uipc_usrreq.c revision 1.150 1 /* $NetBSD: uipc_usrreq.c,v 1.150 2014/01/23 10:13:56 hannken Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2000, 2004, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
62 */
63
64 /*
65 * Copyright (c) 1997 Christopher G. Demetriou. All rights reserved.
66 *
67 * Redistribution and use in source and binary forms, with or without
68 * modification, are permitted provided that the following conditions
69 * are met:
70 * 1. Redistributions of source code must retain the above copyright
71 * notice, this list of conditions and the following disclaimer.
72 * 2. Redistributions in binary form must reproduce the above copyright
73 * notice, this list of conditions and the following disclaimer in the
74 * documentation and/or other materials provided with the distribution.
75 * 3. All advertising materials mentioning features or use of this software
76 * must display the following acknowledgement:
77 * This product includes software developed by the University of
78 * California, Berkeley and its contributors.
79 * 4. Neither the name of the University nor the names of its contributors
80 * may be used to endorse or promote products derived from this software
81 * without specific prior written permission.
82 *
83 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
84 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
85 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
86 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
87 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
88 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
89 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
90 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
91 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
92 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
93 * SUCH DAMAGE.
94 *
95 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
96 */
97
98 #include <sys/cdefs.h>
99 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.150 2014/01/23 10:13:56 hannken Exp $");
100
101 #include <sys/param.h>
102 #include <sys/systm.h>
103 #include <sys/proc.h>
104 #include <sys/filedesc.h>
105 #include <sys/domain.h>
106 #include <sys/protosw.h>
107 #include <sys/socket.h>
108 #include <sys/socketvar.h>
109 #include <sys/unpcb.h>
110 #include <sys/un.h>
111 #include <sys/namei.h>
112 #include <sys/vnode.h>
113 #include <sys/file.h>
114 #include <sys/stat.h>
115 #include <sys/mbuf.h>
116 #include <sys/kauth.h>
117 #include <sys/kmem.h>
118 #include <sys/atomic.h>
119 #include <sys/uidinfo.h>
120 #include <sys/kernel.h>
121 #include <sys/kthread.h>
122
123 /*
124 * Unix communications domain.
125 *
126 * TODO:
127 * RDM
128 * rethink name space problems
129 * need a proper out-of-band
130 *
131 * Notes on locking:
132 *
133 * The generic rules noted in uipc_socket2.c apply. In addition:
134 *
135 * o We have a global lock, uipc_lock.
136 *
137 * o All datagram sockets are locked by uipc_lock.
138 *
139 * o For stream socketpairs, the two endpoints are created sharing the same
140 * independent lock. Sockets presented to PRU_CONNECT2 must already have
141 * matching locks.
142 *
143 * o Stream sockets created via socket() start life with their own
144 * independent lock.
145 *
146 * o Stream connections to a named endpoint are slightly more complicated.
147 * Sockets that have called listen() have their lock pointer mutated to
148 * the global uipc_lock. When establishing a connection, the connecting
149 * socket also has its lock mutated to uipc_lock, which matches the head
150 * (listening socket). We create a new socket for accept() to return, and
151 * that also shares the head's lock. Until the connection is completely
152 * done on both ends, all three sockets are locked by uipc_lock. Once the
153 * connection is complete, the association with the head's lock is broken.
154 * The connecting socket and the socket returned from accept() have their
155 * lock pointers mutated away from uipc_lock, and back to the connecting
156 * socket's original, independent lock. The head continues to be locked
157 * by uipc_lock.
158 *
159 * o If uipc_lock is determined to be a significant source of contention,
160 * it could easily be hashed out. It is difficult to simply make it an
161 * independent lock because of visibility / garbage collection issues:
162 * if a socket has been associated with a lock at any point, that lock
163 * must remain valid until the socket is no longer visible in the system.
164 * The lock must not be freed or otherwise destroyed until any sockets
165 * that had referenced it have also been destroyed.
166 */
167 const struct sockaddr_un sun_noname = {
168 .sun_len = offsetof(struct sockaddr_un, sun_path),
169 .sun_family = AF_LOCAL,
170 };
171 ino_t unp_ino; /* prototype for fake inode numbers */
172
173 struct mbuf *unp_addsockcred(struct lwp *, struct mbuf *);
174 static void unp_mark(file_t *);
175 static void unp_scan(struct mbuf *, void (*)(file_t *), int);
176 static void unp_discard_now(file_t *);
177 static void unp_discard_later(file_t *);
178 static void unp_thread(void *);
179 static void unp_thread_kick(void);
180 static kmutex_t *uipc_lock;
181
182 static kcondvar_t unp_thread_cv;
183 static lwp_t *unp_thread_lwp;
184 static SLIST_HEAD(,file) unp_thread_discard;
185 static int unp_defer;
186
187 /*
188 * Initialize Unix protocols.
189 */
190 void
191 uipc_init(void)
192 {
193 int error;
194
195 uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
196 cv_init(&unp_thread_cv, "unpgc");
197
198 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread,
199 NULL, &unp_thread_lwp, "unpgc");
200 if (error != 0)
201 panic("uipc_init %d", error);
202 }
203
204 /*
205 * A connection succeeded: disassociate both endpoints from the head's
206 * lock, and make them share their own lock. There is a race here: for
207 * a very brief time one endpoint will be locked by a different lock
208 * than the other end. However, since the current thread holds the old
209 * lock (the listening socket's lock, the head) access can still only be
210 * made to one side of the connection.
211 */
212 static void
213 unp_setpeerlocks(struct socket *so, struct socket *so2)
214 {
215 struct unpcb *unp;
216 kmutex_t *lock;
217
218 KASSERT(solocked2(so, so2));
219
220 /*
221 * Bail out if either end of the socket is not yet fully
222 * connected or accepted. We only break the lock association
223 * with the head when the pair of sockets stand completely
224 * on their own.
225 */
226 KASSERT(so->so_head == NULL);
227 if (so2->so_head != NULL)
228 return;
229
230 /*
231 * Drop references to old lock. A third reference (from the
232 * queue head) must be held as we still hold its lock. Bonus:
233 * we don't need to worry about garbage collecting the lock.
234 */
235 lock = so->so_lock;
236 KASSERT(lock == uipc_lock);
237 mutex_obj_free(lock);
238 mutex_obj_free(lock);
239
240 /*
241 * Grab stream lock from the initiator and share between the two
242 * endpoints. Issue memory barrier to ensure all modifications
243 * become globally visible before the lock change. so2 is
244 * assumed not to have a stream lock, because it was created
245 * purely for the server side to accept this connection and
246 * started out life using the domain-wide lock.
247 */
248 unp = sotounpcb(so);
249 KASSERT(unp->unp_streamlock != NULL);
250 KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
251 lock = unp->unp_streamlock;
252 unp->unp_streamlock = NULL;
253 mutex_obj_hold(lock);
254 membar_exit();
255 /*
256 * possible race if lock is not held - see comment in
257 * uipc_usrreq(PRU_ACCEPT).
258 */
259 KASSERT(mutex_owned(lock));
260 solockreset(so, lock);
261 solockreset(so2, lock);
262 }
263
264 /*
265 * Reset a socket's lock back to the domain-wide lock.
