Home | History | Annotate | Line # | Download | only in kern
uipc_usrreq.c revision 1.135
      1 /*	$NetBSD: uipc_usrreq.c,v 1.135 2011/06/12 03:35:56 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 2000, 2004, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
     62  */
     63 
     64 /*
     65  * Copyright (c) 1997 Christopher G. Demetriou.  All rights reserved.
     66  *
     67  * Redistribution and use in source and binary forms, with or without
     68  * modification, are permitted provided that the following conditions
     69  * are met:
     70  * 1. Redistributions of source code must retain the above copyright
     71  *    notice, this list of conditions and the following disclaimer.
     72  * 2. Redistributions in binary form must reproduce the above copyright
     73  *    notice, this list of conditions and the following disclaimer in the
     74  *    documentation and/or other materials provided with the distribution.
     75  * 3. All advertising materials mentioning features or use of this software
     76  *    must display the following acknowledgement:
     77  *	This product includes software developed by the University of
     78  *	California, Berkeley and its contributors.
     79  * 4. Neither the name of the University nor the names of its contributors
     80  *    may be used to endorse or promote products derived from this software
     81  *    without specific prior written permission.
     82  *
     83  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     84  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     85  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     86  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     87  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     88  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     89  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     90  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     91  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     92  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     93  * SUCH DAMAGE.
     94  *
     95  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
     96  */
     97 
     98 #include <sys/cdefs.h>
     99 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.135 2011/06/12 03:35:56 rmind Exp $");
    100 
    101 #include <sys/param.h>
    102 #include <sys/systm.h>
    103 #include <sys/proc.h>
    104 #include <sys/filedesc.h>
    105 #include <sys/domain.h>
    106 #include <sys/protosw.h>
    107 #include <sys/socket.h>
    108 #include <sys/socketvar.h>
    109 #include <sys/unpcb.h>
    110 #include <sys/un.h>
    111 #include <sys/namei.h>
    112 #include <sys/vnode.h>
    113 #include <sys/file.h>
    114 #include <sys/stat.h>
    115 #include <sys/mbuf.h>
    116 #include <sys/kauth.h>
    117 #include <sys/kmem.h>
    118 #include <sys/atomic.h>
    119 #include <sys/uidinfo.h>
    120 #include <sys/kernel.h>
    121 #include <sys/kthread.h>
    122 
    123 /*
    124  * Unix communications domain.
    125  *
    126  * TODO:
    127  *	RDM
    128  *	rethink name space problems
    129  *	need a proper out-of-band
    130  *
    131  * Notes on locking:
    132  *
    133  * The generic rules noted in uipc_socket2.c apply.  In addition:
    134  *
    135  * o We have a global lock, uipc_lock.
    136  *
    137  * o All datagram sockets are locked by uipc_lock.
    138  *
    139  * o For stream socketpairs, the two endpoints are created sharing the same
    140  *   independent lock.  Sockets presented to PRU_CONNECT2 must already have
    141  *   matching locks.
    142  *
    143  * o Stream sockets created via socket() start life with their own
    144  *   independent lock.
    145  *
    146  * o Stream connections to a named endpoint are slightly more complicated.
    147  *   Sockets that have called listen() have their lock pointer mutated to
    148  *   the global uipc_lock.  When establishing a connection, the connecting
    149  *   socket also has its lock mutated to uipc_lock, which matches the head
    150  *   (listening socket).  We create a new socket for accept() to return, and
    151  *   that also shares the head's lock.  Until the connection is completely
    152  *   done on both ends, all three sockets are locked by uipc_lock.  Once the
    153  *   connection is complete, the association with the head's lock is broken.
    154  *   The connecting socket and the socket returned from accept() have their
    155  *   lock pointers mutated away from uipc_lock, and back to the connecting
    156  *   socket's original, independent lock.  The head continues to be locked
    157  *   by uipc_lock.
    158  *
    159  * o If uipc_lock is determined to be a significant source of contention,
    160  *   it could easily be hashed out.  It is difficult to simply make it an
    161  *   independent lock because of visibility / garbage collection issues:
    162  *   if a socket has been associated with a lock at any point, that lock
    163  *   must remain valid until the socket is no longer visible in the system.
    164  *   The lock must not be freed or otherwise destroyed until any sockets
    165  *   that had referenced it have also been destroyed.
    166  */
    167 const struct sockaddr_un sun_noname = {
    168 	.sun_len = sizeof(sun_noname),
    169 	.sun_family = AF_LOCAL,
    170 };
    171 ino_t	unp_ino;			/* prototype for fake inode numbers */
    172 
    173 struct mbuf *unp_addsockcred(struct lwp *, struct mbuf *);
    174 static void unp_mark(file_t *);
    175 static void unp_scan(struct mbuf *, void (*)(file_t *), int);
    176 static void unp_discard_now(file_t *);
    177 static void unp_discard_later(file_t *);
    178 static void unp_thread(void *);
    179 static void unp_thread_kick(void);
    180 static kmutex_t *uipc_lock;
    181 
    182 static kcondvar_t unp_thread_cv;
    183 static lwp_t *unp_thread_lwp;
    184 static SLIST_HEAD(,file) unp_thread_discard;
    185 static int unp_defer;
    186 
    187 /*
    188  * Initialize Unix protocols.
    189  */
    190 void
    191 uipc_init(void)
    192 {
    193 	int error;
    194 
    195 	uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    196 	cv_init(&unp_thread_cv, "unpgc");
    197 
    198 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread,
    199 	    NULL, &unp_thread_lwp, "unpgc");
    200 	if (error != 0)
    201 		panic("uipc_init %d", error);
    202 }
    203 
    204 /*
    205  * A connection succeeded: disassociate both endpoints from the head's
    206  * lock, and make them share their own lock.  There is a race here: for
    207  * a very brief time one endpoint will be locked by a different lock
    208  * than the other end.  However, since the current thread holds the old
    209  * lock (the listening socket's lock, the head) access can still only be
    210  * made to one side of the connection.
    211  */
    212 static void
    213 unp_setpeerlocks(struct socket *so, struct socket *so2)
    214 {
    215 	struct unpcb *unp;
    216 	kmutex_t *lock;
    217 
    218 	KASSERT(solocked2(so, so2));
    219 
    220 	/*
    221 	 * Bail out if either end of the socket is not yet fully
    222 	 * connected or accepted.  We only break the lock association
    223 	 * with the head when the pair of sockets stand completely
    224 	 * on their own.
    225 	 */
    226 	KASSERT(so->so_head == NULL);
    227 	if (so2->so_head != NULL)
    228 		return;
    229 
    230 	/*
    231 	 * Drop references to old lock.  A third reference (from the
    232 	 * queue head) must be held as we still hold its lock.  Bonus:
    233 	 * we don't need to worry about garbage collecting the lock.
    234 	 */
    235 	lock = so->so_lock;
    236 	KASSERT(lock == uipc_lock);
    237 	mutex_obj_free(lock);
    238 	mutex_obj_free(lock);
    239 
    240 	/*
    241 	 * Grab stream lock from the initiator and share between the two
    242 	 * endpoints.  Issue memory barrier to ensure all modifications
    243 	 * become globally visible before the lock change.  so2 is
    244 	 * assumed not to have a stream lock, because it was created
    245 	 * purely for the server side to accept this connection and
    246 	 * started out life using the domain-wide lock.
    247 	 */
    248 	unp = sotounpcb(so);
    249 	KASSERT(unp->unp_streamlock != NULL);
    250 	KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
    251 	lock = unp->unp_streamlock;
    252 	unp->unp_streamlock = NULL;
    253 	mutex_obj_hold(lock);
    254 	membar_exit();
    255 	/*
    256 	 * possible race if lock is not held - see comment in
    257 	 * uipc_usrreq(PRU_ACCEPT).
    258 	 */
    259 	KASSERT(mutex_owned(lock));
    260 	solockreset(so, lock);
    261 	solockreset(so2, lock);
    262 }
    263 
    264 /*
    265  * Reset a socket's lock back to the domain-wide lock.
