uipc_usrreq.c revision 1.139 1 /* $NetBSD: uipc_usrreq.c,v 1.139 2012/07/30 10:45:03 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2000, 2004, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
62 */
63
64 /*
65 * Copyright (c) 1997 Christopher G. Demetriou. All rights reserved.
66 *
67 * Redistribution and use in source and binary forms, with or without
68 * modification, are permitted provided that the following conditions
69 * are met:
70 * 1. Redistributions of source code must retain the above copyright
71 * notice, this list of conditions and the following disclaimer.
72 * 2. Redistributions in binary form must reproduce the above copyright
73 * notice, this list of conditions and the following disclaimer in the
74 * documentation and/or other materials provided with the distribution.
75 * 3. All advertising materials mentioning features or use of this software
76 * must display the following acknowledgement:
77 * This product includes software developed by the University of
78 * California, Berkeley and its contributors.
79 * 4. Neither the name of the University nor the names of its contributors
80 * may be used to endorse or promote products derived from this software
81 * without specific prior written permission.
82 *
83 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
84 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
85 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
86 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
87 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
88 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
89 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
90 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
91 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
92 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
93 * SUCH DAMAGE.
94 *
95 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
96 */
97
98 #include <sys/cdefs.h>
99 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.139 2012/07/30 10:45:03 christos Exp $");
100
101 #include <sys/param.h>
102 #include <sys/systm.h>
103 #include <sys/proc.h>
104 #include <sys/filedesc.h>
105 #include <sys/domain.h>
106 #include <sys/protosw.h>
107 #include <sys/socket.h>
108 #include <sys/socketvar.h>
109 #include <sys/unpcb.h>
110 #include <sys/un.h>
111 #include <sys/namei.h>
112 #include <sys/vnode.h>
113 #include <sys/file.h>
114 #include <sys/stat.h>
115 #include <sys/mbuf.h>
116 #include <sys/kauth.h>
117 #include <sys/kmem.h>
118 #include <sys/atomic.h>
119 #include <sys/uidinfo.h>
120 #include <sys/kernel.h>
121 #include <sys/kthread.h>
122
123 /*
124 * Unix communications domain.
125 *
126 * TODO:
127 * RDM
128 * rethink name space problems
129 * need a proper out-of-band
130 *
131 * Notes on locking:
132 *
133 * The generic rules noted in uipc_socket2.c apply. In addition:
134 *
135 * o We have a global lock, uipc_lock.
136 *
137 * o All datagram sockets are locked by uipc_lock.
138 *
139 * o For stream socketpairs, the two endpoints are created sharing the same
140 * independent lock. Sockets presented to PRU_CONNECT2 must already have
141 * matching locks.
142 *
143 * o Stream sockets created via socket() start life with their own
144 * independent lock.
145 *
146 * o Stream connections to a named endpoint are slightly more complicated.
147 * Sockets that have called listen() have their lock pointer mutated to
148 * the global uipc_lock. When establishing a connection, the connecting
149 * socket also has its lock mutated to uipc_lock, which matches the head
150 * (listening socket). We create a new socket for accept() to return, and
151 * that also shares the head's lock. Until the connection is completely
152 * done on both ends, all three sockets are locked by uipc_lock. Once the
153 * connection is complete, the association with the head's lock is broken.
154 * The connecting socket and the socket returned from accept() have their
155 * lock pointers mutated away from uipc_lock, and back to the connecting
156 * socket's original, independent lock. The head continues to be locked
157 * by uipc_lock.
158 *
159 * o If uipc_lock is determined to be a significant source of contention,
160 * it could easily be hashed out. It is difficult to simply make it an
161 * independent lock because of visibility / garbage collection issues:
162 * if a socket has been associated with a lock at any point, that lock
163 * must remain valid until the socket is no longer visible in the system.
164 * The lock must not be freed or otherwise destroyed until any sockets
165 * that had referenced it have also been destroyed.
166 */
167 const struct sockaddr_un sun_noname = {
168 .sun_len = sizeof(sun_noname),
169 .sun_family = AF_LOCAL,
170 };
171 ino_t unp_ino; /* prototype for fake inode numbers */
172
173 struct mbuf *unp_addsockcred(struct lwp *, struct mbuf *);
174 static void unp_mark(file_t *);
175 static void unp_scan(struct mbuf *, void (*)(file_t *), int);
176 static void unp_discard_now(file_t *);
177 static void unp_discard_later(file_t *);
178 static void unp_thread(void *);
179 static void unp_thread_kick(void);
180 static kmutex_t *uipc_lock;
181
182 static kcondvar_t unp_thread_cv;
183 static lwp_t *unp_thread_lwp;
184 static SLIST_HEAD(,file) unp_thread_discard;
185 static int unp_defer;
186
187 /*
188 * Initialize Unix protocols.
189 */
190 void
191 uipc_init(void)
192 {
193 int error;
194
195 uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
196 cv_init(&unp_thread_cv, "unpgc");
197
198 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread,
199 NULL, &unp_thread_lwp, "unpgc");
200 if (error != 0)
201 panic("uipc_init %d", error);
202 }
203
204 /*
205 * A connection succeeded: disassociate both endpoints from the head's
206 * lock, and make them share their own lock. There is a race here: for
207 * a very brief time one endpoint will be locked by a different lock
208 * than the other end. However, since the current thread holds the old
209 * lock (the listening socket's lock, the head) access can still only be
210 * made to one side of the connection.
211 */
212 static void
213 unp_setpeerlocks(struct socket *so, struct socket *so2)
214 {
215 struct unpcb *unp;
216 kmutex_t *lock;
217
218 KASSERT(solocked2(so, so2));
219
220 /*
221 * Bail out if either end of the socket is not yet fully
222 * connected or accepted. We only break the lock association
223 * with the head when the pair of sockets stand completely
224 * on their own.
225 */
226 KASSERT(so->so_head == NULL);
227 if (so2->so_head != NULL)
228 return;
229
230 /*
231 * Drop references to old lock. A third reference (from the
232 * queue head) must be held as we still hold its lock. Bonus:
233 * we don't need to worry about garbage collecting the lock.
234 */
235 lock = so->so_lock;
236 KASSERT(lock == uipc_lock);
237 mutex_obj_free(lock);
238 mutex_obj_free(lock);
239
240 /*
241 * Grab stream lock from the initiator and share between the two
242 * endpoints. Issue memory barrier to ensure all modifications
243 * become globally visible before the lock change. so2 is
244 * assumed not to have a stream lock, because it was created
245 * purely for the server side to accept this connection and
246 * started out life using the domain-wide lock.
247 */
248 unp = sotounpcb(so);
249 KASSERT(unp->unp_streamlock != NULL);
250 KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
251 lock = unp->unp_streamlock;
252 unp->unp_streamlock = NULL;
253 mutex_obj_hold(lock);
254 membar_exit();
255 /*
256 * possible race if lock is not held - see comment in
257 * uipc_usrreq(PRU_ACCEPT).
258 */
259 KASSERT(mutex_owned(lock));
260 solockreset(so, lock);
261 solockreset(so2, lock);
262 }
263
264 /*
265 * Reset a socket's lock back to the domain-wide lock.
