Home | History | Annotate | Line # | Download | only in kern
uipc_usrreq.c revision 1.152
      1 /*	$NetBSD: uipc_usrreq.c,v 1.152 2014/05/19 02:51:24 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 2000, 2004, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
     62  */
     63 
     64 /*
     65  * Copyright (c) 1997 Christopher G. Demetriou.  All rights reserved.
     66  *
     67  * Redistribution and use in source and binary forms, with or without
     68  * modification, are permitted provided that the following conditions
     69  * are met:
     70  * 1. Redistributions of source code must retain the above copyright
     71  *    notice, this list of conditions and the following disclaimer.
     72  * 2. Redistributions in binary form must reproduce the above copyright
     73  *    notice, this list of conditions and the following disclaimer in the
     74  *    documentation and/or other materials provided with the distribution.
     75  * 3. All advertising materials mentioning features or use of this software
     76  *    must display the following acknowledgement:
     77  *	This product includes software developed by the University of
     78  *	California, Berkeley and its contributors.
     79  * 4. Neither the name of the University nor the names of its contributors
     80  *    may be used to endorse or promote products derived from this software
     81  *    without specific prior written permission.
     82  *
     83  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     84  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     85  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     86  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     87  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     88  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     89  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     90  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     91  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     92  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     93  * SUCH DAMAGE.
     94  *
     95  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
     96  */
     97 
     98 #include <sys/cdefs.h>
     99 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.152 2014/05/19 02:51:24 rmind Exp $");
    100 
    101 #include <sys/param.h>
    102 #include <sys/systm.h>
    103 #include <sys/proc.h>
    104 #include <sys/filedesc.h>
    105 #include <sys/domain.h>
    106 #include <sys/protosw.h>
    107 #include <sys/socket.h>
    108 #include <sys/socketvar.h>
    109 #include <sys/unpcb.h>
    110 #include <sys/un.h>
    111 #include <sys/namei.h>
    112 #include <sys/vnode.h>
    113 #include <sys/file.h>
    114 #include <sys/stat.h>
    115 #include <sys/mbuf.h>
    116 #include <sys/kauth.h>
    117 #include <sys/kmem.h>
    118 #include <sys/atomic.h>
    119 #include <sys/uidinfo.h>
    120 #include <sys/kernel.h>
    121 #include <sys/kthread.h>
    122 
    123 /*
    124  * Unix communications domain.
    125  *
    126  * TODO:
    127  *	RDM
    128  *	rethink name space problems
    129  *	need a proper out-of-band
    130  *
    131  * Notes on locking:
    132  *
    133  * The generic rules noted in uipc_socket2.c apply.  In addition:
    134  *
    135  * o We have a global lock, uipc_lock.
    136  *
    137  * o All datagram sockets are locked by uipc_lock.
    138  *
    139  * o For stream socketpairs, the two endpoints are created sharing the same
    140  *   independent lock.  Sockets presented to PRU_CONNECT2 must already have
    141  *   matching locks.
    142  *
    143  * o Stream sockets created via socket() start life with their own
    144  *   independent lock.
    145  *
    146  * o Stream connections to a named endpoint are slightly more complicated.
    147  *   Sockets that have called listen() have their lock pointer mutated to
    148  *   the global uipc_lock.  When establishing a connection, the connecting
    149  *   socket also has its lock mutated to uipc_lock, which matches the head
    150  *   (listening socket).  We create a new socket for accept() to return, and
    151  *   that also shares the head's lock.  Until the connection is completely
    152  *   done on both ends, all three sockets are locked by uipc_lock.  Once the
    153  *   connection is complete, the association with the head's lock is broken.
    154  *   The connecting socket and the socket returned from accept() have their
    155  *   lock pointers mutated away from uipc_lock, and back to the connecting
    156  *   socket's original, independent lock.  The head continues to be locked
    157  *   by uipc_lock.
    158  *
    159  * o If uipc_lock is determined to be a significant source of contention,
    160  *   it could easily be hashed out.  It is difficult to simply make it an
    161  *   independent lock because of visibility / garbage collection issues:
    162  *   if a socket has been associated with a lock at any point, that lock
    163  *   must remain valid until the socket is no longer visible in the system.
    164  *   The lock must not be freed or otherwise destroyed until any sockets
    165  *   that had referenced it have also been destroyed.
    166  */
    167 const struct sockaddr_un sun_noname = {
    168 	.sun_len = offsetof(struct sockaddr_un, sun_path),
    169 	.sun_family = AF_LOCAL,
    170 };
    171 ino_t	unp_ino;			/* prototype for fake inode numbers */
    172 
    173 static void unp_detach(struct socket *);
    174 struct mbuf *unp_addsockcred(struct lwp *, struct mbuf *);
    175 static void unp_mark(file_t *);
    176 static void unp_scan(struct mbuf *, void (*)(file_t *), int);
    177 static void unp_discard_now(file_t *);
    178 static void unp_discard_later(file_t *);
    179 static void unp_thread(void *);
    180 static void unp_thread_kick(void);
    181 static kmutex_t *uipc_lock;
    182 
    183 static kcondvar_t unp_thread_cv;
    184 static lwp_t *unp_thread_lwp;
    185 static SLIST_HEAD(,file) unp_thread_discard;
    186 static int unp_defer;
    187 
    188 /*
    189  * Initialize Unix protocols.
    190  */
    191 void
    192 uipc_init(void)
    193 {
    194 	int error;
    195 
    196 	uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    197 	cv_init(&unp_thread_cv, "unpgc");
    198 
    199 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread,
    200 	    NULL, &unp_thread_lwp, "unpgc");
    201 	if (error != 0)
    202 		panic("uipc_init %d", error);
    203 }
    204 
    205 /*
    206  * A connection succeeded: disassociate both endpoints from the head's
    207  * lock, and make them share their own lock.  There is a race here: for
    208  * a very brief time one endpoint will be locked by a different lock
    209  * than the other end.  However, since the current thread holds the old
    210  * lock (the listening socket's lock, the head) access can still only be
    211  * made to one side of the connection.
    212  */
    213 static void
    214 unp_setpeerlocks(struct socket *so, struct socket *so2)
    215 {
    216 	struct unpcb *unp;
    217 	kmutex_t *lock;
    218 
    219 	KASSERT(solocked2(so, so2));
    220 
    221 	/*
    222 	 * Bail out if either end of the socket is not yet fully
    223 	 * connected or accepted.  We only break the lock association
    224 	 * with the head when the pair of sockets stand completely
    225 	 * on their own.
    226 	 */
    227 	KASSERT(so->so_head == NULL);
    228 	if (so2->so_head != NULL)
    229 		return;
    230 
    231 	/*
    232 	 * Drop references to old lock.  A third reference (from the
    233 	 * queue head) must be held as we still hold its lock.  Bonus:
    234 	 * we don't need to worry about garbage collecting the lock.
    235 	 */
    236 	lock = so->so_lock;
    237 	KASSERT(lock == uipc_lock);
    238 	mutex_obj_free(lock);
    239 	mutex_obj_free(lock);
    240 
    241 	/*
    242 	 * Grab stream lock from the initiator and share between the two
    243 	 * endpoints.  Issue memory barrier to ensure all modifications
    244 	 * become globally visible before the lock change.  so2 is
    245 	 * assumed not to have a stream lock, because it was created
    246 	 * purely for the server side to accept this connection and
    247 	 * started out life using the domain-wide lock.
    248 	 */
    249 	unp = sotounpcb(so);
    250 	KASSERT(unp->unp_streamlock != NULL);
    251 	KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
    252 	lock = unp->unp_streamlock;
    253 	unp->unp_streamlock = NULL;
    254 	mutex_obj_hold(lock);
    255 	membar_exit();
    256 	/*
    257 	 * possible race if lock is not held - see comment in
    258 	 * uipc_usrreq(PRU_ACCEPT).
    259 	 */
    260 	KASSERT(mutex_owned(lock));
    261 	solockreset(so, lock);
    262 	solockreset(so2, lock);
    263 }
    264 
    265 /*
    266  * Reset a socket's lock back to the domain-wide lock.
