uipc_usrreq.c revision 1.152 1 /* $NetBSD: uipc_usrreq.c,v 1.152 2014/05/19 02:51:24 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2000, 2004, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
62 */
63
64 /*
65 * Copyright (c) 1997 Christopher G. Demetriou. All rights reserved.
66 *
67 * Redistribution and use in source and binary forms, with or without
68 * modification, are permitted provided that the following conditions
69 * are met:
70 * 1. Redistributions of source code must retain the above copyright
71 * notice, this list of conditions and the following disclaimer.
72 * 2. Redistributions in binary form must reproduce the above copyright
73 * notice, this list of conditions and the following disclaimer in the
74 * documentation and/or other materials provided with the distribution.
75 * 3. All advertising materials mentioning features or use of this software
76 * must display the following acknowledgement:
77 * This product includes software developed by the University of
78 * California, Berkeley and its contributors.
79 * 4. Neither the name of the University nor the names of its contributors
80 * may be used to endorse or promote products derived from this software
81 * without specific prior written permission.
82 *
83 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
84 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
85 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
86 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
87 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
88 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
89 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
90 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
91 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
92 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
93 * SUCH DAMAGE.
94 *
95 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
96 */
97
98 #include <sys/cdefs.h>
99 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.152 2014/05/19 02:51:24 rmind Exp $");
100
101 #include <sys/param.h>
102 #include <sys/systm.h>
103 #include <sys/proc.h>
104 #include <sys/filedesc.h>
105 #include <sys/domain.h>
106 #include <sys/protosw.h>
107 #include <sys/socket.h>
108 #include <sys/socketvar.h>
109 #include <sys/unpcb.h>
110 #include <sys/un.h>
111 #include <sys/namei.h>
112 #include <sys/vnode.h>
113 #include <sys/file.h>
114 #include <sys/stat.h>
115 #include <sys/mbuf.h>
116 #include <sys/kauth.h>
117 #include <sys/kmem.h>
118 #include <sys/atomic.h>
119 #include <sys/uidinfo.h>
120 #include <sys/kernel.h>
121 #include <sys/kthread.h>
122
123 /*
124 * Unix communications domain.
125 *
126 * TODO:
127 * RDM
128 * rethink name space problems
129 * need a proper out-of-band
130 *
131 * Notes on locking:
132 *
133 * The generic rules noted in uipc_socket2.c apply. In addition:
134 *
135 * o We have a global lock, uipc_lock.
136 *
137 * o All datagram sockets are locked by uipc_lock.
138 *
139 * o For stream socketpairs, the two endpoints are created sharing the same
140 * independent lock. Sockets presented to PRU_CONNECT2 must already have
141 * matching locks.
142 *
143 * o Stream sockets created via socket() start life with their own
144 * independent lock.
145 *
146 * o Stream connections to a named endpoint are slightly more complicated.
147 * Sockets that have called listen() have their lock pointer mutated to
148 * the global uipc_lock. When establishing a connection, the connecting
149 * socket also has its lock mutated to uipc_lock, which matches the head
150 * (listening socket). We create a new socket for accept() to return, and
151 * that also shares the head's lock. Until the connection is completely
152 * done on both ends, all three sockets are locked by uipc_lock. Once the
153 * connection is complete, the association with the head's lock is broken.
154 * The connecting socket and the socket returned from accept() have their
155 * lock pointers mutated away from uipc_lock, and back to the connecting
156 * socket's original, independent lock. The head continues to be locked
157 * by uipc_lock.
158 *
159 * o If uipc_lock is determined to be a significant source of contention,
160 * it could easily be hashed out. It is difficult to simply make it an
161 * independent lock because of visibility / garbage collection issues:
162 * if a socket has been associated with a lock at any point, that lock
163 * must remain valid until the socket is no longer visible in the system.
164 * The lock must not be freed or otherwise destroyed until any sockets
165 * that had referenced it have also been destroyed.
166 */
167 const struct sockaddr_un sun_noname = {
168 .sun_len = offsetof(struct sockaddr_un, sun_path),
169 .sun_family = AF_LOCAL,
170 };
171 ino_t unp_ino; /* prototype for fake inode numbers */
172
173 static void unp_detach(struct socket *);
174 struct mbuf *unp_addsockcred(struct lwp *, struct mbuf *);
175 static void unp_mark(file_t *);
176 static void unp_scan(struct mbuf *, void (*)(file_t *), int);
177 static void unp_discard_now(file_t *);
178 static void unp_discard_later(file_t *);
179 static void unp_thread(void *);
180 static void unp_thread_kick(void);
181 static kmutex_t *uipc_lock;
182
183 static kcondvar_t unp_thread_cv;
184 static lwp_t *unp_thread_lwp;
185 static SLIST_HEAD(,file) unp_thread_discard;
186 static int unp_defer;
187
188 /*
189 * Initialize Unix protocols.
190 */
191 void
192 uipc_init(void)
193 {
194 int error;
195
196 uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
197 cv_init(&unp_thread_cv, "unpgc");
198
199 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread,
200 NULL, &unp_thread_lwp, "unpgc");
201 if (error != 0)
202 panic("uipc_init %d", error);
203 }
204
205 /*
206 * A connection succeeded: disassociate both endpoints from the head's
207 * lock, and make them share their own lock. There is a race here: for
208 * a very brief time one endpoint will be locked by a different lock
209 * than the other end. However, since the current thread holds the old
210 * lock (the listening socket's lock, the head) access can still only be
211 * made to one side of the connection.
212 */
213 static void
214 unp_setpeerlocks(struct socket *so, struct socket *so2)
215 {
216 struct unpcb *unp;
217 kmutex_t *lock;
218
219 KASSERT(solocked2(so, so2));
220
221 /*
222 * Bail out if either end of the socket is not yet fully
223 * connected or accepted. We only break the lock association
224 * with the head when the pair of sockets stand completely
225 * on their own.
226 */
227 KASSERT(so->so_head == NULL);
228 if (so2->so_head != NULL)
229 return;
230
231 /*
232 * Drop references to old lock. A third reference (from the
233 * queue head) must be held as we still hold its lock. Bonus:
234 * we don't need to worry about garbage collecting the lock.
235 */
236 lock = so->so_lock;
237 KASSERT(lock == uipc_lock);
238 mutex_obj_free(lock);
239 mutex_obj_free(lock);
240
241 /*
242 * Grab stream lock from the initiator and share between the two
243 * endpoints. Issue memory barrier to ensure all modifications
244 * become globally visible before the lock change. so2 is
245 * assumed not to have a stream lock, because it was created
246 * purely for the server side to accept this connection and
247 * started out life using the domain-wide lock.
248 */
249 unp = sotounpcb(so);
250 KASSERT(unp->unp_streamlock != NULL);
251 KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
252 lock = unp->unp_streamlock;
253 unp->unp_streamlock = NULL;
254 mutex_obj_hold(lock);
255 membar_exit();
256 /*
257 * possible race if lock is not held - see comment in
258 * uipc_usrreq(PRU_ACCEPT).