266 */
267 static void
268 unp_resetlock(struct socket *so)
269 {
270 kmutex_t *olock, *nlock;
271 struct unpcb *unp;
272
273 KASSERT(solocked(so));
274
275 olock = so->so_lock;
276 nlock = uipc_lock;
277 if (olock == nlock)
278 return;
279 unp = sotounpcb(so);
280 KASSERT(unp->unp_streamlock == NULL);
281 unp->unp_streamlock = olock;
282 mutex_obj_hold(nlock);
283 mutex_enter(nlock);
284 solockreset(so, nlock);
285 mutex_exit(olock);
286 }
287
288 static void
289 unp_free(struct unpcb *unp)
290 {
291
292 if (unp->unp_addr)
293 free(unp->unp_addr, M_SONAME);
294 if (unp->unp_streamlock != NULL)
295 mutex_obj_free(unp->unp_streamlock);
296 free(unp, M_PCB);
297 }
298
299 int
300 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp,
301 struct lwp *l)
302 {
303 struct socket *so2;
304 const struct sockaddr_un *sun;
305
306 so2 = unp->unp_conn->unp_socket;
307
308 KASSERT(solocked(so2));
309
310 if (unp->unp_addr)
311 sun = unp->unp_addr;
312 else
313 sun = &sun_noname;
314 if (unp->unp_conn->unp_flags & UNP_WANTCRED)
315 control = unp_addsockcred(l, control);
316 if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
317 control) == 0) {
318 so2->so_rcv.sb_overflowed++;
319 unp_dispose(control);
320 m_freem(control);
321 m_freem(m);
322 return (ENOBUFS);
323 } else {
324 sorwakeup(so2);
325 return (0);
326 }
327 }
328
329 void
330 unp_setaddr(struct socket *so, struct mbuf *nam, bool peeraddr)
331 {
332 const struct sockaddr_un *sun;
333 struct unpcb *unp;
334 bool ext;
335
336 KASSERT(solocked(so));
337 unp = sotounpcb(so);
338 ext = false;
339
340 for (;;) {
341 sun = NULL;
342 if (peeraddr) {
343 if (unp->unp_conn && unp->unp_conn->unp_addr)
344 sun = unp->unp_conn->unp_addr;
345 } else {
346 if (unp->unp_addr)
347 sun = unp->unp_addr;
348 }
349 if (sun == NULL)
350 sun = &sun_noname;
351 nam->m_len = sun->sun_len;
352 if (nam->m_len > MLEN && !ext) {
353 sounlock(so);
354 MEXTMALLOC(nam, MAXPATHLEN * 2, M_WAITOK);
355 solock(so);
356 ext = true;
357 } else {
358 KASSERT(nam->m_len <= MAXPATHLEN * 2);
359 memcpy(mtod(nam, void *), sun, (size_t)nam->m_len);
360 break;
361 }
362 }
363 }
364
365 /*ARGSUSED*/
366 int
367 uipc_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
368 struct mbuf *control, struct lwp *l)
369 {
370 struct unpcb *unp = sotounpcb(so);
371 struct socket *so2;
372 u_int newhiwat;
373 int error = 0;
374
375 if (req == PRU_CONTROL)
376 return (EOPNOTSUPP);
377
378 #ifdef DIAGNOSTIC
379 if (req != PRU_SEND && req != PRU_SENDOOB && control)
380 panic("uipc_usrreq: unexpected control mbuf");
381 #endif
382 if (req != PRU_ATTACH) {
383 if (unp == NULL) {
384 error = EINVAL;
385 goto release;
386 }
387 KASSERT(solocked(so));
388 }
389
390 switch (req) {
391
392 case PRU_ATTACH:
393 if (unp != NULL) {
394 error = EISCONN;
395 break;
396 }
397 error = unp_attach(so);
398 break;
399
400 case PRU_DETACH:
401 unp_detach(unp);
402 break;
403
404 case PRU_BIND:
405 KASSERT(l != NULL);
406 error = unp_bind(so, nam, l);
407 break;
408
409 case PRU_LISTEN:
410 /*
411 * If the socket can accept a connection, it must be
412 * locked by uipc_lock.
413 */
414 unp_resetlock(so);
415 if (unp->unp_vnode == NULL)
416 error = EINVAL;
417 break;
418
419 case PRU_CONNECT:
420 KASSERT(l != NULL);
421 error = unp_connect(so, nam, l);
422 break;
423
424 case PRU_CONNECT2:
425 error = unp_connect2(so, (struct socket *)nam, PRU_CONNECT2);
426 break;
427
428 case PRU_DISCONNECT:
429 unp_disconnect(unp);
430 break;
431
432 case PRU_ACCEPT:
433 KASSERT(so->so_lock == uipc_lock);
434 /*
435 * Mark the initiating STREAM socket as connected *ONLY*
436 * after it's been accepted. This prevents a client from
437 * overrunning a server and receiving ECONNREFUSED.
438 */
439 if (unp->unp_conn == NULL) {
440 /*
441 * This will use the empty socket and will not
442 * allocate.
443 */
444 unp_setaddr(so, nam, true);
445 break;
446 }
447 so2 = unp->unp_conn->unp_socket;
448 if (so2->so_state & SS_ISCONNECTING) {
449 KASSERT(solocked2(so, so->so_head));
450 KASSERT(solocked2(so2, so->so_head));
451 soisconnected(so2);
452 }
453 /*
454 * If the connection is fully established, break the
455 * association with uipc_lock and give the connected
456 * pair a seperate lock to share.
457 * There is a race here: sotounpcb(so2)->unp_streamlock
458 * is not locked, so when changing so2->so_lock
459 * another thread can grab it while so->so_lock is still
460 * pointing to the (locked) uipc_lock.
461 * this should be harmless, except that this makes
462 * solocked2() and solocked() unreliable.
463 * Another problem is that unp_setaddr() expects the
464 * the socket locked. Grabing sotounpcb(so2)->unp_streamlock
465 * fixes both issues.
466 */
467 mutex_enter(sotounpcb(so2)->unp_streamlock);
468 unp_setpeerlocks(so2, so);
469 /*
470 * Only now return peer's address, as we may need to
471 * block in order to allocate memory.
472 *
473 * XXX Minor race: connection can be broken while
474 * lock is dropped in unp_setaddr(). We will return
475 * error == 0 and sun_noname as the peer address.
476 */
477 unp_setaddr(so, nam, true);
478 /* so_lock now points to unp_streamlock */
479 mutex_exit(so2->so_lock);
480 break;
481
482 case PRU_SHUTDOWN:
483 socantsendmore(so);
484 unp_shutdown(unp);
485 break;
486
487 case PRU_RCVD:
488 switch (so->so_type) {
489
490 case SOCK_DGRAM:
491 panic("uipc 1");
492 /*NOTREACHED*/
493
494 case SOCK_SEQPACKET: /* FALLTHROUGH */
495 case SOCK_STREAM:
496 #define rcv (&so->so_rcv)
497 #define snd (&so2->so_snd)
498 if (unp->unp_conn == 0)
499 break;
500 so2 = unp->unp_conn->unp_socket;
501 KASSERT(solocked2(so, so2));
502 /*
503 * Adjust backpressure on sender
504 * and wakeup any waiting to write.