    267  */
    268 static void
    269 unp_resetlock(struct socket *so)
    270 {
    271 	kmutex_t *olock, *nlock;
    272 	struct unpcb *unp;
    273 
    274 	KASSERT(solocked(so));
    275 
    276 	olock = so->so_lock;
    277 	nlock = uipc_lock;
    278 	if (olock == nlock)
    279 		return;
    280 	unp = sotounpcb(so);
    281 	KASSERT(unp->unp_streamlock == NULL);
    282 	unp->unp_streamlock = olock;
    283 	mutex_obj_hold(nlock);
    284 	mutex_enter(nlock);
    285 	solockreset(so, nlock);
    286 	mutex_exit(olock);
    287 }
    288 
    289 static void
    290 unp_free(struct unpcb *unp)
    291 {
    292 	if (unp->unp_addr)
    293 		free(unp->unp_addr, M_SONAME);
    294 	if (unp->unp_streamlock != NULL)
    295 		mutex_obj_free(unp->unp_streamlock);
    296 	kmem_free(unp, sizeof(*unp));
    297 }
    298 
    299 int
    300 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp,
    301 	struct lwp *l)
    302 {
    303 	struct socket *so2;
    304 	const struct sockaddr_un *sun;
    305 
    306 	so2 = unp->unp_conn->unp_socket;
    307 
    308 	KASSERT(solocked(so2));
    309 
    310 	if (unp->unp_addr)
    311 		sun = unp->unp_addr;
    312 	else
    313 		sun = &sun_noname;
    314 	if (unp->unp_conn->unp_flags & UNP_WANTCRED)
    315 		control = unp_addsockcred(l, control);
    316 	if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
    317 	    control) == 0) {
    318 		so2->so_rcv.sb_overflowed++;
    319 		unp_dispose(control);
    320 		m_freem(control);
    321 		m_freem(m);
    322 		return (ENOBUFS);
    323 	} else {
    324 		sorwakeup(so2);
    325 		return (0);
    326 	}
    327 }
    328 
    329 void
    330 unp_setaddr(struct socket *so, struct mbuf *nam, bool peeraddr)
    331 {
    332 	const struct sockaddr_un *sun;
    333 	struct unpcb *unp;
    334 	bool ext;
    335 
    336 	KASSERT(solocked(so));
    337 	unp = sotounpcb(so);
    338 	ext = false;
    339 
    340 	for (;;) {
    341 		sun = NULL;
    342 		if (peeraddr) {
    343 			if (unp->unp_conn && unp->unp_conn->unp_addr)
    344 				sun = unp->unp_conn->unp_addr;
    345 		} else {
    346 			if (unp->unp_addr)
    347 				sun = unp->unp_addr;
    348 		}
    349 		if (sun == NULL)
    350 			sun = &sun_noname;
    351 		nam->m_len = sun->sun_len;
    352 		if (nam->m_len > MLEN && !ext) {
    353 			sounlock(so);
    354 			MEXTMALLOC(nam, MAXPATHLEN * 2, M_WAITOK);
    355 			solock(so);
    356 			ext = true;
    357 		} else {
    358 			KASSERT(nam->m_len <= MAXPATHLEN * 2);
    359 			memcpy(mtod(nam, void *), sun, (size_t)nam->m_len);
    360 			break;
    361 		}
    362 	}
    363 }
    364 
    365 static int
    366 unp_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
    367     struct mbuf *control, struct lwp *l)
    368 {
    369 	struct unpcb *unp;
    370 	struct socket *so2;
    371 	u_int newhiwat;
    372 	int error = 0;
    373 
    374 	KASSERT(req != PRU_ATTACH);
    375 	KASSERT(req != PRU_DETACH);
    376 
    377 	if (req == PRU_CONTROL) {
    378 		return EOPNOTSUPP;
    379 	}
    380 	KASSERT(solocked(so));
    381 	unp = sotounpcb(so);
    382 
    383 	KASSERT(!control || (req == PRU_SEND || req == PRU_SENDOOB));
    384 	if (unp == NULL) {
    385 		error = EINVAL;
    386 		goto release;
    387 	}
    388 
    389 	switch (req) {
    390 	case PRU_BIND:
    391 		KASSERT(l != NULL);
    392 		error = unp_bind(so, nam, l);
    393 		break;
    394 
    395 	case PRU_LISTEN:
    396 		/*
    397 		 * If the socket can accept a connection, it must be
    398 		 * locked by uipc_lock.
    399 		 */
    400 		unp_resetlock(so);
    401 		if (unp->unp_vnode == NULL)
    402 			error = EINVAL;
    403 		break;
    404 
    405 	case PRU_CONNECT:
    406 		KASSERT(l != NULL);
    407 		error = unp_connect(so, nam, l);
    408 		break;
    409 
    410 	case PRU_CONNECT2:
    411 		error = unp_connect2(so, (struct socket *)nam, PRU_CONNECT2);
    412 		break;
    413 
    414 	case PRU_DISCONNECT:
    415 		unp_disconnect(unp);
    416 		break;
    417 
    418 	case PRU_ACCEPT:
    419 		KASSERT(so->so_lock == uipc_lock);
    420 		/*
    421 		 * Mark the initiating STREAM socket as connected *ONLY*
    422 		 * after it's been accepted.  This prevents a client from
    423 		 * overrunning a server and receiving ECONNREFUSED.
    424 		 */
    425 		if (unp->unp_conn == NULL) {
    426 			/*
    427 			 * This will use the empty socket and will not
    428 			 * allocate.
    429 			 */
    430 			unp_setaddr(so, nam, true);
    431 			break;
    432 		}
    433 		so2 = unp->unp_conn->unp_socket;
    434 		if (so2->so_state & SS_ISCONNECTING) {
    435 			KASSERT(solocked2(so, so->so_head));
    436 			KASSERT(solocked2(so2, so->so_head));
    437 			soisconnected(so2);
    438 		}
    439 		/*
    440 		 * If the connection is fully established, break the
    441 		 * association with uipc_lock and give the connected
    442 		 * pair a separate lock to share.
    443 		 * There is a race here: sotounpcb(so2)->unp_streamlock
    444 		 * is not locked, so when changing so2->so_lock
    445 		 * another thread can grab it while so->so_lock is still
    446 		 * pointing to the (locked) uipc_lock.
    447 		 * this should be harmless, except that this makes
    448 		 * solocked2() and solocked() unreliable.
    449 		 * Another problem is that unp_setaddr() expects the
    450 		 * the socket locked. Grabing sotounpcb(so2)->unp_streamlock
    451 		 * fixes both issues.
    452 		 */
    453 		mutex_enter(sotounpcb(so2)->unp_streamlock);
    454 		unp_setpeerlocks(so2, so);
    455 		/*
    456 		 * Only now return peer's address, as we may need to
    457 		 * block in order to allocate memory.
    458 		 *
    459 		 * XXX Minor race: connection can be broken while
    460 		 * lock is dropped in unp_setaddr().  We will return
    461 		 * error == 0 and sun_noname as the peer address.
    462 		 */
    463 		unp_setaddr(so, nam, true);
    464 		/* so_lock now points to unp_streamlock */
    465 		mutex_exit(so2->so_lock);
    466 		break;
    467 
    468 	case PRU_SHUTDOWN:
    469 		socantsendmore(so);
    470 		unp_shutdown(unp);
    471 		break;
    472 
    473 	case PRU_RCVD:
    474 		switch (so->so_type) {
    475 
    476 		case SOCK_DGRAM:
    477 			panic("uipc 1");
    478 			/*NOTREACHED*/
    479 
    480 		case SOCK_SEQPACKET: /* FALLTHROUGH */
    481 		case SOCK_STREAM:
    482 #define	rcv (&so->so_rcv)
    483 #define snd (&so2->so_snd)
    484 			if (unp->unp_conn == 0)
    485 				break;
    486 			so2 = unp->unp_conn->unp_socket;
    487 			KASSERT(solocked2(so, so2));
    488 			/*
    489 			 * Adjust backpressure on sender
    490 			 * and wakeup any waiting to write.
