Home | History | Annotate | Line # | Download | only in kern
uipc_usrreq.c revision 1.154
      1 /*	$NetBSD: uipc_usrreq.c,v 1.154 2014/06/22 08:10:18 rtr Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 2000, 2004, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
     62  */
     63 
     64 /*
     65  * Copyright (c) 1997 Christopher G. Demetriou.  All rights reserved.
     66  *
     67  * Redistribution and use in source and binary forms, with or without
     68  * modification, are permitted provided that the following conditions
     69  * are met:
     70  * 1. Redistributions of source code must retain the above copyright
     71  *    notice, this list of conditions and the following disclaimer.
     72  * 2. Redistributions in binary form must reproduce the above copyright
     73  *    notice, this list of conditions and the following disclaimer in the
     74  *    documentation and/or other materials provided with the distribution.
     75  * 3. All advertising materials mentioning features or use of this software
     76  *    must display the following acknowledgement:
     77  *	This product includes software developed by the University of
     78  *	California, Berkeley and its contributors.
     79  * 4. Neither the name of the University nor the names of its contributors
     80  *    may be used to endorse or promote products derived from this software
     81  *    without specific prior written permission.
     82  *
     83  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     84  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     85  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     86  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     87  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     88  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     89  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     90  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     91  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     92  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     93  * SUCH DAMAGE.
     94  *
     95  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
     96  */
     97 
     98 #include <sys/cdefs.h>
     99 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.154 2014/06/22 08:10:18 rtr Exp $");
    100 
    101 #include <sys/param.h>
    102 #include <sys/systm.h>
    103 #include <sys/proc.h>
    104 #include <sys/filedesc.h>
    105 #include <sys/domain.h>
    106 #include <sys/protosw.h>
    107 #include <sys/socket.h>
    108 #include <sys/socketvar.h>
    109 #include <sys/unpcb.h>
    110 #include <sys/un.h>
    111 #include <sys/namei.h>
    112 #include <sys/vnode.h>
    113 #include <sys/file.h>
    114 #include <sys/stat.h>
    115 #include <sys/mbuf.h>
    116 #include <sys/kauth.h>
    117 #include <sys/kmem.h>
    118 #include <sys/atomic.h>
    119 #include <sys/uidinfo.h>
    120 #include <sys/kernel.h>
    121 #include <sys/kthread.h>
    122 
    123 /*
    124  * Unix communications domain.
    125  *
    126  * TODO:
    127  *	RDM
    128  *	rethink name space problems
    129  *	need a proper out-of-band
    130  *
    131  * Notes on locking:
    132  *
    133  * The generic rules noted in uipc_socket2.c apply.  In addition:
    134  *
    135  * o We have a global lock, uipc_lock.
    136  *
    137  * o All datagram sockets are locked by uipc_lock.
    138  *
    139  * o For stream socketpairs, the two endpoints are created sharing the same
    140  *   independent lock.  Sockets presented to PRU_CONNECT2 must already have
    141  *   matching locks.
    142  *
    143  * o Stream sockets created via socket() start life with their own
    144  *   independent lock.
    145  *
    146  * o Stream connections to a named endpoint are slightly more complicated.
    147  *   Sockets that have called listen() have their lock pointer mutated to
    148  *   the global uipc_lock.  When establishing a connection, the connecting
    149  *   socket also has its lock mutated to uipc_lock, which matches the head
    150  *   (listening socket).  We create a new socket for accept() to return, and
    151  *   that also shares the head's lock.  Until the connection is completely
    152  *   done on both ends, all three sockets are locked by uipc_lock.  Once the
    153  *   connection is complete, the association with the head's lock is broken.
    154  *   The connecting socket and the socket returned from accept() have their
    155  *   lock pointers mutated away from uipc_lock, and back to the connecting
    156  *   socket's original, independent lock.  The head continues to be locked
    157  *   by uipc_lock.
    158  *
    159  * o If uipc_lock is determined to be a significant source of contention,
    160  *   it could easily be hashed out.  It is difficult to simply make it an
    161  *   independent lock because of visibility / garbage collection issues:
    162  *   if a socket has been associated with a lock at any point, that lock
    163  *   must remain valid until the socket is no longer visible in the system.
    164  *   The lock must not be freed or otherwise destroyed until any sockets
    165  *   that had referenced it have also been destroyed.
    166  */
    167 const struct sockaddr_un sun_noname = {
    168 	.sun_len = offsetof(struct sockaddr_un, sun_path),
    169 	.sun_family = AF_LOCAL,
    170 };
    171 ino_t	unp_ino;			/* prototype for fake inode numbers */
    172 
    173 static void unp_detach(struct socket *);
    174 struct mbuf *unp_addsockcred(struct lwp *, struct mbuf *);
    175 static void unp_mark(file_t *);
    176 static void unp_scan(struct mbuf *, void (*)(file_t *), int);
    177 static void unp_discard_now(file_t *);
    178 static void unp_discard_later(file_t *);
    179 static void unp_thread(void *);
    180 static void unp_thread_kick(void);
    181 static kmutex_t *uipc_lock;
    182 
    183 static kcondvar_t unp_thread_cv;
    184 static lwp_t *unp_thread_lwp;
    185 static SLIST_HEAD(,file) unp_thread_discard;
    186 static int unp_defer;
    187 
    188 /*
    189  * Initialize Unix protocols.
    190  */
    191 void
    192 uipc_init(void)
    193 {
    194 	int error;
    195 
    196 	uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    197 	cv_init(&unp_thread_cv, "unpgc");
    198 
    199 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread,
    200 	    NULL, &unp_thread_lwp, "unpgc");
    201 	if (error != 0)
    202 		panic("uipc_init %d", error);
    203 }
    204 
    205 /*
    206  * A connection succeeded: disassociate both endpoints from the head's
    207  * lock, and make them share their own lock.  There is a race here: for
    208  * a very brief time one endpoint will be locked by a different lock
    209  * than the other end.  However, since the current thread holds the old
    210  * lock (the listening socket's lock, the head) access can still only be
    211  * made to one side of the connection.
    212  */
    213 static void
    214 unp_setpeerlocks(struct socket *so, struct socket *so2)
    215 {
    216 	struct unpcb *unp;
    217 	kmutex_t *lock;
    218 
    219 	KASSERT(solocked2(so, so2));
    220 
    221 	/*
    222 	 * Bail out if either end of the socket is not yet fully
    223 	 * connected or accepted.  We only break the lock association
    224 	 * with the head when the pair of sockets stand completely
    225 	 * on their own.
    226 	 */
    227 	KASSERT(so->so_head == NULL);
    228 	if (so2->so_head != NULL)
    229 		return;
    230 
    231 	/*
    232 	 * Drop references to old lock.  A third reference (from the
    233 	 * queue head) must be held as we still hold its lock.  Bonus:
    234 	 * we don't need to worry about garbage collecting the lock.
    235 	 */
    236 	lock = so->so_lock;
    237 	KASSERT(lock == uipc_lock);
    238 	mutex_obj_free(lock);
    239 	mutex_obj_free(lock);
    240 
    241 	/*
    242 	 * Grab stream lock from the initiator and share between the two
    243 	 * endpoints.  Issue memory barrier to ensure all modifications
    244 	 * become globally visible before the lock change.  so2 is
    245 	 * assumed not to have a stream lock, because it was created
    246 	 * purely for the server side to accept this connection and
    247 	 * started out life using the domain-wide lock.