505 */
506 snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
507 unp->unp_mbcnt = rcv->sb_mbcnt;
508 newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
509 (void)chgsbsize(so2->so_uidinfo,
510 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
511 unp->unp_cc = rcv->sb_cc;
512 sowwakeup(so2);
513 #undef snd
514 #undef rcv
515 break;
516
517 default:
518 panic("uipc 2");
519 }
520 break;
521
522 case PRU_SEND:
523 /*
524 * Note: unp_internalize() rejects any control message
525 * other than SCM_RIGHTS, and only allows one. This
526 * has the side-effect of preventing a caller from
527 * forging SCM_CREDS.
528 */
529 if (control) {
530 sounlock(so);
531 error = unp_internalize(&control);
532 solock(so);
533 if (error != 0) {
534 m_freem(control);
535 m_freem(m);
536 break;
537 }
538 }
539 switch (so->so_type) {
540
541 case SOCK_DGRAM: {
542 KASSERT(so->so_lock == uipc_lock);
543 if (nam) {
544 if ((so->so_state & SS_ISCONNECTED) != 0)
545 error = EISCONN;
546 else {
547 /*
548 * Note: once connected, the
549 * socket's lock must not be
550 * dropped until we have sent
551 * the message and disconnected.
552 * This is necessary to prevent
553 * intervening control ops, like
554 * another connection.
555 */
556 error = unp_connect(so, nam, l);
557 }
558 } else {
559 if ((so->so_state & SS_ISCONNECTED) == 0)
560 error = ENOTCONN;
561 }
562 if (error) {
563 unp_dispose(control);
564 m_freem(control);
565 m_freem(m);
566 break;
567 }
568 KASSERT(l != NULL);
569 error = unp_output(m, control, unp, l);
570 if (nam)
571 unp_disconnect(unp);
572 break;
573 }
574
575 case SOCK_SEQPACKET: /* FALLTHROUGH */
576 case SOCK_STREAM:
577 #define rcv (&so2->so_rcv)
578 #define snd (&so->so_snd)
579 if (unp->unp_conn == NULL) {
580 error = ENOTCONN;
581 break;
582 }
583 so2 = unp->unp_conn->unp_socket;
584 KASSERT(solocked2(so, so2));
585 if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
586 /*
587 * Credentials are passed only once on
588 * SOCK_STREAM and SOCK_SEQPACKET.
589 */
590 unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
591 control = unp_addsockcred(l, control);
592 }
593 /*
594 * Send to paired receive port, and then reduce
595 * send buffer hiwater marks to maintain backpressure.
596 * Wake up readers.
597 */
598 if (control) {
599 if (sbappendcontrol(rcv, m, control) != 0)
600 control = NULL;
601 } else {
602 switch(so->so_type) {
603 case SOCK_SEQPACKET:
604 sbappendrecord(rcv, m);
605 break;
606 case SOCK_STREAM:
607 sbappend(rcv, m);
608 break;
609 default:
610 panic("uipc_usrreq");
611 break;
612 }
613 }
614 snd->sb_mbmax -=
615 rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
616 unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
617 newhiwat = snd->sb_hiwat -
618 (rcv->sb_cc - unp->unp_conn->unp_cc);
619 (void)chgsbsize(so->so_uidinfo,
620 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
621 unp->unp_conn->unp_cc = rcv->sb_cc;
622 sorwakeup(so2);
623 #undef snd
624 #undef rcv
625 if (control != NULL) {
626 unp_dispose(control);
627 m_freem(control);
628 }
629 break;
630
631 default:
632 panic("uipc 4");
633 }
634 break;
635
636 case PRU_ABORT:
637 (void)unp_drop(unp, ECONNABORTED);
638
639 KASSERT(so->so_head == NULL);
640 #ifdef DIAGNOSTIC
641 if (so->so_pcb == NULL)
642 panic("uipc 5: drop killed pcb");
643 #endif
644 unp_detach(unp);
645 break;
646
647 case PRU_SENSE:
648 ((struct stat *) m)->st_blksize = so->so_snd.sb_hiwat;
649 switch (so->so_type) {
650 case SOCK_SEQPACKET: /* FALLTHROUGH */
651 case SOCK_STREAM:
652 if (unp->unp_conn == 0)
653 break;
654
655 so2 = unp->unp_conn->unp_socket;
656 KASSERT(solocked2(so, so2));
657 ((struct stat *) m)->st_blksize += so2->so_rcv.sb_cc;
658 break;
659 default:
660 break;
661 }
662 ((struct stat *) m)->st_dev = NODEV;
663 if (unp->unp_ino == 0)
664 unp->unp_ino = unp_ino++;
665 ((struct stat *) m)->st_atimespec =
666 ((struct stat *) m)->st_mtimespec =
667 ((struct stat *) m)->st_ctimespec = unp->unp_ctime;
668 ((struct stat *) m)->st_ino = unp->unp_ino;
669 return (0);
670
671 case PRU_RCVOOB:
672 error = EOPNOTSUPP;
673 break;
674
675 case PRU_SENDOOB:
676 m_freem(control);
677 m_freem(m);
678 error = EOPNOTSUPP;
679 break;
680
681 case PRU_SOCKADDR:
682 unp_setaddr(so, nam, false);
683 break;
684
685 case PRU_PEERADDR:
686 unp_setaddr(so, nam, true);
687 break;
688
689 default:
690 panic("piusrreq");
691 }
692
693 release:
694 return (error);
695 }
696
697 /*
698 * Unix domain socket option processing.
699 */
700 int
701 uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
702 {
703 struct unpcb *unp = sotounpcb(so);
704 int optval = 0, error = 0;
705
706 KASSERT(solocked(so));
707
708 if (sopt->sopt_level != 0) {
709 error = ENOPROTOOPT;
710 } else switch (op) {
711
712 case PRCO_SETOPT:
713 switch (sopt->sopt_name) {
714 case LOCAL_CREDS:
715 case LOCAL_CONNWAIT:
716 error = sockopt_getint(sopt, &optval);
717 if (error)
718 break;
719 switch (sopt->sopt_name) {
720 #define OPTSET(bit) \
721 if (optval) \
722 unp->unp_flags |= (bit); \
723 else \
724 unp->unp_flags &= ~(bit);
725
726 case LOCAL_CREDS:
727 OPTSET(UNP_WANTCRED);
728 break;
729 case LOCAL_CONNWAIT:
730 OPTSET(UNP_CONNWAIT);
731 break;
732 }
733 break;
734 #undef OPTSET
735
736 default:
737 error = ENOPROTOOPT;
738 break;
739 }
740 break;
741
742 case PRCO_GETOPT:
743 sounlock(so);
744 switch (sopt->sopt_name) {
745 case LOCAL_PEEREID:
746 if (unp->unp_flags & UNP_EIDSVALID) {
747 error = sockopt_set(sopt,
748 &unp->unp_connid, sizeof(unp->unp_connid));
749 } else {
750 error = EINVAL;
751 }
752 break;
753 case LOCAL_CREDS:
754 #define OPTBIT(bit) (unp->unp_flags & (bit) ? 1 : 0)
755
756 optval = OPTBIT(UNP_WANTCRED);
757 error = sockopt_setint(sopt, optval);
758 break;
759 #undef OPTBIT
760
761 default:
762 error = ENOPROTOOPT;
763 break;
764 }
765 solock(so);
766 break;
767 }
768 return (error);
769 }
770
771 /*
772 * Both send and receive buffers are allocated PIPSIZ bytes of buffering
773 * for stream sockets, although the total for sender and receiver is
774 * actually only PIPSIZ.