    266  */
    267 static void
    268 unp_resetlock(struct socket *so)
    269 {
    270 	kmutex_t *olock, *nlock;
    271 	struct unpcb *unp;
    272 
    273 	KASSERT(solocked(so));
    274 
    275 	olock = so->so_lock;
    276 	nlock = uipc_lock;
    277 	if (olock == nlock)
    278 		return;
    279 	unp = sotounpcb(so);
    280 	KASSERT(unp->unp_streamlock == NULL);
    281 	unp->unp_streamlock = olock;
    282 	mutex_obj_hold(nlock);
    283 	mutex_enter(nlock);
    284 	solockreset(so, nlock);
    285 	mutex_exit(olock);
    286 }
    287 
    288 static void
    289 unp_free(struct unpcb *unp)
    290 {
    291 
    292 	if (unp->unp_addr)
    293 		free(unp->unp_addr, M_SONAME);
    294 	if (unp->unp_streamlock != NULL)
    295 		mutex_obj_free(unp->unp_streamlock);
    296 	free(unp, M_PCB);
    297 }
    298 
    299 int
    300 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp,
    301 	struct lwp *l)
    302 {
    303 	struct socket *so2;
    304 	const struct sockaddr_un *sun;
    305 
    306 	so2 = unp->unp_conn->unp_socket;
    307 
    308 	KASSERT(solocked(so2));
    309 
    310 	if (unp->unp_addr)
    311 		sun = unp->unp_addr;
    312 	else
    313 		sun = &sun_noname;
    314 	if (unp->unp_conn->unp_flags & UNP_WANTCRED)
    315 		control = unp_addsockcred(l, control);
    316 	if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
    317 	    control) == 0) {
    318 		so2->so_rcv.sb_overflowed++;
    319 		unp_dispose(control);
    320 		m_freem(control);
    321 		m_freem(m);
    322 		return (ENOBUFS);
    323 	} else {
    324 		sorwakeup(so2);
    325 		return (0);
    326 	}
    327 }
    328 
    329 void
    330 unp_setaddr(struct socket *so, struct mbuf *nam, bool peeraddr)
    331 {
    332 	const struct sockaddr_un *sun;
    333 	struct unpcb *unp;
    334 	bool ext;
    335 
    336 	KASSERT(solocked(so));
    337 	unp = sotounpcb(so);
    338 	ext = false;
    339 
    340 	for (;;) {
    341 		sun = NULL;
    342 		if (peeraddr) {
    343 			if (unp->unp_conn && unp->unp_conn->unp_addr)
    344 				sun = unp->unp_conn->unp_addr;
    345 		} else {
    346 			if (unp->unp_addr)
    347 				sun = unp->unp_addr;
    348 		}
    349 		if (sun == NULL)
    350 			sun = &sun_noname;
    351 		nam->m_len = sun->sun_len;
    352 		if (nam->m_len > MLEN && !ext) {
    353 			sounlock(so);
    354 			MEXTMALLOC(nam, MAXPATHLEN * 2, M_WAITOK);
    355 			solock(so);
    356 			ext = true;
    357 		} else {
    358 			KASSERT(nam->m_len <= MAXPATHLEN * 2);
    359 			memcpy(mtod(nam, void *), sun, (size_t)nam->m_len);
    360 			break;
    361 		}
    362 	}
    363 }
    364 
    365 /*ARGSUSED*/
    366 int
    367 uipc_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
    368 	struct mbuf *control, struct lwp *l)
    369 {
    370 	struct unpcb *unp = sotounpcb(so);
    371 	struct socket *so2;
    372 	struct proc *p;
    373 	u_int newhiwat;
    374 	int error = 0;
    375 
    376 	if (req == PRU_CONTROL)
    377 		return (EOPNOTSUPP);
    378 
    379 #ifdef DIAGNOSTIC
    380 	if (req != PRU_SEND && req != PRU_SENDOOB && control)
    381 		panic("uipc_usrreq: unexpected control mbuf");
    382 #endif
    383 	p = l ? l->l_proc : NULL;
    384 	if (req != PRU_ATTACH) {
    385 		if (unp == NULL) {
    386 			error = EINVAL;
    387 			goto release;
    388 		}
    389 		KASSERT(solocked(so));
    390 	}
    391 
    392 	switch (req) {
    393 
    394 	case PRU_ATTACH:
    395 		if (unp != NULL) {
    396 			error = EISCONN;
    397 			break;
    398 		}
    399 		error = unp_attach(so);
    400 		break;
    401 
    402 	case PRU_DETACH:
    403 		unp_detach(unp);
    404 		break;
    405 
    406 	case PRU_BIND:
    407 		KASSERT(l != NULL);
    408 		error = unp_bind(so, nam, l);
    409 		break;
    410 
    411 	case PRU_LISTEN:
    412 		/*
    413 		 * If the socket can accept a connection, it must be
    414 		 * locked by uipc_lock.
    415 		 */
    416 		unp_resetlock(so);
    417 		if (unp->unp_vnode == NULL)
    418 			error = EINVAL;
    419 		break;
    420 
    421 	case PRU_CONNECT:
    422 		KASSERT(l != NULL);
    423 		error = unp_connect(so, nam, l);
    424 		break;
    425 
    426 	case PRU_CONNECT2:
    427 		error = unp_connect2(so, (struct socket *)nam, PRU_CONNECT2);
    428 		break;
    429 
    430 	case PRU_DISCONNECT:
    431 		unp_disconnect(unp);
    432 		break;
    433 
    434 	case PRU_ACCEPT:
    435 		KASSERT(so->so_lock == uipc_lock);
    436 		/*
    437 		 * Mark the initiating STREAM socket as connected *ONLY*
    438 		 * after it's been accepted.  This prevents a client from
    439 		 * overrunning a server and receiving ECONNREFUSED.
    440 		 */
    441 		if (unp->unp_conn == NULL)
    442 			break;
    443 		so2 = unp->unp_conn->unp_socket;
    444 		if (so2->so_state & SS_ISCONNECTING) {
    445 			KASSERT(solocked2(so, so->so_head));
    446 			KASSERT(solocked2(so2, so->so_head));
    447 			soisconnected(so2);
    448 		}
    449 		/*
    450 		 * If the connection is fully established, break the
    451 		 * association with uipc_lock and give the connected
    452 		 * pair a seperate lock to share.
    453 		 * There is a race here: sotounpcb(so2)->unp_streamlock
    454 		 * is not locked, so when changing so2->so_lock
    455 		 * another thread can grab it while so->so_lock is still
    456 		 * pointing to the (locked) uipc_lock.
    457 		 * this should be harmless, except that this makes
    458 		 * solocked2() and solocked() unreliable.
    459 		 * Another problem is that unp_setaddr() expects the
    460 		 * the socket locked. Grabing sotounpcb(so2)->unp_streamlock
    461 		 * fixes both issues.
    462 		 */
    463 		mutex_enter(sotounpcb(so2)->unp_streamlock);
    464 		unp_setpeerlocks(so2, so);
    465 		/*
    466 		 * Only now return peer's address, as we may need to
    467 		 * block in order to allocate memory.
    468 		 *
    469 		 * XXX Minor race: connection can be broken while
    470 		 * lock is dropped in unp_setaddr().  We will return
    471 		 * error == 0 and sun_noname as the peer address.
    472 		 */
    473 		unp_setaddr(so, nam, true);
    474 		/* so_lock now points to unp_streamlock */
    475 		mutex_exit(so2->so_lock);
    476 		break;
    477 
    478 	case PRU_SHUTDOWN:
    479 		socantsendmore(so);
    480 		unp_shutdown(unp);
    481 		break;
    482 
    483 	case PRU_RCVD:
    484 		switch (so->so_type) {
    485 
    486 		case SOCK_DGRAM:
    487 			panic("uipc 1");
    488 			/*NOTREACHED*/
    489 
    490 		case SOCK_SEQPACKET: /* FALLTHROUGH */
    491 		case SOCK_STREAM:
    492 #define	rcv (&so->so_rcv)
    493 #define snd (&so2->so_snd)
    494 			if (unp->unp_conn == 0)
    495 				break;
    496 			so2 = unp->unp_conn->unp_socket;
    497 			KASSERT(solocked2(so, so2));
    498 			/*
    499 			 * Adjust backpressure on sender
    500 			 * and wakeup any waiting to write.