    248 	 */
    249 	unp = sotounpcb(so);
    250 	KASSERT(unp->unp_streamlock != NULL);
    251 	KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
    252 	lock = unp->unp_streamlock;
    253 	unp->unp_streamlock = NULL;
    254 	mutex_obj_hold(lock);
    255 	membar_exit();
    256 	/*
    257 	 * possible race if lock is not held - see comment in
    258 	 * uipc_usrreq(PRU_ACCEPT).
    259 	 */
    260 	KASSERT(mutex_owned(lock));
    261 	solockreset(so, lock);
    262 	solockreset(so2, lock);
    263 }
    264 
    265 /*
    266  * Reset a socket's lock back to the domain-wide lock.
    267  */
    268 static void
    269 unp_resetlock(struct socket *so)
    270 {
    271 	kmutex_t *olock, *nlock;
    272 	struct unpcb *unp;
    273 
    274 	KASSERT(solocked(so));
    275 
    276 	olock = so->so_lock;
    277 	nlock = uipc_lock;
    278 	if (olock == nlock)
    279 		return;
    280 	unp = sotounpcb(so);
    281 	KASSERT(unp->unp_streamlock == NULL);
    282 	unp->unp_streamlock = olock;
    283 	mutex_obj_hold(nlock);
    284 	mutex_enter(nlock);
    285 	solockreset(so, nlock);
    286 	mutex_exit(olock);
    287 }
    288 
    289 static void
    290 unp_free(struct unpcb *unp)
    291 {
    292 	if (unp->unp_addr)
    293 		free(unp->unp_addr, M_SONAME);
    294 	if (unp->unp_streamlock != NULL)
    295 		mutex_obj_free(unp->unp_streamlock);
    296 	kmem_free(unp, sizeof(*unp));
    297 }
    298 
    299 int
    300 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp,
    301 	struct lwp *l)
    302 {
    303 	struct socket *so2;
    304 	const struct sockaddr_un *sun;
    305 
    306 	/* XXX: server side closed the socket */
    307 	if (unp->unp_conn == NULL)
    308 		return ECONNREFUSED;
    309 	so2 = unp->unp_conn->unp_socket;
    310 
    311 	KASSERT(solocked(so2));
    312 
    313 	if (unp->unp_addr)
    314 		sun = unp->unp_addr;
    315 	else
    316 		sun = &sun_noname;
    317 	if (unp->unp_conn->unp_flags & UNP_WANTCRED)
    318 		control = unp_addsockcred(l, control);
    319 	if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
    320 	    control) == 0) {
    321 		so2->so_rcv.sb_overflowed++;
    322 		unp_dispose(control);
    323 		m_freem(control);
    324 		m_freem(m);
    325 		return (ENOBUFS);
    326 	} else {
    327 		sorwakeup(so2);
    328 		return (0);
    329 	}
    330 }
    331 
    332 void
    333 unp_setaddr(struct socket *so, struct mbuf *nam, bool peeraddr)
    334 {
    335 	const struct sockaddr_un *sun;
    336 	struct unpcb *unp;
    337 	bool ext;
    338 
    339 	KASSERT(solocked(so));
    340 	unp = sotounpcb(so);
    341 	ext = false;
    342 
    343 	for (;;) {
    344 		sun = NULL;
    345 		if (peeraddr) {
    346 			if (unp->unp_conn && unp->unp_conn->unp_addr)
    347 				sun = unp->unp_conn->unp_addr;
    348 		} else {
    349 			if (unp->unp_addr)
    350 				sun = unp->unp_addr;
    351 		}
    352 		if (sun == NULL)
    353 			sun = &sun_noname;
    354 		nam->m_len = sun->sun_len;
    355 		if (nam->m_len > MLEN && !ext) {
    356 			sounlock(so);
    357 			MEXTMALLOC(nam, MAXPATHLEN * 2, M_WAITOK);
    358 			solock(so);
    359 			ext = true;
    360 		} else {
    361 			KASSERT(nam->m_len <= MAXPATHLEN * 2);
    362 			memcpy(mtod(nam, void *), sun, (size_t)nam->m_len);
    363 			break;
    364 		}
    365 	}
    366 }
    367 
    368 static int
    369 unp_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
    370     struct mbuf *control, struct lwp *l)
    371 {
    372 	struct unpcb *unp;
    373 	struct socket *so2;
    374 	u_int newhiwat;
    375 	int error = 0;
    376 
    377 	KASSERT(req != PRU_ATTACH);
    378 	KASSERT(req != PRU_DETACH);
    379 	KASSERT(req != PRU_CONTROL);
    380 
    381 	KASSERT(solocked(so));
    382 	unp = sotounpcb(so);
    383 
    384 	KASSERT(!control || (req == PRU_SEND || req == PRU_SENDOOB));
    385 	if (unp == NULL) {
    386 		error = EINVAL;
    387 		goto release;
    388 	}
    389 
    390 	switch (req) {
    391 	case PRU_BIND:
    392 		KASSERT(l != NULL);
    393 		error = unp_bind(so, nam, l);
    394 		break;
    395 
    396 	case PRU_LISTEN:
    397 		/*
    398 		 * If the socket can accept a connection, it must be
    399 		 * locked by uipc_lock.
    400 		 */
    401 		unp_resetlock(so);
    402 		if (unp->unp_vnode == NULL)
    403 			error = EINVAL;
    404 		break;
    405 
    406 	case PRU_CONNECT:
    407 		KASSERT(l != NULL);
    408 		error = unp_connect(so, nam, l);
    409 		break;
    410 
    411 	case PRU_CONNECT2:
    412 		error = unp_connect2(so, (struct socket *)nam, PRU_CONNECT2);
    413 		break;
    414 
    415 	case PRU_DISCONNECT:
    416 		unp_disconnect(unp);
    417 		break;
    418 
    419 	case PRU_ACCEPT:
    420 		KASSERT(so->so_lock == uipc_lock);
    421 		/*
    422 		 * Mark the initiating STREAM socket as connected *ONLY*
    423 		 * after it's been accepted.  This prevents a client from
    424 		 * overrunning a server and receiving ECONNREFUSED.
    425 		 */
    426 		if (unp->unp_conn == NULL) {
    427 			/*
    428 			 * This will use the empty socket and will not
    429 			 * allocate.
    430 			 */
    431 			unp_setaddr(so, nam, true);
    432 			break;
    433 		}
    434 		so2 = unp->unp_conn->unp_socket;
    435 		if (so2->so_state & SS_ISCONNECTING) {
    436 			KASSERT(solocked2(so, so->so_head));
    437 			KASSERT(solocked2(so2, so->so_head));
    438 			soisconnected(so2);
    439 		}
    440 		/*
    441 		 * If the connection is fully established, break the
    442 		 * association with uipc_lock and give the connected
    443 		 * pair a separate lock to share.
    444 		 * There is a race here: sotounpcb(so2)->unp_streamlock
    445 		 * is not locked, so when changing so2->so_lock
    446 		 * another thread can grab it while so->so_lock is still
    447 		 * pointing to the (locked) uipc_lock.
    448 		 * this should be harmless, except that this makes
    449 		 * solocked2() and solocked() unreliable.
    450 		 * Another problem is that unp_setaddr() expects the
    451 		 * the socket locked. Grabing sotounpcb(so2)->unp_streamlock
    452 		 * fixes both issues.
    453 		 */
    454 		mutex_enter(sotounpcb(so2)->unp_streamlock);
    455 		unp_setpeerlocks(so2, so);
    456 		/*
    457 		 * Only now return peer's address, as we may need to
    458 		 * block in order to allocate memory.