775 * Datagram sockets really use the sendspace as the maximum datagram size,
776 * and don't really want to reserve the sendspace. Their recvspace should
777 * be large enough for at least one max-size datagram plus address.
778 */
779 #define PIPSIZ 4096
780 u_long unpst_sendspace = PIPSIZ;
781 u_long unpst_recvspace = PIPSIZ;
782 u_long unpdg_sendspace = 2*1024; /* really max datagram size */
783 u_long unpdg_recvspace = 4*1024;
784
785 u_int unp_rights; /* files in flight */
786 u_int unp_rights_ratio = 2; /* limit, fraction of maxfiles */
787
788 int
789 unp_attach(struct socket *so)
790 {
791 struct unpcb *unp;
792 int error;
793
794 switch (so->so_type) {
795 case SOCK_SEQPACKET: /* FALLTHROUGH */
796 case SOCK_STREAM:
797 if (so->so_lock == NULL) {
798 /*
799 * XXX Assuming that no socket locks are held,
800 * as this call may sleep.
801 */
802 so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
803 solock(so);
804 }
805 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
806 error = soreserve(so, unpst_sendspace, unpst_recvspace);
807 if (error != 0)
808 return (error);
809 }
810 break;
811
812 case SOCK_DGRAM:
813 if (so->so_lock == NULL) {
814 mutex_obj_hold(uipc_lock);
815 so->so_lock = uipc_lock;
816 solock(so);
817 }
818 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
819 error = soreserve(so, unpdg_sendspace, unpdg_recvspace);
820 if (error != 0)
821 return (error);
822 }
823 break;
824
825 default:
826 panic("unp_attach");
827 }
828 KASSERT(solocked(so));
829 unp = malloc(sizeof(*unp), M_PCB, M_NOWAIT);
830 if (unp == NULL)
831 return (ENOBUFS);
832 memset(unp, 0, sizeof(*unp));
833 unp->unp_socket = so;
834 so->so_pcb = unp;
835 nanotime(&unp->unp_ctime);
836 return (0);
837 }
838
839 void
840 unp_detach(struct unpcb *unp)
841 {
842 struct socket *so;
843 vnode_t *vp;
844
845 so = unp->unp_socket;
846
847 retry:
848 if ((vp = unp->unp_vnode) != NULL) {
849 sounlock(so);
850 /* Acquire v_interlock to protect against unp_connect(). */
851 /* XXXAD racy */
852 mutex_enter(vp->v_interlock);
853 vp->v_socket = NULL;
854 mutex_exit(vp->v_interlock);
855 vrele(vp);
856 solock(so);
857 unp->unp_vnode = NULL;
858 }
859 if (unp->unp_conn)
860 unp_disconnect(unp);
861 while (unp->unp_refs) {
862 KASSERT(solocked2(so, unp->unp_refs->unp_socket));
863 if (unp_drop(unp->unp_refs, ECONNRESET)) {
864 solock(so);
865 goto retry;
866 }
867 }
868 soisdisconnected(so);
869 so->so_pcb = NULL;
870 if (unp_rights) {
871 /*
872 * Normally the receive buffer is flushed later, in sofree,
873 * but if our receive buffer holds references to files that
874 * are now garbage, we will enqueue those file references to
875 * the garbage collector and kick it into action.
876 */
877 sorflush(so);
878 unp_free(unp);
879 unp_thread_kick();
880 } else
881 unp_free(unp);
882 }
883
884 /*
885 * Allocate the new sockaddr. We have to allocate one
886 * extra byte so that we can ensure that the pathname
887 * is nul-terminated. Note that unlike linux, we don't
888 * include in the address length the NUL in the path
889 * component, because doing so, would exceed sizeof(sockaddr_un)
890 * for fully occupied pathnames. Linux is also inconsistent,
891 * because it does not include the NUL in the length of
892 * what it calls "abstract" unix sockets.
893 */
894 static struct sockaddr_un *
895 makeun(struct mbuf *nam, size_t *addrlen) {
896 struct sockaddr_un *sun;
897
898 *addrlen = nam->m_len + 1;
899 sun = malloc(*addrlen, M_SONAME, M_WAITOK);
900 m_copydata(nam, 0, nam->m_len, (void *)sun);
901 *(((char *)sun) + nam->m_len) = '\0';
902 sun->sun_len = strlen(sun->sun_path) +
903 offsetof(struct sockaddr_un, sun_path);
904 return sun;
905 }
906
907 int
908 unp_bind(struct socket *so, struct mbuf *nam, struct lwp *l)
909 {
910 struct sockaddr_un *sun;
911 struct unpcb *unp;
912 vnode_t *vp;
913 struct vattr vattr;
914 size_t addrlen;
915 int error;
916 struct pathbuf *pb;
917 struct nameidata nd;
918 proc_t *p;
919
920 unp = sotounpcb(so);
921 if (unp->unp_vnode != NULL)
922 return (EINVAL);
923 if ((unp->unp_flags & UNP_BUSY) != 0) {
924 /*
925 * EALREADY may not be strictly accurate, but since this
926 * is a major application error it's hardly a big deal.
927 */
928 return (EALREADY);
929 }
930 unp->unp_flags |= UNP_BUSY;
931 sounlock(so);
932
933 p = l->l_proc;
934 sun = makeun(nam, &addrlen);
935
936 pb = pathbuf_create(sun->sun_path);
937 if (pb == NULL) {
938 error = ENOMEM;
939 goto bad;
940 }
941 NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, pb);
942
943 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
944 if ((error = namei(&nd)) != 0) {
945 pathbuf_destroy(pb);
946 goto bad;
947 }
948 vp = nd.ni_vp;
949 if (vp != NULL) {
950 VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
951 if (nd.ni_dvp == vp)
952 vrele(nd.ni_dvp);
953 else
954 vput(nd.ni_dvp);
955 vrele(vp);
956 pathbuf_destroy(pb);
957 error = EADDRINUSE;
958 goto bad;
959 }
960 vattr_null(&vattr);
961 vattr.va_type = VSOCK;
962 vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
963 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
964 if (error) {
965 vput(nd.ni_dvp);
966 pathbuf_destroy(pb);
967 goto bad;
968 }
969 vp = nd.ni_vp;
970 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
971 solock(so);
972 vp->v_socket = unp->unp_socket;
973 unp->unp_vnode = vp;
974 unp->unp_addrlen = addrlen;
975 unp->unp_addr = sun;
976 unp->unp_connid.unp_pid = p->p_pid;
977 unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
978 unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
979 unp->unp_flags |= UNP_EIDSBIND;
980 VOP_UNLOCK(vp);
981 vput(nd.ni_dvp);
982 unp->unp_flags &= ~UNP_BUSY;
983 pathbuf_destroy(pb);
984 return (0);
985
986 bad:
987 free(sun, M_SONAME);
988 solock(so);
989 unp->unp_flags &= ~UNP_BUSY;
990 return (error);
991 }
992
993 int
994 unp_connect(struct socket *so, struct mbuf *nam, struct lwp *l)
995 {
996 struct sockaddr_un *sun;
997 vnode_t *vp;
998 struct socket *so2, *so3;
999 struct unpcb *unp, *unp2, *unp3;
1000 size_t addrlen;
1001 int error;
1002 struct pathbuf *pb;
1003 struct nameidata nd;
1004
1005 unp = sotounpcb(so);
1006 if ((unp->unp_flags & UNP_BUSY) != 0) {
1007 /*
1008 * EALREADY may not be strictly accurate, but since this
1009 * is a major application error it's hardly a big deal.