259 */
260 KASSERT(mutex_owned(lock));
261 solockreset(so, lock);
262 solockreset(so2, lock);
263 }
264
265 /*
266 * Reset a socket's lock back to the domain-wide lock.
267 */
268 static void
269 unp_resetlock(struct socket *so)
270 {
271 kmutex_t *olock, *nlock;
272 struct unpcb *unp;
273
274 KASSERT(solocked(so));
275
276 olock = so->so_lock;
277 nlock = uipc_lock;
278 if (olock == nlock)
279 return;
280 unp = sotounpcb(so);
281 KASSERT(unp->unp_streamlock == NULL);
282 unp->unp_streamlock = olock;
283 mutex_obj_hold(nlock);
284 mutex_enter(nlock);
285 solockreset(so, nlock);
286 mutex_exit(olock);
287 }
288
289 static void
290 unp_free(struct unpcb *unp)
291 {
292 if (unp->unp_addr)
293 free(unp->unp_addr, M_SONAME);
294 if (unp->unp_streamlock != NULL)
295 mutex_obj_free(unp->unp_streamlock);
296 kmem_free(unp, sizeof(*unp));
297 }
298
299 int
300 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp,
301 struct lwp *l)
302 {
303 struct socket *so2;
304 const struct sockaddr_un *sun;
305
306 so2 = unp->unp_conn->unp_socket;
307
308 KASSERT(solocked(so2));
309
310 if (unp->unp_addr)
311 sun = unp->unp_addr;
312 else
313 sun = &sun_noname;
314 if (unp->unp_conn->unp_flags & UNP_WANTCRED)
315 control = unp_addsockcred(l, control);
316 if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
317 control) == 0) {
318 so2->so_rcv.sb_overflowed++;
319 unp_dispose(control);
320 m_freem(control);
321 m_freem(m);
322 return (ENOBUFS);
323 } else {
324 sorwakeup(so2);
325 return (0);
326 }
327 }
328
329 void
330 unp_setaddr(struct socket *so, struct mbuf *nam, bool peeraddr)
331 {
332 const struct sockaddr_un *sun;
333 struct unpcb *unp;
334 bool ext;
335
336 KASSERT(solocked(so));
337 unp = sotounpcb(so);
338 ext = false;
339
340 for (;;) {
341 sun = NULL;
342 if (peeraddr) {
343 if (unp->unp_conn && unp->unp_conn->unp_addr)
344 sun = unp->unp_conn->unp_addr;
345 } else {
346 if (unp->unp_addr)
347 sun = unp->unp_addr;
348 }
349 if (sun == NULL)
350 sun = &sun_noname;
351 nam->m_len = sun->sun_len;
352 if (nam->m_len > MLEN && !ext) {
353 sounlock(so);
354 MEXTMALLOC(nam, MAXPATHLEN * 2, M_WAITOK);
355 solock(so);
356 ext = true;
357 } else {
358 KASSERT(nam->m_len <= MAXPATHLEN * 2);
359 memcpy(mtod(nam, void *), sun, (size_t)nam->m_len);
360 break;
361 }
362 }
363 }
364
365 static int
366 unp_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
367 struct mbuf *control, struct lwp *l)
368 {
369 struct unpcb *unp;
370 struct socket *so2;
371 u_int newhiwat;
372 int error = 0;
373
374 KASSERT(req != PRU_ATTACH);
375 KASSERT(req != PRU_DETACH);
376
377 if (req == PRU_CONTROL) {
378 return EOPNOTSUPP;
379 }
380 KASSERT(solocked(so));
381 unp = sotounpcb(so);
382
383 KASSERT(!control || (req == PRU_SEND || req == PRU_SENDOOB));
384 if (unp == NULL) {
385 error = EINVAL;
386 goto release;
387 }
388
389 switch (req) {
390 case PRU_BIND:
391 KASSERT(l != NULL);
392 error = unp_bind(so, nam, l);
393 break;
394
395 case PRU_LISTEN:
396 /*
397 * If the socket can accept a connection, it must be
398 * locked by uipc_lock.
399 */
400 unp_resetlock(so);
401 if (unp->unp_vnode == NULL)
402 error = EINVAL;
403 break;
404
405 case PRU_CONNECT:
406 KASSERT(l != NULL);
407 error = unp_connect(so, nam, l);
408 break;
409
410 case PRU_CONNECT2:
411 error = unp_connect2(so, (struct socket *)nam, PRU_CONNECT2);
412 break;
413
414 case PRU_DISCONNECT:
415 unp_disconnect(unp);
416 break;
417
418 case PRU_ACCEPT:
419 KASSERT(so->so_lock == uipc_lock);
420 /*
421 * Mark the initiating STREAM socket as connected *ONLY*
422 * after it's been accepted. This prevents a client from
423 * overrunning a server and receiving ECONNREFUSED.
424 */
425 if (unp->unp_conn == NULL) {
426 /*
427 * This will use the empty socket and will not
428 * allocate.
429 */
430 unp_setaddr(so, nam, true);
431 break;
432 }
433 so2 = unp->unp_conn->unp_socket;
434 if (so2->so_state & SS_ISCONNECTING) {
435 KASSERT(solocked2(so, so->so_head));
436 KASSERT(solocked2(so2, so->so_head));
437 soisconnected(so2);
438 }
439 /*
440 * If the connection is fully established, break the
441 * association with uipc_lock and give the connected
442 * pair a separate lock to share.
443 * There is a race here: sotounpcb(so2)->unp_streamlock
444 * is not locked, so when changing so2->so_lock
445 * another thread can grab it while so->so_lock is still
446 * pointing to the (locked) uipc_lock.
447 * this should be harmless, except that this makes
448 * solocked2() and solocked() unreliable.
449 * Another problem is that unp_setaddr() expects the
450 * the socket locked. Grabing sotounpcb(so2)->unp_streamlock
451 * fixes both issues.
452 */
453 mutex_enter(sotounpcb(so2)->unp_streamlock);
454 unp_setpeerlocks(so2, so);
455 /*
456 * Only now return peer's address, as we may need to
457 * block in order to allocate memory.
458 *
459 * XXX Minor race: connection can be broken while
460 * lock is dropped in unp_setaddr(). We will return
461 * error == 0 and sun_noname as the peer address.
462 */
463 unp_setaddr(so, nam, true);
464 /* so_lock now points to unp_streamlock */
465 mutex_exit(so2->so_lock);
466 break;
467
468 case PRU_SHUTDOWN:
469 socantsendmore(so);
470 unp_shutdown(unp);
471 break;
472
473 case PRU_RCVD:
474 switch (so->so_type) {
475
476 case SOCK_DGRAM:
477 panic("uipc 1");
478 /*NOTREACHED*/
479
480 case SOCK_SEQPACKET: /* FALLTHROUGH */
481 case SOCK_STREAM:
482 #define rcv (&so->so_rcv)
483 #define snd (&so2->so_snd)
484 if (unp->unp_conn == 0)
485 break;
486 so2 = unp->unp_conn->unp_socket;
487 KASSERT(solocked2(so, so2));
488 /*
489 * Adjust backpressure on sender
490 * and wakeup any waiting to write.