    459 		 *
    460 		 * XXX Minor race: connection can be broken while
    461 		 * lock is dropped in unp_setaddr().  We will return
    462 		 * error == 0 and sun_noname as the peer address.
    463 		 */
    464 		unp_setaddr(so, nam, true);
    465 		/* so_lock now points to unp_streamlock */
    466 		mutex_exit(so2->so_lock);
    467 		break;
    468 
    469 	case PRU_SHUTDOWN:
    470 		socantsendmore(so);
    471 		unp_shutdown(unp);
    472 		break;
    473 
    474 	case PRU_RCVD:
    475 		switch (so->so_type) {
    476 
    477 		case SOCK_DGRAM:
    478 			panic("uipc 1");
    479 			/*NOTREACHED*/
    480 
    481 		case SOCK_SEQPACKET: /* FALLTHROUGH */
    482 		case SOCK_STREAM:
    483 #define	rcv (&so->so_rcv)
    484 #define snd (&so2->so_snd)
    485 			if (unp->unp_conn == 0)
    486 				break;
    487 			so2 = unp->unp_conn->unp_socket;
    488 			KASSERT(solocked2(so, so2));
    489 			/*
    490 			 * Adjust backpressure on sender
    491 			 * and wakeup any waiting to write.
    492 			 */
    493 			snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
    494 			unp->unp_mbcnt = rcv->sb_mbcnt;
    495 			newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
    496 			(void)chgsbsize(so2->so_uidinfo,
    497 			    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
    498 			unp->unp_cc = rcv->sb_cc;
    499 			sowwakeup(so2);
    500 #undef snd
    501 #undef rcv
    502 			break;
    503 
    504 		default:
    505 			panic("uipc 2");
    506 		}
    507 		break;
    508 
    509 	case PRU_SEND:
    510 		/*
    511 		 * Note: unp_internalize() rejects any control message
    512 		 * other than SCM_RIGHTS, and only allows one.  This
    513 		 * has the side-effect of preventing a caller from
    514 		 * forging SCM_CREDS.
    515 		 */
    516 		if (control) {
    517 			sounlock(so);
    518 			error = unp_internalize(&control);
    519 			solock(so);
    520 			if (error != 0) {
    521 				m_freem(control);
    522 				m_freem(m);
    523 				break;
    524 			}
    525 		}
    526 		switch (so->so_type) {
    527 
    528 		case SOCK_DGRAM: {
    529 			KASSERT(so->so_lock == uipc_lock);
    530 			if (nam) {
    531 				if ((so->so_state & SS_ISCONNECTED) != 0)
    532 					error = EISCONN;
    533 				else {
    534 					/*
    535 					 * Note: once connected, the
    536 					 * socket's lock must not be
    537 					 * dropped until we have sent
    538 					 * the message and disconnected.
    539 					 * This is necessary to prevent
    540 					 * intervening control ops, like
    541 					 * another connection.
    542 					 */
    543 					error = unp_connect(so, nam, l);
    544 				}
    545 			} else {
    546 				if ((so->so_state & SS_ISCONNECTED) == 0)
    547 					error = ENOTCONN;
    548 			}
    549 			if (error) {
    550 				unp_dispose(control);
    551 				m_freem(control);
    552 				m_freem(m);
    553 				break;
    554 			}
    555 			KASSERT(l != NULL);
    556 			error = unp_output(m, control, unp, l);
    557 			if (nam)
    558 				unp_disconnect(unp);
    559 			break;
    560 		}
    561 
    562 		case SOCK_SEQPACKET: /* FALLTHROUGH */
    563 		case SOCK_STREAM:
    564 #define	rcv (&so2->so_rcv)
    565 #define	snd (&so->so_snd)
    566 			if (unp->unp_conn == NULL) {
    567 				error = ENOTCONN;
    568 				break;
    569 			}
    570 			so2 = unp->unp_conn->unp_socket;
    571 			KASSERT(solocked2(so, so2));
    572 			if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
    573 				/*
    574 				 * Credentials are passed only once on
    575 				 * SOCK_STREAM and SOCK_SEQPACKET.
    576 				 */
    577 				unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
    578 				control = unp_addsockcred(l, control);
    579 			}
    580 			/*
    581 			 * Send to paired receive port, and then reduce
    582 			 * send buffer hiwater marks to maintain backpressure.
    583 			 * Wake up readers.
    584 			 */
    585 			if (control) {
    586 				if (sbappendcontrol(rcv, m, control) != 0)
    587 					control = NULL;
    588 			} else {
    589 				switch(so->so_type) {
    590 				case SOCK_SEQPACKET:
    591 					sbappendrecord(rcv, m);
    592 					break;
    593 				case SOCK_STREAM:
    594 					sbappend(rcv, m);
    595 					break;
    596 				default:
    597 					panic("uipc_usrreq");
    598 					break;
    599 				}
    600 			}
    601 			snd->sb_mbmax -=
    602 			    rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
    603 			unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
    604 			newhiwat = snd->sb_hiwat -
    605 			    (rcv->sb_cc - unp->unp_conn->unp_cc);
    606 			(void)chgsbsize(so->so_uidinfo,
    607 			    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
    608 			unp->unp_conn->unp_cc = rcv->sb_cc;
    609 			sorwakeup(so2);
    610 #undef snd
    611 #undef rcv
    612 			if (control != NULL) {
    613 				unp_dispose(control);
    614 				m_freem(control);
    615 			}
    616 			break;
    617 
    618 		default:
    619 			panic("uipc 4");
    620 		}
    621 		break;
    622 
    623 	case PRU_ABORT:
    624 		(void)unp_drop(unp, ECONNABORTED);
    625 		KASSERT(so->so_head == NULL);
    626 		KASSERT(so->so_pcb != NULL);
    627 		unp_detach(so);
    628 		break;
    629 
    630 	case PRU_SENSE:
    631 		((struct stat *) m)->st_blksize = so->so_snd.sb_hiwat;
    632 		switch (so->so_type) {
    633 		case SOCK_SEQPACKET: /* FALLTHROUGH */
    634 		case SOCK_STREAM:
    635 			if (unp->unp_conn == 0)
    636 				break;
    637 
    638 			so2 = unp->unp_conn->unp_socket;
    639 			KASSERT(solocked2(so, so2));
    640 			((struct stat *) m)->st_blksize += so2->so_rcv.sb_cc;
    641 			break;
    642 		default:
    643 			break;
    644 		}
    645 		((struct stat *) m)->st_dev = NODEV;
    646 		if (unp->unp_ino == 0)
    647 			unp->unp_ino = unp_ino++;
    648 		((struct stat *) m)->st_atimespec =
    649 		    ((struct stat *) m)->st_mtimespec =
    650 		    ((struct stat *) m)->st_ctimespec = unp->unp_ctime;
    651 		((struct stat *) m)->st_ino = unp->unp_ino;
    652 		return (0);
    653 
    654 	case PRU_RCVOOB:
    655 		error = EOPNOTSUPP;
    656 		break;
    657 
    658 	case PRU_SENDOOB:
    659 		m_freem(control);
    660 		m_freem(m);
    661 		error = EOPNOTSUPP;
    662 		break;
    663 
    664 	case PRU_SOCKADDR:
    665 		unp_setaddr(so, nam, false);
    666 		break;
    667 
    668 	case PRU_PEERADDR:
    669 		unp_setaddr(so, nam, true);
    670 		break;
    671 
    672 	default:
    673 		panic("piusrreq");
    674 	}
    675 
    676 release:
    677 	return (error);
    678 }
    679 
    680 /*
    681  * Unix domain socket option processing.