266 */
267 static void
268 unp_resetlock(struct socket *so)
269 {
270 kmutex_t *olock, *nlock;
271 struct unpcb *unp;
272
273 KASSERT(solocked(so));
274
275 olock = so->so_lock;
276 nlock = uipc_lock;
277 if (olock == nlock)
278 return;
279 unp = sotounpcb(so);
280 KASSERT(unp->unp_streamlock == NULL);
281 unp->unp_streamlock = olock;
282 mutex_obj_hold(nlock);
283 mutex_enter(nlock);
284 solockreset(so, nlock);
285 mutex_exit(olock);
286 }
287
288 static void
289 unp_free(struct unpcb *unp)
290 {
291
292 if (unp->unp_addr)
293 free(unp->unp_addr, M_SONAME);
294 if (unp->unp_streamlock != NULL)
295 mutex_obj_free(unp->unp_streamlock);
296 free(unp, M_PCB);
297 }
298
299 int
300 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp,
301 struct lwp *l)
302 {
303 struct socket *so2;
304 const struct sockaddr_un *sun;
305
306 so2 = unp->unp_conn->unp_socket;
307
308 KASSERT(solocked(so2));
309
310 if (unp->unp_addr)
311 sun = unp->unp_addr;
312 else
313 sun = &sun_noname;
314 if (unp->unp_conn->unp_flags & UNP_WANTCRED)
315 control = unp_addsockcred(l, control);
316 if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
317 control) == 0) {
318 so2->so_rcv.sb_overflowed++;
319 unp_dispose(control);
320 m_freem(control);
321 m_freem(m);
322 return (ENOBUFS);
323 } else {
324 sorwakeup(so2);
325 return (0);
326 }
327 }
328
329 void
330 unp_setaddr(struct socket *so, struct mbuf *nam, bool peeraddr)
331 {
332 const struct sockaddr_un *sun;
333 struct unpcb *unp;
334 bool ext;
335
336 KASSERT(solocked(so));
337 unp = sotounpcb(so);
338 ext = false;
339
340 for (;;) {
341 sun = NULL;
342 if (peeraddr) {
343 if (unp->unp_conn && unp->unp_conn->unp_addr)
344 sun = unp->unp_conn->unp_addr;
345 } else {
346 if (unp->unp_addr)
347 sun = unp->unp_addr;
348 }
349 if (sun == NULL)
350 sun = &sun_noname;
351 nam->m_len = sun->sun_len;
352 if (nam->m_len > MLEN && !ext) {
353 sounlock(so);
354 MEXTMALLOC(nam, MAXPATHLEN * 2, M_WAITOK);
355 solock(so);
356 ext = true;
357 } else {
358 KASSERT(nam->m_len <= MAXPATHLEN * 2);
359 memcpy(mtod(nam, void *), sun, (size_t)nam->m_len);
360 break;
361 }
362 }
363 }
364
365 /*ARGSUSED*/
366 int
367 uipc_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
368 struct mbuf *control, struct lwp *l)
369 {
370 struct unpcb *unp = sotounpcb(so);
371 struct socket *so2;
372 struct proc *p;
373 u_int newhiwat;
374 int error = 0;
375
376 if (req == PRU_CONTROL)
377 return (EOPNOTSUPP);
378
379 #ifdef DIAGNOSTIC
380 if (req != PRU_SEND && req != PRU_SENDOOB && control)
381 panic("uipc_usrreq: unexpected control mbuf");
382 #endif
383 p = l ? l->l_proc : NULL;
384 if (req != PRU_ATTACH) {
385 if (unp == NULL) {
386 error = EINVAL;
387 goto release;
388 }
389 KASSERT(solocked(so));
390 }
391
392 switch (req) {
393
394 case PRU_ATTACH:
395 if (unp != NULL) {
396 error = EISCONN;
397 break;
398 }
399 error = unp_attach(so);
400 break;
401
402 case PRU_DETACH:
403 unp_detach(unp);
404 break;
405
406 case PRU_BIND:
407 KASSERT(l != NULL);
408 error = unp_bind(so, nam, l);
409 break;
410
411 case PRU_LISTEN:
412 /*
413 * If the socket can accept a connection, it must be
414 * locked by uipc_lock.
415 */
416 unp_resetlock(so);
417 if (unp->unp_vnode == NULL)
418 error = EINVAL;
419 break;
420
421 case PRU_CONNECT:
422 KASSERT(l != NULL);
423 error = unp_connect(so, nam, l);
424 break;
425
426 case PRU_CONNECT2:
427 error = unp_connect2(so, (struct socket *)nam, PRU_CONNECT2);
428 break;
429
430 case PRU_DISCONNECT:
431 unp_disconnect(unp);
432 break;
433
434 case PRU_ACCEPT:
435 KASSERT(so->so_lock == uipc_lock);
436 /*
437 * Mark the initiating STREAM socket as connected *ONLY*
438 * after it's been accepted. This prevents a client from
439 * overrunning a server and receiving ECONNREFUSED.
440 */
441 if (unp->unp_conn == NULL)
442 break;
443 so2 = unp->unp_conn->unp_socket;
444 if (so2->so_state & SS_ISCONNECTING) {
445 KASSERT(solocked2(so, so->so_head));
446 KASSERT(solocked2(so2, so->so_head));
447 soisconnected(so2);
448 }
449 /*
450 * If the connection is fully established, break the
451 * association with uipc_lock and give the connected
452 * pair a seperate lock to share.
453 * There is a race here: sotounpcb(so2)->unp_streamlock
454 * is not locked, so when changing so2->so_lock
455 * another thread can grab it while so->so_lock is still
456 * pointing to the (locked) uipc_lock.
457 * this should be harmless, except that this makes
458 * solocked2() and solocked() unreliable.
459 * Another problem is that unp_setaddr() expects the
460 * the socket locked. Grabing sotounpcb(so2)->unp_streamlock
461 * fixes both issues.
462 */
463 mutex_enter(sotounpcb(so2)->unp_streamlock);
464 unp_setpeerlocks(so2, so);
465 /*
466 * Only now return peer's address, as we may need to
467 * block in order to allocate memory.
468 *
469 * XXX Minor race: connection can be broken while
470 * lock is dropped in unp_setaddr(). We will return
471 * error == 0 and sun_noname as the peer address.
472 */
473 unp_setaddr(so, nam, true);
474 /* so_lock now points to unp_streamlock */
475 mutex_exit(so2->so_lock);
476 break;
477
478 case PRU_SHUTDOWN:
479 socantsendmore(so);
480 unp_shutdown(unp);
481 break;
482
483 case PRU_RCVD:
484 switch (so->so_type) {
485
486 case SOCK_DGRAM:
487 panic("uipc 1");
488 /*NOTREACHED*/
489
490 case SOCK_SEQPACKET: /* FALLTHROUGH */
491 case SOCK_STREAM:
492 #define rcv (&so->so_rcv)
493 #define snd (&so2->so_snd)
494 if (unp->unp_conn == 0)
495 break;
496 so2 = unp->unp_conn->unp_socket;
497 KASSERT(solocked2(so, so2));
498 /*
499 * Adjust backpressure on sender
500 * and wakeup any waiting to write.
