can grab it while so->so_lock is still
456 * pointing to the (locked) uipc_lock.
457 * this should be harmless, except that this makes
458 * solocked2() and solocked() unreliable.
459 * Another problem is that unp_setaddr() expects the
460 * the socket locked. Grabing sotounpcb(so2)->unp_streamlock
461 * fixes both issues.
462 */
463 mutex_enter(sotounpcb(so2)->unp_streamlock);
464 unp_setpeerlocks(so2, so);
465 /*
466 * Only now return peer's address, as we may need to
467 * block in order to allocate memory.
468 *
469 * XXX Minor race: connection can be broken while
470 * lock is dropped in unp_setaddr(). We will return
471 * error == 0 and sun_noname as the peer address.
472 */
473 unp_setaddr(so, nam, true);
474 /* so_lock now points to unp_streamlock */
475 mutex_exit(so2->so_lock);
476 break;
477
478 case PRU_SHUTDOWN:
479 socantsendmore(so);
480 unp_shutdown(unp);
481 break;
482
483 case PRU_RCVD:
484 switch (so->so_type) {
485
486 case SOCK_DGRAM:
487 panic("uipc 1");
488 /*NOTREACHED*/
489
490 case SOCK_STREAM:
491 #define rcv (&so->so_rcv)
492 #define snd (&so2->so_snd)
493 if (unp->unp_conn == 0)
494 break;
495 so2 = unp->unp_conn->unp_socket;
496 KASSERT(solocked2(so, so2));
497 /*
498 * Adjust backpressure on sender
499 * and wakeup any waiting to write.
500 */
501 snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
502 unp->unp_mbcnt = rcv->sb_mbcnt;
503 newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
504 (void)chgsbsize(so2->so_uidinfo,
505 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
506 unp->unp_cc = rcv->sb_cc;
507 sowwakeup(so2);
508 #undef snd
509 #undef rcv
510 break;
511
512 default:
513 panic("uipc 2");
514 }
515 break;
516
517 case PRU_SEND:
518 /*
519 * Note: unp_internalize() rejects any control message
520 * other than SCM_RIGHTS, and only allows one. This
521 * has the side-effect of preventing a caller from
522 * forging SCM_CREDS.
523 */
524 if (control) {
525 sounlock(so);
526 error = unp_internalize(&control);
527 solock(so);
528 if (error != 0) {
529 m_freem(control);
530 m_freem(m);
531 break;
532 }
533 }
534 switch (so->so_type) {
535
536 case SOCK_DGRAM: {
537 KASSERT(so->so_lock == uipc_lock);
538 if (nam) {
539 if ((so->so_state & SS_ISCONNECTED) != 0)
540 error = EISCONN;
541 else {
542 /*
543 * Note: once connected, the
544 * socket's lock must not be
545 * dropped until we have sent
546 * the message and disconnected.
547 * This is necessary to prevent
548 * intervening control ops, like
549 * another connection.
550 */
551 error = unp_connect(so, nam, l);
552 }
553 } else {
554 if ((so->so_state & SS_ISCONNECTED) == 0)
555 error = ENOTCONN;
556 }
557 if (error) {
558 unp_dispose(control);
559 m_freem(control);
560 m_freem(m);
561 break;
562 }
563 KASSERT(p != NULL);
564 error = unp_output(m, control, unp, l);
565 if (nam)
566 unp_disconnect(unp);
567 break;
568 }
569
570 case SOCK_STREAM:
571 #define rcv (&so2->so_rcv)
572 #define snd (&so->so_snd)
573 if (unp->unp_conn == NULL) {
574 error = ENOTCONN;
575 break;
576 }
577 so2 = unp->unp_conn->unp_socket;
578 KASSERT(solocked2(so, so2));
579 if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
580 /*
581 * Credentials are passed only once on
582 * SOCK_STREAM.
583 */
584 unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
585 control = unp_addsockcred(l, control);
586 }
587 /*
588 * Send to paired receive port, and then reduce
589 * send buffer hiwater marks to maintain backpressure.
590 * Wake up readers.
591 */
592 if (control) {
593 if (sbappendcontrol(rcv, m, control) != 0)
594 control = NULL;
595 } else
596 sbappend(rcv, m);
597 snd->sb_mbmax -=
598 rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
599 unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
600 newhiwat = snd->sb_hiwat -
601 (rcv->sb_cc - unp->unp_conn->unp_cc);
602 (void)chgsbsize(so->so_uidinfo,
603 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
604 unp->unp_conn->unp_cc = rcv->sb_cc;
605 sorwakeup(so2);
606 #undef snd
607 #undef rcv
608 if (control != NULL) {
609 unp_dispose(control);
610 m_freem(control);
611 }
612 break;
613
614 default:
615 panic("uipc 4");
616 }
617 break;
618
619 case PRU_ABORT:
620 (void)unp_drop(unp, ECONNABORTED);
621
622 KASSERT(so->so_head == NULL);
623 #ifdef DIAGNOSTIC
624 if (so->so_pcb == NULL)
625 panic("uipc 5: drop killed pcb");
626 #endif
627 unp_detach(unp);
628 break;
629
630 case PRU_SENSE:
631 ((struct stat *) m)->st_blksize = so->so_snd.sb_hiwat;
632 if (so->so_type == SOCK_STREAM && unp->unp_conn != 0) {
633 so2 = unp->unp_conn->unp_socket;
634 KASSERT(solocked2(so, so2));
635 ((struct stat *) m)->st_blksize += so2->so_rcv.sb_cc;
636 }
637 ((struct stat *) m)->st_dev = NODEV;
638 if (unp->unp_ino == 0)
639 unp->unp_ino = unp_ino++;
640 ((struct stat *) m)->st_atimespec =
641 ((struct stat *) m)->st_mtimespec =
642 ((struct stat *) m)->st_ctimespec = unp->unp_ctime;
643 ((struct stat *) m)->st_ino = unp->unp_ino;
644 return (0);
645
646 case PRU_RCVOOB:
647 error = EOPNOTSUPP;
648 break;
649
650 case PRU_SENDOOB:
651 m_freem(control);
652 m_freem(m);
653 error = EOPNOTSUPP;
654 break;
655
656 case PRU_SOCKADDR:
657 unp_setaddr(so, nam, false);
658 break;
659
660 case PRU_PEERADDR:
661 unp_setaddr(so, nam, true);
662 break;
663
664 default:
665 panic("piusrreq");
666 }
667
668 release:
669 return (error);
670 }
671
672 /*
673 * Unix domain socket option processing.
