Home | History | Annotate | Line # | Download | only in kern
uipc_usrreq.c revision 1.150
      1 /*	$NetBSD: uipc_usrreq.c,v 1.150 2014/01/23 10:13:56 hannken Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 2000, 2004, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
     62  */
     63 
     64 /*
     65  * Copyright (c) 1997 Christopher G. Demetriou.  All rights reserved.
     66  *
     67  * Redistribution and use in source and binary forms, with or without
     68  * modification, are permitted provided that the following conditions
     69  * are met:
     70  * 1. Redistributions of source code must retain the above copyright
     71  *    notice, this list of conditions and the following disclaimer.
     72  * 2. Redistributions in binary form must reproduce the above copyright
     73  *    notice, this list of conditions and the following disclaimer in the
     74  *    documentation and/or other materials provided with the distribution.
     75  * 3. All advertising materials mentioning features or use of this software
     76  *    must display the following acknowledgement:
     77  *	This product includes software developed by the University of
     78  *	California, Berkeley and its contributors.
     79  * 4. Neither the name of the University nor the names of its contributors
     80  *    may be used to endorse or promote products derived from this software
     81  *    without specific prior written permission.
     82  *
     83  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     84  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     85  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     86  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     87  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     88  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     89  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     90  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     91  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     92  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     93  * SUCH DAMAGE.
     94  *
     95  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
     96  */
     97 
     98 #include <sys/cdefs.h>
     99 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.150 2014/01/23 10:13:56 hannken Exp $");
    100 
    101 #include <sys/param.h>
    102 #include <sys/systm.h>
    103 #include <sys/proc.h>
    104 #include <sys/filedesc.h>
    105 #include <sys/domain.h>
    106 #include <sys/protosw.h>
    107 #include <sys/socket.h>
    108 #include <sys/socketvar.h>
    109 #include <sys/unpcb.h>
    110 #include <sys/un.h>
    111 #include <sys/namei.h>
    112 #include <sys/vnode.h>
    113 #include <sys/file.h>
    114 #include <sys/stat.h>
    115 #include <sys/mbuf.h>
    116 #include <sys/kauth.h>
    117 #include <sys/kmem.h>
    118 #include <sys/atomic.h>
    119 #include <sys/uidinfo.h>
    120 #include <sys/kernel.h>
    121 #include <sys/kthread.h>
    122 
    123 /*
    124  * Unix communications domain.
    125  *
    126  * TODO:
    127  *	RDM
    128  *	rethink name space problems
    129  *	need a proper out-of-band
    130  *
    131  * Notes on locking:
    132  *
    133  * The generic rules noted in uipc_socket2.c apply.  In addition:
    134  *
    135  * o We have a global lock, uipc_lock.
    136  *
    137  * o All datagram sockets are locked by uipc_lock.
    138  *
    139  * o For stream socketpairs, the two endpoints are created sharing the same
    140  *   independent lock.  Sockets presented to PRU_CONNECT2 must already have
    141  *   matching locks.
    142  *
    143  * o Stream sockets created via socket() start life with their own
    144  *   independent lock.
    145  *
    146  * o Stream connections to a named endpoint are slightly more complicated.
    147  *   Sockets that have called listen() have their lock pointer mutated to
    148  *   the global uipc_lock.  When establishing a connection, the connecting
    149  *   socket also has its lock mutated to uipc_lock, which matches the head
    150  *   (listening socket).  We create a new socket for accept() to return, and
    151  *   that also shares the head's lock.  Until the connection is completely
    152  *   done on both ends, all three sockets are locked by uipc_lock.  Once the
    153  *   connection is complete, the association with the head's lock is broken.
    154  *   The connecting socket and the socket returned from accept() have their
    155  *   lock pointers mutated away from uipc_lock, and back to the connecting
    156  *   socket's original, independent lock.  The head continues to be locked
    157  *   by uipc_lock.
    158  *
    159  * o If uipc_lock is determined to be a significant source of contention,
    160  *   it could easily be hashed out.  It is difficult to simply make it an
    161  *   independent lock because of visibility / garbage collection issues:
    162  *   if a socket has been associated with a lock at any point, that lock
    163  *   must remain valid until the socket is no longer visible in the system.
    164  *   The lock must not be freed or otherwise destroyed until any sockets
    165  *   that had referenced it have also been destroyed.
    166  */
    167 const struct sockaddr_un sun_noname = {
    168 	.sun_len = offsetof(struct sockaddr_un, sun_path),
    169 	.sun_family = AF_LOCAL,
    170 };
    171 ino_t	unp_ino;			/* prototype for fake inode numbers */
    172 
    173 struct mbuf *unp_addsockcred(struct lwp *, struct mbuf *);
    174 static void unp_mark(file_t *);
    175 static void unp_scan(struct mbuf *, void (*)(file_t *), int);
    176 static void unp_discard_now(file_t *);
    177 static void unp_discard_later(file_t *);
    178 static void unp_thread(void *);
    179 static void unp_thread_kick(void);
    180 static kmutex_t *uipc_lock;
    181 
    182 static kcondvar_t unp_thread_cv;
    183 static lwp_t *unp_thread_lwp;
    184 static SLIST_HEAD(,file) unp_thread_discard;
    185 static int unp_defer;
    186 
    187 /*
    188  * Initialize Unix protocols.
    189  */
    190 void
    191 uipc_init(void)
    192 {
    193 	int error;
    194 
    195 	uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    196 	cv_init(&unp_thread_cv, "unpgc");
    197 
    198 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread,
    199 	    NULL, &unp_thread_lwp, "unpgc");
    200 	if (error != 0)
    201 		panic("uipc_init %d", error);
    202 }
    203 
    204 /*
    205  * A connection succeeded: disassociate both endpoints from the head's
    206  * lock, and make them share their own lock.  There is a race here: for
    207  * a very brief time one endpoint will be locked by a different lock
    208  * than the other end.  However, since the current thread holds the old
    209  * lock (the listening socket's lock, the head) access can still only be
    210  * made to one side of the connection.
    211  */
    212 static void
    213 unp_setpeerlocks(struct socket *so, struct socket *so2)
    214 {
    215 	struct unpcb *unp;
    216 	kmutex_t *lock;
    217 
    218 	KASSERT(solocked2(so, so2));
    219 
    220 	/*
    221 	 * Bail out if either end of the socket is not yet fully
    222 	 * connected or accepted.  We only break the lock association
    223 	 * with the head when the pair of sockets stand completely
    224 	 * on their own.
    225 	 */
    226 	KASSERT(so->so_head == NULL);
    227 	if (so2->so_head != NULL)
    228 		return;
    229 
    230 	/*
    231 	 * Drop references to old lock.  A third reference (from the
    232 	 * queue head) must be held as we still hold its lock.  Bonus:
    233 	 * we don't need to worry about garbage collecting the lock.
    234 	 */
    235 	lock = so->so_lock;
    236 	KASSERT(lock == uipc_lock);
    237 	mutex_obj_free(lock);
    238 	mutex_obj_free(lock);
    239 
    240 	/*
    241 	 * Grab stream lock from the initiator and share between the two
    242 	 * endpoints.  Issue memory barrier to ensure all modifications
    243 	 * become globally visible before the lock change.  so2 is
    244 	 * assumed not to have a stream lock, because it was created
    245 	 * purely for the server side to accept this connection and
    246 	 * started out life using the domain-wide lock.
    247 	 */
    248 	unp = sotounpcb(so);
    249 	KASSERT(unp->unp_streamlock != NULL);
    250 	KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
    251 	lock = unp->unp_streamlock;
    252 	unp->unp_streamlock = NULL;
    253 	mutex_obj_hold(lock);
    254 	membar_exit();
    255 	/*
    256 	 * possible race if lock is not held - see comment in
    257 	 * uipc_usrreq(PRU_ACCEPT).
    258 	 */
    259 	KASSERT(mutex_owned(lock));
    260 	solockreset(so, lock);
    261 	solockreset(so2, lock);
    262 }
    263 
    264 /*
    265  * Reset a socket's lock back to the domain-wide lock.