491 */
492 snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
493 unp->unp_mbcnt = rcv->sb_mbcnt;
494 newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
495 (void)chgsbsize(so2->so_uidinfo,
496 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
497 unp->unp_cc = rcv->sb_cc;
498 sowwakeup(so2);
499 #undef snd
500 #undef rcv
501 break;
502
503 default:
504 panic("uipc 2");
505 }
506 break;
507
508 case PRU_SEND:
509 /*
510 * Note: unp_internalize() rejects any control message
511 * other than SCM_RIGHTS, and only allows one. This
512 * has the side-effect of preventing a caller from
513 * forging SCM_CREDS.
514 */
515 if (control) {
516 sounlock(so);
517 error = unp_internalize(&control);
518 solock(so);
519 if (error != 0) {
520 m_freem(control);
521 m_freem(m);
522 break;
523 }
524 }
525 switch (so->so_type) {
526
527 case SOCK_DGRAM: {
528 KASSERT(so->so_lock == uipc_lock);
529 if (nam) {
530 if ((so->so_state & SS_ISCONNECTED) != 0)
531 error = EISCONN;
532 else {
533 /*
534 * Note: once connected, the
535 * socket's lock must not be
536 * dropped until we have sent
537 * the message and disconnected.
538 * This is necessary to prevent
539 * intervening control ops, like
540 * another connection.
541 */
542 error = unp_connect(so, nam, l);
543 }
544 } else {
545 if ((so->so_state & SS_ISCONNECTED) == 0)
546 error = ENOTCONN;
547 }
548 if (error) {
549 unp_dispose(control);
550 m_freem(control);
551 m_freem(m);
552 break;
553 }
554 KASSERT(l != NULL);
555 error = unp_output(m, control, unp, l);
556 if (nam)
557 unp_disconnect(unp);
558 break;
559 }
560
561 case SOCK_SEQPACKET: /* FALLTHROUGH */
562 case SOCK_STREAM:
563 #define rcv (&so2->so_rcv)
564 #define snd (&so->so_snd)
565 if (unp->unp_conn == NULL) {
566 error = ENOTCONN;
567 break;
568 }
569 so2 = unp->unp_conn->unp_socket;
570 KASSERT(solocked2(so, so2));
571 if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
572 /*
573 * Credentials are passed only once on
574 * SOCK_STREAM and SOCK_SEQPACKET.
575 */
576 unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
577 control = unp_addsockcred(l, control);
578 }
579 /*
580 * Send to paired receive port, and then reduce
581 * send buffer hiwater marks to maintain backpressure.
582 * Wake up readers.
583 */
584 if (control) {
585 if (sbappendcontrol(rcv, m, control) != 0)
586 control = NULL;
587 } else {
588 switch(so->so_type) {
589 case SOCK_SEQPACKET:
590 sbappendrecord(rcv, m);
591 break;
592 case SOCK_STREAM:
593 sbappend(rcv, m);
594 break;
595 default:
596 panic("uipc_usrreq");
597 break;
598 }
599 }
600 snd->sb_mbmax -=
601 rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
602 unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
603 newhiwat = snd->sb_hiwat -
604 (rcv->sb_cc - unp->unp_conn->unp_cc);
605 (void)chgsbsize(so->so_uidinfo,
606 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
607 unp->unp_conn->unp_cc = rcv->sb_cc;
608 sorwakeup(so2);
609 #undef snd
610 #undef rcv
611 if (control != NULL) {
612 unp_dispose(control);
613 m_freem(control);
614 }
615 break;
616
617 default:
618 panic("uipc 4");
619 }
620 break;
621
622 case PRU_ABORT:
623 (void)unp_drop(unp, ECONNABORTED);
624 KASSERT(so->so_head == NULL);
625 KASSERT(so->so_pcb != NULL);
626 unp_detach(so);
627 break;
628
629 case PRU_SENSE:
630 ((struct stat *) m)->st_blksize = so->so_snd.sb_hiwat;
631 switch (so->so_type) {
632 case SOCK_SEQPACKET: /* FALLTHROUGH */
633 case SOCK_STREAM:
634 if (unp->unp_conn == 0)
635 break;
636
637 so2 = unp->unp_conn->unp_socket;
638 KASSERT(solocked2(so, so2));
639 ((struct stat *) m)->st_blksize += so2->so_rcv.sb_cc;
640 break;
641 default:
642 break;
643 }
644 ((struct stat *) m)->st_dev = NODEV;
645 if (unp->unp_ino == 0)
646 unp->unp_ino = unp_ino++;
647 ((struct stat *) m)->st_atimespec =
648 ((struct stat *) m)->st_mtimespec =
649 ((struct stat *) m)->st_ctimespec = unp->unp_ctime;
650 ((struct stat *) m)->st_ino = unp->unp_ino;
651 return (0);
652
653 case PRU_RCVOOB:
654 error = EOPNOTSUPP;
655 break;
656
657 case PRU_SENDOOB:
658 m_freem(control);
659 m_freem(m);
660 error = EOPNOTSUPP;
661 break;
662
663 case PRU_SOCKADDR:
664 unp_setaddr(so, nam, false);
665 break;
666
667 case PRU_PEERADDR:
668 unp_setaddr(so, nam, true);
669 break;
670
671 default:
672 panic("piusrreq");
673 }
674
675 release:
676 return (error);
677 }
678
679 /*
680 * Unix domain socket option processing.
681 */
682 int
683 uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
684 {
685 struct unpcb *unp = sotounpcb(so);
686 int optval = 0, error = 0;
687
688 KASSERT(solocked(so));
689
690 if (sopt->sopt_level != 0) {
691 error = ENOPROTOOPT;
692 } else switch (op) {
693
694 case PRCO_SETOPT:
695 switch (sopt->sopt_name) {
696 case LOCAL_CREDS:
697 case LOCAL_CONNWAIT:
698 error = sockopt_getint(sopt, &optval);
699 if (error)
700 break;
701 switch (sopt->sopt_name) {
702 #define OPTSET(bit) \
703 if (optval) \
704 unp->unp_flags |= (bit); \
705 else \
706 unp->unp_flags &= ~(bit);
707
708 case LOCAL_CREDS:
709 OPTSET(UNP_WANTCRED);
710 break;
711 case LOCAL_CONNWAIT:
712 OPTSET(UNP_CONNWAIT);
713 break;
714 }
715 break;
716 #undef OPTSET
717
718 default:
719 error = ENOPROTOOPT;
720 break;
721 }
722 break;
723
724 case PRCO_GETOPT:
725 sounlock(so);
726 switch (sopt->sopt_name) {
727 case LOCAL_PEEREID:
728 if (unp->unp_flags & UNP_EIDSVALID) {
729 error = sockopt_set(sopt,
730 &unp->unp_connid, sizeof(unp->unp_connid));
731 } else {
732 error = EINVAL;
733 }
734 break;
735 case LOCAL_CREDS:
736 #define OPTBIT(bit) (unp->unp_flags & (bit) ? 1 : 0)
737
738 optval = OPTBIT(UNP_WANTCRED);
739 error = sockopt_setint(sopt, optval);
740 break;
741 #undef OPTBIT
742
743 default:
744 error = ENOPROTOOPT;
745 break;
746 }
747 solock(so);
748 break;
749 }
750 return (error);
751 }
752
753 /*
754 * Both send and receive buffers are allocated PIPSIZ bytes of buffering
755 * for stream sockets, although the total for sender and receiver is
756 * actually only PIPSIZ.