501 */
502 snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
503 unp->unp_mbcnt = rcv->sb_mbcnt;
504 newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
505 (void)chgsbsize(so2->so_uidinfo,
506 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
507 unp->unp_cc = rcv->sb_cc;
508 sowwakeup(so2);
509 #undef snd
510 #undef rcv
511 break;
512
513 default:
514 panic("uipc 2");
515 }
516 break;
517
518 case PRU_SEND:
519 /*
520 * Note: unp_internalize() rejects any control message
521 * other than SCM_RIGHTS, and only allows one. This
522 * has the side-effect of preventing a caller from
523 * forging SCM_CREDS.
524 */
525 if (control) {
526 sounlock(so);
527 error = unp_internalize(&control);
528 solock(so);
529 if (error != 0) {
530 m_freem(control);
531 m_freem(m);
532 break;
533 }
534 }
535 switch (so->so_type) {
536
537 case SOCK_DGRAM: {
538 KASSERT(so->so_lock == uipc_lock);
539 if (nam) {
540 if ((so->so_state & SS_ISCONNECTED) != 0)
541 error = EISCONN;
542 else {
543 /*
544 * Note: once connected, the
545 * socket's lock must not be
546 * dropped until we have sent
547 * the message and disconnected.
548 * This is necessary to prevent
549 * intervening control ops, like
550 * another connection.
551 */
552 error = unp_connect(so, nam, l);
553 }
554 } else {
555 if ((so->so_state & SS_ISCONNECTED) == 0)
556 error = ENOTCONN;
557 }
558 if (error) {
559 unp_dispose(control);
560 m_freem(control);
561 m_freem(m);
562 break;
563 }
564 KASSERT(p != NULL);
565 error = unp_output(m, control, unp, l);
566 if (nam)
567 unp_disconnect(unp);
568 break;
569 }
570
571 case SOCK_SEQPACKET: /* FALLTHROUGH */
572 case SOCK_STREAM:
573 #define rcv (&so2->so_rcv)
574 #define snd (&so->so_snd)
575 if (unp->unp_conn == NULL) {
576 error = ENOTCONN;
577 break;
578 }
579 so2 = unp->unp_conn->unp_socket;
580 KASSERT(solocked2(so, so2));
581 if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
582 /*
583 * Credentials are passed only once on
584 * SOCK_STREAM and SOCK_SEQPACKET.
585 */
586 unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
587 control = unp_addsockcred(l, control);
588 }
589 /*
590 * Send to paired receive port, and then reduce
591 * send buffer hiwater marks to maintain backpressure.
592 * Wake up readers.
593 */
594 if (control) {
595 if (sbappendcontrol(rcv, m, control) != 0)
596 control = NULL;
597 } else {
598 switch(so->so_type) {
599 case SOCK_SEQPACKET:
600 sbappendrecord(rcv, m);
601 break;
602 case SOCK_STREAM:
603 sbappend(rcv, m);
604 break;
605 default:
606 panic("uipc_usrreq");
607 break;
608 }
609 }
610 snd->sb_mbmax -=
611 rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
612 unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
613 newhiwat = snd->sb_hiwat -
614 (rcv->sb_cc - unp->unp_conn->unp_cc);
615 (void)chgsbsize(so->so_uidinfo,
616 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
617 unp->unp_conn->unp_cc = rcv->sb_cc;
618 sorwakeup(so2);
619 #undef snd
620 #undef rcv
621 if (control != NULL) {
622 unp_dispose(control);
623 m_freem(control);
624 }
625 break;
626
627 default:
628 panic("uipc 4");
629 }
630 break;
631
632 case PRU_ABORT:
633 (void)unp_drop(unp, ECONNABORTED);
634
635 KASSERT(so->so_head == NULL);
636 #ifdef DIAGNOSTIC
637 if (so->so_pcb == NULL)
638 panic("uipc 5: drop killed pcb");
639 #endif
640 unp_detach(unp);
641 break;
642
643 case PRU_SENSE:
644 ((struct stat *) m)->st_blksize = so->so_snd.sb_hiwat;
645 switch (so->so_type) {
646 case SOCK_SEQPACKET: /* FALLTHROUGH */
647 case SOCK_STREAM:
648 if (unp->unp_conn == 0)
649 break;
650
651 so2 = unp->unp_conn->unp_socket;
652 KASSERT(solocked2(so, so2));
653 ((struct stat *) m)->st_blksize += so2->so_rcv.sb_cc;
654 break;
655 default:
656 break;
657 }
658 ((struct stat *) m)->st_dev = NODEV;
659 if (unp->unp_ino == 0)
660 unp->unp_ino = unp_ino++;
661 ((struct stat *) m)->st_atimespec =
662 ((struct stat *) m)->st_mtimespec =
663 ((struct stat *) m)->st_ctimespec = unp->unp_ctime;
664 ((struct stat *) m)->st_ino = unp->unp_ino;
665 return (0);
666
667 case PRU_RCVOOB:
668 error = EOPNOTSUPP;
669 break;
670
671 case PRU_SENDOOB:
672 m_freem(control);
673 m_freem(m);
674 error = EOPNOTSUPP;
675 break;
676
677 case PRU_SOCKADDR:
678 unp_setaddr(so, nam, false);
679 break;
680
681 case PRU_PEERADDR:
682 unp_setaddr(so, nam, true);
683 break;
684
685 default:
686 panic("piusrreq");
687 }
688
689 release:
690 return (error);
691 }
692
693 /*
694 * Unix domain socket option processing.
695 */
696 int
697 uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
698 {
699 struct unpcb *unp = sotounpcb(so);
700 int optval = 0, error = 0;
701
702 KASSERT(solocked(so));
703
704 if (sopt->sopt_level != 0) {
705 error = ENOPROTOOPT;
706 } else switch (op) {
707
708 case PRCO_SETOPT:
709 switch (sopt->sopt_name) {
710 case LOCAL_CREDS:
711 case LOCAL_CONNWAIT:
712 error = sockopt_getint(sopt, &optval);
713 if (error)
714 break;
715 switch (sopt->sopt_name) {
716 #define OPTSET(bit) \
717 if (optval) \
718 unp->unp_flags |= (bit); \
719 else \
720 unp->unp_flags &= ~(bit);
721
722 case LOCAL_CREDS:
723 OPTSET(UNP_WANTCRED);
724 break;
725 case LOCAL_CONNWAIT:
726 OPTSET(UNP_CONNWAIT);
727 break;
728 }
729 break;
730 #undef OPTSET
731
732 default:
733 error = ENOPROTOOPT;
734 break;
735 }
736 break;
737
738 case PRCO_GETOPT:
739 sounlock(so);
740 switch (sopt->sopt_name) {
741 case LOCAL_PEEREID:
742 if (unp->unp_flags & UNP_EIDSVALID) {
743 error = sockopt_set(sopt,
744 &unp->unp_connid, sizeof(unp->unp_connid));
745 } else {
746 error = EINVAL;
747 }
748 break;
749 case LOCAL_CREDS:
750 #define OPTBIT(bit) (unp->unp_flags & (bit) ? 1 : 0)
751
752 optval = OPTBIT(UNP_WANTCRED);
753 error = sockopt_setint(sopt, optval);
754 break;
755 #undef OPTBIT
756
757 default:
758 error = ENOPROTOOPT;
759 break;
760 }
761 solock(so);
762 break;
763 }
764 return (error);
765 }
766
767 /*
768 * Both send and receive buffers are allocated PIPSIZ bytes of buffering
769 * for stream sockets, although the total for sender and receiver is
770 * actually only PIPSIZ.