    491 			 */
    492 			snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
    493 			unp->unp_mbcnt = rcv->sb_mbcnt;
    494 			newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
    495 			(void)chgsbsize(so2->so_uidinfo,
    496 			    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
    497 			unp->unp_cc = rcv->sb_cc;
    498 			sowwakeup(so2);
    499 #undef snd
    500 #undef rcv
    501 			break;
    502 
    503 		default:
    504 			panic("uipc 2");
    505 		}
    506 		break;
    507 
    508 	case PRU_SEND:
    509 		/*
    510 		 * Note: unp_internalize() rejects any control message
    511 		 * other than SCM_RIGHTS, and only allows one.  This
    512 		 * has the side-effect of preventing a caller from
    513 		 * forging SCM_CREDS.
    514 		 */
    515 		if (control) {
    516 			sounlock(so);
    517 			error = unp_internalize(&control);
    518 			solock(so);
    519 			if (error != 0) {
    520 				m_freem(control);
    521 				m_freem(m);
    522 				break;
    523 			}
    524 		}
    525 		switch (so->so_type) {
    526 
    527 		case SOCK_DGRAM: {
    528 			KASSERT(so->so_lock == uipc_lock);
    529 			if (nam) {
    530 				if ((so->so_state & SS_ISCONNECTED) != 0)
    531 					error = EISCONN;
    532 				else {
    533 					/*
    534 					 * Note: once connected, the
    535 					 * socket's lock must not be
    536 					 * dropped until we have sent
    537 					 * the message and disconnected.
    538 					 * This is necessary to prevent
    539 					 * intervening control ops, like
    540 					 * another connection.
    541 					 */
    542 					error = unp_connect(so, nam, l);
    543 				}
    544 			} else {
    545 				if ((so->so_state & SS_ISCONNECTED) == 0)
    546 					error = ENOTCONN;
    547 			}
    548 			if (error) {
    549 				unp_dispose(control);
    550 				m_freem(control);
    551 				m_freem(m);
    552 				break;
    553 			}
    554 			KASSERT(l != NULL);
    555 			error = unp_output(m, control, unp, l);
    556 			if (nam)
    557 				unp_disconnect(unp);
    558 			break;
    559 		}
    560 
    561 		case SOCK_SEQPACKET: /* FALLTHROUGH */
    562 		case SOCK_STREAM:
    563 #define	rcv (&so2->so_rcv)
    564 #define	snd (&so->so_snd)
    565 			if (unp->unp_conn == NULL) {
    566 				error = ENOTCONN;
    567 				break;
    568 			}
    569 			so2 = unp->unp_conn->unp_socket;
    570 			KASSERT(solocked2(so, so2));
    571 			if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
    572 				/*
    573 				 * Credentials are passed only once on
    574 				 * SOCK_STREAM and SOCK_SEQPACKET.
    575 				 */
    576 				unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
    577 				control = unp_addsockcred(l, control);
    578 			}
    579 			/*
    580 			 * Send to paired receive port, and then reduce
    581 			 * send buffer hiwater marks to maintain backpressure.
    582 			 * Wake up readers.
    583 			 */
    584 			if (control) {
    585 				if (sbappendcontrol(rcv, m, control) != 0)
    586 					control = NULL;
    587 			} else {
    588 				switch(so->so_type) {
    589 				case SOCK_SEQPACKET:
    590 					sbappendrecord(rcv, m);
    591 					break;
    592 				case SOCK_STREAM:
    593 					sbappend(rcv, m);
    594 					break;
    595 				default:
    596 					panic("uipc_usrreq");
    597 					break;
    598 				}
    599 			}
    600 			snd->sb_mbmax -=
    601 			    rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
    602 			unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
    603 			newhiwat = snd->sb_hiwat -
    604 			    (rcv->sb_cc - unp->unp_conn->unp_cc);
    605 			(void)chgsbsize(so->so_uidinfo,
    606 			    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
    607 			unp->unp_conn->unp_cc = rcv->sb_cc;
    608 			sorwakeup(so2);
    609 #undef snd
    610 #undef rcv
    611 			if (control != NULL) {
    612 				unp_dispose(control);
    613 				m_freem(control);
    614 			}
    615 			break;
    616 
    617 		default:
    618 			panic("uipc 4");
    619 		}
    620 		break;
    621 
    622 	case PRU_ABORT:
    623 		(void)unp_drop(unp, ECONNABORTED);
    624 		KASSERT(so->so_head == NULL);
    625 		KASSERT(so->so_pcb != NULL);
    626 		unp_detach(so);
    627 		break;
    628 
    629 	case PRU_SENSE:
    630 		((struct stat *) m)->st_blksize = so->so_snd.sb_hiwat;
    631 		switch (so->so_type) {
    632 		case SOCK_SEQPACKET: /* FALLTHROUGH */
    633 		case SOCK_STREAM:
    634 			if (unp->unp_conn == 0)
    635 				break;
    636 
    637 			so2 = unp->unp_conn->unp_socket;
    638 			KASSERT(solocked2(so, so2));
    639 			((struct stat *) m)->st_blksize += so2->so_rcv.sb_cc;
    640 			break;
    641 		default:
    642 			break;
    643 		}
    644 		((struct stat *) m)->st_dev = NODEV;
    645 		if (unp->unp_ino == 0)
    646 			unp->unp_ino = unp_ino++;
    647 		((struct stat *) m)->st_atimespec =
    648 		    ((struct stat *) m)->st_mtimespec =
    649 		    ((struct stat *) m)->st_ctimespec = unp->unp_ctime;
    650 		((struct stat *) m)->st_ino = unp->unp_ino;
    651 		return (0);
    652 
    653 	case PRU_RCVOOB:
    654 		error = EOPNOTSUPP;
    655 		break;
    656 
    657 	case PRU_SENDOOB:
    658 		m_freem(control);
    659 		m_freem(m);
    660 		error = EOPNOTSUPP;
    661 		break;
    662 
    663 	case PRU_SOCKADDR:
    664 		unp_setaddr(so, nam, false);
    665 		break;
    666 
    667 	case PRU_PEERADDR:
    668 		unp_setaddr(so, nam, true);
    669 		break;
    670 
    671 	default:
    672 		panic("piusrreq");
    673 	}
    674 
    675 release:
    676 	return (error);
    677 }
    678 
    679 /*
    680  * Unix domain socket option processing.
    681  */
    682 int
    683 uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
    684 {
    685 	struct unpcb *unp = sotounpcb(so);
    686 	int optval = 0, error = 0;
    687 
    688 	KASSERT(solocked(so));
    689 
    690 	if (sopt->sopt_level != 0) {
    691 		error = ENOPROTOOPT;
    692 	} else switch (op) {
    693 
    694 	case PRCO_SETOPT:
    695 		switch (sopt->sopt_name) {
    696 		case LOCAL_CREDS:
    697 		case LOCAL_CONNWAIT:
    698 			error = sockopt_getint(sopt, &optval);
    699 			if (error)
    700 				break;
    701 			switch (sopt->sopt_name) {
    702 #define	OPTSET(bit) \
    703 	if (optval) \
    704 		unp->unp_flags |= (bit); \
    705 	else \
    706 		unp->unp_flags &= ~(bit);
    707 
    708 			case LOCAL_CREDS:
    709 				OPTSET(UNP_WANTCRED);
    710 				break;
    711 			case LOCAL_CONNWAIT:
    712 				OPTSET(UNP_CONNWAIT);
    713 				break;
    714 			}
    715 			break;
    716 #undef OPTSET
    717 
    718 		default:
    719 			error = ENOPROTOOPT;
    720 			break;
    721 		}
    722 		break;
    723 
    724 	case PRCO_GETOPT:
    725 		sounlock(so);
    726 		switch (sopt->sopt_name) {
    727 		case LOCAL_PEEREID:
    728 			if (unp->unp_flags & UNP_EIDSVALID) {
    729 				error = sockopt_set(sopt,
    730 				    &unp->unp_connid, sizeof(unp->unp_connid));
    731 			} else {
    732 				error = EINVAL;
    733 			}
    734 			break;
    735 		case LOCAL_CREDS:
    736 #define	OPTBIT(bit)	(unp->unp_flags & (bit) ? 1 : 0)
    737 
    738 			optval = OPTBIT(UNP_WANTCRED);
    739 			error = sockopt_setint(sopt, optval);
    740 			break;
    741 #undef OPTBIT
    742 
    743 		default:
    744 			error = ENOPROTOOPT;
    745 			break;
    746 		}
    747 		solock(so);
    748 		break;
    749 	}
    750 	return (error);
    751 }
    752 
    753 /*
    754  * Both send and receive buffers are allocated PIPSIZ bytes of buffering
    755  * for stream sockets, although the total for sender and receiver is
    756  * actually only PIPSIZ.