    682  */
    683 int
    684 uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
    685 {
    686 	struct unpcb *unp = sotounpcb(so);
    687 	int optval = 0, error = 0;
    688 
    689 	KASSERT(solocked(so));
    690 
    691 	if (sopt->sopt_level != 0) {
    692 		error = ENOPROTOOPT;
    693 	} else switch (op) {
    694 
    695 	case PRCO_SETOPT:
    696 		switch (sopt->sopt_name) {
    697 		case LOCAL_CREDS:
    698 		case LOCAL_CONNWAIT:
    699 			error = sockopt_getint(sopt, &optval);
    700 			if (error)
    701 				break;
    702 			switch (sopt->sopt_name) {
    703 #define	OPTSET(bit) \
    704 	if (optval) \
    705 		unp->unp_flags |= (bit); \
    706 	else \
    707 		unp->unp_flags &= ~(bit);
    708 
    709 			case LOCAL_CREDS:
    710 				OPTSET(UNP_WANTCRED);
    711 				break;
    712 			case LOCAL_CONNWAIT:
    713 				OPTSET(UNP_CONNWAIT);
    714 				break;
    715 			}
    716 			break;
    717 #undef OPTSET
    718 
    719 		default:
    720 			error = ENOPROTOOPT;
    721 			break;
    722 		}
    723 		break;
    724 
    725 	case PRCO_GETOPT:
    726 		sounlock(so);
    727 		switch (sopt->sopt_name) {
    728 		case LOCAL_PEEREID:
    729 			if (unp->unp_flags & UNP_EIDSVALID) {
    730 				error = sockopt_set(sopt,
    731 				    &unp->unp_connid, sizeof(unp->unp_connid));
    732 			} else {
    733 				error = EINVAL;
    734 			}
    735 			break;
    736 		case LOCAL_CREDS:
    737 #define	OPTBIT(bit)	(unp->unp_flags & (bit) ? 1 : 0)
    738 
    739 			optval = OPTBIT(UNP_WANTCRED);
    740 			error = sockopt_setint(sopt, optval);
    741 			break;
    742 #undef OPTBIT
    743 
    744 		default:
    745 			error = ENOPROTOOPT;
    746 			break;
    747 		}
    748 		solock(so);
    749 		break;
    750 	}
    751 	return (error);
    752 }
    753 
    754 /*
    755  * Both send and receive buffers are allocated PIPSIZ bytes of buffering
    756  * for stream sockets, although the total for sender and receiver is
    757  * actually only PIPSIZ.
    758  * Datagram sockets really use the sendspace as the maximum datagram size,
    759  * and don't really want to reserve the sendspace.  Their recvspace should
    760  * be large enough for at least one max-size datagram plus address.
    761  */
    762 #define	PIPSIZ	4096
    763 u_long	unpst_sendspace = PIPSIZ;
    764 u_long	unpst_recvspace = PIPSIZ;
    765 u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
    766 u_long	unpdg_recvspace = 4*1024;
    767 
    768 u_int	unp_rights;			/* files in flight */
    769 u_int	unp_rights_ratio = 2;		/* limit, fraction of maxfiles */
    770 
    771 static int
    772 unp_attach(struct socket *so, int proto)
    773 {
    774 	struct unpcb *unp = sotounpcb(so);
    775 	u_long sndspc, rcvspc;
    776 	int error;
    777 
    778 	KASSERT(unp == NULL);
    779 
    780 	switch (so->so_type) {
    781 	case SOCK_SEQPACKET:
    782 		/* FALLTHROUGH */
    783 	case SOCK_STREAM:
    784 		if (so->so_lock == NULL) {
    785 			so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    786 			solock(so);
    787 		}
    788 		sndspc = unpst_sendspace;
    789 		rcvspc = unpst_recvspace;
    790 		break;
    791 
    792 	case SOCK_DGRAM:
    793 		if (so->so_lock == NULL) {
    794 			mutex_obj_hold(uipc_lock);
    795 			so->so_lock = uipc_lock;
    796 			solock(so);
    797 		}
    798 		sndspc = unpdg_sendspace;
    799 		rcvspc = unpdg_recvspace;
    800 		break;
    801 
    802 	default:
    803 		panic("unp_attach");
    804 	}
    805 
    806 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
    807 		error = soreserve(so, sndspc, rcvspc);
    808 		if (error) {
    809 			return error;
    810 		}
    811 	}
    812 
    813 	unp = kmem_zalloc(sizeof(*unp), KM_SLEEP);
    814 	nanotime(&unp->unp_ctime);
    815 	unp->unp_socket = so;
    816 	so->so_pcb = unp;
    817 
    818 	KASSERT(solocked(so));
    819 	return 0;
    820 }
    821 
    822 static void
    823 unp_detach(struct socket *so)
    824 {
    825 	struct unpcb *unp;
    826 	vnode_t *vp;
    827 
    828 	unp = sotounpcb(so);
    829 	KASSERT(unp != NULL);
    830 	KASSERT(solocked(so));
    831  retry:
    832 	if ((vp = unp->unp_vnode) != NULL) {
    833 		sounlock(so);
    834 		/* Acquire v_interlock to protect against unp_connect(). */
    835 		/* XXXAD racy */
    836 		mutex_enter(vp->v_interlock);
    837 		vp->v_socket = NULL;
    838 		mutex_exit(vp->v_interlock);
    839 		vrele(vp);
    840 		solock(so);
    841 		unp->unp_vnode = NULL;
    842 	}
    843 	if (unp->unp_conn)
    844 		unp_disconnect(unp);
    845 	while (unp->unp_refs) {
    846 		KASSERT(solocked2(so, unp->unp_refs->unp_socket));
    847 		if (unp_drop(unp->unp_refs, ECONNRESET)) {
    848 			solock(so);
    849 			goto retry;
    850 		}
    851 	}
    852 	soisdisconnected(so);
    853 	so->so_pcb = NULL;
    854 	if (unp_rights) {
    855 		/*
    856 		 * Normally the receive buffer is flushed later, in sofree,
    857 		 * but if our receive buffer holds references to files that
    858 		 * are now garbage, we will enqueue those file references to
    859 		 * the garbage collector and kick it into action.
    860 		 */
    861 		sorflush(so);
    862 		unp_free(unp);
    863 		unp_thread_kick();
    864 	} else
    865 		unp_free(unp);
    866 }
    867 
    868 static int
    869 unp_ioctl(struct socket *so, struct mbuf *m, struct mbuf *nam,
    870     struct mbuf *control, struct lwp *l)
    871 {
    872 	return EOPNOTSUPP;
    873 }
    874 
    875 /*
    876  * Allocate the new sockaddr.  We have to allocate one
    877  * extra byte so that we can ensure that the pathname
    878  * is nul-terminated. Note that unlike linux, we don't
    879  * include in the address length the NUL in the path
    880  * component, because doing so, would exceed sizeof(sockaddr_un)
    881  * for fully occupied pathnames. Linux is also inconsistent,
    882  * because it does not include the NUL in the length of
    883  * what it calls "abstract" unix sockets.