771 * Datagram sockets really use the sendspace as the maximum datagram size,
772 * and don't really want to reserve the sendspace. Their recvspace should
773 * be large enough for at least one max-size datagram plus address.
774 */
775 #define PIPSIZ 4096
776 u_long unpst_sendspace = PIPSIZ;
777 u_long unpst_recvspace = PIPSIZ;
778 u_long unpdg_sendspace = 2*1024; /* really max datagram size */
779 u_long unpdg_recvspace = 4*1024;
780
781 u_int unp_rights; /* files in flight */
782 u_int unp_rights_ratio = 2; /* limit, fraction of maxfiles */
783
784 int
785 unp_attach(struct socket *so)
786 {
787 struct unpcb *unp;
788 int error;
789
790 switch (so->so_type) {
791 case SOCK_SEQPACKET: /* FALLTHROUGH */
792 case SOCK_STREAM:
793 if (so->so_lock == NULL) {
794 /*
795 * XXX Assuming that no socket locks are held,
796 * as this call may sleep.
797 */
798 so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
799 solock(so);
800 }
801 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
802 error = soreserve(so, unpst_sendspace, unpst_recvspace);
803 if (error != 0)
804 return (error);
805 }
806 break;
807
808 case SOCK_DGRAM:
809 if (so->so_lock == NULL) {
810 mutex_obj_hold(uipc_lock);
811 so->so_lock = uipc_lock;
812 solock(so);
813 }
814 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
815 error = soreserve(so, unpdg_sendspace, unpdg_recvspace);
816 if (error != 0)
817 return (error);
818 }
819 break;
820
821 default:
822 panic("unp_attach");
823 }
824 KASSERT(solocked(so));
825 unp = malloc(sizeof(*unp), M_PCB, M_NOWAIT);
826 if (unp == NULL)
827 return (ENOBUFS);
828 memset(unp, 0, sizeof(*unp));
829 unp->unp_socket = so;
830 so->so_pcb = unp;
831 nanotime(&unp->unp_ctime);
832 return (0);
833 }
834
835 void
836 unp_detach(struct unpcb *unp)
837 {
838 struct socket *so;
839 vnode_t *vp;
840
841 so = unp->unp_socket;
842
843 retry:
844 if ((vp = unp->unp_vnode) != NULL) {
845 sounlock(so);
846 /* Acquire v_interlock to protect against unp_connect(). */
847 /* XXXAD racy */
848 mutex_enter(vp->v_interlock);
849 vp->v_socket = NULL;
850 vrelel(vp, 0);
851 solock(so);
852 unp->unp_vnode = NULL;
853 }
854 if (unp->unp_conn)
855 unp_disconnect(unp);
856 while (unp->unp_refs) {
857 KASSERT(solocked2(so, unp->unp_refs->unp_socket));
858 if (unp_drop(unp->unp_refs, ECONNRESET)) {
859 solock(so);
860 goto retry;
861 }
862 }
863 soisdisconnected(so);
864 so->so_pcb = NULL;
865 if (unp_rights) {
866 /*
867 * Normally the receive buffer is flushed later, in sofree,
868 * but if our receive buffer holds references to files that
869 * are now garbage, we will enqueue those file references to
870 * the garbage collector and kick it into action.
871 */
872 sorflush(so);
873 unp_free(unp);
874 unp_thread_kick();
875 } else
876 unp_free(unp);
877 }
878
879 int
880 unp_bind(struct socket *so, struct mbuf *nam, struct lwp *l)
881 {
882 struct sockaddr_un *sun;
883 struct unpcb *unp;
884 vnode_t *vp;
885 struct vattr vattr;
886 size_t addrlen;
887 int error;
888 struct pathbuf *pb;
889 struct nameidata nd;
890 proc_t *p;
891
892 unp = sotounpcb(so);
893 if (unp->unp_vnode != NULL)
894 return (EINVAL);
895 if ((unp->unp_flags & UNP_BUSY) != 0) {
896 /*
897 * EALREADY may not be strictly accurate, but since this
898 * is a major application error it's hardly a big deal.
899 */
900 return (EALREADY);
901 }
902 unp->unp_flags |= UNP_BUSY;
903 sounlock(so);
904
905 /*
906 * Allocate the new sockaddr. We have to allocate one
907 * extra byte so that we can ensure that the pathname
908 * is nul-terminated.
909 */
910 p = l->l_proc;
911 addrlen = nam->m_len + 1;
912 sun = malloc(addrlen, M_SONAME, M_WAITOK);
913 m_copydata(nam, 0, nam->m_len, (void *)sun);
914 *(((char *)sun) + nam->m_len) = '\0';
915
916 pb = pathbuf_create(sun->sun_path);
917 if (pb == NULL) {
918 error = ENOMEM;
919 goto bad;
920 }
921 NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, pb);
922
923 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
924 if ((error = namei(&nd)) != 0) {
925 pathbuf_destroy(pb);
926 goto bad;
927 }
928 vp = nd.ni_vp;
929 if (vp != NULL) {
930 VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
931 if (nd.ni_dvp == vp)
932 vrele(nd.ni_dvp);
933 else
934 vput(nd.ni_dvp);
935 vrele(vp);
936 pathbuf_destroy(pb);
937 error = EADDRINUSE;
938 goto bad;
939 }
940 vattr_null(&vattr);
941 vattr.va_type = VSOCK;
942 vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
943 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
944 if (error) {
945 pathbuf_destroy(pb);
946 goto bad;
947 }
948 vp = nd.ni_vp;
949 solock(so);
950 vp->v_socket = unp->unp_socket;
951 unp->unp_vnode = vp;
952 unp->unp_addrlen = addrlen;
953 unp->unp_addr = sun;
954 unp->unp_connid.unp_pid = p->p_pid;
955 unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
956 unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
957 unp->unp_flags |= UNP_EIDSBIND;
958 VOP_UNLOCK(vp);
959 unp->unp_flags &= ~UNP_BUSY;
960 pathbuf_destroy(pb);
961 return (0);
962
963 bad:
964 free(sun, M_SONAME);
965 solock(so);
966 unp->unp_flags &= ~UNP_BUSY;
967 return (error);
968 }
969
970 int
971 unp_connect(struct socket *so, struct mbuf *nam, struct lwp *l)
972 {
973 struct sockaddr_un *sun;
974 vnode_t *vp;
975 struct socket *so2, *so3;
976 struct unpcb *unp, *unp2, *unp3;
977 size_t addrlen;
978 int error;
979 struct pathbuf *pb;
980 struct nameidata nd;
981
982 unp = sotounpcb(so);
983 if ((unp->unp_flags & UNP_BUSY) != 0) {
984 /*
985 * EALREADY may not be strictly accurate, but since this
986 * is a major application error it's hardly a big deal.
