uipc_usrreq.c revision 1.146 1 /* $NetBSD: uipc_usrreq.c,v 1.146 2013/10/08 17:21:24 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2000, 2004, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
62 */
63
64 /*
65 * Copyright (c) 1997 Christopher G. Demetriou. All rights reserved.
66 *
67 * Redistribution and use in source and binary forms, with or without
68 * modification, are permitted provided that the following conditions
69 * are met:
70 * 1. Redistributions of source code must retain the above copyright
71 * notice, this list of conditions and the following disclaimer.
72 * 2. Redistributions in binary form must reproduce the above copyright
73 * notice, this list of conditions and the following disclaimer in the
74 * documentation and/or other materials provided with the distribution.
75 * 3. All advertising materials mentioning features or use of this software
76 * must display the following acknowledgement:
77 * This product includes software developed by the University of
78 * California, Berkeley and its contributors.
79 * 4. Neither the name of the University nor the names of its contributors
80 * may be used to endorse or promote products derived from this software
81 * without specific prior written permission.
82 *
83 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
84 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
85 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
86 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
87 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
88 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
89 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
90 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
91 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
92 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
93 * SUCH DAMAGE.
94 *
95 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
96 */
97
98 #include <sys/cdefs.h>
99 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.146 2013/10/08 17:21:24 christos Exp $");
100
101 #include <sys/param.h>
102 #include <sys/systm.h>
103 #include <sys/proc.h>
104 #include <sys/filedesc.h>
105 #include <sys/domain.h>
106 #include <sys/protosw.h>
107 #include <sys/socket.h>
108 #include <sys/socketvar.h>
109 #include <sys/unpcb.h>
110 #include <sys/un.h>
111 #include <sys/namei.h>
112 #include <sys/vnode.h>
113 #include <sys/file.h>
114 #include <sys/stat.h>
115 #include <sys/mbuf.h>
116 #include <sys/kauth.h>
117 #include <sys/kmem.h>
118 #include <sys/atomic.h>
119 #include <sys/uidinfo.h>
120 #include <sys/kernel.h>
121 #include <sys/kthread.h>
122
123 /*
124 * Unix communications domain.
125 *
126 * TODO:
127 * RDM
128 * rethink name space problems
129 * need a proper out-of-band
130 *
131 * Notes on locking:
132 *
133 * The generic rules noted in uipc_socket2.c apply. In addition:
134 *
135 * o We have a global lock, uipc_lock.
136 *
137 * o All datagram sockets are locked by uipc_lock.
138 *
139 * o For stream socketpairs, the two endpoints are created sharing the same
140 * independent lock. Sockets presented to PRU_CONNECT2 must already have
141 * matching locks.
142 *
143 * o Stream sockets created via socket() start life with their own
144 * independent lock.
145 *
146 * o Stream connections to a named endpoint are slightly more complicated.
147 * Sockets that have called listen() have their lock pointer mutated to
148 * the global uipc_lock. When establishing a connection, the connecting
149 * socket also has its lock mutated to uipc_lock, which matches the head
150 * (listening socket). We create a new socket for accept() to return, and
151 * that also shares the head's lock. Until the connection is completely
152 * done on both ends, all three sockets are locked by uipc_lock. Once the
153 * connection is complete, the association with the head's lock is broken.
154 * The connecting socket and the socket returned from accept() have their
155 * lock pointers mutated away from uipc_lock, and back to the connecting
156 * socket's original, independent lock. The head continues to be locked
157 * by uipc_lock.
158 *
159 * o If uipc_lock is determined to be a significant source of contention,
160 * it could easily be hashed out. It is difficult to simply make it an
161 * independent lock because of visibility / garbage collection issues:
162 * if a socket has been associated with a lock at any point, that lock
163 * must remain valid until the socket is no longer visible in the system.
164 * The lock must not be freed or otherwise destroyed until any sockets
165 * that had referenced it have also been destroyed.
166 */
167 const struct sockaddr_un sun_noname = {
168 .sun_len = offsetof(struct sockaddr_un, sun_path),
169 .sun_family = AF_LOCAL,
170 };
171 ino_t unp_ino; /* prototype for fake inode numbers */
172
173 struct mbuf *unp_addsockcred(struct lwp *, struct mbuf *);
174 static void unp_mark(file_t *);
175 static void unp_scan(struct mbuf *, void (*)(file_t *), int);
176 static void unp_discard_now(file_t *);
177 static void unp_discard_later(file_t *);
178 static void unp_thread(void *);
179 static void unp_thread_kick(void);
180 static kmutex_t *uipc_lock;
181
182 static kcondvar_t unp_thread_cv;
183 static lwp_t *unp_thread_lwp;
184 static SLIST_HEAD(,file) unp_thread_discard;
185 static int unp_defer;
186
187 /*
188 * Initialize Unix protocols.
189 */
190 void
191 uipc_init(void)
192 {
193 int error;
194
195 uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
196 cv_init(&unp_thread_cv, "unpgc");
197
198 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread,
199 NULL, &unp_thread_lwp, "unpgc");
200 if (error != 0)
201 panic("uipc_init %d", error);
202 }
203
204 /*
205 * A connection succeeded: disassociate both endpoints from the head's
206 * lock, and make them share their own lock. There is a race here: for
207 * a very brief time one endpoint will be locked by a different lock
208 * than the other end. However, since the current thread holds the old
209 * lock (the listening socket's lock, the head) access can still only be
210 * made to one side of the connection.
211 */
212 static void
213 unp_setpeerlocks(struct socket *so, struct socket *so2)
214 {
215 struct unpcb *unp;
216 kmutex_t *lock;
217
218 KASSERT(solocked2(so, so2));
219
220 /*
221 * Bail out if either end of the socket is not yet fully
222 * connected or accepted. We only break the lock association
223 * with the head when the pair of sockets stand completely
224 * on their own.
225 */
226 KASSERT(so->so_head == NULL);
227 if (so2->so_head != NULL)
228 return;
229
230 /*
231 * Drop references to old lock. A third reference (from the
232 * queue head) must be held as we still hold its lock. Bonus:
233 * we don't need to worry about garbage collecting the lock.
234 */
235 lock = so->so_lock;
236 KASSERT(lock == uipc_lock);
237 mutex_obj_free(lock);
238 mutex_obj_free(lock);
239
240 /*
241 * Grab stream lock from the initiator and share between the two
242 * endpoints. Issue memory barrier to ensure all modifications
243 * become globally visible before the lock change. so2 is
244 * assumed not to have a stream lock, because it was created
245 * purely for the server side to accept this connection and
246 * started out life using the domain-wide lock.
247 */
248 unp = sotounpcb(so);
249 KASSERT(unp->unp_streamlock != NULL);
250 KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
251 lock = unp->unp_streamlock;
252 unp->unp_streamlock = NULL;
253 mutex_obj_hold(lock);
254 membar_exit();
255 /*
256 * possible race if lock is not held - see comment in
257 * uipc_usrreq(PRU_ACCEPT).
258 */
259 KASSERT(mutex_owned(lock));
260 solockreset(so, lock);
261 solockreset(so2, lock);
262 }
263
264 /*
265 * Reset a socket's lock back to the domain-wide lock.