1010 */
1011 return (EALREADY);
1012 }
1013 unp->unp_flags |= UNP_BUSY;
1014 sounlock(so);
1015
1016 sun = makeun(nam, &addrlen);
1017 pb = pathbuf_create(sun->sun_path);
1018 if (pb == NULL) {
1019 error = ENOMEM;
1020 goto bad2;
1021 }
1022
1023 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
1024
1025 if ((error = namei(&nd)) != 0) {
1026 pathbuf_destroy(pb);
1027 goto bad2;
1028 }
1029 vp = nd.ni_vp;
1030 if (vp->v_type != VSOCK) {
1031 error = ENOTSOCK;
1032 goto bad;
1033 }
1034 pathbuf_destroy(pb);
1035 if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
1036 goto bad;
1037 /* Acquire v_interlock to protect against unp_detach(). */
1038 mutex_enter(vp->v_interlock);
1039 so2 = vp->v_socket;
1040 if (so2 == NULL) {
1041 mutex_exit(vp->v_interlock);
1042 error = ECONNREFUSED;
1043 goto bad;
1044 }
1045 if (so->so_type != so2->so_type) {
1046 mutex_exit(vp->v_interlock);
1047 error = EPROTOTYPE;
1048 goto bad;
1049 }
1050 solock(so);
1051 unp_resetlock(so);
1052 mutex_exit(vp->v_interlock);
1053 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
1054 /*
1055 * This may seem somewhat fragile but is OK: if we can
1056 * see SO_ACCEPTCONN set on the endpoint, then it must
1057 * be locked by the domain-wide uipc_lock.
1058 */
1059 KASSERT((so2->so_options & SO_ACCEPTCONN) == 0 ||
1060 so2->so_lock == uipc_lock);
1061 if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
1062 (so3 = sonewconn(so2, false)) == NULL) {
1063 error = ECONNREFUSED;
1064 sounlock(so);
1065 goto bad;
1066 }
1067 unp2 = sotounpcb(so2);
1068 unp3 = sotounpcb(so3);
1069 if (unp2->unp_addr) {
1070 unp3->unp_addr = malloc(unp2->unp_addrlen,
1071 M_SONAME, M_WAITOK);
1072 memcpy(unp3->unp_addr, unp2->unp_addr,
1073 unp2->unp_addrlen);
1074 unp3->unp_addrlen = unp2->unp_addrlen;
1075 }
1076 unp3->unp_flags = unp2->unp_flags;
1077 unp3->unp_connid.unp_pid = l->l_proc->p_pid;
1078 unp3->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
1079 unp3->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
1080 unp3->unp_flags |= UNP_EIDSVALID;
1081 if (unp2->unp_flags & UNP_EIDSBIND) {
1082 unp->unp_connid = unp2->unp_connid;
1083 unp->unp_flags |= UNP_EIDSVALID;
1084 }
1085 so2 = so3;
1086 }
1087 error = unp_connect2(so, so2, PRU_CONNECT);
1088 sounlock(so);
1089 bad:
1090 vput(vp);
1091 bad2:
1092 free(sun, M_SONAME);
1093 solock(so);
1094 unp->unp_flags &= ~UNP_BUSY;
1095 return (error);
1096 }
1097
1098 int
1099 unp_connect2(struct socket *so, struct socket *so2, int req)
1100 {
1101 struct unpcb *unp = sotounpcb(so);
1102 struct unpcb *unp2;
1103
1104 if (so2->so_type != so->so_type)
1105 return (EPROTOTYPE);
1106
1107 /*
1108 * All three sockets involved must be locked by same lock:
1109 *
1110 * local endpoint (so)
1111 * remote endpoint (so2)
1112 * queue head (so2->so_head, only if PR_CONNREQUIRED)
1113 */
1114 KASSERT(solocked2(so, so2));
1115 KASSERT(so->so_head == NULL);
1116 if (so2->so_head != NULL) {
1117 KASSERT(so2->so_lock == uipc_lock);
1118 KASSERT(solocked2(so2, so2->so_head));
1119 }
1120
1121 unp2 = sotounpcb(so2);
1122 unp->unp_conn = unp2;
1123 switch (so->so_type) {
1124
1125 case SOCK_DGRAM:
1126 unp->unp_nextref = unp2->unp_refs;
1127 unp2->unp_refs = unp;
1128 soisconnected(so);
1129 break;
1130
1131 case SOCK_SEQPACKET: /* FALLTHROUGH */
1132 case SOCK_STREAM:
1133 unp2->unp_conn = unp;
1134 if (req == PRU_CONNECT &&
1135 ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1136 soisconnecting(so);
1137 else
1138 soisconnected(so);
1139 soisconnected(so2);
1140 /*
1141 * If the connection is fully established, break the
1142 * association with uipc_lock and give the connected
1143 * pair a seperate lock to share. For CONNECT2, we
1144 * require that the locks already match (the sockets
1145 * are created that way).