    266  */
    267 static void
    268 unp_resetlock(struct socket *so)
    269 {
    270 	kmutex_t *olock, *nlock;
    271 	struct unpcb *unp;
    272 
    273 	KASSERT(solocked(so));
    274 
    275 	olock = so->so_lock;
    276 	nlock = uipc_lock;
    277 	if (olock == nlock)
    278 		return;
    279 	unp = sotounpcb(so);
    280 	KASSERT(unp->unp_streamlock == NULL);
    281 	unp->unp_streamlock = olock;
    282 	mutex_obj_hold(nlock);
    283 	mutex_enter(nlock);
    284 	solockreset(so, nlock);
    285 	mutex_exit(olock);
    286 }
    287 
    288 static void
    289 unp_free(struct unpcb *unp)
    290 {
    291 
    292 	if (unp->unp_addr)
    293 		free(unp->unp_addr, M_SONAME);
    294 	if (unp->unp_streamlock != NULL)
    295 		mutex_obj_free(unp->unp_streamlock);
    296 	free(unp, M_PCB);
    297 }
    298 
    299 int
    300 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp,
    301 	struct lwp *l)
    302 {
    303 	struct socket *so2;
    304 	const struct sockaddr_un *sun;
    305 
    306 	so2 = unp->unp_conn->unp_socket;
    307 
    308 	KASSERT(solocked(so2));
    309 
    310 	if (unp->unp_addr)
    311 		sun = unp->unp_addr;
    312 	else
    313 		sun = &sun_noname;
    314 	if (unp->unp_conn->unp_flags & UNP_WANTCRED)
    315 		control = unp_addsockcred(l, control);
    316 	if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
    317 	    control) == 0) {
    318 		so2->so_rcv.sb_overflowed++;
    319 		unp_dispose(control);
    320 		m_freem(control);
    321 		m_freem(m);
    322 		return (ENOBUFS);
    323 	} else {
    324 		sorwakeup(so2);
    325 		return (0);
    326 	}
    327 }
    328 
    329 void
    330 unp_setaddr(struct socket *so, struct mbuf *nam, bool peeraddr)
    331 {
    332 	const struct sockaddr_un *sun;
    333 	struct unpcb *unp;
    334 	bool ext;
    335 
    336 	KASSERT(solocked(so));
    337 	unp = sotounpcb(so);
    338 	ext = false;
    339 
    340 	for (;;) {
    341 		sun = NULL;
    342 		if (peeraddr) {
    343 			if (unp->unp_conn && unp->unp_conn->unp_addr)
    344 				sun = unp->unp_conn->unp_addr;
    345 		} else {
    346 			if (unp->unp_addr)
    347 				sun = unp->unp_addr;
    348 		}
    349 		if (sun == NULL)
    350 			sun = &sun_noname;
    351 		nam->m_len = sun->sun_len;
    352 		if (nam->m_len > MLEN && !ext) {
    353 			sounlock(so);
    354 			MEXTMALLOC(nam, MAXPATHLEN * 2, M_WAITOK);
    355 			solock(so);
    356 			ext = true;
    357 		} else {
    358 			KASSERT(nam->m_len <= MAXPATHLEN * 2);
    359 			memcpy(mtod(nam, void *), sun, (size_t)nam->m_len);
    360 			break;
    361 		}
    362 	}
    363 }
    364 
    365 /*ARGSUSED*/
    366 int
    367 uipc_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
    368 	struct mbuf *control, struct lwp *l)
    369 {
    370 	struct unpcb *unp = sotounpcb(so);
    371 	struct socket *so2;
    372 	u_int newhiwat;
    373 	int error = 0;
    374 
    375 	if (req == PRU_CONTROL)
    376 		return (EOPNOTSUPP);
    377 
    378 #ifdef DIAGNOSTIC
    379 	if (req != PRU_SEND && req != PRU_SENDOOB && control)
    380 		panic("uipc_usrreq: unexpected control mbuf");
    381 #endif
    382 	if (req != PRU_ATTACH) {
    383 		if (unp == NULL) {
    384 			error = EINVAL;
    385 			goto release;
    386 		}
    387 		KASSERT(solocked(so));
    388 	}
    389 
    390 	switch (req) {
    391 
    392 	case PRU_ATTACH:
    393 		if (unp != NULL) {
    394 			error = EISCONN;
    395 			break;
    396 		}
    397 		error = unp_attach(so);
    398 		break;
    399 
    400 	case PRU_DETACH:
    401 		unp_detach(unp);
    402 		break;
    403 
    404 	case PRU_BIND:
    405 		KASSERT(l != NULL);
    406 		error = unp_bind(so, nam, l);
    407 		break;
    408 
    409 	case PRU_LISTEN:
    410 		/*
    411 		 * If the socket can accept a connection, it must be
    412 		 * locked by uipc_lock.
    413 		 */
    414 		unp_resetlock(so);
    415 		if (unp->unp_vnode == NULL)
    416 			error = EINVAL;
    417 		break;
    418 
    419 	case PRU_CONNECT:
    420 		KASSERT(l != NULL);
    421 		error = unp_connect(so, nam, l);
    422 		break;
    423 
    424 	case PRU_CONNECT2:
    425 		error = unp_connect2(so, (struct socket *)nam, PRU_CONNECT2);
    426 		break;
    427 
    428 	case PRU_DISCONNECT:
    429 		unp_disconnect(unp);
    430 		break;
    431 
    432 	case PRU_ACCEPT:
    433 		KASSERT(so->so_lock == uipc_lock);
    434 		/*
    435 		 * Mark the initiating STREAM socket as connected *ONLY*
    436 		 * after it's been accepted.  This prevents a client from
    437 		 * overrunning a server and receiving ECONNREFUSED.
    438 		 */
    439 		if (unp->unp_conn == NULL) {
    440 			/*
    441 			 * This will use the empty socket and will not
    442 			 * allocate.
    443 			 */
    444 			unp_setaddr(so, nam, true);
    445 			break;
    446 		}
    447 		so2 = unp->unp_conn->unp_socket;
    448 		if (so2->so_state & SS_ISCONNECTING) {
    449 			KASSERT(solocked2(so, so->so_head));
    450 			KASSERT(solocked2(so2, so->so_head));
    451 			soisconnected(so2);
    452 		}
    453 		/*
    454 		 * If the connection is fully established, break the
    455 		 * association with uipc_lock and give the connected
    456 		 * pair a seperate lock to share.
    457 		 * There is a race here: sotounpcb(so2)->unp_streamlock
    458 		 * is not locked, so when changing so2->so_lock
    459 		 * another thread can grab it while so->so_lock is still
    460 		 * pointing to the (locked) uipc_lock.
    461 		 * this should be harmless, except that this makes
    462 		 * solocked2() and solocked() unreliable.
    463 		 * Another problem is that unp_setaddr() expects the
    464 		 * the socket locked. Grabing sotounpcb(so2)->unp_streamlock
    465 		 * fixes both issues.
    466 		 */
    467 		mutex_enter(sotounpcb(so2)->unp_streamlock);
    468 		unp_setpeerlocks(so2, so);
    469 		/*
    470 		 * Only now return peer's address, as we may need to
    471 		 * block in order to allocate memory.
    472 		 *
    473 		 * XXX Minor race: connection can be broken while
    474 		 * lock is dropped in unp_setaddr().  We will return
    475 		 * error == 0 and sun_noname as the peer address.
    476 		 */
    477 		unp_setaddr(so, nam, true);
    478 		/* so_lock now points to unp_streamlock */
    479 		mutex_exit(so2->so_lock);
    480 		break;
    481 
    482 	case PRU_SHUTDOWN:
    483 		socantsendmore(so);
    484 		unp_shutdown(unp);
    485 		break;
    486 
    487 	case PRU_RCVD:
    488 		switch (so->so_type) {
    489 
    490 		case SOCK_DGRAM:
    491 			panic("uipc 1");
    492 			/*NOTREACHED*/
    493 
    494 		case SOCK_SEQPACKET: /* FALLTHROUGH */
    495 		case SOCK_STREAM:
    496 #define	rcv (&so->so_rcv)
    497 #define snd (&so2->so_snd)
    498 			if (unp->unp_conn == 0)
    499 				break;
    500 			so2 = unp->unp_conn->unp_socket;
    501 			KASSERT(solocked2(so, so2));
    502 			/*
    503 			 * Adjust backpressure on sender
    504 			 * and wakeup any waiting to write.