266 */
267 static void
268 unp_resetlock(struct socket *so)
269 {
270 kmutex_t *olock, *nlock;
271 struct unpcb *unp;
272
273 KASSERT(solocked(so));
274
275 olock = so->so_lock;
276 nlock = uipc_lock;
277 if (olock == nlock)
278 return;
279 unp = sotounpcb(so);
280 KASSERT(unp->unp_streamlock == NULL);
281 unp->unp_streamlock = olock;
282 mutex_obj_hold(nlock);
283 mutex_enter(nlock);
284 solockreset(so, nlock);
285 mutex_exit(olock);
286 }
287
288 static void
289 unp_free(struct unpcb *unp)
290 {
291
292 if (unp->unp_addr)
293 free(unp->unp_addr, M_SONAME);
294 if (unp->unp_streamlock != NULL)
295 mutex_obj_free(unp->unp_streamlock);
296 free(unp, M_PCB);
297 }
298
299 int
300 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp,
301 struct lwp *l)
302 {
303 struct socket *so2;
304 const struct sockaddr_un *sun;
305
306 so2 = unp->unp_conn->unp_socket;
307
308 KASSERT(solocked(so2));
309
310 if (unp->unp_addr)
311 sun = unp->unp_addr;
312 else
313 sun = &sun_noname;
314 if (unp->unp_conn->unp_flags & UNP_WANTCRED)
315 control = unp_addsockcred(l, control);
316 if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
317 control) == 0) {
318 so2->so_rcv.sb_overflowed++;
319 unp_dispose(control);
320 m_freem(control);
321 m_freem(m);
322 return (ENOBUFS);
323 } else {
324 sorwakeup(so2);
325 return (0);
326 }
327 }
328
329 void
330 unp_setaddr(struct socket *so, struct mbuf *nam, bool peeraddr)
331 {
332 const struct sockaddr_un *sun;
333 struct unpcb *unp;
334 bool ext;
335
336 KASSERT(solocked(so));
337 unp = sotounpcb(so);
338 ext = false;
339
340 for (;;) {
341 sun = NULL;
342 if (peeraddr) {
343 if (unp->unp_conn && unp->unp_conn->unp_addr)
344 sun = unp->unp_conn->unp_addr;
345 } else {
346 if (unp->unp_addr)
347 sun = unp->unp_addr;
348 }
349 if (sun == NULL)
350 sun = &sun_noname;
351 nam->m_len = sun->sun_len;
352 if (nam->m_len > MLEN && !ext) {
353 sounlock(so);
354 MEXTMALLOC(nam, MAXPATHLEN * 2, M_WAITOK);
355 solock(so);
356 ext = true;
357 } else {
358 KASSERT(nam->m_len <= MAXPATHLEN * 2);
359 memcpy(mtod(nam, void *), sun, (size_t)nam->m_len);
360 break;
361 }
362 }
363 }
364
365 /*ARGSUSED*/
366 int
367 uipc_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
368 struct mbuf *control, struct lwp *l)
369 {
370 struct unpcb *unp = sotounpcb(so);
371 struct socket *so2;
372 struct proc *p;
373 u_int newhiwat;
374 int error = 0;
375
376 if (req == PRU_CONTROL)
377 return (EOPNOTSUPP);
378
379 #ifdef DIAGNOSTIC
380 if (req != PRU_SEND && req != PRU_SENDOOB && control)
381 panic("uipc_usrreq: unexpected control mbuf");
382 #endif
383 p = l ? l->l_proc : NULL;
384 if (req != PRU_ATTACH) {
385 if (unp == NULL) {
386 error = EINVAL;
387 goto release;
388 }
389 KASSERT(solocked(so));
390 }
391
392 switch (req) {
393
394 case PRU_ATTACH:
395 if (unp != NULL) {
396 error = EISCONN;
397 break;
398 }
399 error = unp_attach(so);
400 break;
401
402 case PRU_DETACH:
403 unp_detach(unp);
404 break;
405
406 case PRU_BIND:
407 KASSERT(l != NULL);
408 error = unp_bind(so, nam, l);
409 break;
410
411 case PRU_LISTEN:
412 /*
413 * If the socket can accept a connection, it must be
414 * locked by uipc_lock.
415 */
416 unp_resetlock(so);
417 if (unp->unp_vnode == NULL)
418 error = EINVAL;
419 break;
420
421 case PRU_CONNECT:
422 KASSERT(l != NULL);
423 error = unp_connect(so, nam, l);
424 break;
425
426 case PRU_CONNECT2:
427 error = unp_connect2(so, (struct socket *)nam, PRU_CONNECT2);
428 break;
429
430 case PRU_DISCONNECT:
431 unp_disconnect(unp);
432 break;
433
434 case PRU_ACCEPT:
435 KASSERT(so->so_lock == uipc_lock);
436 /*
437 * Mark the initiating STREAM socket as connected *ONLY*
438 * after it's been accepted. This prevents a client from
439 * overrunning a server and receiving ECONNREFUSED.
440 */
441 if (unp->unp_conn == NULL) {
442 /*
443 * This will use the empty socket and will not
444 * allocate.
445 */
446 unp_setaddr(so, nam, true);
447 break;
448 }
449 so2 = unp->unp_conn->unp_socket;
450 if (so2->so_state & SS_ISCONNECTING) {
451 KASSERT(solocked2(so, so->so_head));
452 KASSERT(solocked2(so2, so->so_head));
453 soisconnected(so2);
454 }
455 /*
456 * If the connection is fully established, break the
457 * association with uipc_lock and give the connected
458 * pair a seperate lock to share.
459 * There is a race here: sotounpcb(so2)->unp_streamlock
460 * is not locked, so when changing so2->so_lock
461 * another thread can grab it while so->so_lock is still
462 * pointing to the (locked) uipc_lock.
463 * this should be harmless, except that this makes
464 * solocked2() and solocked() unreliable.
465 * Another problem is that unp_setaddr() expects the
466 * the socket locked. Grabing sotounpcb(so2)->unp_streamlock
467 * fixes both issues.
468 */
469 mutex_enter(sotounpcb(so2)->unp_streamlock);
470 unp_setpeerlocks(so2, so);
471 /*
472 * Only now return peer's address, as we may need to
473 * block in order to allocate memory.
474 *
475 * XXX Minor race: connection can be broken while
476 * lock is dropped in unp_setaddr(). We will return
477 * error == 0 and sun_noname as the peer address.
478 */
479 unp_setaddr(so, nam, true);
480 /* so_lock now points to unp_streamlock */
481 mutex_exit(so2->so_lock);
482 break;
483
484 case PRU_SHUTDOWN:
485 socantsendmore(so);
486 unp_shutdown(unp);
487 break;
488
489 case PRU_RCVD:
490 switch (so->so_type) {
491
492 case SOCK_DGRAM:
493 panic("uipc 1");
494 /*NOTREACHED*/
495
496 case SOCK_SEQPACKET: /* FALLTHROUGH */
497 case SOCK_STREAM:
498 #define rcv (&so->so_rcv)
499 #define snd (&so2->so_snd)
500 if (unp->unp_conn == 0)
501 break;
502 so2 = unp->unp_conn->unp_socket;
503 KASSERT(solocked2(so, so2));
504 /*
505 * Adjust backpressure on sender
506 * and wakeup any waiting to write.