    501 			 */
    502 			snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
    503 			unp->unp_mbcnt = rcv->sb_mbcnt;
    504 			newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
    505 			(void)chgsbsize(so2->so_uidinfo,
    506 			    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
    507 			unp->unp_cc = rcv->sb_cc;
    508 			sowwakeup(so2);
    509 #undef snd
    510 #undef rcv
    511 			break;
    512 
    513 		default:
    514 			panic("uipc 2");
    515 		}
    516 		break;
    517 
    518 	case PRU_SEND:
    519 		/*
    520 		 * Note: unp_internalize() rejects any control message
    521 		 * other than SCM_RIGHTS, and only allows one.  This
    522 		 * has the side-effect of preventing a caller from
    523 		 * forging SCM_CREDS.
    524 		 */
    525 		if (control) {
    526 			sounlock(so);
    527 			error = unp_internalize(&control);
    528 			solock(so);
    529 			if (error != 0) {
    530 				m_freem(control);
    531 				m_freem(m);
    532 				break;
    533 			}
    534 		}
    535 		switch (so->so_type) {
    536 
    537 		case SOCK_DGRAM: {
    538 			KASSERT(so->so_lock == uipc_lock);
    539 			if (nam) {
    540 				if ((so->so_state & SS_ISCONNECTED) != 0)
    541 					error = EISCONN;
    542 				else {
    543 					/*
    544 					 * Note: once connected, the
    545 					 * socket's lock must not be
    546 					 * dropped until we have sent
    547 					 * the message and disconnected.
    548 					 * This is necessary to prevent
    549 					 * intervening control ops, like
    550 					 * another connection.
    551 					 */
    552 					error = unp_connect(so, nam, l);
    553 				}
    554 			} else {
    555 				if ((so->so_state & SS_ISCONNECTED) == 0)
    556 					error = ENOTCONN;
    557 			}
    558 			if (error) {
    559 				unp_dispose(control);
    560 				m_freem(control);
    561 				m_freem(m);
    562 				break;
    563 			}
    564 			KASSERT(p != NULL);
    565 			error = unp_output(m, control, unp, l);
    566 			if (nam)
    567 				unp_disconnect(unp);
    568 			break;
    569 		}
    570 
    571 		case SOCK_SEQPACKET: /* FALLTHROUGH */
    572 		case SOCK_STREAM:
    573 #define	rcv (&so2->so_rcv)
    574 #define	snd (&so->so_snd)
    575 			if (unp->unp_conn == NULL) {
    576 				error = ENOTCONN;
    577 				break;
    578 			}
    579 			so2 = unp->unp_conn->unp_socket;
    580 			KASSERT(solocked2(so, so2));
    581 			if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
    582 				/*
    583 				 * Credentials are passed only once on
    584 				 * SOCK_STREAM and SOCK_SEQPACKET.
    585 				 */
    586 				unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
    587 				control = unp_addsockcred(l, control);
    588 			}
    589 			/*
    590 			 * Send to paired receive port, and then reduce
    591 			 * send buffer hiwater marks to maintain backpressure.
    592 			 * Wake up readers.
    593 			 */
    594 			if (control) {
    595 				if (sbappendcontrol(rcv, m, control) != 0)
    596 					control = NULL;
    597 			} else {
    598 				switch(so->so_type) {
    599 				case SOCK_SEQPACKET:
    600 					sbappendrecord(rcv, m);
    601 					break;
    602 				case SOCK_STREAM:
    603 					sbappend(rcv, m);
    604 					break;
    605 				default:
    606 					panic("uipc_usrreq");
    607 					break;
    608 				}
    609 			}
    610 			snd->sb_mbmax -=
    611 			    rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
    612 			unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
    613 			newhiwat = snd->sb_hiwat -
    614 			    (rcv->sb_cc - unp->unp_conn->unp_cc);
    615 			(void)chgsbsize(so->so_uidinfo,
    616 			    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
    617 			unp->unp_conn->unp_cc = rcv->sb_cc;
    618 			sorwakeup(so2);
    619 #undef snd
    620 #undef rcv
    621 			if (control != NULL) {
    622 				unp_dispose(control);
    623 				m_freem(control);
    624 			}
    625 			break;
    626 
    627 		default:
    628 			panic("uipc 4");
    629 		}
    630 		break;
    631 
    632 	case PRU_ABORT:
    633 		(void)unp_drop(unp, ECONNABORTED);
    634 
    635 		KASSERT(so->so_head == NULL);
    636 #ifdef DIAGNOSTIC
    637 		if (so->so_pcb == NULL)
    638 			panic("uipc 5: drop killed pcb");
    639 #endif
    640 		unp_detach(unp);
    641 		break;
    642 
    643 	case PRU_SENSE:
    644 		((struct stat *) m)->st_blksize = so->so_snd.sb_hiwat;
    645 		switch (so->so_type) {
    646 		case SOCK_SEQPACKET: /* FALLTHROUGH */
    647 		case SOCK_STREAM:
    648 			if (unp->unp_conn == 0)
    649 				break;
    650 
    651 			so2 = unp->unp_conn->unp_socket;
    652 			KASSERT(solocked2(so, so2));
    653 			((struct stat *) m)->st_blksize += so2->so_rcv.sb_cc;
    654 			break;
    655 		default:
    656 			break;
    657 		}
    658 		((struct stat *) m)->st_dev = NODEV;
    659 		if (unp->unp_ino == 0)
    660 			unp->unp_ino = unp_ino++;
    661 		((struct stat *) m)->st_atimespec =
    662 		    ((struct stat *) m)->st_mtimespec =
    663 		    ((struct stat *) m)->st_ctimespec = unp->unp_ctime;
    664 		((struct stat *) m)->st_ino = unp->unp_ino;
    665 		return (0);
    666 
    667 	case PRU_RCVOOB:
    668 		error = EOPNOTSUPP;
    669 		break;
    670 
    671 	case PRU_SENDOOB:
    672 		m_freem(control);
    673 		m_freem(m);
    674 		error = EOPNOTSUPP;
    675 		break;
    676 
    677 	case PRU_SOCKADDR:
    678 		unp_setaddr(so, nam, false);
    679 		break;
    680 
    681 	case PRU_PEERADDR:
    682 		unp_setaddr(so, nam, true);
    683 		break;
    684 
    685 	default:
    686 		panic("piusrreq");
    687 	}
    688 
    689 release:
    690 	return (error);
    691 }
    692 
    693 /*
    694  * Unix domain socket option processing.
    695  */
    696 int
    697 uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
    698 {
    699 	struct unpcb *unp = sotounpcb(so);
    700 	int optval = 0, error = 0;
    701 
    702 	KASSERT(solocked(so));
    703 
    704 	if (sopt->sopt_level != 0) {
    705 		error = ENOPROTOOPT;
    706 	} else switch (op) {
    707 
    708 	case PRCO_SETOPT:
    709 		switch (sopt->sopt_name) {
    710 		case LOCAL_CREDS:
    711 		case LOCAL_CONNWAIT:
    712 			error = sockopt_getint(sopt, &optval);
    713 			if (error)
    714 				break;
    715 			switch (sopt->sopt_name) {
    716 #define	OPTSET(bit) \
    717 	if (optval) \
    718 		unp->unp_flags |= (bit); \
    719 	else \
    720 		unp->unp_flags &= ~(bit);
    721 
    722 			case LOCAL_CREDS:
    723 				OPTSET(UNP_WANTCRED);
    724 				break;
    725 			case LOCAL_CONNWAIT:
    726 				OPTSET(UNP_CONNWAIT);
    727 				break;
    728 			}
    729 			break;
    730 #undef OPTSET
    731 
    732 		default:
    733 			error = ENOPROTOOPT;
    734 			break;
    735 		}
    736 		break;
    737 
    738 	case PRCO_GETOPT:
    739 		sounlock(so);
    740 		switch (sopt->sopt_name) {
    741 		case LOCAL_PEEREID:
    742 			if (unp->unp_flags & UNP_EIDSVALID) {
    743 				error = sockopt_set(sopt,
    744 				    &unp->unp_connid, sizeof(unp->unp_connid));
    745 			} else {
    746 				error = EINVAL;
    747 			}
    748 			break;
    749 		case LOCAL_CREDS:
    750 #define	OPTBIT(bit)	(unp->unp_flags & (bit) ? 1 : 0)
    751 
    752 			optval = OPTBIT(UNP_WANTCRED);
    753 			error = sockopt_setint(sopt, optval);
    754 			break;
    755 #undef OPTBIT
    756 
    757 		default:
    758 			error = ENOPROTOOPT;
    759 			break;
    760 		}
    761 		solock(so);
    762 		break;
    763 	}
    764 	return (error);
    765 }
    766 
    767 /*
    768  * Both send and receive buffers are allocated PIPSIZ bytes of buffering
    769  * for stream sockets, although the total for sender and receiver is
    770  * actually only PIPSIZ.