757 * Datagram sockets really use the sendspace as the maximum datagram size,
758 * and don't really want to reserve the sendspace. Their recvspace should
759 * be large enough for at least one max-size datagram plus address.
760 */
761 #define PIPSIZ 4096
762 u_long unpst_sendspace = PIPSIZ;
763 u_long unpst_recvspace = PIPSIZ;
764 u_long unpdg_sendspace = 2*1024; /* really max datagram size */
765 u_long unpdg_recvspace = 4*1024;
766
767 u_int unp_rights; /* files in flight */
768 u_int unp_rights_ratio = 2; /* limit, fraction of maxfiles */
769
770 static int
771 unp_attach(struct socket *so, int proto)
772 {
773 struct unpcb *unp = sotounpcb(so);
774 u_long sndspc, rcvspc;
775 int error;
776
777 KASSERT(unp == NULL);
778
779 switch (so->so_type) {
780 case SOCK_SEQPACKET:
781 /* FALLTHROUGH */
782 case SOCK_STREAM:
783 if (so->so_lock == NULL) {
784 so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
785 solock(so);
786 }
787 sndspc = unpst_sendspace;
788 rcvspc = unpst_recvspace;
789 break;
790
791 case SOCK_DGRAM:
792 if (so->so_lock == NULL) {
793 mutex_obj_hold(uipc_lock);
794 so->so_lock = uipc_lock;
795 solock(so);
796 }
797 sndspc = unpdg_sendspace;
798 rcvspc = unpdg_recvspace;
799 break;
800
801 default:
802 panic("unp_attach");
803 }
804
805 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
806 error = soreserve(so, sndspc, rcvspc);
807 if (error) {
808 return error;
809 }
810 }
811
812 unp = kmem_zalloc(sizeof(*unp), KM_SLEEP);
813 nanotime(&unp->unp_ctime);
814 unp->unp_socket = so;
815 so->so_pcb = unp;
816
817 KASSERT(solocked(so));
818 return 0;
819 }
820
821 static void
822 unp_detach(struct socket *so)
823 {
824 struct unpcb *unp;
825 vnode_t *vp;
826
827 unp = sotounpcb(so);
828 KASSERT(unp != NULL);
829 KASSERT(solocked(so));
830 retry:
831 if ((vp = unp->unp_vnode) != NULL) {
832 sounlock(so);
833 /* Acquire v_interlock to protect against unp_connect(). */
834 /* XXXAD racy */
835 mutex_enter(vp->v_interlock);
836 vp->v_socket = NULL;
837 mutex_exit(vp->v_interlock);
838 vrele(vp);
839 solock(so);
840 unp->unp_vnode = NULL;
841 }
842 if (unp->unp_conn)
843 unp_disconnect(unp);
844 while (unp->unp_refs) {
845 KASSERT(solocked2(so, unp->unp_refs->unp_socket));
846 if (unp_drop(unp->unp_refs, ECONNRESET)) {
847 solock(so);
848 goto retry;
849 }
850 }
851 soisdisconnected(so);
852 so->so_pcb = NULL;
853 if (unp_rights) {
854 /*
855 * Normally the receive buffer is flushed later, in sofree,
856 * but if our receive buffer holds references to files that
857 * are now garbage, we will enqueue those file references to
858 * the garbage collector and kick it into action.
859 */
860 sorflush(so);
861 unp_free(unp);
862 unp_thread_kick();
863 } else
864 unp_free(unp);
865 }
866
867 /*
868 * Allocate the new sockaddr. We have to allocate one
869 * extra byte so that we can ensure that the pathname
870 * is nul-terminated. Note that unlike linux, we don't
871 * include in the address length the NUL in the path
872 * component, because doing so, would exceed sizeof(sockaddr_un)
873 * for fully occupied pathnames. Linux is also inconsistent,
874 * because it does not include the NUL in the length of
875 * what it calls "abstract" unix sockets.
876 */
877 static struct sockaddr_un *
878 makeun(struct mbuf *nam, size_t *addrlen) {
879 struct sockaddr_un *sun;
880
881 *addrlen = nam->m_len + 1;
882 sun = malloc(*addrlen, M_SONAME, M_WAITOK);
883 m_copydata(nam, 0, nam->m_len, (void *)sun);
884 *(((char *)sun) + nam->m_len) = '\0';
885 sun->sun_len = strlen(sun->sun_path) +
886 offsetof(struct sockaddr_un, sun_path);
887 return sun;
888 }
889
890 int
891 unp_bind(struct socket *so, struct mbuf *nam, struct lwp *l)
892 {
893 struct sockaddr_un *sun;
894 struct unpcb *unp;
895 vnode_t *vp;
896 struct vattr vattr;
897 size_t addrlen;
898 int error;
899 struct pathbuf *pb;
900 struct nameidata nd;
901 proc_t *p;
902
903 unp = sotounpcb(so);
904 if (unp->unp_vnode != NULL)
905 return (EINVAL);
906 if ((unp->unp_flags & UNP_BUSY) != 0) {
907 /*
908 * EALREADY may not be strictly accurate, but since this
909 * is a major application error it's hardly a big deal.
910 */
911 return (EALREADY);
912 }
913 unp->unp_flags |= UNP_BUSY;
914 sounlock(so);
915
916 p = l->l_proc;
917 sun = makeun(nam, &addrlen);
918
919 pb = pathbuf_create(sun->sun_path);
920 if (pb == NULL) {
921 error = ENOMEM;
922 goto bad;
923 }
924 NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, pb);
925
926 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
927 if ((error = namei(&nd)) != 0) {
928 pathbuf_destroy(pb);
929 goto bad;
930 }
931 vp = nd.ni_vp;
932 if (vp != NULL) {
933 VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
934 if (nd.ni_dvp == vp)
935 vrele(nd.ni_dvp);
936 else
937 vput(nd.ni_dvp);
938 vrele(vp);
939 pathbuf_destroy(pb);
940 error = EADDRINUSE;
941 goto bad;
942 }
943 vattr_null(&vattr);
944 vattr.va_type = VSOCK;
945 vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
946 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
947 if (error) {
948 vput(nd.ni_dvp);
949 pathbuf_destroy(pb);
950 goto bad;
951 }
952 vp = nd.ni_vp;
953 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
954 solock(so);
955 vp->v_socket = unp->unp_socket;
956 unp->unp_vnode = vp;
957 unp->unp_addrlen = addrlen;
958 unp->unp_addr = sun;
959 unp->unp_connid.unp_pid = p->p_pid;
960 unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
961 unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
962 unp->unp_flags |= UNP_EIDSBIND;
963 VOP_UNLOCK(vp);
964 vput(nd.ni_dvp);
965 unp->unp_flags &= ~UNP_BUSY;
966 pathbuf_destroy(pb);
967 return (0);
968
969 bad:
970 free(sun, M_SONAME);
971 solock(so);
972 unp->unp_flags &= ~UNP_BUSY;
973 return (error);
974 }
975
976 int
977 unp_connect(struct socket *so, struct mbuf *nam, struct lwp *l)
978 {
979 struct sockaddr_un *sun;
980 vnode_t *vp;
981 struct socket *so2, *so3;
982 struct unpcb *unp, *unp2, *unp3;
983 size_t addrlen;
984 int error;
985 struct pathbuf *pb;
986 struct nameidata nd;
987
988 unp = sotounpcb(so);
989 if ((unp->unp_flags & UNP_BUSY) != 0) {
990 /*
991 * EALREADY may not be strictly accurate, but since this
992 * is a major application error it's hardly a big deal.