674 */
675 int
676 uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
677 {
678 struct unpcb *unp = sotounpcb(so);
679 int optval = 0, error = 0;
680
681 KASSERT(solocked(so));
682
683 if (sopt->sopt_level != 0) {
684 error = ENOPROTOOPT;
685 } else switch (op) {
686
687 case PRCO_SETOPT:
688 switch (sopt->sopt_name) {
689 case LOCAL_CREDS:
690 case LOCAL_CONNWAIT:
691 error = sockopt_getint(sopt, &optval);
692 if (error)
693 break;
694 switch (sopt->sopt_name) {
695 #define OPTSET(bit) \
696 if (optval) \
697 unp->unp_flags |= (bit); \
698 else \
699 unp->unp_flags &= ~(bit);
700
701 case LOCAL_CREDS:
702 OPTSET(UNP_WANTCRED);
703 break;
704 case LOCAL_CONNWAIT:
705 OPTSET(UNP_CONNWAIT);
706 break;
707 }
708 break;
709 #undef OPTSET
710
711 default:
712 error = ENOPROTOOPT;
713 break;
714 }
715 break;
716
717 case PRCO_GETOPT:
718 sounlock(so);
719 switch (sopt->sopt_name) {
720 case LOCAL_PEEREID:
721 if (unp->unp_flags & UNP_EIDSVALID) {
722 error = sockopt_set(sopt,
723 &unp->unp_connid, sizeof(unp->unp_connid));
724 } else {
725 error = EINVAL;
726 }
727 break;
728 case LOCAL_CREDS:
729 #define OPTBIT(bit) (unp->unp_flags & (bit) ? 1 : 0)
730
731 optval = OPTBIT(UNP_WANTCRED);
732 error = sockopt_setint(sopt, optval);
733 break;
734 #undef OPTBIT
735
736 default:
737 error = ENOPROTOOPT;
738 break;
739 }
740 solock(so);
741 break;
742 }
743 return (error);
744 }
745
746 /*
747 * Both send and receive buffers are allocated PIPSIZ bytes of buffering
748 * for stream sockets, although the total for sender and receiver is
749 * actually only PIPSIZ.
750 * Datagram sockets really use the sendspace as the maximum datagram size,
751 * and don't really want to reserve the sendspace. Their recvspace should
752 * be large enough for at least one max-size datagram plus address.
753 */
754 #define PIPSIZ 4096
755 u_long unpst_sendspace = PIPSIZ;
756 u_long unpst_recvspace = PIPSIZ;
757 u_long unpdg_sendspace = 2*1024; /* really max datagram size */
758 u_long unpdg_recvspace = 4*1024;
759
760 u_int unp_rights; /* files in flight */
761 u_int unp_rights_ratio = 2; /* limit, fraction of maxfiles */
762
763 int
764 unp_attach(struct socket *so)
765 {
766 struct unpcb *unp;
767 int error;
768
769 switch (so->so_type) {
770 case SOCK_STREAM:
771 if (so->so_lock == NULL) {
772 /*
773 * XXX Assuming that no socket locks are held,
774 * as this call may sleep.
775 */
776 so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
777 solock(so);
778 }
779 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
780 error = soreserve(so, unpst_sendspace, unpst_recvspace);
781 if (error != 0)
782 return (error);
783 }
784 break;
785
786 case SOCK_DGRAM:
787 if (so->so_lock == NULL) {
788 mutex_obj_hold(uipc_lock);
789 so->so_lock = uipc_lock;
790 solock(so);
791 }
792 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
793 error = soreserve(so, unpdg_sendspace, unpdg_recvspace);
794 if (error != 0)
795 return (error);
796 }
797 break;
798
799 default:
800 panic("unp_attach");
801 }
802 KASSERT(solocked(so));
803 unp = malloc(sizeof(*unp), M_PCB, M_NOWAIT);
804 if (unp == NULL)
805 return (ENOBUFS);
806 memset(unp, 0, sizeof(*unp));
807 unp->unp_socket = so;
808 so->so_pcb = unp;
809 nanotime(&unp->unp_ctime);
810 return (0);
811 }
812
813 void
814 unp_detach(struct unpcb *unp)
815 {
816 struct socket *so;
817 vnode_t *vp;
818
819 so = unp->unp_socket;
820
821 retry:
822 if ((vp = unp->unp_vnode) != NULL) {
823 sounlock(so);
824 /* Acquire v_interlock to protect against unp_connect(). */
825 /* XXXAD racy */
826 mutex_enter(&vp->v_interlock);
827 vp->v_socket = NULL;
828 vrelel(vp, 0);
829 solock(so);
830 unp->unp_vnode = NULL;
831 }
832 if (unp->unp_conn)
833 unp_disconnect(unp);
834 while (unp->unp_refs) {
835 KASSERT(solocked2(so, unp->unp_refs->unp_socket));
836 if (unp_drop(unp->unp_refs, ECONNRESET)) {
837 solock(so);
838 goto retry;
839 }
840 }
841 soisdisconnected(so);
842 so->so_pcb = NULL;
843 if (unp_rights) {
844 /*
845 * Normally the receive buffer is flushed later, in sofree,
846 * but if our receive buffer holds references to files that
847 * are now garbage, we will enqueue those file references to
848 * the garbage collector and kick it into action.