507 */
508 snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
509 unp->unp_mbcnt = rcv->sb_mbcnt;
510 newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
511 (void)chgsbsize(so2->so_uidinfo,
512 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
513 unp->unp_cc = rcv->sb_cc;
514 sowwakeup(so2);
515 #undef snd
516 #undef rcv
517 break;
518
519 default:
520 panic("uipc 2");
521 }
522 break;
523
524 case PRU_SEND:
525 /*
526 * Note: unp_internalize() rejects any control message
527 * other than SCM_RIGHTS, and only allows one. This
528 * has the side-effect of preventing a caller from
529 * forging SCM_CREDS.
530 */
531 if (control) {
532 sounlock(so);
533 error = unp_internalize(&control);
534 solock(so);
535 if (error != 0) {
536 m_freem(control);
537 m_freem(m);
538 break;
539 }
540 }
541 switch (so->so_type) {
542
543 case SOCK_DGRAM: {
544 KASSERT(so->so_lock == uipc_lock);
545 if (nam) {
546 if ((so->so_state & SS_ISCONNECTED) != 0)
547 error = EISCONN;
548 else {
549 /*
550 * Note: once connected, the
551 * socket's lock must not be
552 * dropped until we have sent
553 * the message and disconnected.
554 * This is necessary to prevent
555 * intervening control ops, like
556 * another connection.
557 */
558 error = unp_connect(so, nam, l);
559 }
560 } else {
561 if ((so->so_state & SS_ISCONNECTED) == 0)
562 error = ENOTCONN;
563 }
564 if (error) {
565 unp_dispose(control);
566 m_freem(control);
567 m_freem(m);
568 break;
569 }
570 KASSERT(p != NULL);
571 error = unp_output(m, control, unp, l);
572 if (nam)
573 unp_disconnect(unp);
574 break;
575 }
576
577 case SOCK_SEQPACKET: /* FALLTHROUGH */
578 case SOCK_STREAM:
579 #define rcv (&so2->so_rcv)
580 #define snd (&so->so_snd)
581 if (unp->unp_conn == NULL) {
582 error = ENOTCONN;
583 break;
584 }
585 so2 = unp->unp_conn->unp_socket;
586 KASSERT(solocked2(so, so2));
587 if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
588 /*
589 * Credentials are passed only once on
590 * SOCK_STREAM and SOCK_SEQPACKET.
591 */
592 unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
593 control = unp_addsockcred(l, control);
594 }
595 /*
596 * Send to paired receive port, and then reduce
597 * send buffer hiwater marks to maintain backpressure.
598 * Wake up readers.
599 */
600 if (control) {
601 if (sbappendcontrol(rcv, m, control) != 0)
602 control = NULL;
603 } else {
604 switch(so->so_type) {
605 case SOCK_SEQPACKET:
606 sbappendrecord(rcv, m);
607 break;
608 case SOCK_STREAM:
609 sbappend(rcv, m);
610 break;
611 default:
612 panic("uipc_usrreq");
613 break;
614 }
615 }
616 snd->sb_mbmax -=
617 rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
618 unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
619 newhiwat = snd->sb_hiwat -
620 (rcv->sb_cc - unp->unp_conn->unp_cc);
621 (void)chgsbsize(so->so_uidinfo,
622 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
623 unp->unp_conn->unp_cc = rcv->sb_cc;
624 sorwakeup(so2);
625 #undef snd
626 #undef rcv
627 if (control != NULL) {
628 unp_dispose(control);
629 m_freem(control);
630 }
631 break;
632
633 default:
634 panic("uipc 4");
635 }
636 break;
637
638 case PRU_ABORT:
639 (void)unp_drop(unp, ECONNABORTED);
640
641 KASSERT(so->so_head == NULL);
642 #ifdef DIAGNOSTIC
643 if (so->so_pcb == NULL)
644 panic("uipc 5: drop killed pcb");
645 #endif
646 unp_detach(unp);
647 break;
648
649 case PRU_SENSE:
650 ((struct stat *) m)->st_blksize = so->so_snd.sb_hiwat;
651 switch (so->so_type) {
652 case SOCK_SEQPACKET: /* FALLTHROUGH */
653 case SOCK_STREAM:
654 if (unp->unp_conn == 0)
655 break;
656
657 so2 = unp->unp_conn->unp_socket;
658 KASSERT(solocked2(so, so2));
659 ((struct stat *) m)->st_blksize += so2->so_rcv.sb_cc;
660 break;
661 default:
662 break;
663 }
664 ((struct stat *) m)->st_dev = NODEV;
665 if (unp->unp_ino == 0)
666 unp->unp_ino = unp_ino++;
667 ((struct stat *) m)->st_atimespec =
668 ((struct stat *) m)->st_mtimespec =
669 ((struct stat *) m)->st_ctimespec = unp->unp_ctime;
670 ((struct stat *) m)->st_ino = unp->unp_ino;
671 return (0);
672
673 case PRU_RCVOOB:
674 error = EOPNOTSUPP;
675 break;
676
677 case PRU_SENDOOB:
678 m_freem(control);
679 m_freem(m);
680 error = EOPNOTSUPP;
681 break;
682
683 case PRU_SOCKADDR:
684 unp_setaddr(so, nam, false);
685 break;
686
687 case PRU_PEERADDR:
688 unp_setaddr(so, nam, true);
689 break;
690
691 default:
692 panic("piusrreq");
693 }
694
695 release:
696 return (error);
697 }
698
699 /*
700 * Unix domain socket option processing.
701 */
702 int
703 uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
704 {
705 struct unpcb *unp = sotounpcb(so);
706 int optval = 0, error = 0;
707
708 KASSERT(solocked(so));
709
710 if (sopt->sopt_level != 0) {
711 error = ENOPROTOOPT;
712 } else switch (op) {
713
714 case PRCO_SETOPT:
715 switch (sopt->sopt_name) {
716 case LOCAL_CREDS:
717 case LOCAL_CONNWAIT:
718 error = sockopt_getint(sopt, &optval);
719 if (error)
720 break;
721 switch (sopt->sopt_name) {
722 #define OPTSET(bit) \
723 if (optval) \
724 unp->unp_flags |= (bit); \
725 else \
726 unp->unp_flags &= ~(bit);
727
728 case LOCAL_CREDS:
729 OPTSET(UNP_WANTCRED);
730 break;
731 case LOCAL_CONNWAIT:
732 OPTSET(UNP_CONNWAIT);
733 break;
734 }
735 break;
736 #undef OPTSET
737
738 default:
739 error = ENOPROTOOPT;
740 break;
741 }
742 break;
743
744 case PRCO_GETOPT:
745 sounlock(so);
746 switch (sopt->sopt_name) {
747 case LOCAL_PEEREID:
748 if (unp->unp_flags & UNP_EIDSVALID) {
749 error = sockopt_set(sopt,
750 &unp->unp_connid, sizeof(unp->unp_connid));
751 } else {
752 error = EINVAL;
753 }
754 break;
755 case LOCAL_CREDS:
756 #define OPTBIT(bit) (unp->unp_flags & (bit) ? 1 : 0)
757
758 optval = OPTBIT(UNP_WANTCRED);
759 error = sockopt_setint(sopt, optval);
760 break;
761 #undef OPTBIT
762
763 default:
764 error = ENOPROTOOPT;
765 break;
766 }
767 solock(so);
768 break;
769 }
770 return (error);
771 }
772
773 /*
774 * Both send and receive buffers are allocated PIPSIZ bytes of buffering
775 * for stream sockets, although the total for sender and receiver is
776 * actually only PIPSIZ.