993 */
994 return (EALREADY);
995 }
996 unp->unp_flags |= UNP_BUSY;
997 sounlock(so);
998
999 sun = makeun(nam, &addrlen);
1000 pb = pathbuf_create(sun->sun_path);
1001 if (pb == NULL) {
1002 error = ENOMEM;
1003 goto bad2;
1004 }
1005
1006 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
1007
1008 if ((error = namei(&nd)) != 0) {
1009 pathbuf_destroy(pb);
1010 goto bad2;
1011 }
1012 vp = nd.ni_vp;
1013 if (vp->v_type != VSOCK) {
1014 error = ENOTSOCK;
1015 goto bad;
1016 }
1017 pathbuf_destroy(pb);
1018 if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
1019 goto bad;
1020 /* Acquire v_interlock to protect against unp_detach(). */
1021 mutex_enter(vp->v_interlock);
1022 so2 = vp->v_socket;
1023 if (so2 == NULL) {
1024 mutex_exit(vp->v_interlock);
1025 error = ECONNREFUSED;
1026 goto bad;
1027 }
1028 if (so->so_type != so2->so_type) {
1029 mutex_exit(vp->v_interlock);
1030 error = EPROTOTYPE;
1031 goto bad;
1032 }
1033 solock(so);
1034 unp_resetlock(so);
1035 mutex_exit(vp->v_interlock);
1036 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
1037 /*
1038 * This may seem somewhat fragile but is OK: if we can
1039 * see SO_ACCEPTCONN set on the endpoint, then it must
1040 * be locked by the domain-wide uipc_lock.
1041 */
1042 KASSERT((so2->so_options & SO_ACCEPTCONN) == 0 ||
1043 so2->so_lock == uipc_lock);
1044 if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
1045 (so3 = sonewconn(so2, false)) == NULL) {
1046 error = ECONNREFUSED;
1047 sounlock(so);
1048 goto bad;
1049 }
1050 unp2 = sotounpcb(so2);
1051 unp3 = sotounpcb(so3);
1052 if (unp2->unp_addr) {
1053 unp3->unp_addr = malloc(unp2->unp_addrlen,
1054 M_SONAME, M_WAITOK);
1055 memcpy(unp3->unp_addr, unp2->unp_addr,
1056 unp2->unp_addrlen);
1057 unp3->unp_addrlen = unp2->unp_addrlen;
1058 }
1059 unp3->unp_flags = unp2->unp_flags;
1060 unp3->unp_connid.unp_pid = l->l_proc->p_pid;
1061 unp3->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
1062 unp3->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
1063 unp3->unp_flags |= UNP_EIDSVALID;
1064 if (unp2->unp_flags & UNP_EIDSBIND) {
1065 unp->unp_connid = unp2->unp_connid;
1066 unp->unp_flags |= UNP_EIDSVALID;
1067 }
1068 so2 = so3;
1069 }
1070 error = unp_connect2(so, so2, PRU_CONNECT);
1071 sounlock(so);
1072 bad:
1073 vput(vp);
1074 bad2:
1075 free(sun, M_SONAME);
1076 solock(so);
1077 unp->unp_flags &= ~UNP_BUSY;
1078 return (error);
1079 }
1080
1081 int
1082 unp_connect2(struct socket *so, struct socket *so2, int req)
1083 {
1084 struct unpcb *unp = sotounpcb(so);
1085 struct unpcb *unp2;
1086
1087 if (so2->so_type != so->so_type)
1088 return (EPROTOTYPE);
1089
1090 /*
1091 * All three sockets involved must be locked by same lock:
1092 *
1093 * local endpoint (so)
1094 * remote endpoint (so2)
1095 * queue head (so2->so_head, only if PR_CONNREQUIRED)
1096 */
1097 KASSERT(solocked2(so, so2));
1098 KASSERT(so->so_head == NULL);
1099 if (so2->so_head != NULL) {
1100 KASSERT(so2->so_lock == uipc_lock);
1101 KASSERT(solocked2(so2, so2->so_head));
1102 }
1103
1104 unp2 = sotounpcb(so2);
1105 unp->unp_conn = unp2;
1106 switch (so->so_type) {
1107
1108 case SOCK_DGRAM:
1109 unp->unp_nextref = unp2->unp_refs;
1110 unp2->unp_refs = unp;
1111 soisconnected(so);
1112 break;
1113
1114 case SOCK_SEQPACKET: /* FALLTHROUGH */
1115 case SOCK_STREAM:
1116 unp2->unp_conn = unp;
1117 if (req == PRU_CONNECT &&
1118 ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1119 soisconnecting(so);
1120 else
1121 soisconnected(so);
1122 soisconnected(so2);
1123 /*
1124 * If the connection is fully established, break the
1125 * association with uipc_lock and give the connected
1126 * pair a seperate lock to share. For CONNECT2, we
1127 * require that the locks already match (the sockets
1128 * are created that way).