    757  * Datagram sockets really use the sendspace as the maximum datagram size,
    758  * and don't really want to reserve the sendspace.  Their recvspace should
    759  * be large enough for at least one max-size datagram plus address.
    760  */
    761 #define	PIPSIZ	4096
    762 u_long	unpst_sendspace = PIPSIZ;
    763 u_long	unpst_recvspace = PIPSIZ;
    764 u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
    765 u_long	unpdg_recvspace = 4*1024;
    766 
    767 u_int	unp_rights;			/* files in flight */
    768 u_int	unp_rights_ratio = 2;		/* limit, fraction of maxfiles */
    769 
    770 static int
    771 unp_attach(struct socket *so, int proto)
    772 {
    773 	struct unpcb *unp = sotounpcb(so);
    774 	u_long sndspc, rcvspc;
    775 	int error;
    776 
    777 	KASSERT(unp == NULL);
    778 
    779 	switch (so->so_type) {
    780 	case SOCK_SEQPACKET:
    781 		/* FALLTHROUGH */
    782 	case SOCK_STREAM:
    783 		if (so->so_lock == NULL) {
    784 			so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    785 			solock(so);
    786 		}
    787 		sndspc = unpst_sendspace;
    788 		rcvspc = unpst_recvspace;
    789 		break;
    790 
    791 	case SOCK_DGRAM:
    792 		if (so->so_lock == NULL) {
    793 			mutex_obj_hold(uipc_lock);
    794 			so->so_lock = uipc_lock;
    795 			solock(so);
    796 		}
    797 		sndspc = unpdg_sendspace;
    798 		rcvspc = unpdg_recvspace;
    799 		break;
    800 
    801 	default:
    802 		panic("unp_attach");
    803 	}
    804 
    805 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
    806 		error = soreserve(so, sndspc, rcvspc);
    807 		if (error) {
    808 			return error;
    809 		}
    810 	}
    811 
    812 	unp = kmem_zalloc(sizeof(*unp), KM_SLEEP);
    813 	nanotime(&unp->unp_ctime);
    814 	unp->unp_socket = so;
    815 	so->so_pcb = unp;
    816 
    817 	KASSERT(solocked(so));
    818 	return 0;
    819 }
    820 
    821 static void
    822 unp_detach(struct socket *so)
    823 {
    824 	struct unpcb *unp;
    825 	vnode_t *vp;
    826 
    827 	unp = sotounpcb(so);
    828 	KASSERT(unp != NULL);
    829 	KASSERT(solocked(so));
    830  retry:
    831 	if ((vp = unp->unp_vnode) != NULL) {
    832 		sounlock(so);
    833 		/* Acquire v_interlock to protect against unp_connect(). */
    834 		/* XXXAD racy */
    835 		mutex_enter(vp->v_interlock);
    836 		vp->v_socket = NULL;
    837 		mutex_exit(vp->v_interlock);
    838 		vrele(vp);
    839 		solock(so);
    840 		unp->unp_vnode = NULL;
    841 	}
    842 	if (unp->unp_conn)
    843 		unp_disconnect(unp);
    844 	while (unp->unp_refs) {
    845 		KASSERT(solocked2(so, unp->unp_refs->unp_socket));
    846 		if (unp_drop(unp->unp_refs, ECONNRESET)) {
    847 			solock(so);
    848 			goto retry;
    849 		}
    850 	}
    851 	soisdisconnected(so);
    852 	so->so_pcb = NULL;
    853 	if (unp_rights) {
    854 		/*
    855 		 * Normally the receive buffer is flushed later, in sofree,
    856 		 * but if our receive buffer holds references to files that
    857 		 * are now garbage, we will enqueue those file references to
    858 		 * the garbage collector and kick it into action.
    859 		 */
    860 		sorflush(so);
    861 		unp_free(unp);
    862 		unp_thread_kick();
    863 	} else
    864 		unp_free(unp);
    865 }
    866 
    867 /*
    868  * Allocate the new sockaddr.  We have to allocate one
    869  * extra byte so that we can ensure that the pathname
    870  * is nul-terminated. Note that unlike linux, we don't
    871  * include in the address length the NUL in the path
    872  * component, because doing so, would exceed sizeof(sockaddr_un)
    873  * for fully occupied pathnames. Linux is also inconsistent,
    874  * because it does not include the NUL in the length of
    875  * what it calls "abstract" unix sockets.
    876  */
    877 static struct sockaddr_un *
    878 makeun(struct mbuf *nam, size_t *addrlen) {
    879 	struct sockaddr_un *sun;
    880 
    881 	*addrlen = nam->m_len + 1;
    882 	sun = malloc(*addrlen, M_SONAME, M_WAITOK);
    883 	m_copydata(nam, 0, nam->m_len, (void *)sun);
    884 	*(((char *)sun) + nam->m_len) = '\0';
    885 	sun->sun_len = strlen(sun->sun_path) +
    886 	    offsetof(struct sockaddr_un, sun_path);
    887 	return sun;
    888 }
    889 
    890 int
    891 unp_bind(struct socket *so, struct mbuf *nam, struct lwp *l)
    892 {
    893 	struct sockaddr_un *sun;
    894 	struct unpcb *unp;
    895 	vnode_t *vp;
    896 	struct vattr vattr;
    897 	size_t addrlen;
    898 	int error;
    899 	struct pathbuf *pb;
    900 	struct nameidata nd;
    901 	proc_t *p;
    902 
    903 	unp = sotounpcb(so);
    904 	if (unp->unp_vnode != NULL)
    905 		return (EINVAL);
    906 	if ((unp->unp_flags & UNP_BUSY) != 0) {
    907 		/*
    908 		 * EALREADY may not be strictly accurate, but since this
    909 		 * is a major application error it's hardly a big deal.
    910 		 */
    911 		return (EALREADY);
    912 	}
    913 	unp->unp_flags |= UNP_BUSY;
    914 	sounlock(so);
    915 
    916 	p = l->l_proc;
    917 	sun = makeun(nam, &addrlen);
    918 
    919 	pb = pathbuf_create(sun->sun_path);
    920 	if (pb == NULL) {
    921 		error = ENOMEM;
    922 		goto bad;
    923 	}
    924 	NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, pb);
    925 
    926 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
    927 	if ((error = namei(&nd)) != 0) {
    928 		pathbuf_destroy(pb);
    929 		goto bad;
    930 	}
    931 	vp = nd.ni_vp;
    932 	if (vp != NULL) {
    933 		VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
    934 		if (nd.ni_dvp == vp)
    935 			vrele(nd.ni_dvp);
    936 		else
    937 			vput(nd.ni_dvp);
    938 		vrele(vp);
    939 		pathbuf_destroy(pb);
    940 		error = EADDRINUSE;
    941 		goto bad;
    942 	}
    943 	vattr_null(&vattr);
    944 	vattr.va_type = VSOCK;
    945 	vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
    946 	error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
    947 	if (error) {
    948 		vput(nd.ni_dvp);
    949 		pathbuf_destroy(pb);
    950 		goto bad;
    951 	}
    952 	vp = nd.ni_vp;
    953 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    954 	solock(so);
    955 	vp->v_socket = unp->unp_socket;
    956 	unp->unp_vnode = vp;
    957 	unp->unp_addrlen = addrlen;
    958 	unp->unp_addr = sun;
    959 	unp->unp_connid.unp_pid = p->p_pid;
    960 	unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
    961 	unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
    962 	unp->unp_flags |= UNP_EIDSBIND;
    963 	VOP_UNLOCK(vp);
    964 	vput(nd.ni_dvp);
    965 	unp->unp_flags &= ~UNP_BUSY;
    966 	pathbuf_destroy(pb);
    967 	return (0);
    968 
    969  bad:
    970 	free(sun, M_SONAME);
    971 	solock(so);
    972 	unp->unp_flags &= ~UNP_BUSY;
    973 	return (error);
    974 }
    975 
    976 int
    977 unp_connect(struct socket *so, struct mbuf *nam, struct lwp *l)
    978 {
    979 	struct sockaddr_un *sun;
    980 	vnode_t *vp;
    981 	struct socket *so2, *so3;
    982 	struct unpcb *unp, *unp2, *unp3;
    983 	size_t addrlen;
    984 	int error;
    985 	struct pathbuf *pb;
    986 	struct nameidata nd;
    987 
    988 	unp = sotounpcb(so);
    989 	if ((unp->unp_flags & UNP_BUSY) != 0) {
    990 		/*
    991 		 * EALREADY may not be strictly accurate, but since this
    992 		 * is a major application error it's hardly a big deal.