    505 			 */
    506 			snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
    507 			unp->unp_mbcnt = rcv->sb_mbcnt;
    508 			newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
    509 			(void)chgsbsize(so2->so_uidinfo,
    510 			    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
    511 			unp->unp_cc = rcv->sb_cc;
    512 			sowwakeup(so2);
    513 #undef snd
    514 #undef rcv
    515 			break;
    516 
    517 		default:
    518 			panic("uipc 2");
    519 		}
    520 		break;
    521 
    522 	case PRU_SEND:
    523 		/*
    524 		 * Note: unp_internalize() rejects any control message
    525 		 * other than SCM_RIGHTS, and only allows one.  This
    526 		 * has the side-effect of preventing a caller from
    527 		 * forging SCM_CREDS.
    528 		 */
    529 		if (control) {
    530 			sounlock(so);
    531 			error = unp_internalize(&control);
    532 			solock(so);
    533 			if (error != 0) {
    534 				m_freem(control);
    535 				m_freem(m);
    536 				break;
    537 			}
    538 		}
    539 		switch (so->so_type) {
    540 
    541 		case SOCK_DGRAM: {
    542 			KASSERT(so->so_lock == uipc_lock);
    543 			if (nam) {
    544 				if ((so->so_state & SS_ISCONNECTED) != 0)
    545 					error = EISCONN;
    546 				else {
    547 					/*
    548 					 * Note: once connected, the
    549 					 * socket's lock must not be
    550 					 * dropped until we have sent
    551 					 * the message and disconnected.
    552 					 * This is necessary to prevent
    553 					 * intervening control ops, like
    554 					 * another connection.
    555 					 */
    556 					error = unp_connect(so, nam, l);
    557 				}
    558 			} else {
    559 				if ((so->so_state & SS_ISCONNECTED) == 0)
    560 					error = ENOTCONN;
    561 			}
    562 			if (error) {
    563 				unp_dispose(control);
    564 				m_freem(control);
    565 				m_freem(m);
    566 				break;
    567 			}
    568 			KASSERT(l != NULL);
    569 			error = unp_output(m, control, unp, l);
    570 			if (nam)
    571 				unp_disconnect(unp);
    572 			break;
    573 		}
    574 
    575 		case SOCK_SEQPACKET: /* FALLTHROUGH */
    576 		case SOCK_STREAM:
    577 #define	rcv (&so2->so_rcv)
    578 #define	snd (&so->so_snd)
    579 			if (unp->unp_conn == NULL) {
    580 				error = ENOTCONN;
    581 				break;
    582 			}
    583 			so2 = unp->unp_conn->unp_socket;
    584 			KASSERT(solocked2(so, so2));
    585 			if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
    586 				/*
    587 				 * Credentials are passed only once on
    588 				 * SOCK_STREAM and SOCK_SEQPACKET.
    589 				 */
    590 				unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
    591 				control = unp_addsockcred(l, control);
    592 			}
    593 			/*
    594 			 * Send to paired receive port, and then reduce
    595 			 * send buffer hiwater marks to maintain backpressure.
    596 			 * Wake up readers.
    597 			 */
    598 			if (control) {
    599 				if (sbappendcontrol(rcv, m, control) != 0)
    600 					control = NULL;
    601 			} else {
    602 				switch(so->so_type) {
    603 				case SOCK_SEQPACKET:
    604 					sbappendrecord(rcv, m);
    605 					break;
    606 				case SOCK_STREAM:
    607 					sbappend(rcv, m);
    608 					break;
    609 				default:
    610 					panic("uipc_usrreq");
    611 					break;
    612 				}
    613 			}
    614 			snd->sb_mbmax -=
    615 			    rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
    616 			unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
    617 			newhiwat = snd->sb_hiwat -
    618 			    (rcv->sb_cc - unp->unp_conn->unp_cc);
    619 			(void)chgsbsize(so->so_uidinfo,
    620 			    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
    621 			unp->unp_conn->unp_cc = rcv->sb_cc;
    622 			sorwakeup(so2);
    623 #undef snd
    624 #undef rcv
    625 			if (control != NULL) {
    626 				unp_dispose(control);
    627 				m_freem(control);
    628 			}
    629 			break;
    630 
    631 		default:
    632 			panic("uipc 4");
    633 		}
    634 		break;
    635 
    636 	case PRU_ABORT:
    637 		(void)unp_drop(unp, ECONNABORTED);
    638 
    639 		KASSERT(so->so_head == NULL);
    640 #ifdef DIAGNOSTIC
    641 		if (so->so_pcb == NULL)
    642 			panic("uipc 5: drop killed pcb");
    643 #endif
    644 		unp_detach(unp);
    645 		break;
    646 
    647 	case PRU_SENSE:
    648 		((struct stat *) m)->st_blksize = so->so_snd.sb_hiwat;
    649 		switch (so->so_type) {
    650 		case SOCK_SEQPACKET: /* FALLTHROUGH */
    651 		case SOCK_STREAM:
    652 			if (unp->unp_conn == 0)
    653 				break;
    654 
    655 			so2 = unp->unp_conn->unp_socket;
    656 			KASSERT(solocked2(so, so2));
    657 			((struct stat *) m)->st_blksize += so2->so_rcv.sb_cc;
    658 			break;
    659 		default:
    660 			break;
    661 		}
    662 		((struct stat *) m)->st_dev = NODEV;
    663 		if (unp->unp_ino == 0)
    664 			unp->unp_ino = unp_ino++;
    665 		((struct stat *) m)->st_atimespec =
    666 		    ((struct stat *) m)->st_mtimespec =
    667 		    ((struct stat *) m)->st_ctimespec = unp->unp_ctime;
    668 		((struct stat *) m)->st_ino = unp->unp_ino;
    669 		return (0);
    670 
    671 	case PRU_RCVOOB:
    672 		error = EOPNOTSUPP;
    673 		break;
    674 
    675 	case PRU_SENDOOB:
    676 		m_freem(control);
    677 		m_freem(m);
    678 		error = EOPNOTSUPP;
    679 		break;
    680 
    681 	case PRU_SOCKADDR:
    682 		unp_setaddr(so, nam, false);
    683 		break;
    684 
    685 	case PRU_PEERADDR:
    686 		unp_setaddr(so, nam, true);
    687 		break;
    688 
    689 	default:
    690 		panic("piusrreq");
    691 	}
    692 
    693 release:
    694 	return (error);
    695 }
    696 
    697 /*
    698  * Unix domain socket option processing.
    699  */
    700 int
    701 uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
    702 {
    703 	struct unpcb *unp = sotounpcb(so);
    704 	int optval = 0, error = 0;
    705 
    706 	KASSERT(solocked(so));
    707 
    708 	if (sopt->sopt_level != 0) {
    709 		error = ENOPROTOOPT;
    710 	} else switch (op) {
    711 
    712 	case PRCO_SETOPT:
    713 		switch (sopt->sopt_name) {
    714 		case LOCAL_CREDS:
    715 		case LOCAL_CONNWAIT:
    716 			error = sockopt_getint(sopt, &optval);
    717 			if (error)
    718 				break;
    719 			switch (sopt->sopt_name) {
    720 #define	OPTSET(bit) \
    721 	if (optval) \
    722 		unp->unp_flags |= (bit); \
    723 	else \
    724 		unp->unp_flags &= ~(bit);
    725 
    726 			case LOCAL_CREDS:
    727 				OPTSET(UNP_WANTCRED);
    728 				break;
    729 			case LOCAL_CONNWAIT:
    730 				OPTSET(UNP_CONNWAIT);
    731 				break;
    732 			}
    733 			break;
    734 #undef OPTSET
    735 
    736 		default:
    737 			error = ENOPROTOOPT;
    738 			break;
    739 		}
    740 		break;
    741 
    742 	case PRCO_GETOPT:
    743 		sounlock(so);
    744 		switch (sopt->sopt_name) {
    745 		case LOCAL_PEEREID:
    746 			if (unp->unp_flags & UNP_EIDSVALID) {
    747 				error = sockopt_set(sopt,
    748 				    &unp->unp_connid, sizeof(unp->unp_connid));
    749 			} else {
    750 				error = EINVAL;
    751 			}
    752 			break;
    753 		case LOCAL_CREDS:
    754 #define	OPTBIT(bit)	(unp->unp_flags & (bit) ? 1 : 0)
    755 
    756 			optval = OPTBIT(UNP_WANTCRED);
    757 			error = sockopt_setint(sopt, optval);
    758 			break;
    759 #undef OPTBIT
    760 
    761 		default:
    762 			error = ENOPROTOOPT;
    763 			break;
    764 		}
    765 		solock(so);
    766 		break;
    767 	}
    768 	return (error);
    769 }
    770 
    771 /*
    772  * Both send and receive buffers are allocated PIPSIZ bytes of buffering
    773  * for stream sockets, although the total for sender and receiver is
    774  * actually only PIPSIZ.