    884  */
    885 static struct sockaddr_un *
    886 makeun(struct mbuf *nam, size_t *addrlen) {
    887 	struct sockaddr_un *sun;
    888 
    889 	*addrlen = nam->m_len + 1;
    890 	sun = malloc(*addrlen, M_SONAME, M_WAITOK);
    891 	m_copydata(nam, 0, nam->m_len, (void *)sun);
    892 	*(((char *)sun) + nam->m_len) = '\0';
    893 	sun->sun_len = strlen(sun->sun_path) +
    894 	    offsetof(struct sockaddr_un, sun_path);
    895 	return sun;
    896 }
    897 
    898 int
    899 unp_bind(struct socket *so, struct mbuf *nam, struct lwp *l)
    900 {
    901 	struct sockaddr_un *sun;
    902 	struct unpcb *unp;
    903 	vnode_t *vp;
    904 	struct vattr vattr;
    905 	size_t addrlen;
    906 	int error;
    907 	struct pathbuf *pb;
    908 	struct nameidata nd;
    909 	proc_t *p;
    910 
    911 	unp = sotounpcb(so);
    912 	if (unp->unp_vnode != NULL)
    913 		return (EINVAL);
    914 	if ((unp->unp_flags & UNP_BUSY) != 0) {
    915 		/*
    916 		 * EALREADY may not be strictly accurate, but since this
    917 		 * is a major application error it's hardly a big deal.
    918 		 */
    919 		return (EALREADY);
    920 	}
    921 	unp->unp_flags |= UNP_BUSY;
    922 	sounlock(so);
    923 
    924 	p = l->l_proc;
    925 	sun = makeun(nam, &addrlen);
    926 
    927 	pb = pathbuf_create(sun->sun_path);
    928 	if (pb == NULL) {
    929 		error = ENOMEM;
    930 		goto bad;
    931 	}
    932 	NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, pb);
    933 
    934 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
    935 	if ((error = namei(&nd)) != 0) {
    936 		pathbuf_destroy(pb);
    937 		goto bad;
    938 	}
    939 	vp = nd.ni_vp;
    940 	if (vp != NULL) {
    941 		VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
    942 		if (nd.ni_dvp == vp)
    943 			vrele(nd.ni_dvp);
    944 		else
    945 			vput(nd.ni_dvp);
    946 		vrele(vp);
    947 		pathbuf_destroy(pb);
    948 		error = EADDRINUSE;
    949 		goto bad;
    950 	}
    951 	vattr_null(&vattr);
    952 	vattr.va_type = VSOCK;
    953 	vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
    954 	error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
    955 	if (error) {
    956 		vput(nd.ni_dvp);
    957 		pathbuf_destroy(pb);
    958 		goto bad;
    959 	}
    960 	vp = nd.ni_vp;
    961 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    962 	solock(so);
    963 	vp->v_socket = unp->unp_socket;
    964 	unp->unp_vnode = vp;
    965 	unp->unp_addrlen = addrlen;
    966 	unp->unp_addr = sun;
    967 	unp->unp_connid.unp_pid = p->p_pid;
    968 	unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
    969 	unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
    970 	unp->unp_flags |= UNP_EIDSBIND;
    971 	VOP_UNLOCK(vp);
    972 	vput(nd.ni_dvp);
    973 	unp->unp_flags &= ~UNP_BUSY;
    974 	pathbuf_destroy(pb);
    975 	return (0);
    976 
    977  bad:
    978 	free(sun, M_SONAME);
    979 	solock(so);
    980 	unp->unp_flags &= ~UNP_BUSY;
    981 	return (error);
    982 }
    983 
    984 int
    985 unp_connect(struct socket *so, struct mbuf *nam, struct lwp *l)
    986 {
    987 	struct sockaddr_un *sun;
    988 	vnode_t *vp;
    989 	struct socket *so2, *so3;
    990 	struct unpcb *unp, *unp2, *unp3;
    991 	size_t addrlen;
    992 	int error;
    993 	struct pathbuf *pb;
    994 	struct nameidata nd;
    995 
    996 	unp = sotounpcb(so);
    997 	if ((unp->unp_flags & UNP_BUSY) != 0) {
    998 		/*
    999 		 * EALREADY may not be strictly accurate, but since this
   1000 		 * is a major application error it's hardly a big deal.
   1001 		 */
   1002 		return (EALREADY);
   1003 	}
   1004 	unp->unp_flags |= UNP_BUSY;
   1005 	sounlock(so);
   1006 
   1007 	sun = makeun(nam, &addrlen);
   1008 	pb = pathbuf_create(sun->sun_path);
   1009 	if (pb == NULL) {
   1010 		error = ENOMEM;
   1011 		goto bad2;
   1012 	}
   1013 
   1014 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
   1015 
   1016 	if ((error = namei(&nd)) != 0) {
   1017 		pathbuf_destroy(pb);
   1018 		goto bad2;
   1019 	}
   1020 	vp = nd.ni_vp;
   1021 	if (vp->v_type != VSOCK) {
   1022 		error = ENOTSOCK;
   1023 		goto bad;
   1024 	}
   1025 	pathbuf_destroy(pb);
   1026 	if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
   1027 		goto bad;
   1028 	/* Acquire v_interlock to protect against unp_detach(). */
   1029 	mutex_enter(vp->v_interlock);
   1030 	so2 = vp->v_socket;
   1031 	if (so2 == NULL) {
   1032 		mutex_exit(vp->v_interlock);
   1033 		error = ECONNREFUSED;
   1034 		goto bad;
   1035 	}
   1036 	if (so->so_type != so2->so_type) {
   1037 		mutex_exit(vp->v_interlock);
   1038 		error = EPROTOTYPE;
   1039 		goto bad;
   1040 	}
   1041 	solock(so);
   1042 	unp_resetlock(so);
   1043 	mutex_exit(vp->v_interlock);
   1044 	if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
   1045 		/*
   1046 		 * This may seem somewhat fragile but is OK: if we can
   1047 		 * see SO_ACCEPTCONN set on the endpoint, then it must
   1048 		 * be locked by the domain-wide uipc_lock.