777 * Datagram sockets really use the sendspace as the maximum datagram size,
778 * and don't really want to reserve the sendspace. Their recvspace should
779 * be large enough for at least one max-size datagram plus address.
780 */
781 #define PIPSIZ 4096
782 u_long unpst_sendspace = PIPSIZ;
783 u_long unpst_recvspace = PIPSIZ;
784 u_long unpdg_sendspace = 2*1024; /* really max datagram size */
785 u_long unpdg_recvspace = 4*1024;
786
787 u_int unp_rights; /* files in flight */
788 u_int unp_rights_ratio = 2; /* limit, fraction of maxfiles */
789
790 int
791 unp_attach(struct socket *so)
792 {
793 struct unpcb *unp;
794 int error;
795
796 switch (so->so_type) {
797 case SOCK_SEQPACKET: /* FALLTHROUGH */
798 case SOCK_STREAM:
799 if (so->so_lock == NULL) {
800 /*
801 * XXX Assuming that no socket locks are held,
802 * as this call may sleep.
803 */
804 so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
805 solock(so);
806 }
807 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
808 error = soreserve(so, unpst_sendspace, unpst_recvspace);
809 if (error != 0)
810 return (error);
811 }
812 break;
813
814 case SOCK_DGRAM:
815 if (so->so_lock == NULL) {
816 mutex_obj_hold(uipc_lock);
817 so->so_lock = uipc_lock;
818 solock(so);
819 }
820 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
821 error = soreserve(so, unpdg_sendspace, unpdg_recvspace);
822 if (error != 0)
823 return (error);
824 }
825 break;
826
827 default:
828 panic("unp_attach");
829 }
830 KASSERT(solocked(so));
831 unp = malloc(sizeof(*unp), M_PCB, M_NOWAIT);
832 if (unp == NULL)
833 return (ENOBUFS);
834 memset(unp, 0, sizeof(*unp));
835 unp->unp_socket = so;
836 so->so_pcb = unp;
837 nanotime(&unp->unp_ctime);
838 return (0);
839 }
840
841 void
842 unp_detach(struct unpcb *unp)
843 {
844 struct socket *so;
845 vnode_t *vp;
846
847 so = unp->unp_socket;
848
849 retry:
850 if ((vp = unp->unp_vnode) != NULL) {
851 sounlock(so);
852 /* Acquire v_interlock to protect against unp_connect(). */
853 /* XXXAD racy */
854 mutex_enter(vp->v_interlock);
855 vp->v_socket = NULL;
856 vrelel(vp, 0);
857 solock(so);
858 unp->unp_vnode = NULL;
859 }
860 if (unp->unp_conn)
861 unp_disconnect(unp);
862 while (unp->unp_refs) {
863 KASSERT(solocked2(so, unp->unp_refs->unp_socket));
864 if (unp_drop(unp->unp_refs, ECONNRESET)) {
865 solock(so);
866 goto retry;
867 }
868 }
869 soisdisconnected(so);
870 so->so_pcb = NULL;
871 if (unp_rights) {
872 /*
873 * Normally the receive buffer is flushed later, in sofree,
874 * but if our receive buffer holds references to files that
875 * are now garbage, we will enqueue those file references to
876 * the garbage collector and kick it into action.
877 */
878 sorflush(so);
879 unp_free(unp);
880 unp_thread_kick();
881 } else
882 unp_free(unp);
883 }
884
885 /*
886 * Allocate the new sockaddr. We have to allocate one
887 * extra byte so that we can ensure that the pathname
888 * is nul-terminated. Note that unlike linux, we don't
889 * include in the address length the NUL in the path
890 * component, because doing so, would exceed sizeof(sockaddr_un)
891 * for fully occupied pathnames. Linux is also inconsistent,
892 * because it does not include the NUL in the length of
893 * what it calls "abstract" unix sockets.
894 */
895 static struct sockaddr_un *
896 makeun(struct mbuf *nam, size_t *addrlen) {
897 struct sockaddr_un *sun;
898
899 *addrlen = nam->m_len + 1;
900 sun = malloc(*addrlen, M_SONAME, M_WAITOK);
901 m_copydata(nam, 0, nam->m_len, (void *)sun);
902 *(((char *)sun) + nam->m_len) = '\0';
903 sun->sun_len = strlen(sun->sun_path) +
904 offsetof(struct sockaddr_un, sun_path);
905 return sun;
906 }
907
908 int
909 unp_bind(struct socket *so, struct mbuf *nam, struct lwp *l)
910 {
911 struct sockaddr_un *sun;
912 struct unpcb *unp;
913 vnode_t *vp;
914 struct vattr vattr;
915 size_t addrlen;
916 int error;
917 struct pathbuf *pb;
918 struct nameidata nd;
919 proc_t *p;
920
921 unp = sotounpcb(so);
922 if (unp->unp_vnode != NULL)
923 return (EINVAL);
924 if ((unp->unp_flags & UNP_BUSY) != 0) {
925 /*
926 * EALREADY may not be strictly accurate, but since this
927 * is a major application error it's hardly a big deal.
928 */
929 return (EALREADY);
930 }
931 unp->unp_flags |= UNP_BUSY;
932 sounlock(so);
933
934 p = l->l_proc;
935 sun = makeun(nam, &addrlen);
936
937 pb = pathbuf_create(sun->sun_path);
938 if (pb == NULL) {
939 error = ENOMEM;
940 goto bad;
941 }
942 NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, pb);
943
944 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
945 if ((error = namei(&nd)) != 0) {
946 pathbuf_destroy(pb);
947 goto bad;
948 }
949 vp = nd.ni_vp;
950 if (vp != NULL) {
951 VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
952 if (nd.ni_dvp == vp)
953 vrele(nd.ni_dvp);
954 else
955 vput(nd.ni_dvp);
956 vrele(vp);
957 pathbuf_destroy(pb);
958 error = EADDRINUSE;
959 goto bad;
960 }
961 vattr_null(&vattr);
962 vattr.va_type = VSOCK;
963 vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
964 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
965 if (error) {
966 pathbuf_destroy(pb);
967 goto bad;
968 }
969 vp = nd.ni_vp;
970 solock(so);
971 vp->v_socket = unp->unp_socket;
972 unp->unp_vnode = vp;
973 unp->unp_addrlen = addrlen;
974 unp->unp_addr = sun;
975 unp->unp_connid.unp_pid = p->p_pid;
976 unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
977 unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
978 unp->unp_flags |= UNP_EIDSBIND;
979 VOP_UNLOCK(vp);
980 unp->unp_flags &= ~UNP_BUSY;
981 pathbuf_destroy(pb);
982 return (0);
983
984 bad:
985 free(sun, M_SONAME);
986 solock(so);
987 unp->unp_flags &= ~UNP_BUSY;
988 return (error);
989 }
990
991 int
992 unp_connect(struct socket *so, struct mbuf *nam, struct lwp *l)
993 {
994 struct sockaddr_un *sun;
995 vnode_t *vp;
996 struct socket *so2, *so3;
997 struct unpcb *unp, *unp2, *unp3;
998 size_t addrlen;
999 int error;
1000 struct pathbuf *pb;
1001 struct nameidata nd;
1002
1003 unp = sotounpcb(so);
1004 if ((unp->unp_flags & UNP_BUSY) != 0) {
1005 /*
1006 * EALREADY may not be strictly accurate, but since this
1007 * is a major application error it's hardly a big deal.