1146 */
1147 if (req == PRU_CONNECT) {
1148 KASSERT(so2->so_head != NULL);
1149 unp_setpeerlocks(so, so2);
1150 }
1151 break;
1152
1153 default:
1154 panic("unp_connect2");
1155 }
1156 return (0);
1157 }
1158
1159 void
1160 unp_disconnect(struct unpcb *unp)
1161 {
1162 struct unpcb *unp2 = unp->unp_conn;
1163 struct socket *so;
1164
1165 if (unp2 == 0)
1166 return;
1167 unp->unp_conn = 0;
1168 so = unp->unp_socket;
1169 switch (so->so_type) {
1170 case SOCK_DGRAM:
1171 if (unp2->unp_refs == unp)
1172 unp2->unp_refs = unp->unp_nextref;
1173 else {
1174 unp2 = unp2->unp_refs;
1175 for (;;) {
1176 KASSERT(solocked2(so, unp2->unp_socket));
1177 if (unp2 == 0)
1178 panic("unp_disconnect");
1179 if (unp2->unp_nextref == unp)
1180 break;
1181 unp2 = unp2->unp_nextref;
1182 }
1183 unp2->unp_nextref = unp->unp_nextref;
1184 }
1185 unp->unp_nextref = 0;
1186 so->so_state &= ~SS_ISCONNECTED;
1187 break;
1188
1189 case SOCK_SEQPACKET: /* FALLTHROUGH */
1190 case SOCK_STREAM:
1191 KASSERT(solocked2(so, unp2->unp_socket));
1192 soisdisconnected(so);
1193 unp2->unp_conn = 0;
1194 soisdisconnected(unp2->unp_socket);
1195 break;
1196 }
1197 }
1198
1199 #ifdef notdef
1200 unp_abort(struct unpcb *unp)
1201 {
1202 unp_detach(unp);
1203 }
1204 #endif
1205
1206 void
1207 unp_shutdown(struct unpcb *unp)
1208 {
1209 struct socket *so;
1210
1211 switch(unp->unp_socket->so_type) {
1212 case SOCK_SEQPACKET: /* FALLTHROUGH */
1213 case SOCK_STREAM:
1214 if (unp->unp_conn && (so = unp->unp_conn->unp_socket))
1215 socantrcvmore(so);
1216 break;
1217 default:
1218 break;
1219 }
1220 }
1221
1222 bool
1223 unp_drop(struct unpcb *unp, int errno)
1224 {
1225 struct socket *so = unp->unp_socket;
1226
1227 KASSERT(solocked(so));
1228
1229 so->so_error = errno;
1230 unp_disconnect(unp);
1231 if (so->so_head) {
1232 so->so_pcb = NULL;
1233 /* sofree() drops the socket lock */
1234 sofree(so);
1235 unp_free(unp);
1236 return true;
1237 }
1238 return false;
1239 }
1240
1241 #ifdef notdef
1242 unp_drain(void)
1243 {
1244
1245 }
1246 #endif
1247
1248 int
1249 unp_externalize(struct mbuf *rights, struct lwp *l, int flags)
1250 {
1251 struct cmsghdr * const cm = mtod(rights, struct cmsghdr *);
1252 struct proc * const p = l->l_proc;
1253 file_t **rp;
1254 int error = 0;
1255
1256 const size_t nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
1257 sizeof(file_t *);
1258 if (nfds == 0)
1259 goto noop;
1260
1261 int * const fdp = kmem_alloc(nfds * sizeof(int), KM_SLEEP);
1262 rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
1263
1264 /* Make sure the recipient should be able to see the files.. */
1265 rp = (file_t **)CMSG_DATA(cm);
1266 for (size_t i = 0; i < nfds; i++) {
1267 file_t * const fp = *rp++;
1268 if (fp == NULL) {
1269 error = EINVAL;
1270 goto out;
1271 }
1272 /*
1273 * If we are in a chroot'ed directory, and
1274 * someone wants to pass us a directory, make
1275 * sure it's inside the subtree we're allowed
1276 * to access.
1277 */
1278 if (p->p_cwdi->cwdi_rdir != NULL && fp->f_type == DTYPE_VNODE) {
1279 vnode_t *vp = (vnode_t *)fp->f_data;
1280 if ((vp->v_type == VDIR) &&
1281 !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
1282 error = EPERM;
1283 goto out;
1284 }
1285 }
1286 }
1287
1288 restart:
1289 /*
1290 * First loop -- allocate file descriptor table slots for the
1291 * new files.
1292 */
1293 for (size_t i = 0; i < nfds; i++) {
1294 if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
1295 /*
1296 * Back out what we've done so far.
1297 */
1298 while (i-- > 0) {
1299 fd_abort(p, NULL, fdp[i]);
1300 }
1301 if (error == ENOSPC) {
1302 fd_tryexpand(p);
1303 error = 0;
1304 goto restart;
1305 }
1306 /*
1307 * This is the error that has historically
1308 * been returned, and some callers may
1309 * expect it.
1310 */
1311 error = EMSGSIZE;
1312 goto out;
1313 }
1314 }
1315
1316 /*
1317 * Now that adding them has succeeded, update all of the
1318 * file passing state and affix the descriptors.
1319 */
1320 rp = (file_t **)CMSG_DATA(cm);
1321 int *ofdp = (int *)CMSG_DATA(cm);
1322 for (size_t i = 0; i < nfds; i++) {
1323 file_t * const fp = *rp++;
1324 const int fd = fdp[i];
1325 atomic_dec_uint(&unp_rights);
1326 fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
1327 fd_affix(p, fp, fd);
1328 /*
1329 * Done with this file pointer, replace it with a fd;
1330 */
1331 *ofdp++ = fd;
1332 mutex_enter(&fp->f_lock);
1333 fp->f_msgcount--;
1334 mutex_exit(&fp->f_lock);
1335 /*
1336 * Note that fd_affix() adds a reference to the file.
1337 * The file may already have been closed by another
1338 * LWP in the process, so we must drop the reference
1339 * added by unp_internalize() with closef().
1340 */
1341 closef(fp);
1342 }
1343
1344 /*
1345 * Adjust length, in case of transition from large file_t
1346 * pointers to ints.
1347 */
1348 if (sizeof(file_t *) != sizeof(int)) {
1349 cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
1350 rights->m_len = CMSG_SPACE(nfds * sizeof(int));
1351 }
1352 out:
1353 if (__predict_false(error != 0)) {
1354 file_t **const fpp = (file_t **)CMSG_DATA(cm);
1355 for (size_t i = 0; i < nfds; i++)
1356 unp_discard_now(fpp[i]);
1357 /*
1358 * Truncate the array so that nobody will try to interpret
1359 * what is now garbage in it.
1360 */
1361 cm->cmsg_len = CMSG_LEN(0);
1362 rights->m_len = CMSG_SPACE(0);
1363 }
1364 rw_exit(&p->p_cwdi->cwdi_lock);
1365 kmem_free(fdp, nfds * sizeof(int));
1366
1367 noop:
1368 /*
1369 * Don't disclose kernel memory in the alignment space.
1370 */
1371 KASSERT(cm->cmsg_len <= rights->m_len);
1372 memset(&mtod(rights, char *)[cm->cmsg_len], 0, rights->m_len -
1373 cm->cmsg_len);
1374 return error;
1375 }
1376
1377 int
1378 unp_internalize(struct mbuf **controlp)
1379 {
1380 filedesc_t *fdescp = curlwp->l_fd;
1381 struct mbuf *control = *controlp;
1382 struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
1383 file_t **rp, **files;
1384 file_t *fp;
1385 int i, fd, *fdp;
1386 int nfds, error;
1387 u_int maxmsg;
1388
1389 error = 0;
1390 newcm = NULL;
1391
1392 /* Sanity check the control message header. */
1393 if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
1394 cm->cmsg_len > control->m_len ||
1395 cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
1396 return (EINVAL);
1397
1398 /*
1399 * Verify that the file descriptors are valid, and acquire
1400 * a reference to each.