    771  * Datagram sockets really use the sendspace as the maximum datagram size,
    772  * and don't really want to reserve the sendspace.  Their recvspace should
    773  * be large enough for at least one max-size datagram plus address.
    774  */
    775 #define	PIPSIZ	4096
    776 u_long	unpst_sendspace = PIPSIZ;
    777 u_long	unpst_recvspace = PIPSIZ;
    778 u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
    779 u_long	unpdg_recvspace = 4*1024;
    780 
    781 u_int	unp_rights;			/* files in flight */
    782 u_int	unp_rights_ratio = 2;		/* limit, fraction of maxfiles */
    783 
    784 int
    785 unp_attach(struct socket *so)
    786 {
    787 	struct unpcb *unp;
    788 	int error;
    789 
    790 	switch (so->so_type) {
    791 	case SOCK_SEQPACKET: /* FALLTHROUGH */
    792 	case SOCK_STREAM:
    793 		if (so->so_lock == NULL) {
    794 			/*
    795 			 * XXX Assuming that no socket locks are held,
    796 			 * as this call may sleep.
    797 			 */
    798 			so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    799 			solock(so);
    800 		}
    801 		if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
    802 			error = soreserve(so, unpst_sendspace, unpst_recvspace);
    803 			if (error != 0)
    804 				return (error);
    805 		}
    806 		break;
    807 
    808 	case SOCK_DGRAM:
    809 		if (so->so_lock == NULL) {
    810 			mutex_obj_hold(uipc_lock);
    811 			so->so_lock = uipc_lock;
    812 			solock(so);
    813 		}
    814 		if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
    815 			error = soreserve(so, unpdg_sendspace, unpdg_recvspace);
    816 			if (error != 0)
    817 				return (error);
    818 		}
    819 		break;
    820 
    821 	default:
    822 		panic("unp_attach");
    823 	}
    824 	KASSERT(solocked(so));
    825 	unp = malloc(sizeof(*unp), M_PCB, M_NOWAIT);
    826 	if (unp == NULL)
    827 		return (ENOBUFS);
    828 	memset(unp, 0, sizeof(*unp));
    829 	unp->unp_socket = so;
    830 	so->so_pcb = unp;
    831 	nanotime(&unp->unp_ctime);
    832 	return (0);
    833 }
    834 
    835 void
    836 unp_detach(struct unpcb *unp)
    837 {
    838 	struct socket *so;
    839 	vnode_t *vp;
    840 
    841 	so = unp->unp_socket;
    842 
    843  retry:
    844 	if ((vp = unp->unp_vnode) != NULL) {
    845 		sounlock(so);
    846 		/* Acquire v_interlock to protect against unp_connect(). */
    847 		/* XXXAD racy */
    848 		mutex_enter(vp->v_interlock);
    849 		vp->v_socket = NULL;
    850 		vrelel(vp, 0);
    851 		solock(so);
    852 		unp->unp_vnode = NULL;
    853 	}
    854 	if (unp->unp_conn)
    855 		unp_disconnect(unp);
    856 	while (unp->unp_refs) {
    857 		KASSERT(solocked2(so, unp->unp_refs->unp_socket));
    858 		if (unp_drop(unp->unp_refs, ECONNRESET)) {
    859 			solock(so);
    860 			goto retry;
    861 		}
    862 	}
    863 	soisdisconnected(so);
    864 	so->so_pcb = NULL;
    865 	if (unp_rights) {
    866 		/*
    867 		 * Normally the receive buffer is flushed later, in sofree,
    868 		 * but if our receive buffer holds references to files that
    869 		 * are now garbage, we will enqueue those file references to
    870 		 * the garbage collector and kick it into action.
    871 		 */
    872 		sorflush(so);
    873 		unp_free(unp);
    874 		unp_thread_kick();
    875 	} else
    876 		unp_free(unp);
    877 }
    878 
    879 int
    880 unp_bind(struct socket *so, struct mbuf *nam, struct lwp *l)
    881 {
    882 	struct sockaddr_un *sun;
    883 	struct unpcb *unp;
    884 	vnode_t *vp;
    885 	struct vattr vattr;
    886 	size_t addrlen;
    887 	int error;
    888 	struct pathbuf *pb;
    889 	struct nameidata nd;
    890 	proc_t *p;
    891 
    892 	unp = sotounpcb(so);
    893 	if (unp->unp_vnode != NULL)
    894 		return (EINVAL);
    895 	if ((unp->unp_flags & UNP_BUSY) != 0) {
    896 		/*
    897 		 * EALREADY may not be strictly accurate, but since this
    898 		 * is a major application error it's hardly a big deal.
    899 		 */
    900 		return (EALREADY);
    901 	}
    902 	unp->unp_flags |= UNP_BUSY;
    903 	sounlock(so);
    904 
    905 	/*
    906 	 * Allocate the new sockaddr.  We have to allocate one
    907 	 * extra byte so that we can ensure that the pathname
    908 	 * is nul-terminated.
    909 	 */
    910 	p = l->l_proc;
    911 	addrlen = nam->m_len + 1;
    912 	sun = malloc(addrlen, M_SONAME, M_WAITOK);
    913 	m_copydata(nam, 0, nam->m_len, (void *)sun);
    914 	*(((char *)sun) + nam->m_len) = '\0';
    915 
    916 	pb = pathbuf_create(sun->sun_path);
    917 	if (pb == NULL) {
    918 		error = ENOMEM;
    919 		goto bad;
    920 	}
    921 	NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, pb);
    922 
    923 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
    924 	if ((error = namei(&nd)) != 0) {
    925 		pathbuf_destroy(pb);
    926 		goto bad;
    927 	}
    928 	vp = nd.ni_vp;
    929 	if (vp != NULL) {
    930 		VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
    931 		if (nd.ni_dvp == vp)
    932 			vrele(nd.ni_dvp);
    933 		else
    934 			vput(nd.ni_dvp);
    935 		vrele(vp);
    936 		pathbuf_destroy(pb);
    937 		error = EADDRINUSE;
    938 		goto bad;
    939 	}
    940 	vattr_null(&vattr);
    941 	vattr.va_type = VSOCK;
    942 	vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
    943 	error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
    944 	if (error) {
    945 		pathbuf_destroy(pb);
    946 		goto bad;
    947 	}
    948 	vp = nd.ni_vp;
    949 	solock(so);
    950 	vp->v_socket = unp->unp_socket;
    951 	unp->unp_vnode = vp;
    952 	unp->unp_addrlen = addrlen;
    953 	unp->unp_addr = sun;
    954 	unp->unp_connid.unp_pid = p->p_pid;
    955 	unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
    956 	unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
    957 	unp->unp_flags |= UNP_EIDSBIND;
    958 	VOP_UNLOCK(vp);
    959 	unp->unp_flags &= ~UNP_BUSY;
    960 	pathbuf_destroy(pb);
    961 	return (0);
    962 
    963  bad:
    964 	free(sun, M_SONAME);
    965 	solock(so);
    966 	unp->unp_flags &= ~UNP_BUSY;
    967 	return (error);
    968 }
    969 
    970 int
    971 unp_connect(struct socket *so, struct mbuf *nam, struct lwp *l)
    972 {
    973 	struct sockaddr_un *sun;
    974 	vnode_t *vp;
    975 	struct socket *so2, *so3;
    976 	struct unpcb *unp, *unp2, *unp3;
    977 	size_t addrlen;
    978 	int error;
    979 	struct pathbuf *pb;
    980 	struct nameidata nd;
    981 
    982 	unp = sotounpcb(so);
    983 	if ((unp->unp_flags & UNP_BUSY) != 0) {
    984 		/*
    985 		 * EALREADY may not be strictly accurate, but since this
    986 		 * is a major application error it's hardly a big deal.