   1049 		 */
   1050 		KASSERT((so2->so_options & SO_ACCEPTCONN) == 0 ||
   1051 		    so2->so_lock == uipc_lock);
   1052 		if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
   1053 		    (so3 = sonewconn(so2, false)) == NULL) {
   1054 			error = ECONNREFUSED;
   1055 			sounlock(so);
   1056 			goto bad;
   1057 		}
   1058 		unp2 = sotounpcb(so2);
   1059 		unp3 = sotounpcb(so3);
   1060 		if (unp2->unp_addr) {
   1061 			unp3->unp_addr = malloc(unp2->unp_addrlen,
   1062 			    M_SONAME, M_WAITOK);
   1063 			memcpy(unp3->unp_addr, unp2->unp_addr,
   1064 			    unp2->unp_addrlen);
   1065 			unp3->unp_addrlen = unp2->unp_addrlen;
   1066 		}
   1067 		unp3->unp_flags = unp2->unp_flags;
   1068 		unp3->unp_connid.unp_pid = l->l_proc->p_pid;
   1069 		unp3->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
   1070 		unp3->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
   1071 		unp3->unp_flags |= UNP_EIDSVALID;
   1072 		if (unp2->unp_flags & UNP_EIDSBIND) {
   1073 			unp->unp_connid = unp2->unp_connid;
   1074 			unp->unp_flags |= UNP_EIDSVALID;
   1075 		}
   1076 		so2 = so3;
   1077 	}
   1078 	error = unp_connect2(so, so2, PRU_CONNECT);
   1079 	sounlock(so);
   1080  bad:
   1081 	vput(vp);
   1082  bad2:
   1083 	free(sun, M_SONAME);
   1084 	solock(so);
   1085 	unp->unp_flags &= ~UNP_BUSY;
   1086 	return (error);
   1087 }
   1088 
   1089 int
   1090 unp_connect2(struct socket *so, struct socket *so2, int req)
   1091 {
   1092 	struct unpcb *unp = sotounpcb(so);
   1093 	struct unpcb *unp2;
   1094 
   1095 	if (so2->so_type != so->so_type)
   1096 		return (EPROTOTYPE);
   1097 
   1098 	/*
   1099 	 * All three sockets involved must be locked by same lock:
   1100 	 *
   1101 	 * local endpoint (so)
   1102 	 * remote endpoint (so2)
   1103 	 * queue head (so2->so_head, only if PR_CONNREQUIRED)
   1104 	 */
   1105 	KASSERT(solocked2(so, so2));
   1106 	KASSERT(so->so_head == NULL);
   1107 	if (so2->so_head != NULL) {
   1108 		KASSERT(so2->so_lock == uipc_lock);
   1109 		KASSERT(solocked2(so2, so2->so_head));
   1110 	}
   1111 
   1112 	unp2 = sotounpcb(so2);
   1113 	unp->unp_conn = unp2;
   1114 	switch (so->so_type) {
   1115 
   1116 	case SOCK_DGRAM:
   1117 		unp->unp_nextref = unp2->unp_refs;
   1118 		unp2->unp_refs = unp;
   1119 		soisconnected(so);
   1120 		break;
   1121 
   1122 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1123 	case SOCK_STREAM:
   1124 		unp2->unp_conn = unp;
   1125 		if (req == PRU_CONNECT &&
   1126 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
   1127 			soisconnecting(so);
   1128 		else
   1129 			soisconnected(so);
   1130 		soisconnected(so2);
   1131 		/*
   1132 		 * If the connection is fully established, break the
   1133 		 * association with uipc_lock and give the connected
   1134 		 * pair a seperate lock to share.  For CONNECT2, we
   1135 		 * require that the locks already match (the sockets
   1136 		 * are created that way).
   1137 		 */
   1138 		if (req == PRU_CONNECT) {
   1139 			KASSERT(so2->so_head != NULL);
   1140 			unp_setpeerlocks(so, so2);
   1141 		}
   1142 		break;
   1143 
   1144 	default:
   1145 		panic("unp_connect2");
   1146 	}
   1147 	return (0);
   1148 }
   1149 
   1150 void
   1151 unp_disconnect(struct unpcb *unp)
   1152 {
   1153 	struct unpcb *unp2 = unp->unp_conn;
   1154 	struct socket *so;
   1155 
   1156 	if (unp2 == 0)
   1157 		return;
   1158 	unp->unp_conn = 0;
   1159 	so = unp->unp_socket;
   1160 	switch (so->so_type) {
   1161 	case SOCK_DGRAM:
   1162 		if (unp2->unp_refs == unp)
   1163 			unp2->unp_refs = unp->unp_nextref;
   1164 		else {
   1165 			unp2 = unp2->unp_refs;
   1166 			for (;;) {
   1167 				KASSERT(solocked2(so, unp2->unp_socket));
   1168 				if (unp2 == 0)
   1169 					panic("unp_disconnect");
   1170 				if (unp2->unp_nextref == unp)
   1171 					break;
   1172 				unp2 = unp2->unp_nextref;
   1173 			}
   1174 			unp2->unp_nextref = unp->unp_nextref;
   1175 		}
   1176 		unp->unp_nextref = 0;
   1177 		so->so_state &= ~SS_ISCONNECTED;
   1178 		break;
   1179 
   1180 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1181 	case SOCK_STREAM:
   1182 		KASSERT(solocked2(so, unp2->unp_socket));
   1183 		soisdisconnected(so);
   1184 		unp2->unp_conn = 0;
   1185 		soisdisconnected(unp2->unp_socket);
   1186 		break;
   1187 	}
   1188 }
   1189 
   1190 void
   1191 unp_shutdown(struct unpcb *unp)
   1192 {
   1193 	struct socket *so;
   1194 
   1195 	switch(unp->unp_socket->so_type) {
   1196 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1197 	case SOCK_STREAM:
   1198 		if (unp->unp_conn && (so = unp->unp_conn->unp_socket))
   1199 			socantrcvmore(so);
   1200 		break;
   1201 	default:
   1202 		break;
   1203 	}
   1204 }
   1205 
   1206 bool
   1207 unp_drop(struct unpcb *unp, int errno)
   1208 {
   1209 	struct socket *so = unp->unp_socket;
   1210 
   1211 	KASSERT(solocked(so));
   1212 
   1213 	so->so_error = errno;
   1214 	unp_disconnect(unp);
   1215 	if (so->so_head) {
   1216 		so->so_pcb = NULL;
   1217 		/* sofree() drops the socket lock */
   1218 		sofree(so);
   1219 		unp_free(unp);
   1220 		return true;
   1221 	}
   1222 	return false;
   1223 }
   1224 
   1225 #ifdef notdef
   1226 unp_drain(void)
   1227 {
   1228 
   1229 }
   1230 #endif
   1231 
   1232 int
   1233 unp_externalize(struct mbuf *rights, struct lwp *l, int flags)
   1234 {
   1235 	struct cmsghdr * const cm = mtod(rights, struct cmsghdr *);
   1236 	struct proc * const p = l->l_proc;
   1237 	file_t **rp;
   1238 	int error = 0;
   1239 
   1240 	const size_t nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
   1241 	    sizeof(file_t *);
   1242 	if (nfds == 0)
   1243 		goto noop;
   1244 
   1245 	int * const fdp = kmem_alloc(nfds * sizeof(int), KM_SLEEP);
   1246 	rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
   1247 
   1248 	/* Make sure the recipient should be able to see the files.. */
   1249 	rp = (file_t **)CMSG_DATA(cm);
   1250 	for (size_t i = 0; i < nfds; i++) {
   1251 		file_t * const fp = *rp++;
   1252 		if (fp == NULL) {
   1253 			error = EINVAL;
   1254 			goto out;
   1255 		}
   1256 		/*
   1257 		 * If we are in a chroot'ed directory, and
   1258 		 * someone wants to pass us a directory, make
   1259 		 * sure it's inside the subtree we're allowed
   1260 		 * to access.
   1261 		 */
   1262 		if (p->p_cwdi->cwdi_rdir != NULL && fp->f_type == DTYPE_VNODE) {
   1263 			vnode_t *vp = (vnode_t *)fp->f_data;
   1264 			if ((vp->v_type == VDIR) &&
   1265 			    !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
   1266 				error = EPERM;
   1267 				goto out;
   1268 			}
   1269 		}
   1270 	}
   1271 
   1272  restart:
   1273 	/*
   1274 	 * First loop -- allocate file descriptor table slots for the
   1275 	 * new files.
   1276 	 */
   1277 	for (size_t i = 0; i < nfds; i++) {
   1278 		if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
   1279 			/*
   1280 			 * Back out what we've done so far.
   1281 			 */
   1282 			while (i-- > 0) {
   1283 				fd_abort(p, NULL, fdp[i]);
   1284 			}
   1285 			if (error == ENOSPC) {
   1286 				fd_tryexpand(p);
   1287 				error = 0;
   1288 				goto restart;
   1289 			}
   1290 			/*
   1291 			 * This is the error that has historically
   1292 			 * been returned, and some callers may
   1293 			 * expect it.