849 */
850 sorflush(so);
851 unp_free(unp);
852 unp_thread_kick();
853 } else
854 unp_free(unp);
855 }
856
857 int
858 unp_bind(struct socket *so, struct mbuf *nam, struct lwp *l)
859 {
860 struct sockaddr_un *sun;
861 struct unpcb *unp;
862 vnode_t *vp;
863 struct vattr vattr;
864 size_t addrlen;
865 int error;
866 struct pathbuf *pb;
867 struct nameidata nd;
868 proc_t *p;
869
870 unp = sotounpcb(so);
871 if (unp->unp_vnode != NULL)
872 return (EINVAL);
873 if ((unp->unp_flags & UNP_BUSY) != 0) {
874 /*
875 * EALREADY may not be strictly accurate, but since this
876 * is a major application error it's hardly a big deal.
877 */
878 return (EALREADY);
879 }
880 unp->unp_flags |= UNP_BUSY;
881 sounlock(so);
882
883 /*
884 * Allocate the new sockaddr. We have to allocate one
885 * extra byte so that we can ensure that the pathname
886 * is nul-terminated.
887 */
888 p = l->l_proc;
889 addrlen = nam->m_len + 1;
890 sun = malloc(addrlen, M_SONAME, M_WAITOK);
891 m_copydata(nam, 0, nam->m_len, (void *)sun);
892 *(((char *)sun) + nam->m_len) = '\0';
893
894 pb = pathbuf_create(sun->sun_path);
895 if (pb == NULL) {
896 error = ENOMEM;
897 goto bad;
898 }
899 NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, pb);
900
901 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
902 if ((error = namei(&nd)) != 0) {
903 pathbuf_destroy(pb);
904 goto bad;
905 }
906 vp = nd.ni_vp;
907 if (vp != NULL) {
908 VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
909 if (nd.ni_dvp == vp)
910 vrele(nd.ni_dvp);
911 else
912 vput(nd.ni_dvp);
913 vrele(vp);
914 pathbuf_destroy(pb);
915 error = EADDRINUSE;
916 goto bad;
917 }
918 vattr_null(&vattr);
919 vattr.va_type = VSOCK;
920 vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
921 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
922 if (error) {
923 pathbuf_destroy(pb);
924 goto bad;
925 }
926 vp = nd.ni_vp;
927 solock(so);
928 vp->v_socket = unp->unp_socket;
929 unp->unp_vnode = vp;
930 unp->unp_addrlen = addrlen;
931 unp->unp_addr = sun;
932 unp->unp_connid.unp_pid = p->p_pid;
933 unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
934 unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
935 unp->unp_flags |= UNP_EIDSBIND;
936 VOP_UNLOCK(vp);
937 unp->unp_flags &= ~UNP_BUSY;
938 pathbuf_destroy(pb);
939 return (0);
940
941 bad:
942 free(sun, M_SONAME);
943 solock(so);
944 unp->unp_flags &= ~UNP_BUSY;
945 return (error);
946 }
947
948 int
949 unp_connect(struct socket *so, struct mbuf *nam, struct lwp *l)
950 {
951 struct sockaddr_un *sun;
952 vnode_t *vp;
953 struct socket *so2, *so3;
954 struct unpcb *unp, *unp2, *unp3;
955 size_t addrlen;
956 int error;
957 struct pathbuf *pb;
958 struct nameidata nd;
959
960 unp = sotounpcb(so);
961 if ((unp->unp_flags & UNP_BUSY) != 0) {
962 /*
963 * EALREADY may not be strictly accurate, but since this
964 * is a major application error it's hardly a big deal.
965 */
966 return (EALREADY);
967 }
968 unp->unp_flags |= UNP_BUSY;
969 sounlock(so);
970
971 /*
972 * Allocate a temporary sockaddr. We have to allocate one extra
973 * byte so that we can ensure that the pathname is nul-terminated.
974 * When we establish the connection, we copy the other PCB's
975 * sockaddr to our own.