    987 		 */
    988 		return (EALREADY);
    989 	}
    990 	unp->unp_flags |= UNP_BUSY;
    991 	sounlock(so);
    992 
    993 	/*
    994 	 * Allocate a temporary sockaddr.  We have to allocate one extra
    995 	 * byte so that we can ensure that the pathname is nul-terminated.
    996 	 * When we establish the connection, we copy the other PCB's
    997 	 * sockaddr to our own.
    998 	 */
    999 	addrlen = nam->m_len + 1;
   1000 	sun = malloc(addrlen, M_SONAME, M_WAITOK);
   1001 	m_copydata(nam, 0, nam->m_len, (void *)sun);
   1002 	*(((char *)sun) + nam->m_len) = '\0';
   1003 
   1004 	pb = pathbuf_create(sun->sun_path);
   1005 	if (pb == NULL) {
   1006 		error = ENOMEM;
   1007 		goto bad2;
   1008 	}
   1009 
   1010 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
   1011 
   1012 	if ((error = namei(&nd)) != 0) {
   1013 		pathbuf_destroy(pb);
   1014 		goto bad2;
   1015 	}
   1016 	vp = nd.ni_vp;
   1017 	if (vp->v_type != VSOCK) {
   1018 		error = ENOTSOCK;
   1019 		goto bad;
   1020 	}
   1021 	pathbuf_destroy(pb);
   1022 	if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
   1023 		goto bad;
   1024 	/* Acquire v_interlock to protect against unp_detach(). */
   1025 	mutex_enter(vp->v_interlock);
   1026 	so2 = vp->v_socket;
   1027 	if (so2 == NULL) {
   1028 		mutex_exit(vp->v_interlock);
   1029 		error = ECONNREFUSED;
   1030 		goto bad;
   1031 	}
   1032 	if (so->so_type != so2->so_type) {
   1033 		mutex_exit(vp->v_interlock);
   1034 		error = EPROTOTYPE;
   1035 		goto bad;
   1036 	}
   1037 	solock(so);
   1038 	unp_resetlock(so);
   1039 	mutex_exit(vp->v_interlock);
   1040 	if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
   1041 		/*
   1042 		 * This may seem somewhat fragile but is OK: if we can
   1043 		 * see SO_ACCEPTCONN set on the endpoint, then it must
   1044 		 * be locked by the domain-wide uipc_lock.
   1045 		 */
   1046 		KASSERT((so2->so_options & SO_ACCEPTCONN) == 0 ||
   1047 		    so2->so_lock == uipc_lock);
   1048 		if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
   1049 		    (so3 = sonewconn(so2, 0)) == NULL) {
   1050 			error = ECONNREFUSED;
   1051 			sounlock(so);
   1052 			goto bad;
   1053 		}
   1054 		unp2 = sotounpcb(so2);
   1055 		unp3 = sotounpcb(so3);
   1056 		if (unp2->unp_addr) {
   1057 			unp3->unp_addr = malloc(unp2->unp_addrlen,
   1058 			    M_SONAME, M_WAITOK);
   1059 			memcpy(unp3->unp_addr, unp2->unp_addr,
   1060 			    unp2->unp_addrlen);
   1061 			unp3->unp_addrlen = unp2->unp_addrlen;
   1062 		}
   1063 		unp3->unp_flags = unp2->unp_flags;
   1064 		unp3->unp_connid.unp_pid = l->l_proc->p_pid;
   1065 		unp3->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
   1066 		unp3->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
   1067 		unp3->unp_flags |= UNP_EIDSVALID;
   1068 		if (unp2->unp_flags & UNP_EIDSBIND) {
   1069 			unp->unp_connid = unp2->unp_connid;
   1070 			unp->unp_flags |= UNP_EIDSVALID;
   1071 		}
   1072 		so2 = so3;
   1073 	}
   1074 	error = unp_connect2(so, so2, PRU_CONNECT);
   1075 	sounlock(so);
   1076  bad:
   1077 	vput(vp);
   1078  bad2:
   1079 	free(sun, M_SONAME);
   1080 	solock(so);
   1081 	unp->unp_flags &= ~UNP_BUSY;
   1082 	return (error);
   1083 }
   1084 
   1085 int
   1086 unp_connect2(struct socket *so, struct socket *so2, int req)
   1087 {
   1088 	struct unpcb *unp = sotounpcb(so);
   1089 	struct unpcb *unp2;
   1090 
   1091 	if (so2->so_type != so->so_type)
   1092 		return (EPROTOTYPE);
   1093 
   1094 	/*
   1095 	 * All three sockets involved must be locked by same lock:
   1096 	 *
   1097 	 * local endpoint (so)
   1098 	 * remote endpoint (so2)
   1099 	 * queue head (so2->so_head, only if PR_CONNREQUIRED)
   1100 	 */
   1101 	KASSERT(solocked2(so, so2));
   1102 	KASSERT(so->so_head == NULL);
   1103 	if (so2->so_head != NULL) {
   1104 		KASSERT(so2->so_lock == uipc_lock);
   1105 		KASSERT(solocked2(so2, so2->so_head));
   1106 	}
   1107 
   1108 	unp2 = sotounpcb(so2);
   1109 	unp->unp_conn = unp2;
   1110 	switch (so->so_type) {
   1111 
   1112 	case SOCK_DGRAM:
   1113 		unp->unp_nextref = unp2->unp_refs;
   1114 		unp2->unp_refs = unp;
   1115 		soisconnected(so);
   1116 		break;
   1117 
   1118 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1119 	case SOCK_STREAM:
   1120 		unp2->unp_conn = unp;
   1121 		if (req == PRU_CONNECT &&
   1122 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
   1123 			soisconnecting(so);
   1124 		else
   1125 			soisconnected(so);
   1126 		soisconnected(so2);
   1127 		/*
   1128 		 * If the connection is fully established, break the
   1129 		 * association with uipc_lock and give the connected
   1130 		 * pair a seperate lock to share.  For CONNECT2, we
   1131 		 * require that the locks already match (the sockets
   1132 		 * are created that way).