1129 */
1130 if (req == PRU_CONNECT) {
1131 KASSERT(so2->so_head != NULL);
1132 unp_setpeerlocks(so, so2);
1133 }
1134 break;
1135
1136 default:
1137 panic("unp_connect2");
1138 }
1139 return (0);
1140 }
1141
1142 void
1143 unp_disconnect(struct unpcb *unp)
1144 {
1145 struct unpcb *unp2 = unp->unp_conn;
1146 struct socket *so;
1147
1148 if (unp2 == 0)
1149 return;
1150 unp->unp_conn = 0;
1151 so = unp->unp_socket;
1152 switch (so->so_type) {
1153 case SOCK_DGRAM:
1154 if (unp2->unp_refs == unp)
1155 unp2->unp_refs = unp->unp_nextref;
1156 else {
1157 unp2 = unp2->unp_refs;
1158 for (;;) {
1159 KASSERT(solocked2(so, unp2->unp_socket));
1160 if (unp2 == 0)
1161 panic("unp_disconnect");
1162 if (unp2->unp_nextref == unp)
1163 break;
1164 unp2 = unp2->unp_nextref;
1165 }
1166 unp2->unp_nextref = unp->unp_nextref;
1167 }
1168 unp->unp_nextref = 0;
1169 so->so_state &= ~SS_ISCONNECTED;
1170 break;
1171
1172 case SOCK_SEQPACKET: /* FALLTHROUGH */
1173 case SOCK_STREAM:
1174 KASSERT(solocked2(so, unp2->unp_socket));
1175 soisdisconnected(so);
1176 unp2->unp_conn = 0;
1177 soisdisconnected(unp2->unp_socket);
1178 break;
1179 }
1180 }
1181
1182 void
1183 unp_shutdown(struct unpcb *unp)
1184 {
1185 struct socket *so;
1186
1187 switch(unp->unp_socket->so_type) {
1188 case SOCK_SEQPACKET: /* FALLTHROUGH */
1189 case SOCK_STREAM:
1190 if (unp->unp_conn && (so = unp->unp_conn->unp_socket))
1191 socantrcvmore(so);
1192 break;
1193 default:
1194 break;
1195 }
1196 }
1197
1198 bool
1199 unp_drop(struct unpcb *unp, int errno)
1200 {
1201 struct socket *so = unp->unp_socket;
1202
1203 KASSERT(solocked(so));
1204
1205 so->so_error = errno;
1206 unp_disconnect(unp);
1207 if (so->so_head) {
1208 so->so_pcb = NULL;
1209 /* sofree() drops the socket lock */
1210 sofree(so);
1211 unp_free(unp);
1212 return true;
1213 }
1214 return false;
1215 }
1216
1217 #ifdef notdef
1218 unp_drain(void)
1219 {
1220
1221 }
1222 #endif
1223
1224 int
1225 unp_externalize(struct mbuf *rights, struct lwp *l, int flags)
1226 {
1227 struct cmsghdr * const cm = mtod(rights, struct cmsghdr *);
1228 struct proc * const p = l->l_proc;
1229 file_t **rp;
1230 int error = 0;
1231
1232 const size_t nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
1233 sizeof(file_t *);
1234 if (nfds == 0)
1235 goto noop;
1236
1237 int * const fdp = kmem_alloc(nfds * sizeof(int), KM_SLEEP);
1238 rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
1239
1240 /* Make sure the recipient should be able to see the files.. */
1241 rp = (file_t **)CMSG_DATA(cm);
1242 for (size_t i = 0; i < nfds; i++) {
1243 file_t * const fp = *rp++;
1244 if (fp == NULL) {
1245 error = EINVAL;
1246 goto out;
1247 }
1248 /*
1249 * If we are in a chroot'ed directory, and
1250 * someone wants to pass us a directory, make
1251 * sure it's inside the subtree we're allowed
1252 * to access.
1253 */
1254 if (p->p_cwdi->cwdi_rdir != NULL && fp->f_type == DTYPE_VNODE) {
1255 vnode_t *vp = (vnode_t *)fp->f_data;
1256 if ((vp->v_type == VDIR) &&
1257 !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
1258 error = EPERM;
1259 goto out;
1260 }
1261 }
1262 }
1263
1264 restart:
1265 /*
1266 * First loop -- allocate file descriptor table slots for the
1267 * new files.
1268 */
1269 for (size_t i = 0; i < nfds; i++) {
1270 if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
1271 /*
1272 * Back out what we've done so far.
1273 */
1274 while (i-- > 0) {
1275 fd_abort(p, NULL, fdp[i]);
1276 }
1277 if (error == ENOSPC) {
1278 fd_tryexpand(p);
1279 error = 0;
1280 goto restart;
1281 }
1282 /*
1283 * This is the error that has historically
1284 * been returned, and some callers may
1285 * expect it.
1286 */
1287 error = EMSGSIZE;
1288 goto out;
1289 }
1290 }
1291
1292 /*
1293 * Now that adding them has succeeded, update all of the
1294 * file passing state and affix the descriptors.
1295 */
1296 rp = (file_t **)CMSG_DATA(cm);
1297 int *ofdp = (int *)CMSG_DATA(cm);
1298 for (size_t i = 0; i < nfds; i++) {
1299 file_t * const fp = *rp++;
1300 const int fd = fdp[i];
1301 atomic_dec_uint(&unp_rights);
1302 fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
1303 fd_affix(p, fp, fd);
1304 /*
1305 * Done with this file pointer, replace it with a fd;
1306 */
1307 *ofdp++ = fd;
1308 mutex_enter(&fp->f_lock);
1309 fp->f_msgcount--;
1310 mutex_exit(&fp->f_lock);
1311 /*
1312 * Note that fd_affix() adds a reference to the file.
1313 * The file may already have been closed by another
1314 * LWP in the process, so we must drop the reference
1315 * added by unp_internalize() with closef().
1316 */
1317 closef(fp);
1318 }
1319
1320 /*
1321 * Adjust length, in case of transition from large file_t
1322 * pointers to ints.
1323 */
1324 if (sizeof(file_t *) != sizeof(int)) {
1325 cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
1326 rights->m_len = CMSG_SPACE(nfds * sizeof(int));
1327 }
1328 out:
1329 if (__predict_false(error != 0)) {
1330 file_t **const fpp = (file_t **)CMSG_DATA(cm);
1331 for (size_t i = 0; i < nfds; i++)
1332 unp_discard_now(fpp[i]);
1333 /*
1334 * Truncate the array so that nobody will try to interpret
1335 * what is now garbage in it.
1336 */
1337 cm->cmsg_len = CMSG_LEN(0);
1338 rights->m_len = CMSG_SPACE(0);
1339 }
1340 rw_exit(&p->p_cwdi->cwdi_lock);
1341 kmem_free(fdp, nfds * sizeof(int));
1342
1343 noop:
1344 /*
1345 * Don't disclose kernel memory in the alignment space.
1346 */
1347 KASSERT(cm->cmsg_len <= rights->m_len);
1348 memset(&mtod(rights, char *)[cm->cmsg_len], 0, rights->m_len -
1349 cm->cmsg_len);
1350 return error;
1351 }
1352
1353 int
1354 unp_internalize(struct mbuf **controlp)
1355 {
1356 filedesc_t *fdescp = curlwp->l_fd;
1357 struct mbuf *control = *controlp;
1358 struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
1359 file_t **rp, **files;
1360 file_t *fp;
1361 int i, fd, *fdp;
1362 int nfds, error;
1363 u_int maxmsg;
1364
1365 error = 0;
1366 newcm = NULL;
1367
1368 /* Sanity check the control message header. */
1369 if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
1370 cm->cmsg_len > control->m_len ||
1371 cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
1372 return (EINVAL);
1373
1374 /*
1375 * Verify that the file descriptors are valid, and acquire
1376 * a reference to each.