976 */
977 addrlen = nam->m_len + 1;
978 sun = malloc(addrlen, M_SONAME, M_WAITOK);
979 m_copydata(nam, 0, nam->m_len, (void *)sun);
980 *(((char *)sun) + nam->m_len) = '\0';
981
982 pb = pathbuf_create(sun->sun_path);
983 if (pb == NULL) {
984 error = ENOMEM;
985 goto bad2;
986 }
987
988 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
989
990 if ((error = namei(&nd)) != 0) {
991 pathbuf_destroy(pb);
992 goto bad2;
993 }
994 vp = nd.ni_vp;
995 if (vp->v_type != VSOCK) {
996 error = ENOTSOCK;
997 goto bad;
998 }
999 pathbuf_destroy(pb);
1000 if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
1001 goto bad;
1002 /* Acquire v_interlock to protect against unp_detach(). */
1003 mutex_enter(&vp->v_interlock);
1004 so2 = vp->v_socket;
1005 if (so2 == NULL) {
1006 mutex_exit(&vp->v_interlock);
1007 error = ECONNREFUSED;
1008 goto bad;
1009 }
1010 if (so->so_type != so2->so_type) {
1011 mutex_exit(&vp->v_interlock);
1012 error = EPROTOTYPE;
1013 goto bad;
1014 }
1015 solock(so);
1016 unp_resetlock(so);
1017 mutex_exit(&vp->v_interlock);
1018 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
1019 /*
1020 * This may seem somewhat fragile but is OK: if we can
1021 * see SO_ACCEPTCONN set on the endpoint, then it must
1022 * be locked by the domain-wide uipc_lock.
1023 */
1024 KASSERT((so2->so_options & SO_ACCEPTCONN) == 0 ||
1025 so2->so_lock == uipc_lock);
1026 if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
1027 (so3 = sonewconn(so2, 0)) == NULL) {
1028 error = ECONNREFUSED;
1029 sounlock(so);
1030 goto bad;
1031 }
1032 unp2 = sotounpcb(so2);
1033 unp3 = sotounpcb(so3);
1034 if (unp2->unp_addr) {
1035 unp3->unp_addr = malloc(unp2->unp_addrlen,
1036 M_SONAME, M_WAITOK);
1037 memcpy(unp3->unp_addr, unp2->unp_addr,
1038 unp2->unp_addrlen);
1039 unp3->unp_addrlen = unp2->unp_addrlen;
1040 }
1041 unp3->unp_flags = unp2->unp_flags;
1042 unp3->unp_connid.unp_pid = l->l_proc->p_pid;
1043 unp3->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
1044 unp3->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
1045 unp3->unp_flags |= UNP_EIDSVALID;
1046 if (unp2->unp_flags & UNP_EIDSBIND) {
1047 unp->unp_connid = unp2->unp_connid;
1048 unp->unp_flags |= UNP_EIDSVALID;
1049 }
1050 so2 = so3;
1051 }
1052 error = unp_connect2(so, so2, PRU_CONNECT);
1053 sounlock(so);
1054 bad:
1055 vput(vp);
1056 bad2:
1057 free(sun, M_SONAME);
1058 solock(so);
1059 unp->unp_flags &= ~UNP_BUSY;
1060 return (error);
1061 }
1062
1063 int
1064 unp_connect2(struct socket *so, struct socket *so2, int req)
1065 {
1066 struct unpcb *unp = sotounpcb(so);
1067 struct unpcb *unp2;
1068
1069 if (so2->so_type != so->so_type)
1070 return (EPROTOTYPE);
1071
1072 /*
1073 * All three sockets involved must be locked by same lock:
1074 *
1075 * local endpoint (so)
1076 * remote endpoint (so2)
1077 * queue head (so2->so_head, only if PR_CONNREQUIRED)
1078 */
1079 KASSERT(solocked2(so, so2));
1080 KASSERT(so->so_head == NULL);
1081 if (so2->so_head != NULL) {
1082 KASSERT(so2->so_lock == uipc_lock);
1083 KASSERT(solocked2(so2, so2->so_head));
1084 }
1085
1086 unp2 = sotounpcb(so2);
1087 unp->unp_conn = unp2;
1088 switch (so->so_type) {
1089
1090 case SOCK_DGRAM:
1091 unp->unp_nextref = unp2->unp_refs;
1092 unp2->unp_refs = unp;
1093 soisconnected(so);
1094 break;
1095
1096 case SOCK_STREAM:
1097 unp2->unp_conn = unp;
1098 if (req == PRU_CONNECT &&
1099 ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1100 soisconnecting(so);
1101 else
1102 soisconnected(so);
1103 soisconnected(so2);
1104 /*
1105 * If the connection is fully established, break the
1106 * association with uipc_lock and give the connected
1107 * pair a seperate lock to share. For CONNECT2, we
1108 * require that the locks already match (the sockets
1109 * are created that way).