   1133 		 */
   1134 		if (req == PRU_CONNECT) {
   1135 			KASSERT(so2->so_head != NULL);
   1136 			unp_setpeerlocks(so, so2);
   1137 		}
   1138 		break;
   1139 
   1140 	default:
   1141 		panic("unp_connect2");
   1142 	}
   1143 	return (0);
   1144 }
   1145 
   1146 void
   1147 unp_disconnect(struct unpcb *unp)
   1148 {
   1149 	struct unpcb *unp2 = unp->unp_conn;
   1150 	struct socket *so;
   1151 
   1152 	if (unp2 == 0)
   1153 		return;
   1154 	unp->unp_conn = 0;
   1155 	so = unp->unp_socket;
   1156 	switch (so->so_type) {
   1157 	case SOCK_DGRAM:
   1158 		if (unp2->unp_refs == unp)
   1159 			unp2->unp_refs = unp->unp_nextref;
   1160 		else {
   1161 			unp2 = unp2->unp_refs;
   1162 			for (;;) {
   1163 				KASSERT(solocked2(so, unp2->unp_socket));
   1164 				if (unp2 == 0)
   1165 					panic("unp_disconnect");
   1166 				if (unp2->unp_nextref == unp)
   1167 					break;
   1168 				unp2 = unp2->unp_nextref;
   1169 			}
   1170 			unp2->unp_nextref = unp->unp_nextref;
   1171 		}
   1172 		unp->unp_nextref = 0;
   1173 		so->so_state &= ~SS_ISCONNECTED;
   1174 		break;
   1175 
   1176 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1177 	case SOCK_STREAM:
   1178 		KASSERT(solocked2(so, unp2->unp_socket));
   1179 		soisdisconnected(so);
   1180 		unp2->unp_conn = 0;
   1181 		soisdisconnected(unp2->unp_socket);
   1182 		break;
   1183 	}
   1184 }
   1185 
   1186 #ifdef notdef
   1187 unp_abort(struct unpcb *unp)
   1188 {
   1189 	unp_detach(unp);
   1190 }
   1191 #endif
   1192 
   1193 void
   1194 unp_shutdown(struct unpcb *unp)
   1195 {
   1196 	struct socket *so;
   1197 
   1198 	switch(unp->unp_socket->so_type) {
   1199 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1200 	case SOCK_STREAM:
   1201 		if (unp->unp_conn && (so = unp->unp_conn->unp_socket))
   1202 			socantrcvmore(so);
   1203 		break;
   1204 	default:
   1205 		break;
   1206 	}
   1207 }
   1208 
   1209 bool
   1210 unp_drop(struct unpcb *unp, int errno)
   1211 {
   1212 	struct socket *so = unp->unp_socket;
   1213 
   1214 	KASSERT(solocked(so));
   1215 
   1216 	so->so_error = errno;
   1217 	unp_disconnect(unp);
   1218 	if (so->so_head) {
   1219 		so->so_pcb = NULL;
   1220 		/* sofree() drops the socket lock */
   1221 		sofree(so);
   1222 		unp_free(unp);
   1223 		return true;
   1224 	}
   1225 	return false;
   1226 }
   1227 
   1228 #ifdef notdef
   1229 unp_drain(void)
   1230 {
   1231 
   1232 }
   1233 #endif
   1234 
   1235 int
   1236 unp_externalize(struct mbuf *rights, struct lwp *l)
   1237 {
   1238 	struct cmsghdr *cm = mtod(rights, struct cmsghdr *);
   1239 	struct proc *p = l->l_proc;
   1240 	int i, *fdp;
   1241 	file_t **rp;
   1242 	file_t *fp;
   1243 	int nfds, error = 0;
   1244 
   1245 	nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
   1246 	    sizeof(file_t *);
   1247 	rp = (file_t **)CMSG_DATA(cm);
   1248 
   1249 	fdp = malloc(nfds * sizeof(int), M_TEMP, M_WAITOK);
   1250 	rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
   1251 
   1252 	/* Make sure the recipient should be able to see the files.. */
   1253 	if (p->p_cwdi->cwdi_rdir != NULL) {
   1254 		rp = (file_t **)CMSG_DATA(cm);
   1255 		for (i = 0; i < nfds; i++) {
   1256 			fp = *rp++;
   1257 			/*
   1258 			 * If we are in a chroot'ed directory, and
   1259 			 * someone wants to pass us a directory, make
   1260 			 * sure it's inside the subtree we're allowed
   1261 			 * to access.
   1262 			 */
   1263 			if (fp->f_type == DTYPE_VNODE) {
   1264 				vnode_t *vp = (vnode_t *)fp->f_data;
   1265 				if ((vp->v_type == VDIR) &&
   1266 				    !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
   1267 					error = EPERM;
   1268 					break;
   1269 				}
   1270 			}
   1271 		}
   1272 	}
   1273 
   1274  restart:
   1275 	rp = (file_t **)CMSG_DATA(cm);
   1276 	if (error != 0) {
   1277 		for (i = 0; i < nfds; i++) {
   1278 			fp = *rp;
   1279 			*rp++ = 0;
   1280 			unp_discard_now(fp);
   1281 		}
   1282 		goto out;
   1283 	}
   1284 
   1285 	/*
   1286 	 * First loop -- allocate file descriptor table slots for the
   1287 	 * new files.
   1288 	 */
   1289 	for (i = 0; i < nfds; i++) {
   1290 		fp = *rp++;
   1291 		if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
   1292 			/*
   1293 			 * Back out what we've done so far.
   1294 			 */
   1295 			for (--i; i >= 0; i--) {
   1296 				fd_abort(p, NULL, fdp[i]);
   1297 			}
   1298 			if (error == ENOSPC) {
   1299 				fd_tryexpand(p);
   1300 				error = 0;
   1301 			} else {
   1302 				/*
   1303 				 * This is the error that has historically
   1304 				 * been returned, and some callers may
   1305 				 * expect it.
   1306 				 */
   1307 				error = EMSGSIZE;
   1308 			}
   1309 			goto restart;
   1310 		}
   1311 	}
   1312 
   1313 	/*
   1314 	 * Now that adding them has succeeded, update all of the
   1315 	 * file passing state and affix the descriptors.
   1316 	 */
   1317 	rp = (file_t **)CMSG_DATA(cm);
   1318 	for (i = 0; i < nfds; i++) {
   1319 		fp = *rp++;
   1320 		atomic_dec_uint(&unp_rights);
   1321 		fd_affix(p, fp, fdp[i]);
   1322 		mutex_enter(&fp->f_lock);
   1323 		fp->f_msgcount--;
   1324 		mutex_exit(&fp->f_lock);
   1325 		/*
   1326 		 * Note that fd_affix() adds a reference to the file.
   1327 		 * The file may already have been closed by another
   1328 		 * LWP in the process, so we must drop the reference
   1329 		 * added by unp_internalize() with closef().
   1330 		 */
   1331 		closef(fp);
   1332 	}
   1333 
   1334 	/*
   1335 	 * Copy temporary array to message and adjust length, in case of
   1336 	 * transition from large file_t pointers to ints.
   1337 	 */
   1338 	memcpy(CMSG_DATA(cm), fdp, nfds * sizeof(int));
   1339 	cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
   1340 	rights->m_len = CMSG_SPACE(nfds * sizeof(int));
   1341  out:
   1342 	rw_exit(&p->p_cwdi->cwdi_lock);
   1343 	free(fdp, M_TEMP);
   1344 	return (error);
   1345 }
   1346 
   1347 int
   1348 unp_internalize(struct mbuf **controlp)
   1349 {
   1350 	filedesc_t *fdescp = curlwp->l_fd;
   1351 	struct mbuf *control = *controlp;
   1352 	struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
   1353 	file_t **rp, **files;
   1354 	file_t *fp;
   1355 	int i, fd, *fdp;
   1356 	int nfds, error;
   1357 	u_int maxmsg;
   1358 
   1359 	error = 0;
   1360 	newcm = NULL;
   1361 
   1362 	/* Sanity check the control message header. */
   1363 	if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
   1364 	    cm->cmsg_len > control->m_len ||
   1365 	    cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
   1366 		return (EINVAL);
   1367 
   1368 	/*
   1369 	 * Verify that the file descriptors are valid, and acquire
   1370 	 * a reference to each.
   1371 	 */
   1372 	nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
   1373 	fdp = (int *)CMSG_DATA(cm);
   1374 	maxmsg = maxfiles / unp_rights_ratio;
   1375 	for (i = 0; i < nfds; i++) {
   1376 		fd = *fdp++;
   1377 		if (atomic_inc_uint_nv(&unp_rights) > maxmsg) {
   1378 			atomic_dec_uint(&unp_rights);
   1379 			nfds = i;
   1380 			error = EAGAIN;
   1381 			goto out;
   1382 		}
   1383 		if ((fp = fd_getfile(fd)) == NULL) {
   1384 			atomic_dec_uint(&unp_rights);
   1385 			nfds = i;
   1386 			error = EBADF;
   1387 			goto out;
   1388 		}
   1389 	}
   1390 
   1391 	/* Allocate new space and copy header into it. */
   1392 	newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
   1393 	if (newcm == NULL) {
   1394 		error = E2BIG;
   1395 		goto out;
   1396 	}
   1397 	memcpy(newcm, cm, sizeof(struct cmsghdr));
   1398 	files = (file_t **)CMSG_DATA(newcm);
   1399 
   1400 	/*
   1401 	 * Transform the file descriptors into file_t pointers, in
   1402 	 * reverse order so that if pointers are bigger than ints, the
   1403 	 * int won't get until we're done.  No need to lock, as we have
   1404 	 * already validated the descriptors with fd_getfile().