    775  * Datagram sockets really use the sendspace as the maximum datagram size,
    776  * and don't really want to reserve the sendspace.  Their recvspace should
    777  * be large enough for at least one max-size datagram plus address.
    778  */
    779 #define	PIPSIZ	4096
    780 u_long	unpst_sendspace = PIPSIZ;
    781 u_long	unpst_recvspace = PIPSIZ;
    782 u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
    783 u_long	unpdg_recvspace = 4*1024;
    784 
    785 u_int	unp_rights;			/* files in flight */
    786 u_int	unp_rights_ratio = 2;		/* limit, fraction of maxfiles */
    787 
    788 int
    789 unp_attach(struct socket *so)
    790 {
    791 	struct unpcb *unp;
    792 	int error;
    793 
    794 	switch (so->so_type) {
    795 	case SOCK_SEQPACKET: /* FALLTHROUGH */
    796 	case SOCK_STREAM:
    797 		if (so->so_lock == NULL) {
    798 			/*
    799 			 * XXX Assuming that no socket locks are held,
    800 			 * as this call may sleep.
    801 			 */
    802 			so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    803 			solock(so);
    804 		}
    805 		if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
    806 			error = soreserve(so, unpst_sendspace, unpst_recvspace);
    807 			if (error != 0)
    808 				return (error);
    809 		}
    810 		break;
    811 
    812 	case SOCK_DGRAM:
    813 		if (so->so_lock == NULL) {
    814 			mutex_obj_hold(uipc_lock);
    815 			so->so_lock = uipc_lock;
    816 			solock(so);
    817 		}
    818 		if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
    819 			error = soreserve(so, unpdg_sendspace, unpdg_recvspace);
    820 			if (error != 0)
    821 				return (error);
    822 		}
    823 		break;
    824 
    825 	default:
    826 		panic("unp_attach");
    827 	}
    828 	KASSERT(solocked(so));
    829 	unp = malloc(sizeof(*unp), M_PCB, M_NOWAIT);
    830 	if (unp == NULL)
    831 		return (ENOBUFS);
    832 	memset(unp, 0, sizeof(*unp));
    833 	unp->unp_socket = so;
    834 	so->so_pcb = unp;
    835 	nanotime(&unp->unp_ctime);
    836 	return (0);
    837 }
    838 
    839 void
    840 unp_detach(struct unpcb *unp)
    841 {
    842 	struct socket *so;
    843 	vnode_t *vp;
    844 
    845 	so = unp->unp_socket;
    846 
    847  retry:
    848 	if ((vp = unp->unp_vnode) != NULL) {
    849 		sounlock(so);
    850 		/* Acquire v_interlock to protect against unp_connect(). */
    851 		/* XXXAD racy */
    852 		mutex_enter(vp->v_interlock);
    853 		vp->v_socket = NULL;
    854 		mutex_exit(vp->v_interlock);
    855 		vrele(vp);
    856 		solock(so);
    857 		unp->unp_vnode = NULL;
    858 	}
    859 	if (unp->unp_conn)
    860 		unp_disconnect(unp);
    861 	while (unp->unp_refs) {
    862 		KASSERT(solocked2(so, unp->unp_refs->unp_socket));
    863 		if (unp_drop(unp->unp_refs, ECONNRESET)) {
    864 			solock(so);
    865 			goto retry;
    866 		}
    867 	}
    868 	soisdisconnected(so);
    869 	so->so_pcb = NULL;
    870 	if (unp_rights) {
    871 		/*
    872 		 * Normally the receive buffer is flushed later, in sofree,
    873 		 * but if our receive buffer holds references to files that
    874 		 * are now garbage, we will enqueue those file references to
    875 		 * the garbage collector and kick it into action.
    876 		 */
    877 		sorflush(so);
    878 		unp_free(unp);
    879 		unp_thread_kick();
    880 	} else
    881 		unp_free(unp);
    882 }
    883 
    884 /*
    885  * Allocate the new sockaddr.  We have to allocate one
    886  * extra byte so that we can ensure that the pathname
    887  * is nul-terminated. Note that unlike linux, we don't
    888  * include in the address length the NUL in the path
    889  * component, because doing so, would exceed sizeof(sockaddr_un)
    890  * for fully occupied pathnames. Linux is also inconsistent,
    891  * because it does not include the NUL in the length of
    892  * what it calls "abstract" unix sockets.
    893  */
    894 static struct sockaddr_un *
    895 makeun(struct mbuf *nam, size_t *addrlen) {
    896 	struct sockaddr_un *sun;
    897 
    898 	*addrlen = nam->m_len + 1;
    899 	sun = malloc(*addrlen, M_SONAME, M_WAITOK);
    900 	m_copydata(nam, 0, nam->m_len, (void *)sun);
    901 	*(((char *)sun) + nam->m_len) = '\0';
    902 	sun->sun_len = strlen(sun->sun_path) +
    903 	    offsetof(struct sockaddr_un, sun_path);
    904 	return sun;
    905 }
    906 
    907 int
    908 unp_bind(struct socket *so, struct mbuf *nam, struct lwp *l)
    909 {
    910 	struct sockaddr_un *sun;
    911 	struct unpcb *unp;
    912 	vnode_t *vp;
    913 	struct vattr vattr;
    914 	size_t addrlen;
    915 	int error;
    916 	struct pathbuf *pb;
    917 	struct nameidata nd;
    918 	proc_t *p;
    919 
    920 	unp = sotounpcb(so);
    921 	if (unp->unp_vnode != NULL)
    922 		return (EINVAL);
    923 	if ((unp->unp_flags & UNP_BUSY) != 0) {
    924 		/*
    925 		 * EALREADY may not be strictly accurate, but since this
    926 		 * is a major application error it's hardly a big deal.
    927 		 */
    928 		return (EALREADY);
    929 	}
    930 	unp->unp_flags |= UNP_BUSY;
    931 	sounlock(so);
    932 
    933 	p = l->l_proc;
    934 	sun = makeun(nam, &addrlen);
    935 
    936 	pb = pathbuf_create(sun->sun_path);
    937 	if (pb == NULL) {
    938 		error = ENOMEM;
    939 		goto bad;
    940 	}
    941 	NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, pb);
    942 
    943 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
    944 	if ((error = namei(&nd)) != 0) {
    945 		pathbuf_destroy(pb);
    946 		goto bad;
    947 	}
    948 	vp = nd.ni_vp;
    949 	if (vp != NULL) {
    950 		VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
    951 		if (nd.ni_dvp == vp)
    952 			vrele(nd.ni_dvp);
    953 		else
    954 			vput(nd.ni_dvp);
    955 		vrele(vp);
    956 		pathbuf_destroy(pb);
    957 		error = EADDRINUSE;
    958 		goto bad;
    959 	}
    960 	vattr_null(&vattr);
    961 	vattr.va_type = VSOCK;
    962 	vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
    963 	error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
    964 	if (error) {
    965 		vput(nd.ni_dvp);
    966 		pathbuf_destroy(pb);
    967 		goto bad;
    968 	}
    969 	vp = nd.ni_vp;
    970 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    971 	solock(so);
    972 	vp->v_socket = unp->unp_socket;
    973 	unp->unp_vnode = vp;
    974 	unp->unp_addrlen = addrlen;
    975 	unp->unp_addr = sun;
    976 	unp->unp_connid.unp_pid = p->p_pid;
    977 	unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
    978 	unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
    979 	unp->unp_flags |= UNP_EIDSBIND;
    980 	VOP_UNLOCK(vp);
    981 	vput(nd.ni_dvp);
    982 	unp->unp_flags &= ~UNP_BUSY;
    983 	pathbuf_destroy(pb);
    984 	return (0);
    985 
    986  bad:
    987 	free(sun, M_SONAME);
    988 	solock(so);
    989 	unp->unp_flags &= ~UNP_BUSY;
    990 	return (error);
    991 }
    992 
    993 int
    994 unp_connect(struct socket *so, struct mbuf *nam, struct lwp *l)
    995 {
    996 	struct sockaddr_un *sun;
    997 	vnode_t *vp;
    998 	struct socket *so2, *so3;
    999 	struct unpcb *unp, *unp2, *unp3;
   1000 	size_t addrlen;
   1001 	int error;
   1002 	struct pathbuf *pb;
   1003 	struct nameidata nd;
   1004 
   1005 	unp = sotounpcb(so);
   1006 	if ((unp->unp_flags & UNP_BUSY) != 0) {
   1007 		/*
   1008 		 * EALREADY may not be strictly accurate, but since this
   1009 		 * is a major application error it's hardly a big deal.