987 */
988 return (EALREADY);
989 }
990 unp->unp_flags |= UNP_BUSY;
991 sounlock(so);
992
993 /*
994 * Allocate a temporary sockaddr. We have to allocate one extra
995 * byte so that we can ensure that the pathname is nul-terminated.
996 * When we establish the connection, we copy the other PCB's
997 * sockaddr to our own.
998 */
999 addrlen = nam->m_len + 1;
1000 sun = malloc(addrlen, M_SONAME, M_WAITOK);
1001 m_copydata(nam, 0, nam->m_len, (void *)sun);
1002 *(((char *)sun) + nam->m_len) = '\0';
1003
1004 pb = pathbuf_create(sun->sun_path);
1005 if (pb == NULL) {
1006 error = ENOMEM;
1007 goto bad2;
1008 }
1009
1010 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
1011
1012 if ((error = namei(&nd)) != 0) {
1013 pathbuf_destroy(pb);
1014 goto bad2;
1015 }
1016 vp = nd.ni_vp;
1017 if (vp->v_type != VSOCK) {
1018 error = ENOTSOCK;
1019 goto bad;
1020 }
1021 pathbuf_destroy(pb);
1022 if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
1023 goto bad;
1024 /* Acquire v_interlock to protect against unp_detach(). */
1025 mutex_enter(vp->v_interlock);
1026 so2 = vp->v_socket;
1027 if (so2 == NULL) {
1028 mutex_exit(vp->v_interlock);
1029 error = ECONNREFUSED;
1030 goto bad;
1031 }
1032 if (so->so_type != so2->so_type) {
1033 mutex_exit(vp->v_interlock);
1034 error = EPROTOTYPE;
1035 goto bad;
1036 }
1037 solock(so);
1038 unp_resetlock(so);
1039 mutex_exit(vp->v_interlock);
1040 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
1041 /*
1042 * This may seem somewhat fragile but is OK: if we can
1043 * see SO_ACCEPTCONN set on the endpoint, then it must
1044 * be locked by the domain-wide uipc_lock.
1045 */
1046 KASSERT((so2->so_options & SO_ACCEPTCONN) == 0 ||
1047 so2->so_lock == uipc_lock);
1048 if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
1049 (so3 = sonewconn(so2, 0)) == NULL) {
1050 error = ECONNREFUSED;
1051 sounlock(so);
1052 goto bad;
1053 }
1054 unp2 = sotounpcb(so2);
1055 unp3 = sotounpcb(so3);
1056 if (unp2->unp_addr) {
1057 unp3->unp_addr = malloc(unp2->unp_addrlen,
1058 M_SONAME, M_WAITOK);
1059 memcpy(unp3->unp_addr, unp2->unp_addr,
1060 unp2->unp_addrlen);
1061 unp3->unp_addrlen = unp2->unp_addrlen;
1062 }
1063 unp3->unp_flags = unp2->unp_flags;
1064 unp3->unp_connid.unp_pid = l->l_proc->p_pid;
1065 unp3->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
1066 unp3->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
1067 unp3->unp_flags |= UNP_EIDSVALID;
1068 if (unp2->unp_flags & UNP_EIDSBIND) {
1069 unp->unp_connid = unp2->unp_connid;
1070 unp->unp_flags |= UNP_EIDSVALID;
1071 }
1072 so2 = so3;
1073 }
1074 error = unp_connect2(so, so2, PRU_CONNECT);
1075 sounlock(so);
1076 bad:
1077 vput(vp);
1078 bad2:
1079 free(sun, M_SONAME);
1080 solock(so);
1081 unp->unp_flags &= ~UNP_BUSY;
1082 return (error);
1083 }
1084
1085 int
1086 unp_connect2(struct socket *so, struct socket *so2, int req)
1087 {
1088 struct unpcb *unp = sotounpcb(so);
1089 struct unpcb *unp2;
1090
1091 if (so2->so_type != so->so_type)
1092 return (EPROTOTYPE);
1093
1094 /*
1095 * All three sockets involved must be locked by same lock:
1096 *
1097 * local endpoint (so)
1098 * remote endpoint (so2)
1099 * queue head (so2->so_head, only if PR_CONNREQUIRED)
1100 */
1101 KASSERT(solocked2(so, so2));
1102 KASSERT(so->so_head == NULL);
1103 if (so2->so_head != NULL) {
1104 KASSERT(so2->so_lock == uipc_lock);
1105 KASSERT(solocked2(so2, so2->so_head));
1106 }
1107
1108 unp2 = sotounpcb(so2);
1109 unp->unp_conn = unp2;
1110 switch (so->so_type) {
1111
1112 case SOCK_DGRAM:
1113 unp->unp_nextref = unp2->unp_refs;
1114 unp2->unp_refs = unp;
1115 soisconnected(so);
1116 break;
1117
1118 case SOCK_SEQPACKET: /* FALLTHROUGH */
1119 case SOCK_STREAM:
1120 unp2->unp_conn = unp;
1121 if (req == PRU_CONNECT &&
1122 ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1123 soisconnecting(so);
1124 else
1125 soisconnected(so);
1126 soisconnected(so2);
1127 /*
1128 * If the connection is fully established, break the
1129 * association with uipc_lock and give the connected
1130 * pair a seperate lock to share. For CONNECT2, we
1131 * require that the locks already match (the sockets
1132 * are created that way).