   1405 	 */
   1406 	fdp = (int *)CMSG_DATA(cm) + nfds;
   1407 	rp = files + nfds;
   1408 	for (i = 0; i < nfds; i++) {
   1409 		fp = fdescp->fd_dt->dt_ff[*--fdp]->ff_file;
   1410 		KASSERT(fp != NULL);
   1411 		mutex_enter(&fp->f_lock);
   1412 		*--rp = fp;
   1413 		fp->f_count++;
   1414 		fp->f_msgcount++;
   1415 		mutex_exit(&fp->f_lock);
   1416 	}
   1417 
   1418  out:
   1419  	/* Release descriptor references. */
   1420 	fdp = (int *)CMSG_DATA(cm);
   1421 	for (i = 0; i < nfds; i++) {
   1422 		fd_putfile(*fdp++);
   1423 		if (error != 0) {
   1424 			atomic_dec_uint(&unp_rights);
   1425 		}
   1426 	}
   1427 
   1428 	if (error == 0) {
   1429 		if (control->m_flags & M_EXT) {
   1430 			m_freem(control);
   1431 			*controlp = control = m_get(M_WAIT, MT_CONTROL);
   1432 		}
   1433 		MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
   1434 		    M_MBUF, NULL, NULL);
   1435 		cm = newcm;
   1436 		/*
   1437 		 * Adjust message & mbuf to note amount of space
   1438 		 * actually used.
   1439 		 */
   1440 		cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
   1441 		control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
   1442 	}
   1443 
   1444 	return error;
   1445 }
   1446 
   1447 struct mbuf *
   1448 unp_addsockcred(struct lwp *l, struct mbuf *control)
   1449 {
   1450 	struct cmsghdr *cmp;
   1451 	struct sockcred *sc;
   1452 	struct mbuf *m, *n;
   1453 	int len, space, i;
   1454 
   1455 	len = CMSG_LEN(SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)));
   1456 	space = CMSG_SPACE(SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)));
   1457 
   1458 	m = m_get(M_WAIT, MT_CONTROL);
   1459 	if (space > MLEN) {
   1460 		if (space > MCLBYTES)
   1461 			MEXTMALLOC(m, space, M_WAITOK);
   1462 		else
   1463 			m_clget(m, M_WAIT);
   1464 		if ((m->m_flags & M_EXT) == 0) {
   1465 			m_free(m);
   1466 			return (control);
   1467 		}
   1468 	}
   1469 
   1470 	m->m_len = space;
   1471 	m->m_next = NULL;
   1472 	cmp = mtod(m, struct cmsghdr *);
   1473 	sc = (struct sockcred *)CMSG_DATA(cmp);
   1474 	cmp->cmsg_len = len;
   1475 	cmp->cmsg_level = SOL_SOCKET;
   1476 	cmp->cmsg_type = SCM_CREDS;
   1477 	sc->sc_uid = kauth_cred_getuid(l->l_cred);
   1478 	sc->sc_euid = kauth_cred_geteuid(l->l_cred);
   1479 	sc->sc_gid = kauth_cred_getgid(l->l_cred);
   1480 	sc->sc_egid = kauth_cred_getegid(l->l_cred);
   1481 	sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
   1482 	for (i = 0; i < sc->sc_ngroups; i++)
   1483 		sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
   1484 
   1485 	/*
   1486 	 * If a control message already exists, append us to the end.
   1487 	 */
   1488 	if (control != NULL) {
   1489 		for (n = control; n->m_next != NULL; n = n->m_next)
   1490 			;
   1491 		n->m_next = m;
   1492 	} else
   1493 		control = m;
   1494 
   1495 	return (control);
   1496 }
   1497 
   1498 /*
   1499  * Do a mark-sweep GC of files in the system, to free up any which are
   1500  * caught in flight to an about-to-be-closed socket.  Additionally,
   1501  * process deferred file closures.
   1502  */
   1503 static void
   1504 unp_gc(file_t *dp)
   1505 {
   1506 	extern	struct domain unixdomain;
   1507 	file_t *fp, *np;
   1508 	struct socket *so, *so1;
   1509 	u_int i, old, new;
   1510 	bool didwork;
   1511 
   1512 	KASSERT(curlwp == unp_thread_lwp);
   1513 	KASSERT(mutex_owned(&filelist_lock));
   1514 
   1515 	/*
   1516 	 * First, process deferred file closures.
   1517 	 */
   1518 	while (!SLIST_EMPTY(&unp_thread_discard)) {
   1519 		fp = SLIST_FIRST(&unp_thread_discard);
   1520 		KASSERT(fp->f_unpcount > 0);
   1521 		KASSERT(fp->f_count > 0);
   1522 		KASSERT(fp->f_msgcount > 0);
   1523 		KASSERT(fp->f_count >= fp->f_unpcount);
   1524 		KASSERT(fp->f_count >= fp->f_msgcount);
   1525 		KASSERT(fp->f_msgcount >= fp->f_unpcount);
   1526 		SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist);
   1527 		i = fp->f_unpcount;
   1528 		fp->f_unpcount = 0;
   1529 		mutex_exit(&filelist_lock);
   1530 		for (; i != 0; i--) {
   1531 			unp_discard_now(fp);
   1532 		}
   1533 		mutex_enter(&filelist_lock);
   1534 	}
   1535 
   1536 	/*
   1537 	 * Clear mark bits.  Ensure that we don't consider new files
   1538 	 * entering the file table during this loop (they will not have
   1539 	 * FSCAN set).
   1540 	 */
   1541 	unp_defer = 0;
   1542 	LIST_FOREACH(fp, &filehead, f_list) {
   1543 		for (old = fp->f_flag;; old = new) {
   1544 			new = atomic_cas_uint(&fp->f_flag, old,
   1545 			    (old | FSCAN) & ~(FMARK|FDEFER));
   1546 			if (__predict_true(old == new)) {
   1547 				break;
   1548 			}
   1549 		}
   1550 	}
   1551 
   1552 	/*
   1553 	 * Iterate over the set of sockets, marking ones believed (based on
   1554 	 * refcount) to be referenced from a process, and marking for rescan
   1555 	 * sockets which are queued on a socket.  Recan continues descending
   1556 	 * and searching for sockets referenced by sockets (FDEFER), until
   1557 	 * there are no more socket->socket references to be discovered.
   1558 	 */
   1559 	do {
   1560 		didwork = false;
   1561 		for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
   1562 			KASSERT(mutex_owned(&filelist_lock));
   1563 			np = LIST_NEXT(fp, f_list);
   1564 			mutex_enter(&fp->f_lock);
   1565 			if ((fp->f_flag & FDEFER) != 0) {
   1566 				atomic_and_uint(&fp->f_flag, ~FDEFER);
   1567 				unp_defer--;
   1568 				KASSERT(fp->f_count != 0);
   1569 			} else {
   1570 				if (fp->f_count == 0 ||
   1571 				    (fp->f_flag & FMARK) != 0 ||
   1572 				    fp->f_count == fp->f_msgcount ||
   1573 				    fp->f_unpcount != 0) {
   1574 					mutex_exit(&fp->f_lock);
   1575 					continue;
   1576 				}
   1577 			}
   1578 			atomic_or_uint(&fp->f_flag, FMARK);
   1579 
   1580 			if (fp->f_type != DTYPE_SOCKET ||
   1581 			    (so = fp->f_data) == NULL ||
   1582 			    so->so_proto->pr_domain != &unixdomain ||
   1583 			    (so->so_proto->pr_flags & PR_RIGHTS) == 0) {
   1584 				mutex_exit(&fp->f_lock);
   1585 				continue;
   1586 			}
   1587 
   1588 			/* Gain file ref, mark our position, and unlock. */
   1589 			didwork = true;
   1590 			LIST_INSERT_AFTER(fp, dp, f_list);
   1591 			fp->f_count++;
   1592 			mutex_exit(&fp->f_lock);
   1593 			mutex_exit(&filelist_lock);
   1594 
   1595 			/*
   1596 			 * Mark files referenced from sockets queued on the
   1597 			 * accept queue as well.