   1010 		 */
   1011 		return (EALREADY);
   1012 	}
   1013 	unp->unp_flags |= UNP_BUSY;
   1014 	sounlock(so);
   1015 
   1016 	sun = makeun(nam, &addrlen);
   1017 	pb = pathbuf_create(sun->sun_path);
   1018 	if (pb == NULL) {
   1019 		error = ENOMEM;
   1020 		goto bad2;
   1021 	}
   1022 
   1023 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
   1024 
   1025 	if ((error = namei(&nd)) != 0) {
   1026 		pathbuf_destroy(pb);
   1027 		goto bad2;
   1028 	}
   1029 	vp = nd.ni_vp;
   1030 	if (vp->v_type != VSOCK) {
   1031 		error = ENOTSOCK;
   1032 		goto bad;
   1033 	}
   1034 	pathbuf_destroy(pb);
   1035 	if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
   1036 		goto bad;
   1037 	/* Acquire v_interlock to protect against unp_detach(). */
   1038 	mutex_enter(vp->v_interlock);
   1039 	so2 = vp->v_socket;
   1040 	if (so2 == NULL) {
   1041 		mutex_exit(vp->v_interlock);
   1042 		error = ECONNREFUSED;
   1043 		goto bad;
   1044 	}
   1045 	if (so->so_type != so2->so_type) {
   1046 		mutex_exit(vp->v_interlock);
   1047 		error = EPROTOTYPE;
   1048 		goto bad;
   1049 	}
   1050 	solock(so);
   1051 	unp_resetlock(so);
   1052 	mutex_exit(vp->v_interlock);
   1053 	if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
   1054 		/*
   1055 		 * This may seem somewhat fragile but is OK: if we can
   1056 		 * see SO_ACCEPTCONN set on the endpoint, then it must
   1057 		 * be locked by the domain-wide uipc_lock.
   1058 		 */
   1059 		KASSERT((so2->so_options & SO_ACCEPTCONN) == 0 ||
   1060 		    so2->so_lock == uipc_lock);
   1061 		if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
   1062 		    (so3 = sonewconn(so2, false)) == NULL) {
   1063 			error = ECONNREFUSED;
   1064 			sounlock(so);
   1065 			goto bad;
   1066 		}
   1067 		unp2 = sotounpcb(so2);
   1068 		unp3 = sotounpcb(so3);
   1069 		if (unp2->unp_addr) {
   1070 			unp3->unp_addr = malloc(unp2->unp_addrlen,
   1071 			    M_SONAME, M_WAITOK);
   1072 			memcpy(unp3->unp_addr, unp2->unp_addr,
   1073 			    unp2->unp_addrlen);
   1074 			unp3->unp_addrlen = unp2->unp_addrlen;
   1075 		}
   1076 		unp3->unp_flags = unp2->unp_flags;
   1077 		unp3->unp_connid.unp_pid = l->l_proc->p_pid;
   1078 		unp3->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
   1079 		unp3->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
   1080 		unp3->unp_flags |= UNP_EIDSVALID;
   1081 		if (unp2->unp_flags & UNP_EIDSBIND) {
   1082 			unp->unp_connid = unp2->unp_connid;
   1083 			unp->unp_flags |= UNP_EIDSVALID;
   1084 		}
   1085 		so2 = so3;
   1086 	}
   1087 	error = unp_connect2(so, so2, PRU_CONNECT);
   1088 	sounlock(so);
   1089  bad:
   1090 	vput(vp);
   1091  bad2:
   1092 	free(sun, M_SONAME);
   1093 	solock(so);
   1094 	unp->unp_flags &= ~UNP_BUSY;
   1095 	return (error);
   1096 }
   1097 
   1098 int
   1099 unp_connect2(struct socket *so, struct socket *so2, int req)
   1100 {
   1101 	struct unpcb *unp = sotounpcb(so);
   1102 	struct unpcb *unp2;
   1103 
   1104 	if (so2->so_type != so->so_type)
   1105 		return (EPROTOTYPE);
   1106 
   1107 	/*
   1108 	 * All three sockets involved must be locked by same lock:
   1109 	 *
   1110 	 * local endpoint (so)
   1111 	 * remote endpoint (so2)
   1112 	 * queue head (so2->so_head, only if PR_CONNREQUIRED)
   1113 	 */
   1114 	KASSERT(solocked2(so, so2));
   1115 	KASSERT(so->so_head == NULL);
   1116 	if (so2->so_head != NULL) {
   1117 		KASSERT(so2->so_lock == uipc_lock);
   1118 		KASSERT(solocked2(so2, so2->so_head));
   1119 	}
   1120 
   1121 	unp2 = sotounpcb(so2);
   1122 	unp->unp_conn = unp2;
   1123 	switch (so->so_type) {
   1124 
   1125 	case SOCK_DGRAM:
   1126 		unp->unp_nextref = unp2->unp_refs;
   1127 		unp2->unp_refs = unp;
   1128 		soisconnected(so);
   1129 		break;
   1130 
   1131 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1132 	case SOCK_STREAM:
   1133 		unp2->unp_conn = unp;
   1134 		if (req == PRU_CONNECT &&
   1135 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
   1136 			soisconnecting(so);
   1137 		else
   1138 			soisconnected(so);
   1139 		soisconnected(so2);
   1140 		/*
   1141 		 * If the connection is fully established, break the
   1142 		 * association with uipc_lock and give the connected
   1143 		 * pair a seperate lock to share.  For CONNECT2, we
   1144 		 * require that the locks already match (the sockets
   1145 		 * are created that way).