1110 */
1111 if (req == PRU_CONNECT) {
1112 KASSERT(so2->so_head != NULL);
1113 unp_setpeerlocks(so, so2);
1114 }
1115 break;
1116
1117 default:
1118 panic("unp_connect2");
1119 }
1120 return (0);
1121 }
1122
1123 void
1124 unp_disconnect(struct unpcb *unp)
1125 {
1126 struct unpcb *unp2 = unp->unp_conn;
1127 struct socket *so;
1128
1129 if (unp2 == 0)
1130 return;
1131 unp->unp_conn = 0;
1132 so = unp->unp_socket;
1133 switch (so->so_type) {
1134 case SOCK_DGRAM:
1135 if (unp2->unp_refs == unp)
1136 unp2->unp_refs = unp->unp_nextref;
1137 else {
1138 unp2 = unp2->unp_refs;
1139 for (;;) {
1140 KASSERT(solocked2(so, unp2->unp_socket));
1141 if (unp2 == 0)
1142 panic("unp_disconnect");
1143 if (unp2->unp_nextref == unp)
1144 break;
1145 unp2 = unp2->unp_nextref;
1146 }
1147 unp2->unp_nextref = unp->unp_nextref;
1148 }
1149 unp->unp_nextref = 0;
1150 so->so_state &= ~SS_ISCONNECTED;
1151 break;
1152
1153 case SOCK_STREAM:
1154 KASSERT(solocked2(so, unp2->unp_socket));
1155 soisdisconnected(so);
1156 unp2->unp_conn = 0;
1157 soisdisconnected(unp2->unp_socket);
1158 break;
1159 }
1160 }
1161
1162 #ifdef notdef
1163 unp_abort(struct unpcb *unp)
1164 {
1165 unp_detach(unp);
1166 }
1167 #endif
1168
1169 void
1170 unp_shutdown(struct unpcb *unp)
1171 {
1172 struct socket *so;
1173
1174 if (unp->unp_socket->so_type == SOCK_STREAM && unp->unp_conn &&
1175 (so = unp->unp_conn->unp_socket))
1176 socantrcvmore(so);
1177 }
1178
1179 bool
1180 unp_drop(struct unpcb *unp, int errno)
1181 {
1182 struct socket *so = unp->unp_socket;
1183
1184 KASSERT(solocked(so));
1185
1186 so->so_error = errno;
1187 unp_disconnect(unp);
1188 if (so->so_head) {
1189 so->so_pcb = NULL;
1190 /* sofree() drops the socket lock */
1191 sofree(so);
1192 unp_free(unp);
1193 return true;
1194 }
1195 return false;
1196 }
1197
1198 #ifdef notdef
1199 unp_drain(void)
1200 {
1201
1202 }
1203 #endif
1204
1205 int
1206 unp_externalize(struct mbuf *rights, struct lwp *l)
1207 {
1208 struct cmsghdr *cm = mtod(rights, struct cmsghdr *);
1209 struct proc *p = l->l_proc;
1210 int i, *fdp;
1211 file_t **rp;
1212 file_t *fp;
1213 int nfds, error = 0;
1214
1215 nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
1216 sizeof(file_t *);
1217 rp = (file_t **)CMSG_DATA(cm);
1218
1219 fdp = malloc(nfds * sizeof(int), M_TEMP, M_WAITOK);
1220 rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
1221
1222 /* Make sure the recipient should be able to see the files.. */
1223 if (p->p_cwdi->cwdi_rdir != NULL) {
1224 rp = (file_t **)CMSG_DATA(cm);
1225 for (i = 0; i < nfds; i++) {
1226 fp = *rp++;
1227 /*
1228 * If we are in a chroot'ed directory, and
1229 * someone wants to pass us a directory, make
1230 * sure it's inside the subtree we're allowed
1231 * to access.
1232 */
1233 if (fp->f_type == DTYPE_VNODE) {
1234 vnode_t *vp = (vnode_t *)fp->f_data;
1235 if ((vp->v_type == VDIR) &&
1236 !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
1237 error = EPERM;
1238 break;
1239 }
1240 }
1241 }
1242 }
1243
1244 restart:
1245 rp = (file_t **)CMSG_DATA(cm);
1246 if (error != 0) {
1247 for (i = 0; i < nfds; i++) {
1248 fp = *rp;
1249 *rp++ = 0;
1250 unp_discard_now(fp);
1251 }
1252 goto out;
1253 }
1254
1255 /*
1256 * First loop -- allocate file descriptor table slots for the
1257 * new files.
1258 */
1259 for (i = 0; i < nfds; i++) {
1260 fp = *rp++;
1261 if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
1262 /*
1263 * Back out what we've done so far.
1264 */
1265 for (--i; i >= 0; i--) {
1266 fd_abort(p, NULL, fdp[i]);
1267 }
1268 if (error == ENOSPC) {
1269 fd_tryexpand(p);
1270 error = 0;
1271 } else {
1272 /*
1273 * This is the error that has historically
1274 * been returned, and some callers may
1275 * expect it.
1276 */
1277 error = EMSGSIZE;
1278 }
1279 goto restart;
1280 }
1281 }
1282
1283 /*
1284 * Now that adding them has succeeded, update all of the
1285 * file passing state and affix the descriptors.
1286 */
1287 rp = (file_t **)CMSG_DATA(cm);
1288 for (i = 0; i < nfds; i++) {
1289 fp = *rp++;
1290 atomic_dec_uint(&unp_rights);
1291 fd_affix(p, fp, fdp[i]);
1292 mutex_enter(&fp->f_lock);
1293 fp->f_msgcount--;
1294 mutex_exit(&fp->f_lock);
1295 /*
1296 * Note that fd_affix() adds a reference to the file.
1297 * The file may already have been closed by another
1298 * LWP in the process, so we must drop the reference
1299 * added by unp_internalize() with closef().
1300 */
1301 closef(fp);
1302 }
1303
1304 /*
1305 * Copy temporary array to message and adjust length, in case of
1306 * transition from large file_t pointers to ints.