1008 */
1009 return (EALREADY);
1010 }
1011 unp->unp_flags |= UNP_BUSY;
1012 sounlock(so);
1013
1014 sun = makeun(nam, &addrlen);
1015 pb = pathbuf_create(sun->sun_path);
1016 if (pb == NULL) {
1017 error = ENOMEM;
1018 goto bad2;
1019 }
1020
1021 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
1022
1023 if ((error = namei(&nd)) != 0) {
1024 pathbuf_destroy(pb);
1025 goto bad2;
1026 }
1027 vp = nd.ni_vp;
1028 if (vp->v_type != VSOCK) {
1029 error = ENOTSOCK;
1030 goto bad;
1031 }
1032 pathbuf_destroy(pb);
1033 if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
1034 goto bad;
1035 /* Acquire v_interlock to protect against unp_detach(). */
1036 mutex_enter(vp->v_interlock);
1037 so2 = vp->v_socket;
1038 if (so2 == NULL) {
1039 mutex_exit(vp->v_interlock);
1040 error = ECONNREFUSED;
1041 goto bad;
1042 }
1043 if (so->so_type != so2->so_type) {
1044 mutex_exit(vp->v_interlock);
1045 error = EPROTOTYPE;
1046 goto bad;
1047 }
1048 solock(so);
1049 unp_resetlock(so);
1050 mutex_exit(vp->v_interlock);
1051 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
1052 /*
1053 * This may seem somewhat fragile but is OK: if we can
1054 * see SO_ACCEPTCONN set on the endpoint, then it must
1055 * be locked by the domain-wide uipc_lock.
1056 */
1057 KASSERT((so2->so_options & SO_ACCEPTCONN) == 0 ||
1058 so2->so_lock == uipc_lock);
1059 if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
1060 (so3 = sonewconn(so2, false)) == NULL) {
1061 error = ECONNREFUSED;
1062 sounlock(so);
1063 goto bad;
1064 }
1065 unp2 = sotounpcb(so2);
1066 unp3 = sotounpcb(so3);
1067 if (unp2->unp_addr) {
1068 unp3->unp_addr = malloc(unp2->unp_addrlen,
1069 M_SONAME, M_WAITOK);
1070 memcpy(unp3->unp_addr, unp2->unp_addr,
1071 unp2->unp_addrlen);
1072 unp3->unp_addrlen = unp2->unp_addrlen;
1073 }
1074 unp3->unp_flags = unp2->unp_flags;
1075 unp3->unp_connid.unp_pid = l->l_proc->p_pid;
1076 unp3->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
1077 unp3->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
1078 unp3->unp_flags |= UNP_EIDSVALID;
1079 if (unp2->unp_flags & UNP_EIDSBIND) {
1080 unp->unp_connid = unp2->unp_connid;
1081 unp->unp_flags |= UNP_EIDSVALID;
1082 }
1083 so2 = so3;
1084 }
1085 error = unp_connect2(so, so2, PRU_CONNECT);
1086 sounlock(so);
1087 bad:
1088 vput(vp);
1089 bad2:
1090 free(sun, M_SONAME);
1091 solock(so);
1092 unp->unp_flags &= ~UNP_BUSY;
1093 return (error);
1094 }
1095
1096 int
1097 unp_connect2(struct socket *so, struct socket *so2, int req)
1098 {
1099 struct unpcb *unp = sotounpcb(so);
1100 struct unpcb *unp2;
1101
1102 if (so2->so_type != so->so_type)
1103 return (EPROTOTYPE);
1104
1105 /*
1106 * All three sockets involved must be locked by same lock:
1107 *
1108 * local endpoint (so)
1109 * remote endpoint (so2)
1110 * queue head (so2->so_head, only if PR_CONNREQUIRED)
1111 */
1112 KASSERT(solocked2(so, so2));
1113 KASSERT(so->so_head == NULL);
1114 if (so2->so_head != NULL) {
1115 KASSERT(so2->so_lock == uipc_lock);
1116 KASSERT(solocked2(so2, so2->so_head));
1117 }
1118
1119 unp2 = sotounpcb(so2);
1120 unp->unp_conn = unp2;
1121 switch (so->so_type) {
1122
1123 case SOCK_DGRAM:
1124 unp->unp_nextref = unp2->unp_refs;
1125 unp2->unp_refs = unp;
1126 soisconnected(so);
1127 break;
1128
1129 case SOCK_SEQPACKET: /* FALLTHROUGH */
1130 case SOCK_STREAM:
1131 unp2->unp_conn = unp;
1132 if (req == PRU_CONNECT &&
1133 ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1134 soisconnecting(so);
1135 else
1136 soisconnected(so);
1137 soisconnected(so2);
1138 /*
1139 * If the connection is fully established, break the
1140 * association with uipc_lock and give the connected
1141 * pair a seperate lock to share. For CONNECT2, we
1142 * require that the locks already match (the sockets
1143 * are created that way).