1133 */
1134 if (req == PRU_CONNECT) {
1135 KASSERT(so2->so_head != NULL);
1136 unp_setpeerlocks(so, so2);
1137 }
1138 break;
1139
1140 default:
1141 panic("unp_connect2");
1142 }
1143 return (0);
1144 }
1145
1146 void
1147 unp_disconnect(struct unpcb *unp)
1148 {
1149 struct unpcb *unp2 = unp->unp_conn;
1150 struct socket *so;
1151
1152 if (unp2 == 0)
1153 return;
1154 unp->unp_conn = 0;
1155 so = unp->unp_socket;
1156 switch (so->so_type) {
1157 case SOCK_DGRAM:
1158 if (unp2->unp_refs == unp)
1159 unp2->unp_refs = unp->unp_nextref;
1160 else {
1161 unp2 = unp2->unp_refs;
1162 for (;;) {
1163 KASSERT(solocked2(so, unp2->unp_socket));
1164 if (unp2 == 0)
1165 panic("unp_disconnect");
1166 if (unp2->unp_nextref == unp)
1167 break;
1168 unp2 = unp2->unp_nextref;
1169 }
1170 unp2->unp_nextref = unp->unp_nextref;
1171 }
1172 unp->unp_nextref = 0;
1173 so->so_state &= ~SS_ISCONNECTED;
1174 break;
1175
1176 case SOCK_SEQPACKET: /* FALLTHROUGH */
1177 case SOCK_STREAM:
1178 KASSERT(solocked2(so, unp2->unp_socket));
1179 soisdisconnected(so);
1180 unp2->unp_conn = 0;
1181 soisdisconnected(unp2->unp_socket);
1182 break;
1183 }
1184 }
1185
1186 #ifdef notdef
1187 unp_abort(struct unpcb *unp)
1188 {
1189 unp_detach(unp);
1190 }
1191 #endif
1192
1193 void
1194 unp_shutdown(struct unpcb *unp)
1195 {
1196 struct socket *so;
1197
1198 switch(unp->unp_socket->so_type) {
1199 case SOCK_SEQPACKET: /* FALLTHROUGH */
1200 case SOCK_STREAM:
1201 if (unp->unp_conn && (so = unp->unp_conn->unp_socket))
1202 socantrcvmore(so);
1203 break;
1204 default:
1205 break;
1206 }
1207 }
1208
1209 bool
1210 unp_drop(struct unpcb *unp, int errno)
1211 {
1212 struct socket *so = unp->unp_socket;
1213
1214 KASSERT(solocked(so));
1215
1216 so->so_error = errno;
1217 unp_disconnect(unp);
1218 if (so->so_head) {
1219 so->so_pcb = NULL;
1220 /* sofree() drops the socket lock */
1221 sofree(so);
1222 unp_free(unp);
1223 return true;
1224 }
1225 return false;
1226 }
1227
1228 #ifdef notdef
1229 unp_drain(void)
1230 {
1231
1232 }
1233 #endif
1234
1235 int
1236 unp_externalize(struct mbuf *rights, struct lwp *l, int flags)
1237 {
1238 struct cmsghdr * const cm = mtod(rights, struct cmsghdr *);
1239 struct proc * const p = l->l_proc;
1240 file_t **rp;
1241 int error = 0;
1242
1243 const size_t nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
1244 sizeof(file_t *);
1245
1246 int * const fdp = kmem_alloc(nfds * sizeof(int), KM_SLEEP);
1247 rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
1248
1249 /* Make sure the recipient should be able to see the files.. */
1250 if (p->p_cwdi->cwdi_rdir != NULL) {
1251 rp = (file_t **)CMSG_DATA(cm);
1252 for (size_t i = 0; i < nfds; i++) {
1253 file_t * const fp = *rp++;
1254 /*
1255 * If we are in a chroot'ed directory, and
1256 * someone wants to pass us a directory, make
1257 * sure it's inside the subtree we're allowed
1258 * to access.
1259 */
1260 if (fp->f_type == DTYPE_VNODE) {
1261 vnode_t *vp = (vnode_t *)fp->f_data;
1262 if ((vp->v_type == VDIR) &&
1263 !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
1264 error = EPERM;
1265 goto out;
1266 }
1267 }
1268 }
1269 }
1270
1271 restart:
1272 rp = (file_t **)CMSG_DATA(cm);
1273 /*
1274 * First loop -- allocate file descriptor table slots for the
1275 * new files.
1276 */
1277 for (size_t i = 0; i < nfds; i++) {
1278 if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
1279 /*
1280 * Back out what we've done so far.
1281 */
1282 while (i-- > 0) {
1283 fd_abort(p, NULL, fdp[i]);
1284 }
1285 if (error == ENOSPC) {
1286 fd_tryexpand(p);
1287 error = 0;
1288 goto restart;
1289 }
1290 /*
1291 * This is the error that has historically
1292 * been returned, and some callers may
1293 * expect it.
1294 */
1295 error = EMSGSIZE;
1296 goto out;
1297 }
1298 }
1299
1300 /*
1301 * Now that adding them has succeeded, update all of the
1302 * file passing state and affix the descriptors.
1303 */
1304 rp = (file_t **)CMSG_DATA(cm);
1305 int *ofdp = (int *)CMSG_DATA(cm);
1306 for (size_t i = 0; i < nfds; i++) {
1307 file_t * const fp = *rp++;
1308 const int fd = fdp[i];
1309 atomic_dec_uint(&unp_rights);
1310 fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
1311 fd_affix(p, fp, fd);
1312 /*
1313 * Done with this file pointer, replace it with a fd;
1314 */
1315 *ofdp++ = fd;
1316 mutex_enter(&fp->f_lock);
1317 fp->f_msgcount--;
1318 mutex_exit(&fp->f_lock);
1319 /*
1320 * Note that fd_affix() adds a reference to the file.
1321 * The file may already have been closed by another
1322 * LWP in the process, so we must drop the reference
1323 * added by unp_internalize() with closef().
1324 */
1325 closef(fp);
1326 }
1327
1328 /*
1329 * Adjust length, in case of transition from large file_t
1330 * pointers to ints.
1331 */
1332 if (sizeof(file_t *) != sizeof(int)) {
1333 cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
1334 rights->m_len = CMSG_SPACE(nfds * sizeof(int));
1335 }
1336 out:
1337 if (__predict_false(error != 0)) {
1338 rp = (file_t **)CMSG_DATA(cm);
1339 for (size_t i = 0; i < nfds; i++) {
1340 file_t * const fp = *rp;
1341 *rp++ = 0;
1342 unp_discard_now(fp);
1343 }
1344 }
1345
1346 rw_exit(&p->p_cwdi->cwdi_lock);
1347 kmem_free(fdp, nfds * sizeof(int));
1348 return error;
1349 }
1350
1351 int
1352 unp_internalize(struct mbuf **controlp)
1353 {
1354 filedesc_t *fdescp = curlwp->l_fd;
1355 struct mbuf *control = *controlp;
1356 struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
1357 file_t **rp, **files;
1358 file_t *fp;
1359 int i, fd, *fdp;
1360 int nfds, error;
1361 u_int maxmsg;
1362
1363 error = 0;
1364 newcm = NULL;
1365
1366 /* Sanity check the control message header. */
1367 if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
1368 cm->cmsg_len > control->m_len ||
1369 cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
1370 return (EINVAL);
1371
1372 /*
1373 * Verify that the file descriptors are valid, and acquire
1374 * a reference to each.
1375 */
1376 nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
1377 fdp = (int *)CMSG_DATA(cm);
1378 maxmsg = maxfiles / unp_rights_ratio;
1379 for (i = 0; i < nfds; i++) {
1380 fd = *fdp++;
1381 if (atomic_inc_uint_nv(&unp_rights) > maxmsg) {
1382 atomic_dec_uint(&unp_rights);
1383 nfds = i;
1384 error = EAGAIN;
1385 goto out;
1386 }
1387 if ((fp = fd_getfile(fd)) == NULL
1388 || fp->f_type == DTYPE_KQUEUE) {
1389 if (fp)
1390 fd_putfile(fd);
1391 atomic_dec_uint(&unp_rights);
1392 nfds = i;
1393 error = EBADF;
1394 goto out;
1395 }
1396 }
1397
1398 /* Allocate new space and copy header into it. */
1399 newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
1400 if (newcm == NULL) {
1401 error = E2BIG;
1402 goto out;
1403 }
1404 memcpy(newcm, cm, sizeof(struct cmsghdr));
1405 files = (file_t **)CMSG_DATA(newcm);
1406
1407 /*
1408 * Transform the file descriptors into file_t pointers, in
1409 * reverse order so that if pointers are bigger than ints, the
1410 * int won't get until we're done. No need to lock, as we have
1411 * already validated the descriptors with fd_getfile().