1377 */
1378 nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
1379 fdp = (int *)CMSG_DATA(cm);
1380 maxmsg = maxfiles / unp_rights_ratio;
1381 for (i = 0; i < nfds; i++) {
1382 fd = *fdp++;
1383 if (atomic_inc_uint_nv(&unp_rights) > maxmsg) {
1384 atomic_dec_uint(&unp_rights);
1385 nfds = i;
1386 error = EAGAIN;
1387 goto out;
1388 }
1389 if ((fp = fd_getfile(fd)) == NULL
1390 || fp->f_type == DTYPE_KQUEUE) {
1391 if (fp)
1392 fd_putfile(fd);
1393 atomic_dec_uint(&unp_rights);
1394 nfds = i;
1395 error = EBADF;
1396 goto out;
1397 }
1398 }
1399
1400 /* Allocate new space and copy header into it. */
1401 newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
1402 if (newcm == NULL) {
1403 error = E2BIG;
1404 goto out;
1405 }
1406 memcpy(newcm, cm, sizeof(struct cmsghdr));
1407 files = (file_t **)CMSG_DATA(newcm);
1408
1409 /*
1410 * Transform the file descriptors into file_t pointers, in
1411 * reverse order so that if pointers are bigger than ints, the
1412 * int won't get until we're done. No need to lock, as we have
1413 * already validated the descriptors with fd_getfile().
1414 */
1415 fdp = (int *)CMSG_DATA(cm) + nfds;
1416 rp = files + nfds;
1417 for (i = 0; i < nfds; i++) {
1418 fp = fdescp->fd_dt->dt_ff[*--fdp]->ff_file;
1419 KASSERT(fp != NULL);
1420 mutex_enter(&fp->f_lock);
1421 *--rp = fp;
1422 fp->f_count++;
1423 fp->f_msgcount++;
1424 mutex_exit(&fp->f_lock);
1425 }
1426
1427 out:
1428 /* Release descriptor references. */
1429 fdp = (int *)CMSG_DATA(cm);
1430 for (i = 0; i < nfds; i++) {
1431 fd_putfile(*fdp++);
1432 if (error != 0) {
1433 atomic_dec_uint(&unp_rights);
1434 }
1435 }
1436
1437 if (error == 0) {
1438 if (control->m_flags & M_EXT) {
1439 m_freem(control);
1440 *controlp = control = m_get(M_WAIT, MT_CONTROL);
1441 }
1442 MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
1443 M_MBUF, NULL, NULL);
1444 cm = newcm;
1445 /*
1446 * Adjust message & mbuf to note amount of space
1447 * actually used.
1448 */
1449 cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
1450 control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
1451 }
1452
1453 return error;
1454 }
1455
1456 struct mbuf *
1457 unp_addsockcred(struct lwp *l, struct mbuf *control)
1458 {
1459 struct sockcred *sc;
1460 struct mbuf *m;
1461 void *p;
1462
1463 m = sbcreatecontrol1(&p, SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)),
1464 SCM_CREDS, SOL_SOCKET, M_WAITOK);
1465 if (m == NULL)
1466 return control;
1467
1468 sc = p;
1469 sc->sc_uid = kauth_cred_getuid(l->l_cred);
1470 sc->sc_euid = kauth_cred_geteuid(l->l_cred);
1471 sc->sc_gid = kauth_cred_getgid(l->l_cred);
1472 sc->sc_egid = kauth_cred_getegid(l->l_cred);
1473 sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
1474
1475 for (int i = 0; i < sc->sc_ngroups; i++)
1476 sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
1477
1478 return m_add(control, m);
1479 }
1480
1481 /*
1482 * Do a mark-sweep GC of files in the system, to free up any which are
1483 * caught in flight to an about-to-be-closed socket. Additionally,
1484 * process deferred file closures.
1485 */
1486 static void
1487 unp_gc(file_t *dp)
1488 {
1489 extern struct domain unixdomain;
1490 file_t *fp, *np;
1491 struct socket *so, *so1;
1492 u_int i, old, new;
1493 bool didwork;
1494
1495 KASSERT(curlwp == unp_thread_lwp);
1496 KASSERT(mutex_owned(&filelist_lock));
1497
1498 /*
1499 * First, process deferred file closures.
1500 */
1501 while (!SLIST_EMPTY(&unp_thread_discard)) {
1502 fp = SLIST_FIRST(&unp_thread_discard);
1503 KASSERT(fp->f_unpcount > 0);
1504 KASSERT(fp->f_count > 0);
1505 KASSERT(fp->f_msgcount > 0);
1506 KASSERT(fp->f_count >= fp->f_unpcount);
1507 KASSERT(fp->f_count >= fp->f_msgcount);
1508 KASSERT(fp->f_msgcount >= fp->f_unpcount);
1509 SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist);
1510 i = fp->f_unpcount;
1511 fp->f_unpcount = 0;
1512 mutex_exit(&filelist_lock);
1513 for (; i != 0; i--) {
1514 unp_discard_now(fp);
1515 }
1516 mutex_enter(&filelist_lock);
1517 }
1518
1519 /*
1520 * Clear mark bits. Ensure that we don't consider new files
1521 * entering the file table during this loop (they will not have
1522 * FSCAN set).
1523 */
1524 unp_defer = 0;
1525 LIST_FOREACH(fp, &filehead, f_list) {
1526 for (old = fp->f_flag;; old = new) {
1527 new = atomic_cas_uint(&fp->f_flag, old,
1528 (old | FSCAN) & ~(FMARK|FDEFER));
1529 if (__predict_true(old == new)) {
1530 break;
1531 }
1532 }
1533 }
1534
1535 /*
1536 * Iterate over the set of sockets, marking ones believed (based on
1537 * refcount) to be referenced from a process, and marking for rescan
1538 * sockets which are queued on a socket. Recan continues descending
1539 * and searching for sockets referenced by sockets (FDEFER), until
1540 * there are no more socket->socket references to be discovered.
1541 */
1542 do {
1543 didwork = false;
1544 for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1545 KASSERT(mutex_owned(&filelist_lock));
1546 np = LIST_NEXT(fp, f_list);
1547 mutex_enter(&fp->f_lock);
1548 if ((fp->f_flag & FDEFER) != 0) {
1549 atomic_and_uint(&fp->f_flag, ~FDEFER);
1550 unp_defer--;
1551 KASSERT(fp->f_count != 0);
1552 } else {
1553 if (fp->f_count == 0 ||
1554 (fp->f_flag & FMARK) != 0 ||
1555 fp->f_count == fp->f_msgcount ||
1556 fp->f_unpcount != 0) {
1557 mutex_exit(&fp->f_lock);
1558 continue;
1559 }
1560 }
1561 atomic_or_uint(&fp->f_flag, FMARK);
1562
1563 if (fp->f_type != DTYPE_SOCKET ||
1564 (so = fp->f_data) == NULL ||
1565 so->so_proto->pr_domain != &unixdomain ||
1566 (so->so_proto->pr_flags & PR_RIGHTS) == 0) {
1567 mutex_exit(&fp->f_lock);
1568 continue;
1569 }
1570
1571 /* Gain file ref, mark our position, and unlock. */
1572 didwork = true;
1573 LIST_INSERT_AFTER(fp, dp, f_list);
1574 fp->f_count++;
1575 mutex_exit(&fp->f_lock);
1576 mutex_exit(&filelist_lock);
1577
1578 /*
1579 * Mark files referenced from sockets queued on the
1580 * accept queue as well.