    993 		 */
    994 		return (EALREADY);
    995 	}
    996 	unp->unp_flags |= UNP_BUSY;
    997 	sounlock(so);
    998 
    999 	sun = makeun(nam, &addrlen);
   1000 	pb = pathbuf_create(sun->sun_path);
   1001 	if (pb == NULL) {
   1002 		error = ENOMEM;
   1003 		goto bad2;
   1004 	}
   1005 
   1006 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
   1007 
   1008 	if ((error = namei(&nd)) != 0) {
   1009 		pathbuf_destroy(pb);
   1010 		goto bad2;
   1011 	}
   1012 	vp = nd.ni_vp;
   1013 	if (vp->v_type != VSOCK) {
   1014 		error = ENOTSOCK;
   1015 		goto bad;
   1016 	}
   1017 	pathbuf_destroy(pb);
   1018 	if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
   1019 		goto bad;
   1020 	/* Acquire v_interlock to protect against unp_detach(). */
   1021 	mutex_enter(vp->v_interlock);
   1022 	so2 = vp->v_socket;
   1023 	if (so2 == NULL) {
   1024 		mutex_exit(vp->v_interlock);
   1025 		error = ECONNREFUSED;
   1026 		goto bad;
   1027 	}
   1028 	if (so->so_type != so2->so_type) {
   1029 		mutex_exit(vp->v_interlock);
   1030 		error = EPROTOTYPE;
   1031 		goto bad;
   1032 	}
   1033 	solock(so);
   1034 	unp_resetlock(so);
   1035 	mutex_exit(vp->v_interlock);
   1036 	if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
   1037 		/*
   1038 		 * This may seem somewhat fragile but is OK: if we can
   1039 		 * see SO_ACCEPTCONN set on the endpoint, then it must
   1040 		 * be locked by the domain-wide uipc_lock.
   1041 		 */
   1042 		KASSERT((so2->so_options & SO_ACCEPTCONN) == 0 ||
   1043 		    so2->so_lock == uipc_lock);
   1044 		if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
   1045 		    (so3 = sonewconn(so2, false)) == NULL) {
   1046 			error = ECONNREFUSED;
   1047 			sounlock(so);
   1048 			goto bad;
   1049 		}
   1050 		unp2 = sotounpcb(so2);
   1051 		unp3 = sotounpcb(so3);
   1052 		if (unp2->unp_addr) {
   1053 			unp3->unp_addr = malloc(unp2->unp_addrlen,
   1054 			    M_SONAME, M_WAITOK);
   1055 			memcpy(unp3->unp_addr, unp2->unp_addr,
   1056 			    unp2->unp_addrlen);
   1057 			unp3->unp_addrlen = unp2->unp_addrlen;
   1058 		}
   1059 		unp3->unp_flags = unp2->unp_flags;
   1060 		unp3->unp_connid.unp_pid = l->l_proc->p_pid;
   1061 		unp3->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
   1062 		unp3->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
   1063 		unp3->unp_flags |= UNP_EIDSVALID;
   1064 		if (unp2->unp_flags & UNP_EIDSBIND) {
   1065 			unp->unp_connid = unp2->unp_connid;
   1066 			unp->unp_flags |= UNP_EIDSVALID;
   1067 		}
   1068 		so2 = so3;
   1069 	}
   1070 	error = unp_connect2(so, so2, PRU_CONNECT);
   1071 	sounlock(so);
   1072  bad:
   1073 	vput(vp);
   1074  bad2:
   1075 	free(sun, M_SONAME);
   1076 	solock(so);
   1077 	unp->unp_flags &= ~UNP_BUSY;
   1078 	return (error);
   1079 }
   1080 
   1081 int
   1082 unp_connect2(struct socket *so, struct socket *so2, int req)
   1083 {
   1084 	struct unpcb *unp = sotounpcb(so);
   1085 	struct unpcb *unp2;
   1086 
   1087 	if (so2->so_type != so->so_type)
   1088 		return (EPROTOTYPE);
   1089 
   1090 	/*
   1091 	 * All three sockets involved must be locked by same lock:
   1092 	 *
   1093 	 * local endpoint (so)
   1094 	 * remote endpoint (so2)
   1095 	 * queue head (so2->so_head, only if PR_CONNREQUIRED)
   1096 	 */
   1097 	KASSERT(solocked2(so, so2));
   1098 	KASSERT(so->so_head == NULL);
   1099 	if (so2->so_head != NULL) {
   1100 		KASSERT(so2->so_lock == uipc_lock);
   1101 		KASSERT(solocked2(so2, so2->so_head));
   1102 	}
   1103 
   1104 	unp2 = sotounpcb(so2);
   1105 	unp->unp_conn = unp2;
   1106 	switch (so->so_type) {
   1107 
   1108 	case SOCK_DGRAM:
   1109 		unp->unp_nextref = unp2->unp_refs;
   1110 		unp2->unp_refs = unp;
   1111 		soisconnected(so);
   1112 		break;
   1113 
   1114 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1115 	case SOCK_STREAM:
   1116 		unp2->unp_conn = unp;
   1117 		if (req == PRU_CONNECT &&
   1118 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
   1119 			soisconnecting(so);
   1120 		else
   1121 			soisconnected(so);
   1122 		soisconnected(so2);
   1123 		/*
   1124 		 * If the connection is fully established, break the
   1125 		 * association with uipc_lock and give the connected
   1126 		 * pair a seperate lock to share.  For CONNECT2, we
   1127 		 * require that the locks already match (the sockets
   1128 		 * are created that way).