1412 */
1413 fdp = (int *)CMSG_DATA(cm) + nfds;
1414 rp = files + nfds;
1415 for (i = 0; i < nfds; i++) {
1416 fp = fdescp->fd_dt->dt_ff[*--fdp]->ff_file;
1417 KASSERT(fp != NULL);
1418 mutex_enter(&fp->f_lock);
1419 *--rp = fp;
1420 fp->f_count++;
1421 fp->f_msgcount++;
1422 mutex_exit(&fp->f_lock);
1423 }
1424
1425 out:
1426 /* Release descriptor references. */
1427 fdp = (int *)CMSG_DATA(cm);
1428 for (i = 0; i < nfds; i++) {
1429 fd_putfile(*fdp++);
1430 if (error != 0) {
1431 atomic_dec_uint(&unp_rights);
1432 }
1433 }
1434
1435 if (error == 0) {
1436 if (control->m_flags & M_EXT) {
1437 m_freem(control);
1438 *controlp = control = m_get(M_WAIT, MT_CONTROL);
1439 }
1440 MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
1441 M_MBUF, NULL, NULL);
1442 cm = newcm;
1443 /*
1444 * Adjust message & mbuf to note amount of space
1445 * actually used.
1446 */
1447 cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
1448 control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
1449 }
1450
1451 return error;
1452 }
1453
1454 struct mbuf *
1455 unp_addsockcred(struct lwp *l, struct mbuf *control)
1456 {
1457 struct cmsghdr *cmp;
1458 struct sockcred *sc;
1459 struct mbuf *m, *n;
1460 int len, space, i;
1461
1462 len = CMSG_LEN(SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)));
1463 space = CMSG_SPACE(SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)));
1464
1465 m = m_get(M_WAIT, MT_CONTROL);
1466 if (space > MLEN) {
1467 if (space > MCLBYTES)
1468 MEXTMALLOC(m, space, M_WAITOK);
1469 else
1470 m_clget(m, M_WAIT);
1471 if ((m->m_flags & M_EXT) == 0) {
1472 m_free(m);
1473 return (control);
1474 }
1475 }
1476
1477 m->m_len = space;
1478 m->m_next = NULL;
1479 cmp = mtod(m, struct cmsghdr *);
1480 sc = (struct sockcred *)CMSG_DATA(cmp);
1481 cmp->cmsg_len = len;
1482 cmp->cmsg_level = SOL_SOCKET;
1483 cmp->cmsg_type = SCM_CREDS;
1484 sc->sc_uid = kauth_cred_getuid(l->l_cred);
1485 sc->sc_euid = kauth_cred_geteuid(l->l_cred);
1486 sc->sc_gid = kauth_cred_getgid(l->l_cred);
1487 sc->sc_egid = kauth_cred_getegid(l->l_cred);
1488 sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
1489 for (i = 0; i < sc->sc_ngroups; i++)
1490 sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
1491
1492 /*
1493 * If a control message already exists, append us to the end.
1494 */
1495 if (control != NULL) {
1496 for (n = control; n->m_next != NULL; n = n->m_next)
1497 ;
1498 n->m_next = m;
1499 } else
1500 control = m;
1501
1502 return (control);
1503 }
1504
1505 /*
1506 * Do a mark-sweep GC of files in the system, to free up any which are
1507 * caught in flight to an about-to-be-closed socket. Additionally,
1508 * process deferred file closures.
1509 */
1510 static void
1511 unp_gc(file_t *dp)
1512 {
1513 extern struct domain unixdomain;
1514 file_t *fp, *np;
1515 struct socket *so, *so1;
1516 u_int i, old, new;
1517 bool didwork;
1518
1519 KASSERT(curlwp == unp_thread_lwp);
1520 KASSERT(mutex_owned(&filelist_lock));
1521
1522 /*
1523 * First, process deferred file closures.
1524 */
1525 while (!SLIST_EMPTY(&unp_thread_discard)) {
1526 fp = SLIST_FIRST(&unp_thread_discard);
1527 KASSERT(fp->f_unpcount > 0);
1528 KASSERT(fp->f_count > 0);
1529 KASSERT(fp->f_msgcount > 0);
1530 KASSERT(fp->f_count >= fp->f_unpcount);
1531 KASSERT(fp->f_count >= fp->f_msgcount);
1532 KASSERT(fp->f_msgcount >= fp->f_unpcount);
1533 SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist);
1534 i = fp->f_unpcount;
1535 fp->f_unpcount = 0;
1536 mutex_exit(&filelist_lock);
1537 for (; i != 0; i--) {
1538 unp_discard_now(fp);
1539 }
1540 mutex_enter(&filelist_lock);
1541 }
1542
1543 /*
1544 * Clear mark bits. Ensure that we don't consider new files
1545 * entering the file table during this loop (they will not have
1546 * FSCAN set).
1547 */
1548 unp_defer = 0;
1549 LIST_FOREACH(fp, &filehead, f_list) {
1550 for (old = fp->f_flag;; old = new) {
1551 new = atomic_cas_uint(&fp->f_flag, old,
1552 (old | FSCAN) & ~(FMARK|FDEFER));
1553 if (__predict_true(old == new)) {
1554 break;
1555 }
1556 }
1557 }
1558
1559 /*
1560 * Iterate over the set of sockets, marking ones believed (based on
1561 * refcount) to be referenced from a process, and marking for rescan
1562 * sockets which are queued on a socket. Recan continues descending
1563 * and searching for sockets referenced by sockets (FDEFER), until
1564 * there are no more socket->socket references to be discovered.
1565 */
1566 do {
1567 didwork = false;
1568 for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1569 KASSERT(mutex_owned(&filelist_lock));
1570 np = LIST_NEXT(fp, f_list);
1571 mutex_enter(&fp->f_lock);
1572 if ((fp->f_flag & FDEFER) != 0) {
1573 atomic_and_uint(&fp->f_flag, ~FDEFER);
1574 unp_defer--;
1575 KASSERT(fp->f_count != 0);
1576 } else {
1577 if (fp->f_count == 0 ||
1578 (fp->f_flag & FMARK) != 0 ||
1579 fp->f_count == fp->f_msgcount ||
1580 fp->f_unpcount != 0) {
1581 mutex_exit(&fp->f_lock);
1582 continue;
1583 }
1584 }
1585 atomic_or_uint(&fp->f_flag, FMARK);
1586
1587 if (fp->f_type != DTYPE_SOCKET ||
1588 (so = fp->f_data) == NULL ||
1589 so->so_proto->pr_domain != &unixdomain ||
1590 (so->so_proto->pr_flags & PR_RIGHTS) == 0) {
1591 mutex_exit(&fp->f_lock);
1592 continue;
1593 }
1594
1595 /* Gain file ref, mark our position, and unlock. */
1596 didwork = true;
1597 LIST_INSERT_AFTER(fp, dp, f_list);
1598 fp->f_count++;
1599 mutex_exit(&fp->f_lock);
1600 mutex_exit(&filelist_lock);
1601
1602 /*
1603 * Mark files referenced from sockets queued on the
1604 * accept queue as well.