1581 */
1582 solock(so);
1583 unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
1584 if ((so->so_options & SO_ACCEPTCONN) != 0) {
1585 TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
1586 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1587 }
1588 TAILQ_FOREACH(so1, &so->so_q, so_qe) {
1589 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1590 }
1591 }
1592 sounlock(so);
1593
1594 /* Re-lock and restart from where we left off. */
1595 closef(fp);
1596 mutex_enter(&filelist_lock);
1597 np = LIST_NEXT(dp, f_list);
1598 LIST_REMOVE(dp, f_list);
1599 }
1600 /*
1601 * Bail early if we did nothing in the loop above. Could
1602 * happen because of concurrent activity causing unp_defer
1603 * to get out of sync.
1604 */
1605 } while (unp_defer != 0 && didwork);
1606
1607 /*
1608 * Sweep pass.
1609 *
1610 * We grab an extra reference to each of the files that are
1611 * not otherwise accessible and then free the rights that are
1612 * stored in messages on them.
1613 */
1614 for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1615 KASSERT(mutex_owned(&filelist_lock));
1616 np = LIST_NEXT(fp, f_list);
1617 mutex_enter(&fp->f_lock);
1618
1619 /*
1620 * Ignore non-sockets.
1621 * Ignore dead sockets, or sockets with pending close.
1622 * Ignore sockets obviously referenced elsewhere.
1623 * Ignore sockets marked as referenced by our scan.
1624 * Ignore new sockets that did not exist during the scan.
1625 */
1626 if (fp->f_type != DTYPE_SOCKET ||
1627 fp->f_count == 0 || fp->f_unpcount != 0 ||
1628 fp->f_count != fp->f_msgcount ||
1629 (fp->f_flag & (FMARK | FSCAN)) != FSCAN) {
1630 mutex_exit(&fp->f_lock);
1631 continue;
1632 }
1633
1634 /* Gain file ref, mark our position, and unlock. */
1635 LIST_INSERT_AFTER(fp, dp, f_list);
1636 fp->f_count++;
1637 mutex_exit(&fp->f_lock);
1638 mutex_exit(&filelist_lock);
1639
1640 /*
1641 * Flush all data from the socket's receive buffer.
1642 * This will cause files referenced only by the
1643 * socket to be queued for close.
1644 */
1645 so = fp->f_data;
1646 solock(so);
1647 sorflush(so);
1648 sounlock(so);
1649
1650 /* Re-lock and restart from where we left off. */
1651 closef(fp);
1652 mutex_enter(&filelist_lock);
1653 np = LIST_NEXT(dp, f_list);
1654 LIST_REMOVE(dp, f_list);
1655 }
1656 }
1657
1658 /*
1659 * Garbage collector thread. While SCM_RIGHTS messages are in transit,
1660 * wake once per second to garbage collect. Run continually while we
1661 * have deferred closes to process.
1662 */
1663 static void
1664 unp_thread(void *cookie)
1665 {
1666 file_t *dp;
1667
1668 /* Allocate a dummy file for our scans. */
1669 if ((dp = fgetdummy()) == NULL) {
1670 panic("unp_thread");
1671 }
1672
1673 mutex_enter(&filelist_lock);
1674 for (;;) {
1675 KASSERT(mutex_owned(&filelist_lock));
1676 if (SLIST_EMPTY(&unp_thread_discard)) {
1677 if (unp_rights != 0) {
1678 (void)cv_timedwait(&unp_thread_cv,
1679 &filelist_lock, hz);
1680 } else {
1681 cv_wait(&unp_thread_cv, &filelist_lock);
1682 }
1683 }
1684 unp_gc(dp);
1685 }
1686 /* NOTREACHED */
1687 }
1688
1689 /*
1690 * Kick the garbage collector into action if there is something for
1691 * it to process.
1692 */
1693 static void
1694 unp_thread_kick(void)
1695 {
1696
1697 if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) {
1698 mutex_enter(&filelist_lock);
1699 cv_signal(&unp_thread_cv);
1700 mutex_exit(&filelist_lock);
1701 }
1702 }
1703
1704 void
1705 unp_dispose(struct mbuf *m)
1706 {
1707
1708 if (m)
1709 unp_scan(m, unp_discard_later, 1);
1710 }
1711
1712 void
1713 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
1714 {
1715 struct mbuf *m;
1716 file_t **rp, *fp;
1717 struct cmsghdr *cm;
1718 int i, qfds;
1719
1720 while (m0) {
1721 for (m = m0; m; m = m->m_next) {
1722 if (m->m_type != MT_CONTROL ||
1723 m->m_len < sizeof(*cm)) {
1724 continue;
1725 }
1726 cm = mtod(m, struct cmsghdr *);
1727 if (cm->cmsg_level != SOL_SOCKET ||
1728 cm->cmsg_type != SCM_RIGHTS)
1729 continue;
1730 qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
1731 / sizeof(file_t *);
1732 rp = (file_t **)CMSG_DATA(cm);
1733 for (i = 0; i < qfds; i++) {
1734 fp = *rp;
1735 if (discard) {
1736 *rp = 0;
1737 }
1738 (*op)(fp);
1739 rp++;
1740 }
1741 }
1742 m0 = m0->m_nextpkt;
1743 }
1744 }
1745
1746 void
1747 unp_mark(file_t *fp)
1748 {
1749
1750 if (fp == NULL)
1751 return;
1752
1753 /* If we're already deferred, don't screw up the defer count */
1754 mutex_enter(&fp->f_lock);
1755 if (fp->f_flag & (FMARK | FDEFER)) {
1756 mutex_exit(&fp->f_lock);
1757 return;
1758 }
1759
1760 /*
1761 * Minimize the number of deferrals... Sockets are the only type of
1762 * file which can hold references to another file, so just mark
1763 * other files, and defer unmarked sockets for the next pass.
1764 */
1765 if (fp->f_type == DTYPE_SOCKET) {
1766 unp_defer++;
1767 KASSERT(fp->f_count != 0);
1768 atomic_or_uint(&fp->f_flag, FDEFER);
1769 } else {
1770 atomic_or_uint(&fp->f_flag, FMARK);
1771 }
1772 mutex_exit(&fp->f_lock);
1773 }
1774
1775 static void
1776 unp_discard_now(file_t *fp)
1777 {
1778
1779 if (fp == NULL)
1780 return;
1781
1782 KASSERT(fp->f_count > 0);
1783 KASSERT(fp->f_msgcount > 0);
1784
1785 mutex_enter(&fp->f_lock);
1786 fp->f_msgcount--;
1787 mutex_exit(&fp->f_lock);
1788 atomic_dec_uint(&unp_rights);
1789 (void)closef(fp);
1790 }
1791
1792 static void
1793 unp_discard_later(file_t *fp)
1794 {
1795
1796 if (fp == NULL)
1797 return;
1798
1799 KASSERT(fp->f_count > 0);
1800 KASSERT(fp->f_msgcount > 0);
1801
1802 mutex_enter(&filelist_lock);
1803 if (fp->f_unpcount++ == 0) {
1804 SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist);
1805 }
1806 mutex_exit(&filelist_lock);
1807 }
1808
1809 const struct pr_usrreqs unp_usrreqs = {
1810 .pr_attach = unp_attach,
1811 .pr_detach = unp_detach,
1812 .pr_generic = unp_usrreq,
1813 };
1814