   1129 		 */
   1130 		if (req == PRU_CONNECT) {
   1131 			KASSERT(so2->so_head != NULL);
   1132 			unp_setpeerlocks(so, so2);
   1133 		}
   1134 		break;
   1135 
   1136 	default:
   1137 		panic("unp_connect2");
   1138 	}
   1139 	return (0);
   1140 }
   1141 
   1142 void
   1143 unp_disconnect(struct unpcb *unp)
   1144 {
   1145 	struct unpcb *unp2 = unp->unp_conn;
   1146 	struct socket *so;
   1147 
   1148 	if (unp2 == 0)
   1149 		return;
   1150 	unp->unp_conn = 0;
   1151 	so = unp->unp_socket;
   1152 	switch (so->so_type) {
   1153 	case SOCK_DGRAM:
   1154 		if (unp2->unp_refs == unp)
   1155 			unp2->unp_refs = unp->unp_nextref;
   1156 		else {
   1157 			unp2 = unp2->unp_refs;
   1158 			for (;;) {
   1159 				KASSERT(solocked2(so, unp2->unp_socket));
   1160 				if (unp2 == 0)
   1161 					panic("unp_disconnect");
   1162 				if (unp2->unp_nextref == unp)
   1163 					break;
   1164 				unp2 = unp2->unp_nextref;
   1165 			}
   1166 			unp2->unp_nextref = unp->unp_nextref;
   1167 		}
   1168 		unp->unp_nextref = 0;
   1169 		so->so_state &= ~SS_ISCONNECTED;
   1170 		break;
   1171 
   1172 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1173 	case SOCK_STREAM:
   1174 		KASSERT(solocked2(so, unp2->unp_socket));
   1175 		soisdisconnected(so);
   1176 		unp2->unp_conn = 0;
   1177 		soisdisconnected(unp2->unp_socket);
   1178 		break;
   1179 	}
   1180 }
   1181 
   1182 void
   1183 unp_shutdown(struct unpcb *unp)
   1184 {
   1185 	struct socket *so;
   1186 
   1187 	switch(unp->unp_socket->so_type) {
   1188 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1189 	case SOCK_STREAM:
   1190 		if (unp->unp_conn && (so = unp->unp_conn->unp_socket))
   1191 			socantrcvmore(so);
   1192 		break;
   1193 	default:
   1194 		break;
   1195 	}
   1196 }
   1197 
   1198 bool
   1199 unp_drop(struct unpcb *unp, int errno)
   1200 {
   1201 	struct socket *so = unp->unp_socket;
   1202 
   1203 	KASSERT(solocked(so));
   1204 
   1205 	so->so_error = errno;
   1206 	unp_disconnect(unp);
   1207 	if (so->so_head) {
   1208 		so->so_pcb = NULL;
   1209 		/* sofree() drops the socket lock */
   1210 		sofree(so);
   1211 		unp_free(unp);
   1212 		return true;
   1213 	}
   1214 	return false;
   1215 }
   1216 
   1217 #ifdef notdef
   1218 unp_drain(void)
   1219 {
   1220 
   1221 }
   1222 #endif
   1223 
   1224 int
   1225 unp_externalize(struct mbuf *rights, struct lwp *l, int flags)
   1226 {
   1227 	struct cmsghdr * const cm = mtod(rights, struct cmsghdr *);
   1228 	struct proc * const p = l->l_proc;
   1229 	file_t **rp;
   1230 	int error = 0;
   1231 
   1232 	const size_t nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
   1233 	    sizeof(file_t *);
   1234 	if (nfds == 0)
   1235 		goto noop;
   1236 
   1237 	int * const fdp = kmem_alloc(nfds * sizeof(int), KM_SLEEP);
   1238 	rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
   1239 
   1240 	/* Make sure the recipient should be able to see the files.. */
   1241 	rp = (file_t **)CMSG_DATA(cm);
   1242 	for (size_t i = 0; i < nfds; i++) {
   1243 		file_t * const fp = *rp++;
   1244 		if (fp == NULL) {
   1245 			error = EINVAL;
   1246 			goto out;
   1247 		}
   1248 		/*
   1249 		 * If we are in a chroot'ed directory, and
   1250 		 * someone wants to pass us a directory, make
   1251 		 * sure it's inside the subtree we're allowed
   1252 		 * to access.
   1253 		 */
   1254 		if (p->p_cwdi->cwdi_rdir != NULL && fp->f_type == DTYPE_VNODE) {
   1255 			vnode_t *vp = (vnode_t *)fp->f_data;
   1256 			if ((vp->v_type == VDIR) &&
   1257 			    !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
   1258 				error = EPERM;
   1259 				goto out;
   1260 			}
   1261 		}
   1262 	}
   1263 
   1264  restart:
   1265 	/*
   1266 	 * First loop -- allocate file descriptor table slots for the
   1267 	 * new files.
   1268 	 */
   1269 	for (size_t i = 0; i < nfds; i++) {
   1270 		if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
   1271 			/*
   1272 			 * Back out what we've done so far.
   1273 			 */
   1274 			while (i-- > 0) {
   1275 				fd_abort(p, NULL, fdp[i]);
   1276 			}
   1277 			if (error == ENOSPC) {
   1278 				fd_tryexpand(p);
   1279 				error = 0;
   1280 				goto restart;
   1281 			}
   1282 			/*
   1283 			 * This is the error that has historically
   1284 			 * been returned, and some callers may
   1285 			 * expect it.
   1286 			 */
   1287 			error = EMSGSIZE;
   1288 			goto out;
   1289 		}
   1290 	}
   1291 
   1292 	/*
   1293 	 * Now that adding them has succeeded, update all of the
   1294 	 * file passing state and affix the descriptors.
   1295 	 */
   1296 	rp = (file_t **)CMSG_DATA(cm);
   1297 	int *ofdp = (int *)CMSG_DATA(cm);
   1298 	for (size_t i = 0; i < nfds; i++) {
   1299 		file_t * const fp = *rp++;
   1300 		const int fd = fdp[i];
   1301 		atomic_dec_uint(&unp_rights);
   1302 		fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
   1303 		fd_affix(p, fp, fd);
   1304 		/*
   1305 		 * Done with this file pointer, replace it with a fd;
   1306 		 */
   1307 		*ofdp++ = fd;
   1308 		mutex_enter(&fp->f_lock);
   1309 		fp->f_msgcount--;
   1310 		mutex_exit(&fp->f_lock);
   1311 		/*
   1312 		 * Note that fd_affix() adds a reference to the file.
   1313 		 * The file may already have been closed by another
   1314 		 * LWP in the process, so we must drop the reference
   1315 		 * added by unp_internalize() with closef().
   1316 		 */
   1317 		closef(fp);
   1318 	}
   1319 
   1320 	/*
   1321 	 * Adjust length, in case of transition from large file_t
   1322 	 * pointers to ints.
   1323 	 */
   1324 	if (sizeof(file_t *) != sizeof(int)) {
   1325 		cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
   1326 		rights->m_len = CMSG_SPACE(nfds * sizeof(int));
   1327 	}
   1328  out:
   1329 	if (__predict_false(error != 0)) {
   1330 		file_t **const fpp = (file_t **)CMSG_DATA(cm);
   1331 		for (size_t i = 0; i < nfds; i++)
   1332 			unp_discard_now(fpp[i]);
   1333 		/*
   1334 		 * Truncate the array so that nobody will try to interpret
   1335 		 * what is now garbage in it.
   1336 		 */
   1337 		cm->cmsg_len = CMSG_LEN(0);
   1338 		rights->m_len = CMSG_SPACE(0);
   1339 	}
   1340 	rw_exit(&p->p_cwdi->cwdi_lock);
   1341 	kmem_free(fdp, nfds * sizeof(int));
   1342 
   1343  noop:
   1344 	/*
   1345 	 * Don't disclose kernel memory in the alignment space.
   1346 	 */
   1347 	KASSERT(cm->cmsg_len <= rights->m_len);
   1348 	memset(&mtod(rights, char *)[cm->cmsg_len], 0, rights->m_len -
   1349 	    cm->cmsg_len);
   1350 	return error;
   1351 }
   1352 
   1353 int
   1354 unp_internalize(struct mbuf **controlp)
   1355 {
   1356 	filedesc_t *fdescp = curlwp->l_fd;
   1357 	struct mbuf *control = *controlp;
   1358 	struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
   1359 	file_t **rp, **files;
   1360 	file_t *fp;
   1361 	int i, fd, *fdp;
   1362 	int nfds, error;
   1363 	u_int maxmsg;
   1364 
   1365 	error = 0;
   1366 	newcm = NULL;
   1367 
   1368 	/* Sanity check the control message header. */
   1369 	if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
   1370 	    cm->cmsg_len > control->m_len ||
   1371 	    cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
   1372 		return (EINVAL);
   1373 
   1374 	/*
   1375 	 * Verify that the file descriptors are valid, and acquire
   1376 	 * a reference to each.
   1377 	 */
   1378 	nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
   1379 	fdp = (int *)CMSG_DATA(cm);
   1380 	maxmsg = maxfiles / unp_rights_ratio;
   1381 	for (i = 0; i < nfds; i++) {
   1382 		fd = *fdp++;
   1383 		if (atomic_inc_uint_nv(&unp_rights) > maxmsg) {
   1384 			atomic_dec_uint(&unp_rights);
   1385 			nfds = i;
   1386 			error = EAGAIN;
   1387 			goto out;
   1388 		}
   1389 		if ((fp = fd_getfile(fd)) == NULL
   1390 		    || fp->f_type == DTYPE_KQUEUE) {
   1391 		    	if (fp)
   1392 		    		fd_putfile(fd);
   1393 			atomic_dec_uint(&unp_rights);
   1394 			nfds = i;
   1395 			error = EBADF;
   1396 			goto out;
   1397 		}
   1398 	}
   1399 
   1400 	/* Allocate new space and copy header into it. */
   1401 	newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
   1402 	if (newcm == NULL) {
   1403 		error = E2BIG;
   1404 		goto out;
   1405 	}
   1406 	memcpy(newcm, cm, sizeof(struct cmsghdr));
   1407 	files = (file_t **)CMSG_DATA(newcm);
   1408 
   1409 	/*
   1410 	 * Transform the file descriptors into file_t pointers, in
   1411 	 * reverse order so that if pointers are bigger than ints, the
   1412 	 * int won't get until we're done.  No need to lock, as we have
   1413 	 * already validated the descriptors with fd_getfile().