1605 */
1606 solock(so);
1607 unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
1608 if ((so->so_options & SO_ACCEPTCONN) != 0) {
1609 TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
1610 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1611 }
1612 TAILQ_FOREACH(so1, &so->so_q, so_qe) {
1613 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1614 }
1615 }
1616 sounlock(so);
1617
1618 /* Re-lock and restart from where we left off. */
1619 closef(fp);
1620 mutex_enter(&filelist_lock);
1621 np = LIST_NEXT(dp, f_list);
1622 LIST_REMOVE(dp, f_list);
1623 }
1624 /*
1625 * Bail early if we did nothing in the loop above. Could
1626 * happen because of concurrent activity causing unp_defer
1627 * to get out of sync.
1628 */
1629 } while (unp_defer != 0 && didwork);
1630
1631 /*
1632 * Sweep pass.
1633 *
1634 * We grab an extra reference to each of the files that are
1635 * not otherwise accessible and then free the rights that are
1636 * stored in messages on them.
1637 */
1638 for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1639 KASSERT(mutex_owned(&filelist_lock));
1640 np = LIST_NEXT(fp, f_list);
1641 mutex_enter(&fp->f_lock);
1642
1643 /*
1644 * Ignore non-sockets.
1645 * Ignore dead sockets, or sockets with pending close.
1646 * Ignore sockets obviously referenced elsewhere.
1647 * Ignore sockets marked as referenced by our scan.
1648 * Ignore new sockets that did not exist during the scan.
1649 */
1650 if (fp->f_type != DTYPE_SOCKET ||
1651 fp->f_count == 0 || fp->f_unpcount != 0 ||
1652 fp->f_count != fp->f_msgcount ||
1653 (fp->f_flag & (FMARK | FSCAN)) != FSCAN) {
1654 mutex_exit(&fp->f_lock);
1655 continue;
1656 }
1657
1658 /* Gain file ref, mark our position, and unlock. */
1659 LIST_INSERT_AFTER(fp, dp, f_list);
1660 fp->f_count++;
1661 mutex_exit(&fp->f_lock);
1662 mutex_exit(&filelist_lock);
1663
1664 /*
1665 * Flush all data from the socket's receive buffer.
1666 * This will cause files referenced only by the
1667 * socket to be queued for close.
1668 */
1669 so = fp->f_data;
1670 solock(so);
1671 sorflush(so);
1672 sounlock(so);
1673
1674 /* Re-lock and restart from where we left off. */
1675 closef(fp);
1676 mutex_enter(&filelist_lock);
1677 np = LIST_NEXT(dp, f_list);
1678 LIST_REMOVE(dp, f_list);
1679 }
1680 }
1681
1682 /*
1683 * Garbage collector thread. While SCM_RIGHTS messages are in transit,
1684 * wake once per second to garbage collect. Run continually while we
1685 * have deferred closes to process.
1686 */
1687 static void
1688 unp_thread(void *cookie)
1689 {
1690 file_t *dp;
1691
1692 /* Allocate a dummy file for our scans. */
1693 if ((dp = fgetdummy()) == NULL) {
1694 panic("unp_thread");
1695 }
1696
1697 mutex_enter(&filelist_lock);
1698 for (;;) {
1699 KASSERT(mutex_owned(&filelist_lock));
1700 if (SLIST_EMPTY(&unp_thread_discard)) {
1701 if (unp_rights != 0) {
1702 (void)cv_timedwait(&unp_thread_cv,
1703 &filelist_lock, hz);
1704 } else {
1705 cv_wait(&unp_thread_cv, &filelist_lock);
1706 }
1707 }
1708 unp_gc(dp);
1709 }
1710 /* NOTREACHED */
1711 }
1712
1713 /*
1714 * Kick the garbage collector into action if there is something for
1715 * it to process.
1716 */
1717 static void
1718 unp_thread_kick(void)
1719 {
1720
1721 if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) {
1722 mutex_enter(&filelist_lock);
1723 cv_signal(&unp_thread_cv);
1724 mutex_exit(&filelist_lock);
1725 }
1726 }
1727
1728 void
1729 unp_dispose(struct mbuf *m)
1730 {
1731
1732 if (m)
1733 unp_scan(m, unp_discard_later, 1);
1734 }
1735
1736 void
1737 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
1738 {
1739 struct mbuf *m;
1740 file_t **rp, *fp;
1741 struct cmsghdr *cm;
1742 int i, qfds;
1743
1744 while (m0) {
1745 for (m = m0; m; m = m->m_next) {
1746 if (m->m_type != MT_CONTROL ||
1747 m->m_len < sizeof(*cm)) {
1748 continue;
1749 }
1750 cm = mtod(m, struct cmsghdr *);
1751 if (cm->cmsg_level != SOL_SOCKET ||
1752 cm->cmsg_type != SCM_RIGHTS)
1753 continue;
1754 qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
1755 / sizeof(file_t *);
1756 rp = (file_t **)CMSG_DATA(cm);
1757 for (i = 0; i < qfds; i++) {
1758 fp = *rp;
1759 if (discard) {
1760 *rp = 0;
1761 }
1762 (*op)(fp);
1763 rp++;
1764 }
1765 }
1766 m0 = m0->m_nextpkt;
1767 }
1768 }
1769
1770 void
1771 unp_mark(file_t *fp)
1772 {
1773
1774 if (fp == NULL)
1775 return;
1776
1777 /* If we're already deferred, don't screw up the defer count */
1778 mutex_enter(&fp->f_lock);
1779 if (fp->f_flag & (FMARK | FDEFER)) {
1780 mutex_exit(&fp->f_lock);
1781 return;
1782 }
1783
1784 /*
1785 * Minimize the number of deferrals... Sockets are the only type of
1786 * file which can hold references to another file, so just mark
1787 * other files, and defer unmarked sockets for the next pass.
1788 */
1789 if (fp->f_type == DTYPE_SOCKET) {
1790 unp_defer++;
1791 KASSERT(fp->f_count != 0);
1792 atomic_or_uint(&fp->f_flag, FDEFER);
1793 } else {
1794 atomic_or_uint(&fp->f_flag, FMARK);
1795 }
1796 mutex_exit(&fp->f_lock);
1797 }
1798
1799 static void
1800 unp_discard_now(file_t *fp)
1801 {
1802
1803 if (fp == NULL)
1804 return;
1805
1806 KASSERT(fp->f_count > 0);
1807 KASSERT(fp->f_msgcount > 0);
1808
1809 mutex_enter(&fp->f_lock);
1810 fp->f_msgcount--;
1811 mutex_exit(&fp->f_lock);
1812 atomic_dec_uint(&unp_rights);
1813 (void)closef(fp);
1814 }
1815
1816 static void
1817 unp_discard_later(file_t *fp)
1818 {
1819
1820 if (fp == NULL)
1821 return;
1822
1823 KASSERT(fp->f_count > 0);
1824 KASSERT(fp->f_msgcount > 0);
1825
1826 mutex_enter(&filelist_lock);
1827 if (fp->f_unpcount++ == 0) {
1828 SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist);
1829 }
1830 mutex_exit(&filelist_lock);
1831 }
1832