1307 */
1308 memcpy(CMSG_DATA(cm), fdp, nfds * sizeof(int));
1309 cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
1310 rights->m_len = CMSG_SPACE(nfds * sizeof(int));
1311 out:
1312 rw_exit(&p->p_cwdi->cwdi_lock);
1313 free(fdp, M_TEMP);
1314 return (error);
1315 }
1316
1317 int
1318 unp_internalize(struct mbuf **controlp)
1319 {
1320 filedesc_t *fdescp = curlwp->l_fd;
1321 struct mbuf *control = *controlp;
1322 struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
1323 file_t **rp, **files;
1324 file_t *fp;
1325 int i, fd, *fdp;
1326 int nfds, error;
1327 u_int maxmsg;
1328
1329 error = 0;
1330 newcm = NULL;
1331
1332 /* Sanity check the control message header. */
1333 if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
1334 cm->cmsg_len > control->m_len ||
1335 cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
1336 return (EINVAL);
1337
1338 /*
1339 * Verify that the file descriptors are valid, and acquire
1340 * a reference to each.
1341 */
1342 nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
1343 fdp = (int *)CMSG_DATA(cm);
1344 maxmsg = maxfiles / unp_rights_ratio;
1345 for (i = 0; i < nfds; i++) {
1346 fd = *fdp++;
1347 if (atomic_inc_uint_nv(&unp_rights) > maxmsg) {
1348 atomic_dec_uint(&unp_rights);
1349 nfds = i;
1350 error = EAGAIN;
1351 goto out;
1352 }
1353 if ((fp = fd_getfile(fd)) == NULL) {
1354 atomic_dec_uint(&unp_rights);
1355 nfds = i;
1356 error = EBADF;
1357 goto out;
1358 }
1359 }
1360
1361 /* Allocate new space and copy header into it. */
1362 newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
1363 if (newcm == NULL) {
1364 error = E2BIG;
1365 goto out;
1366 }
1367 memcpy(newcm, cm, sizeof(struct cmsghdr));
1368 files = (file_t **)CMSG_DATA(newcm);
1369
1370 /*
1371 * Transform the file descriptors into file_t pointers, in
1372 * reverse order so that if pointers are bigger than ints, the
1373 * int won't get until we're done. No need to lock, as we have
1374 * already validated the descriptors with fd_getfile().
1375 */
1376 fdp = (int *)CMSG_DATA(cm) + nfds;
1377 rp = files + nfds;
1378 for (i = 0; i < nfds; i++) {
1379 fp = fdescp->fd_dt->dt_ff[*--fdp]->ff_file;
1380 KASSERT(fp != NULL);
1381 mutex_enter(&fp->f_lock);
1382 *--rp = fp;
1383 fp->f_count++;
1384 fp->f_msgcount++;
1385 mutex_exit(&fp->f_lock);
1386 }
1387
1388 out:
1389 /* Release descriptor references. */
1390 fdp = (int *)CMSG_DATA(cm);
1391 for (i = 0; i < nfds; i++) {
1392 fd_putfile(*fdp++);
1393 if (error != 0) {
1394 atomic_dec_uint(&unp_rights);
1395 }
1396 }
1397
1398 if (error == 0) {
1399 if (control->m_flags & M_EXT) {
1400 m_freem(control);
1401 *controlp = control = m_get(M_WAIT, MT_CONTROL);
1402 }
1403 MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
1404 M_MBUF, NULL, NULL);
1405 cm = newcm;
1406 /*
1407 * Adjust message & mbuf to note amount of space
1408 * actually used.
1409 */
1410 cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
1411 control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
1412 }
1413
1414 return error;
1415 }
1416
1417 struct mbuf *
1418 unp_addsockcred(struct lwp *l, struct mbuf *control)
1419 {
1420 struct cmsghdr *cmp;
1421 struct sockcred *sc;
1422 struct mbuf *m, *n;
1423 int len, space, i;
1424
1425 len = CMSG_LEN(SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)));
1426 space = CMSG_SPACE(SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)));
1427
1428 m = m_get(M_WAIT, MT_CONTROL);
1429 if (space > MLEN) {
1430 if (space > MCLBYTES)
1431 MEXTMALLOC(m, space, M_WAITOK);
1432 else
1433 m_clget(m, M_WAIT);
1434 if ((m->m_flags & M_EXT) == 0) {
1435 m_free(m);
1436 return (control);
1437 }
1438 }
1439
1440 m->m_len = space;
1441 m->m_next = NULL;
1442 cmp = mtod(m, struct cmsghdr *);
1443 sc = (struct sockcred *)CMSG_DATA(cmp);
1444 cmp->cmsg_len = len;
1445 cmp->cmsg_level = SOL_SOCKET;
1446 cmp->cmsg_type = SCM_CREDS;
1447 sc->sc_uid = kauth_cred_getuid(l->l_cred);
1448 sc->sc_euid = kauth_cred_geteuid(l->l_cred);
1449 sc->sc_gid = kauth_cred_getgid(l->l_cred);
1450 sc->sc_egid = kauth_cred_getegid(l->l_cred);
1451 sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
1452 for (i = 0; i < sc->sc_ngroups; i++)
1453 sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
1454
1455 /*
1456 * If a control message already exists, append us to the end.
1457 */
1458 if (control != NULL) {
1459 for (n = control; n->m_next != NULL; n = n->m_next)
1460 ;
1461 n->m_next = m;
1462 } else
1463 control = m;
1464
1465 return (control);
1466 }
1467
1468 /*
1469 * Do a mark-sweep GC of files in the system, to free up any which are
1470 * caught in flight to an about-to-be-closed socket. Additionally,
1471 * process deferred file closures.