1401 */
1402 nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
1403 fdp = (int *)CMSG_DATA(cm);
1404 maxmsg = maxfiles / unp_rights_ratio;
1405 for (i = 0; i < nfds; i++) {
1406 fd = *fdp++;
1407 if (atomic_inc_uint_nv(&unp_rights) > maxmsg) {
1408 atomic_dec_uint(&unp_rights);
1409 nfds = i;
1410 error = EAGAIN;
1411 goto out;
1412 }
1413 if ((fp = fd_getfile(fd)) == NULL
1414 || fp->f_type == DTYPE_KQUEUE) {
1415 if (fp)
1416 fd_putfile(fd);
1417 atomic_dec_uint(&unp_rights);
1418 nfds = i;
1419 error = EBADF;
1420 goto out;
1421 }
1422 }
1423
1424 /* Allocate new space and copy header into it. */
1425 newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
1426 if (newcm == NULL) {
1427 error = E2BIG;
1428 goto out;
1429 }
1430 memcpy(newcm, cm, sizeof(struct cmsghdr));
1431 files = (file_t **)CMSG_DATA(newcm);
1432
1433 /*
1434 * Transform the file descriptors into file_t pointers, in
1435 * reverse order so that if pointers are bigger than ints, the
1436 * int won't get until we're done. No need to lock, as we have
1437 * already validated the descriptors with fd_getfile().
1438 */
1439 fdp = (int *)CMSG_DATA(cm) + nfds;
1440 rp = files + nfds;
1441 for (i = 0; i < nfds; i++) {
1442 fp = fdescp->fd_dt->dt_ff[*--fdp]->ff_file;
1443 KASSERT(fp != NULL);
1444 mutex_enter(&fp->f_lock);
1445 *--rp = fp;
1446 fp->f_count++;
1447 fp->f_msgcount++;
1448 mutex_exit(&fp->f_lock);
1449 }
1450
1451 out:
1452 /* Release descriptor references. */
1453 fdp = (int *)CMSG_DATA(cm);
1454 for (i = 0; i < nfds; i++) {
1455 fd_putfile(*fdp++);
1456 if (error != 0) {
1457 atomic_dec_uint(&unp_rights);
1458 }
1459 }
1460
1461 if (error == 0) {
1462 if (control->m_flags & M_EXT) {
1463 m_freem(control);
1464 *controlp = control = m_get(M_WAIT, MT_CONTROL);
1465 }
1466 MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
1467 M_MBUF, NULL, NULL);
1468 cm = newcm;
1469 /*
1470 * Adjust message & mbuf to note amount of space
1471 * actually used.
1472 */
1473 cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
1474 control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
1475 }
1476
1477 return error;
1478 }
1479
1480 struct mbuf *
1481 unp_addsockcred(struct lwp *l, struct mbuf *control)
1482 {
1483 struct sockcred *sc;
1484 struct mbuf *m;
1485 void *p;
1486
1487 m = sbcreatecontrol1(&p, SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)),
1488 SCM_CREDS, SOL_SOCKET, M_WAITOK);
1489 if (m == NULL)
1490 return control;
1491
1492 sc = p;
1493 sc->sc_uid = kauth_cred_getuid(l->l_cred);
1494 sc->sc_euid = kauth_cred_geteuid(l->l_cred);
1495 sc->sc_gid = kauth_cred_getgid(l->l_cred);
1496 sc->sc_egid = kauth_cred_getegid(l->l_cred);
1497 sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
1498
1499 for (int i = 0; i < sc->sc_ngroups; i++)
1500 sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
1501
1502 return m_add(control, m);
1503 }
1504
1505 /*
1506 * Do a mark-sweep GC of files in the system, to free up any which are
1507 * caught in flight to an about-to-be-closed socket. Additionally,
1508 * process deferred file closures.
1509 */
1510 static void
1511 unp_gc(file_t *dp)
1512 {
1513 extern struct domain unixdomain;
1514 file_t *fp, *np;
1515 struct socket *so, *so1;
1516 u_int i, old, new;
1517 bool didwork;
1518
1519 KASSERT(curlwp == unp_thread_lwp);
1520 KASSERT(mutex_owned(&filelist_lock));
1521
1522 /*
1523 * First, process deferred file closures.
1524 */
1525 while (!SLIST_EMPTY(&unp_thread_discard)) {
1526 fp = SLIST_FIRST(&unp_thread_discard);
1527 KASSERT(fp->f_unpcount > 0);
1528 KASSERT(fp->f_count > 0);
1529 KASSERT(fp->f_msgcount > 0);
1530 KASSERT(fp->f_count >= fp->f_unpcount);
1531 KASSERT(fp->f_count >= fp->f_msgcount);
1532 KASSERT(fp->f_msgcount >= fp->f_unpcount);
1533 SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist);
1534 i = fp->f_unpcount;
1535 fp->f_unpcount = 0;
1536 mutex_exit(&filelist_lock);
1537 for (; i != 0; i--) {
1538 unp_discard_now(fp);
1539 }
1540 mutex_enter(&filelist_lock);
1541 }
1542
1543 /*
1544 * Clear mark bits. Ensure that we don't consider new files
1545 * entering the file table during this loop (they will not have
1546 * FSCAN set).
1547 */
1548 unp_defer = 0;
1549 LIST_FOREACH(fp, &filehead, f_list) {
1550 for (old = fp->f_flag;; old = new) {
1551 new = atomic_cas_uint(&fp->f_flag, old,
1552 (old | FSCAN) & ~(FMARK|FDEFER));
1553 if (__predict_true(old == new)) {
1554 break;
1555 }
1556 }
1557 }
1558
1559 /*
1560 * Iterate over the set of sockets, marking ones believed (based on
1561 * refcount) to be referenced from a process, and marking for rescan
1562 * sockets which are queued on a socket. Recan continues descending
1563 * and searching for sockets referenced by sockets (FDEFER), until
1564 * there are no more socket->socket references to be discovered.
1565 */
1566 do {
1567 didwork = false;
1568 for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1569 KASSERT(mutex_owned(&filelist_lock));
1570 np = LIST_NEXT(fp, f_list);
1571 mutex_enter(&fp->f_lock);
1572 if ((fp->f_flag & FDEFER) != 0) {
1573 atomic_and_uint(&fp->f_flag, ~FDEFER);
1574 unp_defer--;
1575 KASSERT(fp->f_count != 0);
1576 } else {
1577 if (fp->f_count == 0 ||
1578 (fp->f_flag & FMARK) != 0 ||
1579 fp->f_count == fp->f_msgcount ||
1580 fp->f_unpcount != 0) {
1581 mutex_exit(&fp->f_lock);
1582 continue;
1583 }
1584 }
1585 atomic_or_uint(&fp->f_flag, FMARK);
1586
1587 if (fp->f_type != DTYPE_SOCKET ||
1588 (so = fp->f_data) == NULL ||
1589 so->so_proto->pr_domain != &unixdomain ||
1590 (so->so_proto->pr_flags & PR_RIGHTS) == 0) {
1591 mutex_exit(&fp->f_lock);
1592 continue;
1593 }
1594
1595 /* Gain file ref, mark our position, and unlock. */
1596 didwork = true;
1597 LIST_INSERT_AFTER(fp, dp, f_list);
1598 fp->f_count++;
1599 mutex_exit(&fp->f_lock);
1600 mutex_exit(&filelist_lock);
1601
1602 /*
1603 * Mark files referenced from sockets queued on the
1604 * accept queue as well.