   1146 		 */
   1147 		if (req == PRU_CONNECT) {
   1148 			KASSERT(so2->so_head != NULL);
   1149 			unp_setpeerlocks(so, so2);
   1150 		}
   1151 		break;
   1152 
   1153 	default:
   1154 		panic("unp_connect2");
   1155 	}
   1156 	return (0);
   1157 }
   1158 
   1159 void
   1160 unp_disconnect(struct unpcb *unp)
   1161 {
   1162 	struct unpcb *unp2 = unp->unp_conn;
   1163 	struct socket *so;
   1164 
   1165 	if (unp2 == 0)
   1166 		return;
   1167 	unp->unp_conn = 0;
   1168 	so = unp->unp_socket;
   1169 	switch (so->so_type) {
   1170 	case SOCK_DGRAM:
   1171 		if (unp2->unp_refs == unp)
   1172 			unp2->unp_refs = unp->unp_nextref;
   1173 		else {
   1174 			unp2 = unp2->unp_refs;
   1175 			for (;;) {
   1176 				KASSERT(solocked2(so, unp2->unp_socket));
   1177 				if (unp2 == 0)
   1178 					panic("unp_disconnect");
   1179 				if (unp2->unp_nextref == unp)
   1180 					break;
   1181 				unp2 = unp2->unp_nextref;
   1182 			}
   1183 			unp2->unp_nextref = unp->unp_nextref;
   1184 		}
   1185 		unp->unp_nextref = 0;
   1186 		so->so_state &= ~SS_ISCONNECTED;
   1187 		break;
   1188 
   1189 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1190 	case SOCK_STREAM:
   1191 		KASSERT(solocked2(so, unp2->unp_socket));
   1192 		soisdisconnected(so);
   1193 		unp2->unp_conn = 0;
   1194 		soisdisconnected(unp2->unp_socket);
   1195 		break;
   1196 	}
   1197 }
   1198 
   1199 #ifdef notdef
   1200 unp_abort(struct unpcb *unp)
   1201 {
   1202 	unp_detach(unp);
   1203 }
   1204 #endif
   1205 
   1206 void
   1207 unp_shutdown(struct unpcb *unp)
   1208 {
   1209 	struct socket *so;
   1210 
   1211 	switch(unp->unp_socket->so_type) {
   1212 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1213 	case SOCK_STREAM:
   1214 		if (unp->unp_conn && (so = unp->unp_conn->unp_socket))
   1215 			socantrcvmore(so);
   1216 		break;
   1217 	default:
   1218 		break;
   1219 	}
   1220 }
   1221 
   1222 bool
   1223 unp_drop(struct unpcb *unp, int errno)
   1224 {
   1225 	struct socket *so = unp->unp_socket;
   1226 
   1227 	KASSERT(solocked(so));
   1228 
   1229 	so->so_error = errno;
   1230 	unp_disconnect(unp);
   1231 	if (so->so_head) {
   1232 		so->so_pcb = NULL;
   1233 		/* sofree() drops the socket lock */
   1234 		sofree(so);
   1235 		unp_free(unp);
   1236 		return true;
   1237 	}
   1238 	return false;
   1239 }
   1240 
   1241 #ifdef notdef
   1242 unp_drain(void)
   1243 {
   1244 
   1245 }
   1246 #endif
   1247 
   1248 int
   1249 unp_externalize(struct mbuf *rights, struct lwp *l, int flags)
   1250 {
   1251 	struct cmsghdr * const cm = mtod(rights, struct cmsghdr *);
   1252 	struct proc * const p = l->l_proc;
   1253 	file_t **rp;
   1254 	int error = 0;
   1255 
   1256 	const size_t nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
   1257 	    sizeof(file_t *);
   1258 	if (nfds == 0)
   1259 		goto noop;
   1260 
   1261 	int * const fdp = kmem_alloc(nfds * sizeof(int), KM_SLEEP);
   1262 	rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
   1263 
   1264 	/* Make sure the recipient should be able to see the files.. */
   1265 	rp = (file_t **)CMSG_DATA(cm);
   1266 	for (size_t i = 0; i < nfds; i++) {
   1267 		file_t * const fp = *rp++;
   1268 		if (fp == NULL) {
   1269 			error = EINVAL;
   1270 			goto out;
   1271 		}
   1272 		/*
   1273 		 * If we are in a chroot'ed directory, and
   1274 		 * someone wants to pass us a directory, make
   1275 		 * sure it's inside the subtree we're allowed
   1276 		 * to access.
   1277 		 */
   1278 		if (p->p_cwdi->cwdi_rdir != NULL && fp->f_type == DTYPE_VNODE) {
   1279 			vnode_t *vp = (vnode_t *)fp->f_data;
   1280 			if ((vp->v_type == VDIR) &&
   1281 			    !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
   1282 				error = EPERM;
   1283 				goto out;
   1284 			}
   1285 		}
   1286 	}
   1287 
   1288  restart:
   1289 	/*
   1290 	 * First loop -- allocate file descriptor table slots for the
   1291 	 * new files.
   1292 	 */
   1293 	for (size_t i = 0; i < nfds; i++) {
   1294 		if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
   1295 			/*
   1296 			 * Back out what we've done so far.
   1297 			 */
   1298 			while (i-- > 0) {
   1299 				fd_abort(p, NULL, fdp[i]);
   1300 			}
   1301 			if (error == ENOSPC) {
   1302 				fd_tryexpand(p);
   1303 				error = 0;
   1304 				goto restart;
   1305 			}
   1306 			/*
   1307 			 * This is the error that has historically
   1308 			 * been returned, and some callers may
   1309 			 * expect it.
   1310 			 */
   1311 			error = EMSGSIZE;
   1312 			goto out;
   1313 		}
   1314 	}
   1315 
   1316 	/*
   1317 	 * Now that adding them has succeeded, update all of the
   1318 	 * file passing state and affix the descriptors.
   1319 	 */
   1320 	rp = (file_t **)CMSG_DATA(cm);
   1321 	int *ofdp = (int *)CMSG_DATA(cm);
   1322 	for (size_t i = 0; i < nfds; i++) {
   1323 		file_t * const fp = *rp++;
   1324 		const int fd = fdp[i];
   1325 		atomic_dec_uint(&unp_rights);
   1326 		fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
   1327 		fd_affix(p, fp, fd);
   1328 		/*
   1329 		 * Done with this file pointer, replace it with a fd;
   1330 		 */
   1331 		*ofdp++ = fd;
   1332 		mutex_enter(&fp->f_lock);
   1333 		fp->f_msgcount--;
   1334 		mutex_exit(&fp->f_lock);
   1335 		/*
   1336 		 * Note that fd_affix() adds a reference to the file.
   1337 		 * The file may already have been closed by another
   1338 		 * LWP in the process, so we must drop the reference
   1339 		 * added by unp_internalize() with closef().
   1340 		 */
   1341 		closef(fp);
   1342 	}
   1343 
   1344 	/*
   1345 	 * Adjust length, in case of transition from large file_t
   1346 	 * pointers to ints.
   1347 	 */
   1348 	if (sizeof(file_t *) != sizeof(int)) {
   1349 		cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
   1350 		rights->m_len = CMSG_SPACE(nfds * sizeof(int));
   1351 	}
   1352  out:
   1353 	if (__predict_false(error != 0)) {
   1354 		file_t **const fpp = (file_t **)CMSG_DATA(cm);
   1355 		for (size_t i = 0; i < nfds; i++)
   1356 			unp_discard_now(fpp[i]);
   1357 		/*
   1358 		 * Truncate the array so that nobody will try to interpret
   1359 		 * what is now garbage in it.
   1360 		 */
   1361 		cm->cmsg_len = CMSG_LEN(0);
   1362 		rights->m_len = CMSG_SPACE(0);
   1363 	}
   1364 	rw_exit(&p->p_cwdi->cwdi_lock);
   1365 	kmem_free(fdp, nfds * sizeof(int));
   1366 
   1367  noop:
   1368 	/*
   1369 	 * Don't disclose kernel memory in the alignment space.
   1370 	 */
   1371 	KASSERT(cm->cmsg_len <= rights->m_len);
   1372 	memset(&mtod(rights, char *)[cm->cmsg_len], 0, rights->m_len -
   1373 	    cm->cmsg_len);
   1374 	return error;
   1375 }
   1376 
   1377 int
   1378 unp_internalize(struct mbuf **controlp)
   1379 {
   1380 	filedesc_t *fdescp = curlwp->l_fd;
   1381 	struct mbuf *control = *controlp;
   1382 	struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
   1383 	file_t **rp, **files;
   1384 	file_t *fp;
   1385 	int i, fd, *fdp;
   1386 	int nfds, error;
   1387 	u_int maxmsg;
   1388 
   1389 	error = 0;
   1390 	newcm = NULL;
   1391 
   1392 	/* Sanity check the control message header. */
   1393 	if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
   1394 	    cm->cmsg_len > control->m_len ||
   1395 	    cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
   1396 		return (EINVAL);
   1397 
   1398 	/*
   1399 	 * Verify that the file descriptors are valid, and acquire
   1400 	 * a reference to each.