1144 */
1145 if (req == PRU_CONNECT) {
1146 KASSERT(so2->so_head != NULL);
1147 unp_setpeerlocks(so, so2);
1148 }
1149 break;
1150
1151 default:
1152 panic("unp_connect2");
1153 }
1154 return (0);
1155 }
1156
1157 void
1158 unp_disconnect(struct unpcb *unp)
1159 {
1160 struct unpcb *unp2 = unp->unp_conn;
1161 struct socket *so;
1162
1163 if (unp2 == 0)
1164 return;
1165 unp->unp_conn = 0;
1166 so = unp->unp_socket;
1167 switch (so->so_type) {
1168 case SOCK_DGRAM:
1169 if (unp2->unp_refs == unp)
1170 unp2->unp_refs = unp->unp_nextref;
1171 else {
1172 unp2 = unp2->unp_refs;
1173 for (;;) {
1174 KASSERT(solocked2(so, unp2->unp_socket));
1175 if (unp2 == 0)
1176 panic("unp_disconnect");
1177 if (unp2->unp_nextref == unp)
1178 break;
1179 unp2 = unp2->unp_nextref;
1180 }
1181 unp2->unp_nextref = unp->unp_nextref;
1182 }
1183 unp->unp_nextref = 0;
1184 so->so_state &= ~SS_ISCONNECTED;
1185 break;
1186
1187 case SOCK_SEQPACKET: /* FALLTHROUGH */
1188 case SOCK_STREAM:
1189 KASSERT(solocked2(so, unp2->unp_socket));
1190 soisdisconnected(so);
1191 unp2->unp_conn = 0;
1192 soisdisconnected(unp2->unp_socket);
1193 break;
1194 }
1195 }
1196
1197 #ifdef notdef
1198 unp_abort(struct unpcb *unp)
1199 {
1200 unp_detach(unp);
1201 }
1202 #endif
1203
1204 void
1205 unp_shutdown(struct unpcb *unp)
1206 {
1207 struct socket *so;
1208
1209 switch(unp->unp_socket->so_type) {
1210 case SOCK_SEQPACKET: /* FALLTHROUGH */
1211 case SOCK_STREAM:
1212 if (unp->unp_conn && (so = unp->unp_conn->unp_socket))
1213 socantrcvmore(so);
1214 break;
1215 default:
1216 break;
1217 }
1218 }
1219
1220 bool
1221 unp_drop(struct unpcb *unp, int errno)
1222 {
1223 struct socket *so = unp->unp_socket;
1224
1225 KASSERT(solocked(so));
1226
1227 so->so_error = errno;
1228 unp_disconnect(unp);
1229 if (so->so_head) {
1230 so->so_pcb = NULL;
1231 /* sofree() drops the socket lock */
1232 sofree(so);
1233 unp_free(unp);
1234 return true;
1235 }
1236 return false;
1237 }
1238
1239 #ifdef notdef
1240 unp_drain(void)
1241 {
1242
1243 }
1244 #endif
1245
1246 int
1247 unp_externalize(struct mbuf *rights, struct lwp *l, int flags)
1248 {
1249 struct cmsghdr * const cm = mtod(rights, struct cmsghdr *);
1250 struct proc * const p = l->l_proc;
1251 file_t **rp;
1252 int error = 0;
1253
1254 const size_t nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
1255 sizeof(file_t *);
1256 if (nfds == 0)
1257 goto noop;
1258
1259 int * const fdp = kmem_alloc(nfds * sizeof(int), KM_SLEEP);
1260 rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
1261
1262 /* Make sure the recipient should be able to see the files.. */
1263 rp = (file_t **)CMSG_DATA(cm);
1264 for (size_t i = 0; i < nfds; i++) {
1265 file_t * const fp = *rp++;
1266 if (fp == NULL) {
1267 error = EINVAL;
1268 goto out;
1269 }
1270 /*
1271 * If we are in a chroot'ed directory, and
1272 * someone wants to pass us a directory, make
1273 * sure it's inside the subtree we're allowed
1274 * to access.
1275 */
1276 if (p->p_cwdi->cwdi_rdir != NULL && fp->f_type == DTYPE_VNODE) {
1277 vnode_t *vp = (vnode_t *)fp->f_data;
1278 if ((vp->v_type == VDIR) &&
1279 !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
1280 error = EPERM;
1281 goto out;
1282 }
1283 }
1284 }
1285
1286 restart:
1287 /*
1288 * First loop -- allocate file descriptor table slots for the
1289 * new files.
1290 */
1291 for (size_t i = 0; i < nfds; i++) {
1292 if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
1293 /*
1294 * Back out what we've done so far.
1295 */
1296 while (i-- > 0) {
1297 fd_abort(p, NULL, fdp[i]);
1298 }
1299 if (error == ENOSPC) {
1300 fd_tryexpand(p);
1301 error = 0;
1302 goto restart;
1303 }
1304 /*
1305 * This is the error that has historically
1306 * been returned, and some callers may
1307 * expect it.
1308 */
1309 error = EMSGSIZE;
1310 goto out;
1311 }
1312 }
1313
1314 /*
1315 * Now that adding them has succeeded, update all of the
1316 * file passing state and affix the descriptors.
1317 */
1318 rp = (file_t **)CMSG_DATA(cm);
1319 int *ofdp = (int *)CMSG_DATA(cm);
1320 for (size_t i = 0; i < nfds; i++) {
1321 file_t * const fp = *rp++;
1322 const int fd = fdp[i];
1323 atomic_dec_uint(&unp_rights);
1324 fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
1325 fd_affix(p, fp, fd);
1326 /*
1327 * Done with this file pointer, replace it with a fd;
1328 */
1329 *ofdp++ = fd;
1330 mutex_enter(&fp->f_lock);
1331 fp->f_msgcount--;
1332 mutex_exit(&fp->f_lock);
1333 /*
1334 * Note that fd_affix() adds a reference to the file.
1335 * The file may already have been closed by another
1336 * LWP in the process, so we must drop the reference
1337 * added by unp_internalize() with closef().
1338 */
1339 closef(fp);
1340 }
1341
1342 /*
1343 * Adjust length, in case of transition from large file_t
1344 * pointers to ints.
1345 */
1346 if (sizeof(file_t *) != sizeof(int)) {
1347 cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
1348 rights->m_len = CMSG_SPACE(nfds * sizeof(int));
1349 }
1350 out:
1351 if (__predict_false(error != 0)) {
1352 file_t **const fpp = (file_t **)CMSG_DATA(cm);
1353 for (size_t i = 0; i < nfds; i++)
1354 unp_discard_now(fpp[i]);
1355 /*
1356 * Truncate the array so that nobody will try to interpret
1357 * what is now garbage in it.
1358 */
1359 cm->cmsg_len = CMSG_LEN(0);
1360 rights->m_len = CMSG_SPACE(0);
1361 }
1362 rw_exit(&p->p_cwdi->cwdi_lock);
1363 kmem_free(fdp, nfds * sizeof(int));
1364
1365 noop:
1366 /*
1367 * Don't disclose kernel memory in the alignment space.
1368 */
1369 KASSERT(cm->cmsg_len <= rights->m_len);
1370 memset(&mtod(rights, char *)[cm->cmsg_len], 0, rights->m_len -
1371 cm->cmsg_len);
1372 return error;
1373 }
1374
1375 int
1376 unp_internalize(struct mbuf **controlp)
1377 {
1378 filedesc_t *fdescp = curlwp->l_fd;
1379 struct mbuf *control = *controlp;
1380 struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
1381 file_t **rp, **files;
1382 file_t *fp;
1383 int i, fd, *fdp;
1384 int nfds, error;
1385 u_int maxmsg;
1386
1387 error = 0;
1388 newcm = NULL;
1389
1390 /* Sanity check the control message header. */
1391 if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
1392 cm->cmsg_len > control->m_len ||
1393 cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
1394 return (EINVAL);
1395
1396 /*
1397 * Verify that the file descriptors are valid, and acquire
1398 * a reference to each.