   1414 	 */
   1415 	fdp = (int *)CMSG_DATA(cm) + nfds;
   1416 	rp = files + nfds;
   1417 	for (i = 0; i < nfds; i++) {
   1418 		fp = fdescp->fd_dt->dt_ff[*--fdp]->ff_file;
   1419 		KASSERT(fp != NULL);
   1420 		mutex_enter(&fp->f_lock);
   1421 		*--rp = fp;
   1422 		fp->f_count++;
   1423 		fp->f_msgcount++;
   1424 		mutex_exit(&fp->f_lock);
   1425 	}
   1426 
   1427  out:
   1428  	/* Release descriptor references. */
   1429 	fdp = (int *)CMSG_DATA(cm);
   1430 	for (i = 0; i < nfds; i++) {
   1431 		fd_putfile(*fdp++);
   1432 		if (error != 0) {
   1433 			atomic_dec_uint(&unp_rights);
   1434 		}
   1435 	}
   1436 
   1437 	if (error == 0) {
   1438 		if (control->m_flags & M_EXT) {
   1439 			m_freem(control);
   1440 			*controlp = control = m_get(M_WAIT, MT_CONTROL);
   1441 		}
   1442 		MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
   1443 		    M_MBUF, NULL, NULL);
   1444 		cm = newcm;
   1445 		/*
   1446 		 * Adjust message & mbuf to note amount of space
   1447 		 * actually used.
   1448 		 */
   1449 		cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
   1450 		control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
   1451 	}
   1452 
   1453 	return error;
   1454 }
   1455 
   1456 struct mbuf *
   1457 unp_addsockcred(struct lwp *l, struct mbuf *control)
   1458 {
   1459 	struct sockcred *sc;
   1460 	struct mbuf *m;
   1461 	void *p;
   1462 
   1463 	m = sbcreatecontrol1(&p, SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)),
   1464 		SCM_CREDS, SOL_SOCKET, M_WAITOK);
   1465 	if (m == NULL)
   1466 		return control;
   1467 
   1468 	sc = p;
   1469 	sc->sc_uid = kauth_cred_getuid(l->l_cred);
   1470 	sc->sc_euid = kauth_cred_geteuid(l->l_cred);
   1471 	sc->sc_gid = kauth_cred_getgid(l->l_cred);
   1472 	sc->sc_egid = kauth_cred_getegid(l->l_cred);
   1473 	sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
   1474 
   1475 	for (int i = 0; i < sc->sc_ngroups; i++)
   1476 		sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
   1477 
   1478 	return m_add(control, m);
   1479 }
   1480 
   1481 /*
   1482  * Do a mark-sweep GC of files in the system, to free up any which are
   1483  * caught in flight to an about-to-be-closed socket.  Additionally,
   1484  * process deferred file closures.
   1485  */
   1486 static void
   1487 unp_gc(file_t *dp)
   1488 {
   1489 	extern	struct domain unixdomain;
   1490 	file_t *fp, *np;
   1491 	struct socket *so, *so1;
   1492 	u_int i, old, new;
   1493 	bool didwork;
   1494 
   1495 	KASSERT(curlwp == unp_thread_lwp);
   1496 	KASSERT(mutex_owned(&filelist_lock));
   1497 
   1498 	/*
   1499 	 * First, process deferred file closures.
   1500 	 */
   1501 	while (!SLIST_EMPTY(&unp_thread_discard)) {
   1502 		fp = SLIST_FIRST(&unp_thread_discard);
   1503 		KASSERT(fp->f_unpcount > 0);
   1504 		KASSERT(fp->f_count > 0);
   1505 		KASSERT(fp->f_msgcount > 0);
   1506 		KASSERT(fp->f_count >= fp->f_unpcount);
   1507 		KASSERT(fp->f_count >= fp->f_msgcount);
   1508 		KASSERT(fp->f_msgcount >= fp->f_unpcount);
   1509 		SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist);
   1510 		i = fp->f_unpcount;
   1511 		fp->f_unpcount = 0;
   1512 		mutex_exit(&filelist_lock);
   1513 		for (; i != 0; i--) {
   1514 			unp_discard_now(fp);
   1515 		}
   1516 		mutex_enter(&filelist_lock);
   1517 	}
   1518 
   1519 	/*
   1520 	 * Clear mark bits.  Ensure that we don't consider new files
   1521 	 * entering the file table during this loop (they will not have
   1522 	 * FSCAN set).
   1523 	 */
   1524 	unp_defer = 0;
   1525 	LIST_FOREACH(fp, &filehead, f_list) {
   1526 		for (old = fp->f_flag;; old = new) {
   1527 			new = atomic_cas_uint(&fp->f_flag, old,
   1528 			    (old | FSCAN) & ~(FMARK|FDEFER));
   1529 			if (__predict_true(old == new)) {
   1530 				break;
   1531 			}
   1532 		}
   1533 	}
   1534 
   1535 	/*
   1536 	 * Iterate over the set of sockets, marking ones believed (based on
   1537 	 * refcount) to be referenced from a process, and marking for rescan
   1538 	 * sockets which are queued on a socket.  Recan continues descending
   1539 	 * and searching for sockets referenced by sockets (FDEFER), until
   1540 	 * there are no more socket->socket references to be discovered.
   1541 	 */
   1542 	do {
   1543 		didwork = false;
   1544 		for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
   1545 			KASSERT(mutex_owned(&filelist_lock));
   1546 			np = LIST_NEXT(fp, f_list);
   1547 			mutex_enter(&fp->f_lock);
   1548 			if ((fp->f_flag & FDEFER) != 0) {
   1549 				atomic_and_uint(&fp->f_flag, ~FDEFER);
   1550 				unp_defer--;
   1551 				KASSERT(fp->f_count != 0);
   1552 			} else {
   1553 				if (fp->f_count == 0 ||
   1554 				    (fp->f_flag & FMARK) != 0 ||
   1555 				    fp->f_count == fp->f_msgcount ||
   1556 				    fp->f_unpcount != 0) {
   1557 					mutex_exit(&fp->f_lock);
   1558 					continue;
   1559 				}
   1560 			}
   1561 			atomic_or_uint(&fp->f_flag, FMARK);
   1562 
   1563 			if (fp->f_type != DTYPE_SOCKET ||
   1564 			    (so = fp->f_data) == NULL ||
   1565 			    so->so_proto->pr_domain != &unixdomain ||
   1566 			    (so->so_proto->pr_flags & PR_RIGHTS) == 0) {
   1567 				mutex_exit(&fp->f_lock);
   1568 				continue;
   1569 			}
   1570 
   1571 			/* Gain file ref, mark our position, and unlock. */
   1572 			didwork = true;
   1573 			LIST_INSERT_AFTER(fp, dp, f_list);
   1574 			fp->f_count++;
   1575 			mutex_exit(&fp->f_lock);
   1576 			mutex_exit(&filelist_lock);
   1577 
   1578 			/*
   1579 			 * Mark files referenced from sockets queued on the
   1580 			 * accept queue as well.