   1401 	 */
   1402 	nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
   1403 	fdp = (int *)CMSG_DATA(cm);
   1404 	maxmsg = maxfiles / unp_rights_ratio;
   1405 	for (i = 0; i < nfds; i++) {
   1406 		fd = *fdp++;
   1407 		if (atomic_inc_uint_nv(&unp_rights) > maxmsg) {
   1408 			atomic_dec_uint(&unp_rights);
   1409 			nfds = i;
   1410 			error = EAGAIN;
   1411 			goto out;
   1412 		}
   1413 		if ((fp = fd_getfile(fd)) == NULL
   1414 		    || fp->f_type == DTYPE_KQUEUE) {
   1415 		    	if (fp)
   1416 		    		fd_putfile(fd);
   1417 			atomic_dec_uint(&unp_rights);
   1418 			nfds = i;
   1419 			error = EBADF;
   1420 			goto out;
   1421 		}
   1422 	}
   1423 
   1424 	/* Allocate new space and copy header into it. */
   1425 	newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
   1426 	if (newcm == NULL) {
   1427 		error = E2BIG;
   1428 		goto out;
   1429 	}
   1430 	memcpy(newcm, cm, sizeof(struct cmsghdr));
   1431 	files = (file_t **)CMSG_DATA(newcm);
   1432 
   1433 	/*
   1434 	 * Transform the file descriptors into file_t pointers, in
   1435 	 * reverse order so that if pointers are bigger than ints, the
   1436 	 * int won't get until we're done.  No need to lock, as we have
   1437 	 * already validated the descriptors with fd_getfile().
   1438 	 */
   1439 	fdp = (int *)CMSG_DATA(cm) + nfds;
   1440 	rp = files + nfds;
   1441 	for (i = 0; i < nfds; i++) {
   1442 		fp = fdescp->fd_dt->dt_ff[*--fdp]->ff_file;
   1443 		KASSERT(fp != NULL);
   1444 		mutex_enter(&fp->f_lock);
   1445 		*--rp = fp;
   1446 		fp->f_count++;
   1447 		fp->f_msgcount++;
   1448 		mutex_exit(&fp->f_lock);
   1449 	}
   1450 
   1451  out:
   1452  	/* Release descriptor references. */
   1453 	fdp = (int *)CMSG_DATA(cm);
   1454 	for (i = 0; i < nfds; i++) {
   1455 		fd_putfile(*fdp++);
   1456 		if (error != 0) {
   1457 			atomic_dec_uint(&unp_rights);
   1458 		}
   1459 	}
   1460 
   1461 	if (error == 0) {
   1462 		if (control->m_flags & M_EXT) {
   1463 			m_freem(control);
   1464 			*controlp = control = m_get(M_WAIT, MT_CONTROL);
   1465 		}
   1466 		MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
   1467 		    M_MBUF, NULL, NULL);
   1468 		cm = newcm;
   1469 		/*
   1470 		 * Adjust message & mbuf to note amount of space
   1471 		 * actually used.
   1472 		 */
   1473 		cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
   1474 		control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
   1475 	}
   1476 
   1477 	return error;
   1478 }
   1479 
   1480 struct mbuf *
   1481 unp_addsockcred(struct lwp *l, struct mbuf *control)
   1482 {
   1483 	struct sockcred *sc;
   1484 	struct mbuf *m;
   1485 	void *p;
   1486 
   1487 	m = sbcreatecontrol1(&p, SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)),
   1488 		SCM_CREDS, SOL_SOCKET, M_WAITOK);
   1489 	if (m == NULL)
   1490 		return control;
   1491 
   1492 	sc = p;
   1493 	sc->sc_uid = kauth_cred_getuid(l->l_cred);
   1494 	sc->sc_euid = kauth_cred_geteuid(l->l_cred);
   1495 	sc->sc_gid = kauth_cred_getgid(l->l_cred);
   1496 	sc->sc_egid = kauth_cred_getegid(l->l_cred);
   1497 	sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
   1498 
   1499 	for (int i = 0; i < sc->sc_ngroups; i++)
   1500 		sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
   1501 
   1502 	return m_add(control, m);
   1503 }
   1504 
   1505 /*
   1506  * Do a mark-sweep GC of files in the system, to free up any which are
   1507  * caught in flight to an about-to-be-closed socket.  Additionally,
   1508  * process deferred file closures.
   1509  */
   1510 static void
   1511 unp_gc(file_t *dp)
   1512 {
   1513 	extern	struct domain unixdomain;
   1514 	file_t *fp, *np;
   1515 	struct socket *so, *so1;
   1516 	u_int i, old, new;
   1517 	bool didwork;
   1518 
   1519 	KASSERT(curlwp == unp_thread_lwp);
   1520 	KASSERT(mutex_owned(&filelist_lock));
   1521 
   1522 	/*
   1523 	 * First, process deferred file closures.
   1524 	 */
   1525 	while (!SLIST_EMPTY(&unp_thread_discard)) {
   1526 		fp = SLIST_FIRST(&unp_thread_discard);
   1527 		KASSERT(fp->f_unpcount > 0);
   1528 		KASSERT(fp->f_count > 0);
   1529 		KASSERT(fp->f_msgcount > 0);
   1530 		KASSERT(fp->f_count >= fp->f_unpcount);
   1531 		KASSERT(fp->f_count >= fp->f_msgcount);
   1532 		KASSERT(fp->f_msgcount >= fp->f_unpcount);
   1533 		SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist);
   1534 		i = fp->f_unpcount;
   1535 		fp->f_unpcount = 0;
   1536 		mutex_exit(&filelist_lock);
   1537 		for (; i != 0; i--) {
   1538 			unp_discard_now(fp);
   1539 		}
   1540 		mutex_enter(&filelist_lock);
   1541 	}
   1542 
   1543 	/*
   1544 	 * Clear mark bits.  Ensure that we don't consider new files
   1545 	 * entering the file table during this loop (they will not have
   1546 	 * FSCAN set).
   1547 	 */
   1548 	unp_defer = 0;
   1549 	LIST_FOREACH(fp, &filehead, f_list) {
   1550 		for (old = fp->f_flag;; old = new) {
   1551 			new = atomic_cas_uint(&fp->f_flag, old,
   1552 			    (old | FSCAN) & ~(FMARK|FDEFER));
   1553 			if (__predict_true(old == new)) {
   1554 				break;
   1555 			}
   1556 		}
   1557 	}
   1558 
   1559 	/*
   1560 	 * Iterate over the set of sockets, marking ones believed (based on
   1561 	 * refcount) to be referenced from a process, and marking for rescan
   1562 	 * sockets which are queued on a socket.  Recan continues descending
   1563 	 * and searching for sockets referenced by sockets (FDEFER), until
   1564 	 * there are no more socket->socket references to be discovered.
   1565 	 */
   1566 	do {
   1567 		didwork = false;
   1568 		for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
   1569 			KASSERT(mutex_owned(&filelist_lock));
   1570 			np = LIST_NEXT(fp, f_list);
   1571 			mutex_enter(&fp->f_lock);
   1572 			if ((fp->f_flag & FDEFER) != 0) {
   1573 				atomic_and_uint(&fp->f_flag, ~FDEFER);
   1574 				unp_defer--;
   1575 				KASSERT(fp->f_count != 0);
   1576 			} else {
   1577 				if (fp->f_count == 0 ||
   1578 				    (fp->f_flag & FMARK) != 0 ||
   1579 				    fp->f_count == fp->f_msgcount ||
   1580 				    fp->f_unpcount != 0) {
   1581 					mutex_exit(&fp->f_lock);
   1582 					continue;
   1583 				}
   1584 			}
   1585 			atomic_or_uint(&fp->f_flag, FMARK);
   1586 
   1587 			if (fp->f_type != DTYPE_SOCKET ||
   1588 			    (so = fp->f_data) == NULL ||
   1589 			    so->so_proto->pr_domain != &unixdomain ||
   1590 			    (so->so_proto->pr_flags & PR_RIGHTS) == 0) {
   1591 				mutex_exit(&fp->f_lock);
   1592 				continue;
   1593 			}
   1594 
   1595 			/* Gain file ref, mark our position, and unlock. */
   1596 			didwork = true;
   1597 			LIST_INSERT_AFTER(fp, dp, f_list);
   1598 			fp->f_count++;
   1599 			mutex_exit(&fp->f_lock);
   1600 			mutex_exit(&filelist_lock);
   1601 
   1602 			/*
   1603 			 * Mark files referenced from sockets queued on the
   1604 			 * accept queue as well.