1399 */
1400 nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
1401 fdp = (int *)CMSG_DATA(cm);
1402 maxmsg = maxfiles / unp_rights_ratio;
1403 for (i = 0; i < nfds; i++) {
1404 fd = *fdp++;
1405 if (atomic_inc_uint_nv(&unp_rights) > maxmsg) {
1406 atomic_dec_uint(&unp_rights);
1407 nfds = i;
1408 error = EAGAIN;
1409 goto out;
1410 }
1411 if ((fp = fd_getfile(fd)) == NULL
1412 || fp->f_type == DTYPE_KQUEUE) {
1413 if (fp)
1414 fd_putfile(fd);
1415 atomic_dec_uint(&unp_rights);
1416 nfds = i;
1417 error = EBADF;
1418 goto out;
1419 }
1420 }
1421
1422 /* Allocate new space and copy header into it. */
1423 newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
1424 if (newcm == NULL) {
1425 error = E2BIG;
1426 goto out;
1427 }
1428 memcpy(newcm, cm, sizeof(struct cmsghdr));
1429 files = (file_t **)CMSG_DATA(newcm);
1430
1431 /*
1432 * Transform the file descriptors into file_t pointers, in
1433 * reverse order so that if pointers are bigger than ints, the
1434 * int won't get until we're done. No need to lock, as we have
1435 * already validated the descriptors with fd_getfile().
1436 */
1437 fdp = (int *)CMSG_DATA(cm) + nfds;
1438 rp = files + nfds;
1439 for (i = 0; i < nfds; i++) {
1440 fp = fdescp->fd_dt->dt_ff[*--fdp]->ff_file;
1441 KASSERT(fp != NULL);
1442 mutex_enter(&fp->f_lock);
1443 *--rp = fp;
1444 fp->f_count++;
1445 fp->f_msgcount++;
1446 mutex_exit(&fp->f_lock);
1447 }
1448
1449 out:
1450 /* Release descriptor references. */
1451 fdp = (int *)CMSG_DATA(cm);
1452 for (i = 0; i < nfds; i++) {
1453 fd_putfile(*fdp++);
1454 if (error != 0) {
1455 atomic_dec_uint(&unp_rights);
1456 }
1457 }
1458
1459 if (error == 0) {
1460 if (control->m_flags & M_EXT) {
1461 m_freem(control);
1462 *controlp = control = m_get(M_WAIT, MT_CONTROL);
1463 }
1464 MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
1465 M_MBUF, NULL, NULL);
1466 cm = newcm;
1467 /*
1468 * Adjust message & mbuf to note amount of space
1469 * actually used.
1470 */
1471 cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
1472 control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
1473 }
1474
1475 return error;
1476 }
1477
1478 struct mbuf *
1479 unp_addsockcred(struct lwp *l, struct mbuf *control)
1480 {
1481 struct sockcred *sc;
1482 struct mbuf *m;
1483 void *p;
1484
1485 m = sbcreatecontrol1(&p, SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)),
1486 SCM_CREDS, SOL_SOCKET, M_WAITOK);
1487 if (m == NULL)
1488 return control;
1489
1490 sc = p;
1491 sc->sc_uid = kauth_cred_getuid(l->l_cred);
1492 sc->sc_euid = kauth_cred_geteuid(l->l_cred);
1493 sc->sc_gid = kauth_cred_getgid(l->l_cred);
1494 sc->sc_egid = kauth_cred_getegid(l->l_cred);
1495 sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
1496
1497 for (int i = 0; i < sc->sc_ngroups; i++)
1498 sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
1499
1500 return m_add(control, m);
1501 }
1502
1503 /*
1504 * Do a mark-sweep GC of files in the system, to free up any which are
1505 * caught in flight to an about-to-be-closed socket. Additionally,
1506 * process deferred file closures.
1507 */
1508 static void
1509 unp_gc(file_t *dp)
1510 {
1511 extern struct domain unixdomain;
1512 file_t *fp, *np;
1513 struct socket *so, *so1;
1514 u_int i, old, new;
1515 bool didwork;
1516
1517 KASSERT(curlwp == unp_thread_lwp);
1518 KASSERT(mutex_owned(&filelist_lock));
1519
1520 /*
1521 * First, process deferred file closures.
1522 */
1523 while (!SLIST_EMPTY(&unp_thread_discard)) {
1524 fp = SLIST_FIRST(&unp_thread_discard);
1525 KASSERT(fp->f_unpcount > 0);
1526 KASSERT(fp->f_count > 0);
1527 KASSERT(fp->f_msgcount > 0);
1528 KASSERT(fp->f_count >= fp->f_unpcount);
1529 KASSERT(fp->f_count >= fp->f_msgcount);
1530 KASSERT(fp->f_msgcount >= fp->f_unpcount);
1531 SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist);
1532 i = fp->f_unpcount;
1533 fp->f_unpcount = 0;
1534 mutex_exit(&filelist_lock);
1535 for (; i != 0; i--) {
1536 unp_discard_now(fp);
1537 }
1538 mutex_enter(&filelist_lock);
1539 }
1540
1541 /*
1542 * Clear mark bits. Ensure that we don't consider new files
1543 * entering the file table during this loop (they will not have
1544 * FSCAN set).
1545 */
1546 unp_defer = 0;
1547 LIST_FOREACH(fp, &filehead, f_list) {
1548 for (old = fp->f_flag;; old = new) {
1549 new = atomic_cas_uint(&fp->f_flag, old,
1550 (old | FSCAN) & ~(FMARK|FDEFER));
1551 if (__predict_true(old == new)) {
1552 break;
1553 }
1554 }
1555 }
1556
1557 /*
1558 * Iterate over the set of sockets, marking ones believed (based on
1559 * refcount) to be referenced from a process, and marking for rescan
1560 * sockets which are queued on a socket. Recan continues descending
1561 * and searching for sockets referenced by sockets (FDEFER), until
1562 * there are no more socket->socket references to be discovered.
1563 */
1564 do {
1565 didwork = false;
1566 for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1567 KASSERT(mutex_owned(&filelist_lock));
1568 np = LIST_NEXT(fp, f_list);
1569 mutex_enter(&fp->f_lock);
1570 if ((fp->f_flag & FDEFER) != 0) {
1571 atomic_and_uint(&fp->f_flag, ~FDEFER);
1572 unp_defer--;
1573 KASSERT(fp->f_count != 0);
1574 } else {
1575 if (fp->f_count == 0 ||
1576 (fp->f_flag & FMARK) != 0 ||
1577 fp->f_count == fp->f_msgcount ||
1578 fp->f_unpcount != 0) {
1579 mutex_exit(&fp->f_lock);
1580 continue;
1581 }
1582 }
1583 atomic_or_uint(&fp->f_flag, FMARK);
1584
1585 if (fp->f_type != DTYPE_SOCKET ||
1586 (so = fp->f_data) == NULL ||
1587 so->so_proto->pr_domain != &unixdomain ||
1588 (so->so_proto->pr_flags & PR_RIGHTS) == 0) {
1589 mutex_exit(&fp->f_lock);
1590 continue;
1591 }
1592
1593 /* Gain file ref, mark our position, and unlock. */
1594 didwork = true;
1595 LIST_INSERT_AFTER(fp, dp, f_list);
1596 fp->f_count++;
1597 mutex_exit(&fp->f_lock);
1598 mutex_exit(&filelist_lock);
1599
1600 /*
1601 * Mark files referenced from sockets queued on the
1602 * accept queue as well.