1605 */
1606 solock(so);
1607 unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
1608 if ((so->so_options & SO_ACCEPTCONN) != 0) {
1609 TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
1610 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1611 }
1612 TAILQ_FOREACH(so1, &so->so_q, so_qe) {
1613 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1614 }
1615 }
1616 sounlock(so);
1617
1618 /* Re-lock and restart from where we left off. */
1619 closef(fp);
1620 mutex_enter(&filelist_lock);
1621 np = LIST_NEXT(dp, f_list);
1622 LIST_REMOVE(dp, f_list);
1623 }
1624 /*
1625 * Bail early if we did nothing in the loop above. Could
1626 * happen because of concurrent activity causing unp_defer
1627 * to get out of sync.
1628 */
1629 } while (unp_defer != 0 && didwork);
1630
1631 /*
1632 * Sweep pass.
1633 *
1634 * We grab an extra reference to each of the files that are
1635 * not otherwise accessible and then free the rights that are
1636 * stored in messages on them.
1637 */
1638 for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1639 KASSERT(mutex_owned(&filelist_lock));
1640 np = LIST_NEXT(fp, f_list);
1641 mutex_enter(&fp->f_lock);
1642
1643 /*
1644 * Ignore non-sockets.
1645 * Ignore dead sockets, or sockets with pending close.
1646 * Ignore sockets obviously referenced elsewhere.
1647 * Ignore sockets marked as referenced by our scan.
1648 * Ignore new sockets that did not exist during the scan.
1649 */
1650 if (fp->f_type != DTYPE_SOCKET ||
1651 fp->f_count == 0 || fp->f_unpcount != 0 ||
1652 fp->f_count != fp->f_msgcount ||
1653 (fp->f_flag & (FMARK | FSCAN)) != FSCAN) {
1654 mutex_exit(&fp->f_lock);
1655 continue;
1656 }
1657
1658 /* Gain file ref, mark our position, and unlock. */
1659 LIST_INSERT_AFTER(fp, dp, f_list);
1660 fp->f_count++;
1661 mutex_exit(&fp->f_lock);
1662 mutex_exit(&filelist_lock);
1663
1664 /*
1665 * Flush all data from the socket's receive buffer.
1666 * This will cause files referenced only by the
1667 * socket to be queued for close.
1668 */
1669 so = fp->f_data;
1670 solock(so);
1671 sorflush(so);
1672 sounlock(so);
1673
1674 /* Re-lock and restart from where we left off. */
1675 closef(fp);
1676 mutex_enter(&filelist_lock);
1677 np = LIST_NEXT(dp, f_list);
1678 LIST_REMOVE(dp, f_list);
1679 }
1680 }
1681
1682 /*
1683 * Garbage collector thread. While SCM_RIGHTS messages are in transit,
1684 * wake once per second to garbage collect. Run continually while we
1685 * have deferred closes to process.
1686 */
1687 static void
1688 unp_thread(void *cookie)
1689 {
1690 file_t *dp;
1691
1692 /* Allocate a dummy file for our scans. */
1693 if ((dp = fgetdummy()) == NULL) {
1694 panic("unp_thread");
1695 }
1696
1697 mutex_enter(&filelist_lock);
1698 for (;;) {
1699 KASSERT(mutex_owned(&filelist_lock));
1700 if (SLIST_EMPTY(&unp_thread_discard)) {
1701 if (unp_rights != 0) {
1702 (void)cv_timedwait(&unp_thread_cv,
1703 &filelist_lock, hz);
1704 } else {
1705 cv_wait(&unp_thread_cv, &filelist_lock);
1706 }
1707 }
1708 unp_gc(dp);
1709 }
1710 /* NOTREACHED */
1711 }
1712
1713 /*
1714 * Kick the garbage collector into action if there is something for
1715 * it to process.
1716 */
1717 static void
1718 unp_thread_kick(void)
1719 {
1720
1721 if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) {
1722 mutex_enter(&filelist_lock);
1723 cv_signal(&unp_thread_cv);
1724 mutex_exit(&filelist_lock);
1725 }
1726 }
1727
1728 void
1729 unp_dispose(struct mbuf *m)
1730 {
1731
1732 if (m)
1733 unp_scan(m, unp_discard_later, 1);
1734 }
1735
1736 void
1737 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
1738 {
1739 struct mbuf *m;
1740 file_t **rp, *fp;
1741 struct cmsghdr *cm;
1742 int i, qfds;
1743
1744 while (m0) {
1745 for (m = m0; m; m = m->m_next) {
1746 if (m->m_type != MT_CONTROL ||
1747 m->m_len < sizeof(*cm)) {
1748 continue;
1749 }
1750 cm = mtod(m, struct cmsghdr *);
1751 if (cm->cmsg_level != SOL_SOCKET ||
1752 cm->cmsg_type != SCM_RIGHTS)
1753 continue;
1754 qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
1755 / sizeof(file_t *);
1756 rp = (file_t **)CMSG_DATA(cm);
1757 for (i = 0; i < qfds; i++) {
1758 fp = *rp;
1759 if (discard) {
1760 *rp = 0;
1761 }
1762 (*op)(fp);
1763 rp++;
1764 }
1765 }
1766 m0 = m0->m_nextpkt;
1767 }
1768 }
1769
1770 void
1771 unp_mark(file_t *fp)
1772 {
1773
1774 if (fp == NULL)
1775 return;
1776
1777 /* If we're already deferred, don't screw up the defer count */
1778 mutex_enter(&fp->f_lock);
1779 if (fp->f_flag & (FMARK | FDEFER)) {
1780 mutex_exit(&fp->f_lock);
1781 return;
1782 }
1783
1784 /*
1785 * Minimize the number of deferrals... Sockets are the only type of
1786 * file which can hold references to another file, so just mark
1787 * other files, and defer unmarked sockets for the next pass.
1788 */
1789 if (fp->f_type == DTYPE_SOCKET) {
1790 unp_defer++;
1791 KASSERT(fp->f_count != 0);
1792 atomic_or_uint(&fp->f_flag, FDEFER);
1793 } else {
1794 atomic_or_uint(&fp->f_flag, FMARK);
1795 }
1796 mutex_exit(&fp->f_lock);
1797 }
1798
1799 static void
1800 unp_discard_now(file_t *fp)
1801 {
1802
1803 if (fp == NULL)
1804 return;
1805
1806 KASSERT(fp->f_count > 0);
1807 KASSERT(fp->f_msgcount > 0);
1808
1809 mutex_enter(&fp->f_lock);
1810 fp->f_msgcount--;
1811 mutex_exit(&fp->f_lock);
1812 atomic_dec_uint(&unp_rights);
1813 (void)closef(fp);
1814 }
1815
1816 static void
1817 unp_discard_later(file_t *fp)
1818 {
1819
1820 if (fp == NULL)
1821 return;
1822
1823 KASSERT(fp->f_count > 0);
1824 KASSERT(fp->f_msgcount > 0);
1825
1826 mutex_enter(&filelist_lock);
1827 if (fp->f_unpcount++ == 0) {
1828 SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist);
1829 }
1830 mutex_exit(&filelist_lock);
1831 }
1832