   1605 			 */
   1606 			solock(so);
   1607 			unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
   1608 			if ((so->so_options & SO_ACCEPTCONN) != 0) {
   1609 				TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
   1610 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
   1611 				}
   1612 				TAILQ_FOREACH(so1, &so->so_q, so_qe) {
   1613 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
   1614 				}
   1615 			}
   1616 			sounlock(so);
   1617 
   1618 			/* Re-lock and restart from where we left off. */
   1619 			closef(fp);
   1620 			mutex_enter(&filelist_lock);
   1621 			np = LIST_NEXT(dp, f_list);
   1622 			LIST_REMOVE(dp, f_list);
   1623 		}
   1624 		/*
   1625 		 * Bail early if we did nothing in the loop above.  Could
   1626 		 * happen because of concurrent activity causing unp_defer
   1627 		 * to get out of sync.
   1628 		 */
   1629 	} while (unp_defer != 0 && didwork);
   1630 
   1631 	/*
   1632 	 * Sweep pass.
   1633 	 *
   1634 	 * We grab an extra reference to each of the files that are
   1635 	 * not otherwise accessible and then free the rights that are
   1636 	 * stored in messages on them.
   1637 	 */
   1638 	for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
   1639 		KASSERT(mutex_owned(&filelist_lock));
   1640 		np = LIST_NEXT(fp, f_list);
   1641 		mutex_enter(&fp->f_lock);
   1642 
   1643 		/*
   1644 		 * Ignore non-sockets.
   1645 		 * Ignore dead sockets, or sockets with pending close.
   1646 		 * Ignore sockets obviously referenced elsewhere.
   1647 		 * Ignore sockets marked as referenced by our scan.
   1648 		 * Ignore new sockets that did not exist during the scan.
   1649 		 */
   1650 		if (fp->f_type != DTYPE_SOCKET ||
   1651 		    fp->f_count == 0 || fp->f_unpcount != 0 ||
   1652 		    fp->f_count != fp->f_msgcount ||
   1653 		    (fp->f_flag & (FMARK | FSCAN)) != FSCAN) {
   1654 			mutex_exit(&fp->f_lock);
   1655 			continue;
   1656 		}
   1657 
   1658 		/* Gain file ref, mark our position, and unlock. */
   1659 		LIST_INSERT_AFTER(fp, dp, f_list);
   1660 		fp->f_count++;
   1661 		mutex_exit(&fp->f_lock);
   1662 		mutex_exit(&filelist_lock);
   1663 
   1664 		/*
   1665 		 * Flush all data from the socket's receive buffer.
   1666 		 * This will cause files referenced only by the
   1667 		 * socket to be queued for close.
   1668 		 */
   1669 		so = fp->f_data;
   1670 		solock(so);
   1671 		sorflush(so);
   1672 		sounlock(so);
   1673 
   1674 		/* Re-lock and restart from where we left off. */
   1675 		closef(fp);
   1676 		mutex_enter(&filelist_lock);
   1677 		np = LIST_NEXT(dp, f_list);
   1678 		LIST_REMOVE(dp, f_list);
   1679 	}
   1680 }
   1681 
   1682 /*
   1683  * Garbage collector thread.  While SCM_RIGHTS messages are in transit,
   1684  * wake once per second to garbage collect.  Run continually while we
   1685  * have deferred closes to process.
   1686  */
   1687 static void
   1688 unp_thread(void *cookie)
   1689 {
   1690 	file_t *dp;
   1691 
   1692 	/* Allocate a dummy file for our scans. */
   1693 	if ((dp = fgetdummy()) == NULL) {
   1694 		panic("unp_thread");
   1695 	}
   1696 
   1697 	mutex_enter(&filelist_lock);
   1698 	for (;;) {
   1699 		KASSERT(mutex_owned(&filelist_lock));
   1700 		if (SLIST_EMPTY(&unp_thread_discard)) {
   1701 			if (unp_rights != 0) {
   1702 				(void)cv_timedwait(&unp_thread_cv,
   1703 				    &filelist_lock, hz);
   1704 			} else {
   1705 				cv_wait(&unp_thread_cv, &filelist_lock);
   1706 			}
   1707 		}
   1708 		unp_gc(dp);
   1709 	}
   1710 	/* NOTREACHED */
   1711 }
   1712 
   1713 /*
   1714  * Kick the garbage collector into action if there is something for
   1715  * it to process.
   1716  */
   1717 static void
   1718 unp_thread_kick(void)
   1719 {
   1720 
   1721 	if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) {
   1722 		mutex_enter(&filelist_lock);
   1723 		cv_signal(&unp_thread_cv);
   1724 		mutex_exit(&filelist_lock);
   1725 	}
   1726 }
   1727 
   1728 void
   1729 unp_dispose(struct mbuf *m)
   1730 {
   1731 
   1732 	if (m)
   1733 		unp_scan(m, unp_discard_later, 1);
   1734 }
   1735 
   1736 void
   1737 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
   1738 {
   1739 	struct mbuf *m;
   1740 	file_t **rp, *fp;
   1741 	struct cmsghdr *cm;
   1742 	int i, qfds;
   1743 
   1744 	while (m0) {
   1745 		for (m = m0; m; m = m->m_next) {
   1746 			if (m->m_type != MT_CONTROL ||
   1747 			    m->m_len < sizeof(*cm)) {
   1748 			    	continue;
   1749 			}
   1750 			cm = mtod(m, struct cmsghdr *);
   1751 			if (cm->cmsg_level != SOL_SOCKET ||
   1752 			    cm->cmsg_type != SCM_RIGHTS)
   1753 				continue;
   1754 			qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
   1755 			    / sizeof(file_t *);
   1756 			rp = (file_t **)CMSG_DATA(cm);
   1757 			for (i = 0; i < qfds; i++) {
   1758 				fp = *rp;
   1759 				if (discard) {
   1760 					*rp = 0;
   1761 				}
   1762 				(*op)(fp);
   1763 				rp++;
   1764 			}
   1765 		}
   1766 		m0 = m0->m_nextpkt;
   1767 	}
   1768 }
   1769 
   1770 void
   1771 unp_mark(file_t *fp)
   1772 {
   1773 
   1774 	if (fp == NULL)
   1775 		return;
   1776 
   1777 	/* If we're already deferred, don't screw up the defer count */
   1778 	mutex_enter(&fp->f_lock);
   1779 	if (fp->f_flag & (FMARK | FDEFER)) {
   1780 		mutex_exit(&fp->f_lock);
   1781 		return;
   1782 	}
   1783 
   1784 	/*
   1785 	 * Minimize the number of deferrals...  Sockets are the only type of
   1786 	 * file which can hold references to another file, so just mark
   1787 	 * other files, and defer unmarked sockets for the next pass.
   1788 	 */
   1789 	if (fp->f_type == DTYPE_SOCKET) {
   1790 		unp_defer++;
   1791 		KASSERT(fp->f_count != 0);
   1792 		atomic_or_uint(&fp->f_flag, FDEFER);
   1793 	} else {
   1794 		atomic_or_uint(&fp->f_flag, FMARK);
   1795 	}
   1796 	mutex_exit(&fp->f_lock);
   1797 }
   1798 
   1799 static void
   1800 unp_discard_now(file_t *fp)
   1801 {
   1802 
   1803 	if (fp == NULL)
   1804 		return;
   1805 
   1806 	KASSERT(fp->f_count > 0);
   1807 	KASSERT(fp->f_msgcount > 0);
   1808 
   1809 	mutex_enter(&fp->f_lock);
   1810 	fp->f_msgcount--;
   1811 	mutex_exit(&fp->f_lock);
   1812 	atomic_dec_uint(&unp_rights);
   1813 	(void)closef(fp);
   1814 }
   1815 
   1816 static void
   1817 unp_discard_later(file_t *fp)
   1818 {
   1819 
   1820 	if (fp == NULL)
   1821 		return;
   1822 
   1823 	KASSERT(fp->f_count > 0);
   1824 	KASSERT(fp->f_msgcount > 0);
   1825 
   1826 	mutex_enter(&filelist_lock);
   1827 	if (fp->f_unpcount++ == 0) {
   1828 		SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist);
   1829 	}
   1830 	mutex_exit(&filelist_lock);
   1831 }
   1832