1472 */
1473 static void
1474 unp_gc(file_t *dp)
1475 {
1476 extern struct domain unixdomain;
1477 file_t *fp, *np;
1478 struct socket *so, *so1;
1479 u_int i, old, new;
1480 bool didwork;
1481
1482 KASSERT(curlwp == unp_thread_lwp);
1483 KASSERT(mutex_owned(&filelist_lock));
1484
1485 /*
1486 * First, process deferred file closures.
1487 */
1488 while (!SLIST_EMPTY(&unp_thread_discard)) {
1489 fp = SLIST_FIRST(&unp_thread_discard);
1490 KASSERT(fp->f_unpcount > 0);
1491 KASSERT(fp->f_count > 0);
1492 KASSERT(fp->f_msgcount > 0);
1493 KASSERT(fp->f_count >= fp->f_unpcount);
1494 KASSERT(fp->f_count >= fp->f_msgcount);
1495 KASSERT(fp->f_msgcount >= fp->f_unpcount);
1496 SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist);
1497 i = fp->f_unpcount;
1498 fp->f_unpcount = 0;
1499 mutex_exit(&filelist_lock);
1500 for (; i != 0; i--) {
1501 unp_discard_now(fp);
1502 }
1503 mutex_enter(&filelist_lock);
1504 }
1505
1506 /*
1507 * Clear mark bits. Ensure that we don't consider new files
1508 * entering the file table during this loop (they will not have
1509 * FSCAN set).
1510 */
1511 unp_defer = 0;
1512 LIST_FOREACH(fp, &filehead, f_list) {
1513 for (old = fp->f_flag;; old = new) {
1514 new = atomic_cas_uint(&fp->f_flag, old,
1515 (old | FSCAN) & ~(FMARK|FDEFER));
1516 if (__predict_true(old == new)) {
1517 break;
1518 }
1519 }
1520 }
1521
1522 /*
1523 * Iterate over the set of sockets, marking ones believed (based on
1524 * refcount) to be referenced from a process, and marking for rescan
1525 * sockets which are queued on a socket. Recan continues descending
1526 * and searching for sockets referenced by sockets (FDEFER), until
1527 * there are no more socket->socket references to be discovered.
1528 */
1529 do {
1530 didwork = false;
1531 for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1532 KASSERT(mutex_owned(&filelist_lock));
1533 np = LIST_NEXT(fp, f_list);
1534 mutex_enter(&fp->f_lock);
1535 if ((fp->f_flag & FDEFER) != 0) {
1536 atomic_and_uint(&fp->f_flag, ~FDEFER);
1537 unp_defer--;
1538 KASSERT(fp->f_count != 0);
1539 } else {
1540 if (fp->f_count == 0 ||
1541 (fp->f_flag & FMARK) != 0 ||
1542 fp->f_count == fp->f_msgcount ||
1543 fp->f_unpcount != 0) {
1544 mutex_exit(&fp->f_lock);
1545 continue;
1546 }
1547 }
1548 atomic_or_uint(&fp->f_flag, FMARK);
1549
1550 if (fp->f_type != DTYPE_SOCKET ||
1551 (so = fp->f_data) == NULL ||
1552 so->so_proto->pr_domain != &unixdomain ||
1553 (so->so_proto->pr_flags & PR_RIGHTS) == 0) {
1554 mutex_exit(&fp->f_lock);
1555 continue;
1556 }
1557
1558 /* Gain file ref, mark our position, and unlock. */
1559 didwork = true;
1560 LIST_INSERT_AFTER(fp, dp, f_list);
1561 fp->f_count++;
1562 mutex_exit(&fp->f_lock);
1563 mutex_exit(&filelist_lock);
1564
1565 /*
1566 * Mark files referenced from sockets queued on the
1567 * accept queue as well.
1568 */
1569 solock(so);
1570 unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
1571 if ((so->so_options & SO_ACCEPTCONN) != 0) {
1572 TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
1573 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1574 }
1575 TAILQ_FOREACH(so1, &so->so_q, so_qe) {
1576 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1577 }
1578 }
1579 sounlock(so);
1580
1581 /* Re-lock and restart from where we left off. */
1582 closef(fp);
1583 mutex_enter(&filelist_lock);
1584 np = LIST_NEXT(dp, f_list);
1585 LIST_REMOVE(dp, f_list);
1586 }
1587 /*
1588 * Bail early if we did nothing in the loop above. Could
1589 * happen because of concurrent activity causing unp_defer
1590 * to get out of sync.
1591 */
1592 } while (unp_defer != 0 && didwork);
1593
1594 /*
1595 * Sweep pass.
1596 *
1597 * We grab an extra reference to each of the files that are
1598 * not otherwise accessible and then free the rights that are
1599 * stored in messages on them.
1600 */
1601 for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1602 KASSERT(mutex_owned(&filelist_lock));
1603 np = LIST_NEXT(fp, f_list);
1604 mutex_enter(&fp->f_lock);
1605
1606 /*
1607 * Ignore non-sockets.
1608 * Ignore dead sockets, or sockets with pending close.
1609 * Ignore sockets obviously referenced elsewhere.
1610 * Ignore sockets marked as referenced by our scan.
1611 * Ignore new sockets that did not exist during the scan.