   1598 			 */
   1599 			solock(so);
   1600 			unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
   1601 			if ((so->so_options & SO_ACCEPTCONN) != 0) {
   1602 				TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
   1603 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
   1604 				}
   1605 				TAILQ_FOREACH(so1, &so->so_q, so_qe) {
   1606 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
   1607 				}
   1608 			}
   1609 			sounlock(so);
   1610 
   1611 			/* Re-lock and restart from where we left off. */
   1612 			closef(fp);
   1613 			mutex_enter(&filelist_lock);
   1614 			np = LIST_NEXT(dp, f_list);
   1615 			LIST_REMOVE(dp, f_list);
   1616 		}
   1617 		/*
   1618 		 * Bail early if we did nothing in the loop above.  Could
   1619 		 * happen because of concurrent activity causing unp_defer
   1620 		 * to get out of sync.
   1621 		 */
   1622 	} while (unp_defer != 0 && didwork);
   1623 
   1624 	/*
   1625 	 * Sweep pass.
   1626 	 *
   1627 	 * We grab an extra reference to each of the files that are
   1628 	 * not otherwise accessible and then free the rights that are
   1629 	 * stored in messages on them.
   1630 	 */
   1631 	for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
   1632 		KASSERT(mutex_owned(&filelist_lock));
   1633 		np = LIST_NEXT(fp, f_list);
   1634 		mutex_enter(&fp->f_lock);
   1635 
   1636 		/*
   1637 		 * Ignore non-sockets.
   1638 		 * Ignore dead sockets, or sockets with pending close.
   1639 		 * Ignore sockets obviously referenced elsewhere.
   1640 		 * Ignore sockets marked as referenced by our scan.
   1641 		 * Ignore new sockets that did not exist during the scan.
   1642 		 */
   1643 		if (fp->f_type != DTYPE_SOCKET ||
   1644 		    fp->f_count == 0 || fp->f_unpcount != 0 ||
   1645 		    fp->f_count != fp->f_msgcount ||
   1646 		    (fp->f_flag & (FMARK | FSCAN)) != FSCAN) {
   1647 			mutex_exit(&fp->f_lock);
   1648 			continue;
   1649 		}
   1650 
   1651 		/* Gain file ref, mark our position, and unlock. */
   1652 		LIST_INSERT_AFTER(fp, dp, f_list);
   1653 		fp->f_count++;
   1654 		mutex_exit(&fp->f_lock);
   1655 		mutex_exit(&filelist_lock);
   1656 
   1657 		/*
   1658 		 * Flush all data from the socket's receive buffer.
   1659 		 * This will cause files referenced only by the
   1660 		 * socket to be queued for close.
   1661 		 */
   1662 		so = fp->f_data;
   1663 		solock(so);
   1664 		sorflush(so);
   1665 		sounlock(so);
   1666 
   1667 		/* Re-lock and restart from where we left off. */
   1668 		closef(fp);
   1669 		mutex_enter(&filelist_lock);
   1670 		np = LIST_NEXT(dp, f_list);
   1671 		LIST_REMOVE(dp, f_list);
   1672 	}
   1673 }
   1674 
   1675 /*
   1676  * Garbage collector thread.  While SCM_RIGHTS messages are in transit,
   1677  * wake once per second to garbage collect.  Run continually while we
   1678  * have deferred closes to process.
   1679  */
   1680 static void
   1681 unp_thread(void *cookie)
   1682 {
   1683 	file_t *dp;
   1684 
   1685 	/* Allocate a dummy file for our scans. */
   1686 	if ((dp = fgetdummy()) == NULL) {
   1687 		panic("unp_thread");
   1688 	}
   1689 
   1690 	mutex_enter(&filelist_lock);
   1691 	for (;;) {
   1692 		KASSERT(mutex_owned(&filelist_lock));
   1693 		if (SLIST_EMPTY(&unp_thread_discard)) {
   1694 			if (unp_rights != 0) {
   1695 				(void)cv_timedwait(&unp_thread_cv,
   1696 				    &filelist_lock, hz);
   1697 			} else {
   1698 				cv_wait(&unp_thread_cv, &filelist_lock);
   1699 			}
   1700 		}
   1701 		unp_gc(dp);
   1702 	}
   1703 	/* NOTREACHED */
   1704 }
   1705 
   1706 /*
   1707  * Kick the garbage collector into action if there is something for
   1708  * it to process.
   1709  */
   1710 static void
   1711 unp_thread_kick(void)
   1712 {
   1713 
   1714 	if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) {
   1715 		mutex_enter(&filelist_lock);
   1716 		cv_signal(&unp_thread_cv);
   1717 		mutex_exit(&filelist_lock);
   1718 	}
   1719 }
   1720 
   1721 void
   1722 unp_dispose(struct mbuf *m)
   1723 {
   1724 
   1725 	if (m)
   1726 		unp_scan(m, unp_discard_later, 1);
   1727 }
   1728 
   1729 void
   1730 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
   1731 {
   1732 	struct mbuf *m;
   1733 	file_t **rp, *fp;
   1734 	struct cmsghdr *cm;
   1735 	int i, qfds;
   1736 
   1737 	while (m0) {
   1738 		for (m = m0; m; m = m->m_next) {
   1739 			if (m->m_type != MT_CONTROL ||
   1740 			    m->m_len < sizeof(*cm)) {
   1741 			    	continue;
   1742 			}
   1743 			cm = mtod(m, struct cmsghdr *);
   1744 			if (cm->cmsg_level != SOL_SOCKET ||
   1745 			    cm->cmsg_type != SCM_RIGHTS)
   1746 				continue;
   1747 			qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
   1748 			    / sizeof(file_t *);
   1749 			rp = (file_t **)CMSG_DATA(cm);
   1750 			for (i = 0; i < qfds; i++) {
   1751 				fp = *rp;
   1752 				if (discard) {
   1753 					*rp = 0;
   1754 				}
   1755 				(*op)(fp);
   1756 				rp++;
   1757 			}
   1758 		}
   1759 		m0 = m0->m_nextpkt;
   1760 	}
   1761 }
   1762 
   1763 void
   1764 unp_mark(file_t *fp)
   1765 {
   1766 
   1767 	if (fp == NULL)
   1768 		return;
   1769 
   1770 	/* If we're already deferred, don't screw up the defer count */
   1771 	mutex_enter(&fp->f_lock);
   1772 	if (fp->f_flag & (FMARK | FDEFER)) {
   1773 		mutex_exit(&fp->f_lock);
   1774 		return;
   1775 	}
   1776 
   1777 	/*
   1778 	 * Minimize the number of deferrals...  Sockets are the only type of
   1779 	 * file which can hold references to another file, so just mark
   1780 	 * other files, and defer unmarked sockets for the next pass.
   1781 	 */
   1782 	if (fp->f_type == DTYPE_SOCKET) {
   1783 		unp_defer++;
   1784 		KASSERT(fp->f_count != 0);
   1785 		atomic_or_uint(&fp->f_flag, FDEFER);
   1786 	} else {
   1787 		atomic_or_uint(&fp->f_flag, FMARK);
   1788 	}
   1789 	mutex_exit(&fp->f_lock);
   1790 }
   1791 
   1792 static void
   1793 unp_discard_now(file_t *fp)
   1794 {
   1795 
   1796 	if (fp == NULL)
   1797 		return;
   1798 
   1799 	KASSERT(fp->f_count > 0);
   1800 	KASSERT(fp->f_msgcount > 0);
   1801 
   1802 	mutex_enter(&fp->f_lock);
   1803 	fp->f_msgcount--;
   1804 	mutex_exit(&fp->f_lock);
   1805 	atomic_dec_uint(&unp_rights);
   1806 	(void)closef(fp);
   1807 }
   1808 
   1809 static void
   1810 unp_discard_later(file_t *fp)
   1811 {
   1812 
   1813 	if (fp == NULL)
   1814 		return;
   1815 
   1816 	KASSERT(fp->f_count > 0);
   1817 	KASSERT(fp->f_msgcount > 0);
   1818 
   1819 	mutex_enter(&filelist_lock);
   1820 	if (fp->f_unpcount++ == 0) {
   1821 		SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist);
   1822 	}
   1823 	mutex_exit(&filelist_lock);
   1824 }
   1825