   1294 			 */
   1295 			error = EMSGSIZE;
   1296 			goto out;
   1297 		}
   1298 	}
   1299 
   1300 	/*
   1301 	 * Now that adding them has succeeded, update all of the
   1302 	 * file passing state and affix the descriptors.
   1303 	 */
   1304 	rp = (file_t **)CMSG_DATA(cm);
   1305 	int *ofdp = (int *)CMSG_DATA(cm);
   1306 	for (size_t i = 0; i < nfds; i++) {
   1307 		file_t * const fp = *rp++;
   1308 		const int fd = fdp[i];
   1309 		atomic_dec_uint(&unp_rights);
   1310 		fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
   1311 		fd_affix(p, fp, fd);
   1312 		/*
   1313 		 * Done with this file pointer, replace it with a fd;
   1314 		 */
   1315 		*ofdp++ = fd;
   1316 		mutex_enter(&fp->f_lock);
   1317 		fp->f_msgcount--;
   1318 		mutex_exit(&fp->f_lock);
   1319 		/*
   1320 		 * Note that fd_affix() adds a reference to the file.
   1321 		 * The file may already have been closed by another
   1322 		 * LWP in the process, so we must drop the reference
   1323 		 * added by unp_internalize() with closef().
   1324 		 */
   1325 		closef(fp);
   1326 	}
   1327 
   1328 	/*
   1329 	 * Adjust length, in case of transition from large file_t
   1330 	 * pointers to ints.
   1331 	 */
   1332 	if (sizeof(file_t *) != sizeof(int)) {
   1333 		cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
   1334 		rights->m_len = CMSG_SPACE(nfds * sizeof(int));
   1335 	}
   1336  out:
   1337 	if (__predict_false(error != 0)) {
   1338 		file_t **const fpp = (file_t **)CMSG_DATA(cm);
   1339 		for (size_t i = 0; i < nfds; i++)
   1340 			unp_discard_now(fpp[i]);
   1341 		/*
   1342 		 * Truncate the array so that nobody will try to interpret
   1343 		 * what is now garbage in it.
   1344 		 */
   1345 		cm->cmsg_len = CMSG_LEN(0);
   1346 		rights->m_len = CMSG_SPACE(0);
   1347 	}
   1348 	rw_exit(&p->p_cwdi->cwdi_lock);
   1349 	kmem_free(fdp, nfds * sizeof(int));
   1350 
   1351  noop:
   1352 	/*
   1353 	 * Don't disclose kernel memory in the alignment space.
   1354 	 */
   1355 	KASSERT(cm->cmsg_len <= rights->m_len);
   1356 	memset(&mtod(rights, char *)[cm->cmsg_len], 0, rights->m_len -
   1357 	    cm->cmsg_len);
   1358 	return error;
   1359 }
   1360 
   1361 int
   1362 unp_internalize(struct mbuf **controlp)
   1363 {
   1364 	filedesc_t *fdescp = curlwp->l_fd;
   1365 	struct mbuf *control = *controlp;
   1366 	struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
   1367 	file_t **rp, **files;
   1368 	file_t *fp;
   1369 	int i, fd, *fdp;
   1370 	int nfds, error;
   1371 	u_int maxmsg;
   1372 
   1373 	error = 0;
   1374 	newcm = NULL;
   1375 
   1376 	/* Sanity check the control message header. */
   1377 	if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
   1378 	    cm->cmsg_len > control->m_len ||
   1379 	    cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
   1380 		return (EINVAL);
   1381 
   1382 	/*
   1383 	 * Verify that the file descriptors are valid, and acquire
   1384 	 * a reference to each.
   1385 	 */
   1386 	nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
   1387 	fdp = (int *)CMSG_DATA(cm);
   1388 	maxmsg = maxfiles / unp_rights_ratio;
   1389 	for (i = 0; i < nfds; i++) {
   1390 		fd = *fdp++;
   1391 		if (atomic_inc_uint_nv(&unp_rights) > maxmsg) {
   1392 			atomic_dec_uint(&unp_rights);
   1393 			nfds = i;
   1394 			error = EAGAIN;
   1395 			goto out;
   1396 		}
   1397 		if ((fp = fd_getfile(fd)) == NULL
   1398 		    || fp->f_type == DTYPE_KQUEUE) {
   1399 		    	if (fp)
   1400 		    		fd_putfile(fd);
   1401 			atomic_dec_uint(&unp_rights);
   1402 			nfds = i;
   1403 			error = EBADF;
   1404 			goto out;
   1405 		}
   1406 	}
   1407 
   1408 	/* Allocate new space and copy header into it. */
   1409 	newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
   1410 	if (newcm == NULL) {
   1411 		error = E2BIG;
   1412 		goto out;
   1413 	}
   1414 	memcpy(newcm, cm, sizeof(struct cmsghdr));
   1415 	files = (file_t **)CMSG_DATA(newcm);
   1416 
   1417 	/*
   1418 	 * Transform the file descriptors into file_t pointers, in
   1419 	 * reverse order so that if pointers are bigger than ints, the
   1420 	 * int won't get until we're done.  No need to lock, as we have
   1421 	 * already validated the descriptors with fd_getfile().
   1422 	 */
   1423 	fdp = (int *)CMSG_DATA(cm) + nfds;
   1424 	rp = files + nfds;
   1425 	for (i = 0; i < nfds; i++) {
   1426 		fp = fdescp->fd_dt->dt_ff[*--fdp]->ff_file;
   1427 		KASSERT(fp != NULL);
   1428 		mutex_enter(&fp->f_lock);
   1429 		*--rp = fp;
   1430 		fp->f_count++;
   1431 		fp->f_msgcount++;
   1432 		mutex_exit(&fp->f_lock);
   1433 	}
   1434 
   1435  out:
   1436  	/* Release descriptor references. */
   1437 	fdp = (int *)CMSG_DATA(cm);
   1438 	for (i = 0; i < nfds; i++) {
   1439 		fd_putfile(*fdp++);
   1440 		if (error != 0) {
   1441 			atomic_dec_uint(&unp_rights);
   1442 		}
   1443 	}
   1444 
   1445 	if (error == 0) {
   1446 		if (control->m_flags & M_EXT) {
   1447 			m_freem(control);
   1448 			*controlp = control = m_get(M_WAIT, MT_CONTROL);
   1449 		}
   1450 		MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
   1451 		    M_MBUF, NULL, NULL);
   1452 		cm = newcm;
   1453 		/*
   1454 		 * Adjust message & mbuf to note amount of space
   1455 		 * actually used.
   1456 		 */
   1457 		cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
   1458 		control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
   1459 	}
   1460 
   1461 	return error;
   1462 }
   1463 
   1464 struct mbuf *
   1465 unp_addsockcred(struct lwp *l, struct mbuf *control)
   1466 {
   1467 	struct sockcred *sc;
   1468 	struct mbuf *m;
   1469 	void *p;
   1470 
   1471 	m = sbcreatecontrol1(&p, SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)),
   1472 		SCM_CREDS, SOL_SOCKET, M_WAITOK);
   1473 	if (m == NULL)
   1474 		return control;
   1475 
   1476 	sc = p;
   1477 	sc->sc_uid = kauth_cred_getuid(l->l_cred);
   1478 	sc->sc_euid = kauth_cred_geteuid(l->l_cred);
   1479 	sc->sc_gid = kauth_cred_getgid(l->l_cred);
   1480 	sc->sc_egid = kauth_cred_getegid(l->l_cred);
   1481 	sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
   1482 
   1483 	for (int i = 0; i < sc->sc_ngroups; i++)
   1484 		sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
   1485 
   1486 	return m_add(control, m);
   1487 }
   1488 
   1489 /*
   1490  * Do a mark-sweep GC of files in the system, to free up any which are
   1491  * caught in flight to an about-to-be-closed socket.  Additionally,
   1492  * process deferred file closures.