1612 */
1613 if (fp->f_type != DTYPE_SOCKET ||
1614 fp->f_count == 0 || fp->f_unpcount != 0 ||
1615 fp->f_count != fp->f_msgcount ||
1616 (fp->f_flag & (FMARK | FSCAN)) != FSCAN) {
1617 mutex_exit(&fp->f_lock);
1618 continue;
1619 }
1620
1621 /* Gain file ref, mark our position, and unlock. */
1622 LIST_INSERT_AFTER(fp, dp, f_list);
1623 fp->f_count++;
1624 mutex_exit(&fp->f_lock);
1625 mutex_exit(&filelist_lock);
1626
1627 /*
1628 * Flush all data from the socket's receive buffer.
1629 * This will cause files referenced only by the
1630 * socket to be queued for close.
1631 */
1632 so = fp->f_data;
1633 solock(so);
1634 sorflush(so);
1635 sounlock(so);
1636
1637 /* Re-lock and restart from where we left off. */
1638 closef(fp);
1639 mutex_enter(&filelist_lock);
1640 np = LIST_NEXT(dp, f_list);
1641 LIST_REMOVE(dp, f_list);
1642 }
1643 }
1644
1645 /*
1646 * Garbage collector thread. While SCM_RIGHTS messages are in transit,
1647 * wake once per second to garbage collect. Run continually while we
1648 * have deferred closes to process.
1649 */
1650 static void
1651 unp_thread(void *cookie)
1652 {
1653 file_t *dp;
1654
1655 /* Allocate a dummy file for our scans. */
1656 if ((dp = fgetdummy()) == NULL) {
1657 panic("unp_thread");
1658 }
1659
1660 mutex_enter(&filelist_lock);
1661 for (;;) {
1662 KASSERT(mutex_owned(&filelist_lock));
1663 if (SLIST_EMPTY(&unp_thread_discard)) {
1664 if (unp_rights != 0) {
1665 (void)cv_timedwait(&unp_thread_cv,
1666 &filelist_lock, hz);
1667 } else {
1668 cv_wait(&unp_thread_cv, &filelist_lock);
1669 }
1670 }
1671 unp_gc(dp);
1672 }
1673 /* NOTREACHED */
1674 }
1675
1676 /*
1677 * Kick the garbage collector into action if there is something for
1678 * it to process.
1679 */
1680 static void
1681 unp_thread_kick(void)
1682 {
1683
1684 if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) {
1685 mutex_enter(&filelist_lock);
1686 cv_signal(&unp_thread_cv);
1687 mutex_exit(&filelist_lock);
1688 }
1689 }
1690
1691 void
1692 unp_dispose(struct mbuf *m)
1693 {
1694
1695 if (m)
1696 unp_scan(m, unp_discard_later, 1);
1697 }
1698
1699 void
1700 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
1701 {
1702 struct mbuf *m;
1703 file_t **rp, *fp;
1704 struct cmsghdr *cm;
1705 int i, qfds;
1706
1707 while (m0) {
1708 for (m = m0; m; m = m->m_next) {
1709 if (m->m_type != MT_CONTROL ||
1710 m->m_len < sizeof(*cm)) {
1711 continue;
1712 }
1713 cm = mtod(m, struct cmsghdr *);
1714 if (cm->cmsg_level != SOL_SOCKET ||
1715 cm->cmsg_type != SCM_RIGHTS)
1716 continue;
1717 qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
1718 / sizeof(file_t *);
1719 rp = (file_t **)CMSG_DATA(cm);
1720 for (i = 0; i < qfds; i++) {
1721 fp = *rp;
1722 if (discard) {
1723 *rp = 0;
1724 }
1725 (*op)(fp);
1726 rp++;
1727 }
1728 }
1729 m0 = m0->m_nextpkt;
1730 }
1731 }
1732
1733 void
1734 unp_mark(file_t *fp)
1735 {
1736
1737 if (fp == NULL)
1738 return;
1739
1740 /* If we're already deferred, don't screw up the defer count */
1741 mutex_enter(&fp->f_lock);
1742 if (fp->f_flag & (FMARK | FDEFER)) {
1743 mutex_exit(&fp->f_lock);
1744 return;
1745 }
1746
1747 /*
1748 * Minimize the number of deferrals... Sockets are the only type of
1749 * file which can hold references to another file, so just mark
1750 * other files, and defer unmarked sockets for the next pass.
1751 */
1752 if (fp->f_type == DTYPE_SOCKET) {
1753 unp_defer++;
1754 KASSERT(fp->f_count != 0);
1755 atomic_or_uint(&fp->f_flag, FDEFER);
1756 } else {
1757 atomic_or_uint(&fp->f_flag, FMARK);
1758 }
1759 mutex_exit(&fp->f_lock);
1760 }
1761
1762 static void
1763 unp_discard_now(file_t *fp)
1764 {
1765
1766 if (fp == NULL)
1767 return;
1768
1769 KASSERT(fp->f_count > 0);
1770 KASSERT(fp->f_msgcount > 0);
1771
1772 mutex_enter(&fp->f_lock);
1773 fp->f_msgcount--;
1774 mutex_exit(&fp->f_lock);
1775 atomic_dec_uint(&unp_rights);
1776 (void)closef(fp);
1777 }
1778
1779 static void
1780 unp_discard_later(file_t *fp)
1781 {
1782
1783 if (fp == NULL)
1784 return;
1785
1786 KASSERT(fp->f_count > 0);
1787 KASSERT(fp->f_msgcount > 0);
1788
1789 mutex_enter(&filelist_lock);
1790 if (fp->f_unpcount++ == 0) {
1791 SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist);
1792 }
1793 mutex_exit(&filelist_lock);
1794 }
1795