   1581 			 */
   1582 			solock(so);
   1583 			unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
   1584 			if ((so->so_options & SO_ACCEPTCONN) != 0) {
   1585 				TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
   1586 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
   1587 				}
   1588 				TAILQ_FOREACH(so1, &so->so_q, so_qe) {
   1589 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
   1590 				}
   1591 			}
   1592 			sounlock(so);
   1593 
   1594 			/* Re-lock and restart from where we left off. */
   1595 			closef(fp);
   1596 			mutex_enter(&filelist_lock);
   1597 			np = LIST_NEXT(dp, f_list);
   1598 			LIST_REMOVE(dp, f_list);
   1599 		}
   1600 		/*
   1601 		 * Bail early if we did nothing in the loop above.  Could
   1602 		 * happen because of concurrent activity causing unp_defer
   1603 		 * to get out of sync.
   1604 		 */
   1605 	} while (unp_defer != 0 && didwork);
   1606 
   1607 	/*
   1608 	 * Sweep pass.
   1609 	 *
   1610 	 * We grab an extra reference to each of the files that are
   1611 	 * not otherwise accessible and then free the rights that are
   1612 	 * stored in messages on them.
   1613 	 */
   1614 	for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
   1615 		KASSERT(mutex_owned(&filelist_lock));
   1616 		np = LIST_NEXT(fp, f_list);
   1617 		mutex_enter(&fp->f_lock);
   1618 
   1619 		/*
   1620 		 * Ignore non-sockets.
   1621 		 * Ignore dead sockets, or sockets with pending close.
   1622 		 * Ignore sockets obviously referenced elsewhere.
   1623 		 * Ignore sockets marked as referenced by our scan.
   1624 		 * Ignore new sockets that did not exist during the scan.
   1625 		 */
   1626 		if (fp->f_type != DTYPE_SOCKET ||
   1627 		    fp->f_count == 0 || fp->f_unpcount != 0 ||
   1628 		    fp->f_count != fp->f_msgcount ||
   1629 		    (fp->f_flag & (FMARK | FSCAN)) != FSCAN) {
   1630 			mutex_exit(&fp->f_lock);
   1631 			continue;
   1632 		}
   1633 
   1634 		/* Gain file ref, mark our position, and unlock. */
   1635 		LIST_INSERT_AFTER(fp, dp, f_list);
   1636 		fp->f_count++;
   1637 		mutex_exit(&fp->f_lock);
   1638 		mutex_exit(&filelist_lock);
   1639 
   1640 		/*
   1641 		 * Flush all data from the socket's receive buffer.
   1642 		 * This will cause files referenced only by the
   1643 		 * socket to be queued for close.
   1644 		 */
   1645 		so = fp->f_data;
   1646 		solock(so);
   1647 		sorflush(so);
   1648 		sounlock(so);
   1649 
   1650 		/* Re-lock and restart from where we left off. */
   1651 		closef(fp);
   1652 		mutex_enter(&filelist_lock);
   1653 		np = LIST_NEXT(dp, f_list);
   1654 		LIST_REMOVE(dp, f_list);
   1655 	}
   1656 }
   1657 
   1658 /*
   1659  * Garbage collector thread.  While SCM_RIGHTS messages are in transit,
   1660  * wake once per second to garbage collect.  Run continually while we
   1661  * have deferred closes to process.
   1662  */
   1663 static void
   1664 unp_thread(void *cookie)
   1665 {
   1666 	file_t *dp;
   1667 
   1668 	/* Allocate a dummy file for our scans. */
   1669 	if ((dp = fgetdummy()) == NULL) {
   1670 		panic("unp_thread");
   1671 	}
   1672 
   1673 	mutex_enter(&filelist_lock);
   1674 	for (;;) {
   1675 		KASSERT(mutex_owned(&filelist_lock));
   1676 		if (SLIST_EMPTY(&unp_thread_discard)) {
   1677 			if (unp_rights != 0) {
   1678 				(void)cv_timedwait(&unp_thread_cv,
   1679 				    &filelist_lock, hz);
   1680 			} else {
   1681 				cv_wait(&unp_thread_cv, &filelist_lock);
   1682 			}
   1683 		}
   1684 		unp_gc(dp);
   1685 	}
   1686 	/* NOTREACHED */
   1687 }
   1688 
   1689 /*
   1690  * Kick the garbage collector into action if there is something for
   1691  * it to process.
   1692  */
   1693 static void
   1694 unp_thread_kick(void)
   1695 {
   1696 
   1697 	if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) {
   1698 		mutex_enter(&filelist_lock);
   1699 		cv_signal(&unp_thread_cv);
   1700 		mutex_exit(&filelist_lock);
   1701 	}
   1702 }
   1703 
   1704 void
   1705 unp_dispose(struct mbuf *m)
   1706 {
   1707 
   1708 	if (m)
   1709 		unp_scan(m, unp_discard_later, 1);
   1710 }
   1711 
   1712 void
   1713 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
   1714 {
   1715 	struct mbuf *m;
   1716 	file_t **rp, *fp;
   1717 	struct cmsghdr *cm;
   1718 	int i, qfds;
   1719 
   1720 	while (m0) {
   1721 		for (m = m0; m; m = m->m_next) {
   1722 			if (m->m_type != MT_CONTROL ||
   1723 			    m->m_len < sizeof(*cm)) {
   1724 			    	continue;
   1725 			}
   1726 			cm = mtod(m, struct cmsghdr *);
   1727 			if (cm->cmsg_level != SOL_SOCKET ||
   1728 			    cm->cmsg_type != SCM_RIGHTS)
   1729 				continue;
   1730 			qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
   1731 			    / sizeof(file_t *);
   1732 			rp = (file_t **)CMSG_DATA(cm);
   1733 			for (i = 0; i < qfds; i++) {
   1734 				fp = *rp;
   1735 				if (discard) {
   1736 					*rp = 0;
   1737 				}
   1738 				(*op)(fp);
   1739 				rp++;
   1740 			}
   1741 		}
   1742 		m0 = m0->m_nextpkt;
   1743 	}
   1744 }
   1745 
   1746 void
   1747 unp_mark(file_t *fp)
   1748 {
   1749 
   1750 	if (fp == NULL)
   1751 		return;
   1752 
   1753 	/* If we're already deferred, don't screw up the defer count */
   1754 	mutex_enter(&fp->f_lock);
   1755 	if (fp->f_flag & (FMARK | FDEFER)) {
   1756 		mutex_exit(&fp->f_lock);
   1757 		return;
   1758 	}
   1759 
   1760 	/*
   1761 	 * Minimize the number of deferrals...  Sockets are the only type of
   1762 	 * file which can hold references to another file, so just mark
   1763 	 * other files, and defer unmarked sockets for the next pass.
   1764 	 */
   1765 	if (fp->f_type == DTYPE_SOCKET) {
   1766 		unp_defer++;
   1767 		KASSERT(fp->f_count != 0);
   1768 		atomic_or_uint(&fp->f_flag, FDEFER);
   1769 	} else {
   1770 		atomic_or_uint(&fp->f_flag, FMARK);
   1771 	}
   1772 	mutex_exit(&fp->f_lock);
   1773 }
   1774 
   1775 static void
   1776 unp_discard_now(file_t *fp)
   1777 {
   1778 
   1779 	if (fp == NULL)
   1780 		return;
   1781 
   1782 	KASSERT(fp->f_count > 0);
   1783 	KASSERT(fp->f_msgcount > 0);
   1784 
   1785 	mutex_enter(&fp->f_lock);
   1786 	fp->f_msgcount--;
   1787 	mutex_exit(&fp->f_lock);
   1788 	atomic_dec_uint(&unp_rights);
   1789 	(void)closef(fp);
   1790 }
   1791 
   1792 static void
   1793 unp_discard_later(file_t *fp)
   1794 {
   1795 
   1796 	if (fp == NULL)
   1797 		return;
   1798 
   1799 	KASSERT(fp->f_count > 0);
   1800 	KASSERT(fp->f_msgcount > 0);
   1801 
   1802 	mutex_enter(&filelist_lock);
   1803 	if (fp->f_unpcount++ == 0) {
   1804 		SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist);
   1805 	}
   1806 	mutex_exit(&filelist_lock);
   1807 }
   1808 
   1809 const struct pr_usrreqs unp_usrreqs = {
   1810 	.pr_attach	= unp_attach,
   1811 	.pr_detach	= unp_detach,
   1812 	.pr_generic	= unp_usrreq,
   1813 };
   1814