1603 */
1604 solock(so);
1605 unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
1606 if ((so->so_options & SO_ACCEPTCONN) != 0) {
1607 TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
1608 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1609 }
1610 TAILQ_FOREACH(so1, &so->so_q, so_qe) {
1611 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1612 }
1613 }
1614 sounlock(so);
1615
1616 /* Re-lock and restart from where we left off. */
1617 closef(fp);
1618 mutex_enter(&filelist_lock);
1619 np = LIST_NEXT(dp, f_list);
1620 LIST_REMOVE(dp, f_list);
1621 }
1622 /*
1623 * Bail early if we did nothing in the loop above. Could
1624 * happen because of concurrent activity causing unp_defer
1625 * to get out of sync.
1626 */
1627 } while (unp_defer != 0 && didwork);
1628
1629 /*
1630 * Sweep pass.
1631 *
1632 * We grab an extra reference to each of the files that are
1633 * not otherwise accessible and then free the rights that are
1634 * stored in messages on them.
1635 */
1636 for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1637 KASSERT(mutex_owned(&filelist_lock));
1638 np = LIST_NEXT(fp, f_list);
1639 mutex_enter(&fp->f_lock);
1640
1641 /*
1642 * Ignore non-sockets.
1643 * Ignore dead sockets, or sockets with pending close.
1644 * Ignore sockets obviously referenced elsewhere.
1645 * Ignore sockets marked as referenced by our scan.
1646 * Ignore new sockets that did not exist during the scan.
1647 */
1648 if (fp->f_type != DTYPE_SOCKET ||
1649 fp->f_count == 0 || fp->f_unpcount != 0 ||
1650 fp->f_count != fp->f_msgcount ||
1651 (fp->f_flag & (FMARK | FSCAN)) != FSCAN) {
1652 mutex_exit(&fp->f_lock);
1653 continue;
1654 }
1655
1656 /* Gain file ref, mark our position, and unlock. */
1657 LIST_INSERT_AFTER(fp, dp, f_list);
1658 fp->f_count++;
1659 mutex_exit(&fp->f_lock);
1660 mutex_exit(&filelist_lock);
1661
1662 /*
1663 * Flush all data from the socket's receive buffer.
1664 * This will cause files referenced only by the
1665 * socket to be queued for close.
1666 */
1667 so = fp->f_data;
1668 solock(so);
1669 sorflush(so);
1670 sounlock(so);
1671
1672 /* Re-lock and restart from where we left off. */
1673 closef(fp);
1674 mutex_enter(&filelist_lock);
1675 np = LIST_NEXT(dp, f_list);
1676 LIST_REMOVE(dp, f_list);
1677 }
1678 }
1679
1680 /*
1681 * Garbage collector thread. While SCM_RIGHTS messages are in transit,
1682 * wake once per second to garbage collect. Run continually while we
1683 * have deferred closes to process.
1684 */
1685 static void
1686 unp_thread(void *cookie)
1687 {
1688 file_t *dp;
1689
1690 /* Allocate a dummy file for our scans. */
1691 if ((dp = fgetdummy()) == NULL) {
1692 panic("unp_thread");
1693 }
1694
1695 mutex_enter(&filelist_lock);
1696 for (;;) {
1697 KASSERT(mutex_owned(&filelist_lock));
1698 if (SLIST_EMPTY(&unp_thread_discard)) {
1699 if (unp_rights != 0) {
1700 (void)cv_timedwait(&unp_thread_cv,
1701 &filelist_lock, hz);
1702 } else {
1703 cv_wait(&unp_thread_cv, &filelist_lock);
1704 }
1705 }
1706 unp_gc(dp);
1707 }
1708 /* NOTREACHED */
1709 }
1710
1711 /*
1712 * Kick the garbage collector into action if there is something for
1713 * it to process.
1714 */
1715 static void
1716 unp_thread_kick(void)
1717 {
1718
1719 if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) {
1720 mutex_enter(&filelist_lock);
1721 cv_signal(&unp_thread_cv);
1722 mutex_exit(&filelist_lock);
1723 }
1724 }
1725
1726 void
1727 unp_dispose(struct mbuf *m)
1728 {
1729
1730 if (m)
1731 unp_scan(m, unp_discard_later, 1);
1732 }
1733
1734 void
1735 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
1736 {
1737 struct mbuf *m;
1738 file_t **rp, *fp;
1739 struct cmsghdr *cm;
1740 int i, qfds;
1741
1742 while (m0) {
1743 for (m = m0; m; m = m->m_next) {
1744 if (m->m_type != MT_CONTROL ||
1745 m->m_len < sizeof(*cm)) {
1746 continue;
1747 }
1748 cm = mtod(m, struct cmsghdr *);
1749 if (cm->cmsg_level != SOL_SOCKET ||
1750 cm->cmsg_type != SCM_RIGHTS)
1751 continue;
1752 qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
1753 / sizeof(file_t *);
1754 rp = (file_t **)CMSG_DATA(cm);
1755 for (i = 0; i < qfds; i++) {
1756 fp = *rp;
1757 if (discard) {
1758 *rp = 0;
1759 }
1760 (*op)(fp);
1761 rp++;
1762 }
1763 }
1764 m0 = m0->m_nextpkt;
1765 }
1766 }
1767
1768 void
1769 unp_mark(file_t *fp)
1770 {
1771
1772 if (fp == NULL)
1773 return;
1774
1775 /* If we're already deferred, don't screw up the defer count */
1776 mutex_enter(&fp->f_lock);
1777 if (fp->f_flag & (FMARK | FDEFER)) {
1778 mutex_exit(&fp->f_lock);
1779 return;
1780 }
1781
1782 /*
1783 * Minimize the number of deferrals... Sockets are the only type of
1784 * file which can hold references to another file, so just mark
1785 * other files, and defer unmarked sockets for the next pass.
1786 */
1787 if (fp->f_type == DTYPE_SOCKET) {
1788 unp_defer++;
1789 KASSERT(fp->f_count != 0);
1790 atomic_or_uint(&fp->f_flag, FDEFER);
1791 } else {
1792 atomic_or_uint(&fp->f_flag, FMARK);
1793 }
1794 mutex_exit(&fp->f_lock);
1795 }
1796
1797 static void
1798 unp_discard_now(file_t *fp)
1799 {
1800
1801 if (fp == NULL)
1802 return;
1803
1804 KASSERT(fp->f_count > 0);
1805 KASSERT(fp->f_msgcount > 0);
1806
1807 mutex_enter(&fp->f_lock);
1808 fp->f_msgcount--;
1809 mutex_exit(&fp->f_lock);
1810 atomic_dec_uint(&unp_rights);
1811 (void)closef(fp);
1812 }
1813
1814 static void
1815 unp_discard_later(file_t *fp)
1816 {
1817
1818 if (fp == NULL)
1819 return;
1820
1821 KASSERT(fp->f_count > 0);
1822 KASSERT(fp->f_msgcount > 0);
1823
1824 mutex_enter(&filelist_lock);
1825 if (fp->f_unpcount++ == 0) {
1826 SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist);
1827 }
1828 mutex_exit(&filelist_lock);
1829 }
1830