   1493  */
   1494 static void
   1495 unp_gc(file_t *dp)
   1496 {
   1497 	extern	struct domain unixdomain;
   1498 	file_t *fp, *np;
   1499 	struct socket *so, *so1;
   1500 	u_int i, old, new;
   1501 	bool didwork;
   1502 
   1503 	KASSERT(curlwp == unp_thread_lwp);
   1504 	KASSERT(mutex_owned(&filelist_lock));
   1505 
   1506 	/*
   1507 	 * First, process deferred file closures.
   1508 	 */
   1509 	while (!SLIST_EMPTY(&unp_thread_discard)) {
   1510 		fp = SLIST_FIRST(&unp_thread_discard);
   1511 		KASSERT(fp->f_unpcount > 0);
   1512 		KASSERT(fp->f_count > 0);
   1513 		KASSERT(fp->f_msgcount > 0);
   1514 		KASSERT(fp->f_count >= fp->f_unpcount);
   1515 		KASSERT(fp->f_count >= fp->f_msgcount);
   1516 		KASSERT(fp->f_msgcount >= fp->f_unpcount);
   1517 		SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist);
   1518 		i = fp->f_unpcount;
   1519 		fp->f_unpcount = 0;
   1520 		mutex_exit(&filelist_lock);
   1521 		for (; i != 0; i--) {
   1522 			unp_discard_now(fp);
   1523 		}
   1524 		mutex_enter(&filelist_lock);
   1525 	}
   1526 
   1527 	/*
   1528 	 * Clear mark bits.  Ensure that we don't consider new files
   1529 	 * entering the file table during this loop (they will not have
   1530 	 * FSCAN set).
   1531 	 */
   1532 	unp_defer = 0;
   1533 	LIST_FOREACH(fp, &filehead, f_list) {
   1534 		for (old = fp->f_flag;; old = new) {
   1535 			new = atomic_cas_uint(&fp->f_flag, old,
   1536 			    (old | FSCAN) & ~(FMARK|FDEFER));
   1537 			if (__predict_true(old == new)) {
   1538 				break;
   1539 			}
   1540 		}
   1541 	}
   1542 
   1543 	/*
   1544 	 * Iterate over the set of sockets, marking ones believed (based on
   1545 	 * refcount) to be referenced from a process, and marking for rescan
   1546 	 * sockets which are queued on a socket.  Recan continues descending
   1547 	 * and searching for sockets referenced by sockets (FDEFER), until
   1548 	 * there are no more socket->socket references to be discovered.
   1549 	 */
   1550 	do {
   1551 		didwork = false;
   1552 		for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
   1553 			KASSERT(mutex_owned(&filelist_lock));
   1554 			np = LIST_NEXT(fp, f_list);
   1555 			mutex_enter(&fp->f_lock);
   1556 			if ((fp->f_flag & FDEFER) != 0) {
   1557 				atomic_and_uint(&fp->f_flag, ~FDEFER);
   1558 				unp_defer--;
   1559 				KASSERT(fp->f_count != 0);
   1560 			} else {
   1561 				if (fp->f_count == 0 ||
   1562 				    (fp->f_flag & FMARK) != 0 ||
   1563 				    fp->f_count == fp->f_msgcount ||
   1564 				    fp->f_unpcount != 0) {
   1565 					mutex_exit(&fp->f_lock);
   1566 					continue;
   1567 				}
   1568 			}
   1569 			atomic_or_uint(&fp->f_flag, FMARK);
   1570 
   1571 			if (fp->f_type != DTYPE_SOCKET ||
   1572 			    (so = fp->f_data) == NULL ||
   1573 			    so->so_proto->pr_domain != &unixdomain ||
   1574 			    (so->so_proto->pr_flags & PR_RIGHTS) == 0) {
   1575 				mutex_exit(&fp->f_lock);
   1576 				continue;
   1577 			}
   1578 
   1579 			/* Gain file ref, mark our position, and unlock. */
   1580 			didwork = true;
   1581 			LIST_INSERT_AFTER(fp, dp, f_list);
   1582 			fp->f_count++;
   1583 			mutex_exit(&fp->f_lock);
   1584 			mutex_exit(&filelist_lock);
   1585 
   1586 			/*
   1587 			 * Mark files referenced from sockets queued on the
   1588 			 * accept queue as well.
   1589 			 */
   1590 			solock(so);
   1591 			unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
   1592 			if ((so->so_options & SO_ACCEPTCONN) != 0) {
   1593 				TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
   1594 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
   1595 				}
   1596 				TAILQ_FOREACH(so1, &so->so_q, so_qe) {
   1597 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
   1598 				}
   1599 			}
   1600 			sounlock(so);
   1601 
   1602 			/* Re-lock and restart from where we left off. */
   1603 			closef(fp);
   1604 			mutex_enter(&filelist_lock);
   1605 			np = LIST_NEXT(dp, f_list);
   1606 			LIST_REMOVE(dp, f_list);
   1607 		}
   1608 		/*
   1609 		 * Bail early if we did nothing in the loop above.  Could
   1610 		 * happen because of concurrent activity causing unp_defer
   1611 		 * to get out of sync.
   1612 		 */
   1613 	} while (unp_defer != 0 && didwork);
   1614 
   1615 	/*
   1616 	 * Sweep pass.
   1617 	 *
   1618 	 * We grab an extra reference to each of the files that are
   1619 	 * not otherwise accessible and then free the rights that are
   1620 	 * stored in messages on them.
   1621 	 */
   1622 	for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
   1623 		KASSERT(mutex_owned(&filelist_lock));
   1624 		np = LIST_NEXT(fp, f_list);
   1625 		mutex_enter(&fp->f_lock);
   1626 
   1627 		/*
   1628 		 * Ignore non-sockets.
   1629 		 * Ignore dead sockets, or sockets with pending close.
   1630 		 * Ignore sockets obviously referenced elsewhere.
   1631 		 * Ignore sockets marked as referenced by our scan.
   1632 		 * Ignore new sockets that did not exist during the scan.
   1633 		 */
   1634 		if (fp->f_type != DTYPE_SOCKET ||
   1635 		    fp->f_count == 0 || fp->f_unpcount != 0 ||
   1636 		    fp->f_count != fp->f_msgcount ||
   1637 		    (fp->f_flag & (FMARK | FSCAN)) != FSCAN) {
   1638 			mutex_exit(&fp->f_lock);
   1639 			continue;
   1640 		}
   1641 
   1642 		/* Gain file ref, mark our position, and unlock. */
   1643 		LIST_INSERT_AFTER(fp, dp, f_list);
   1644 		fp->f_count++;
   1645 		mutex_exit(&fp->f_lock);
   1646 		mutex_exit(&filelist_lock);
   1647 
   1648 		/*
   1649 		 * Flush all data from the socket's receive buffer.
   1650 		 * This will cause files referenced only by the
   1651 		 * socket to be queued for close.
   1652 		 */
   1653 		so = fp->f_data;
   1654 		solock(so);
   1655 		sorflush(so);
   1656 		sounlock(so);
   1657 
   1658 		/* Re-lock and restart from where we left off. */
   1659 		closef(fp);
   1660 		mutex_enter(&filelist_lock);
   1661 		np = LIST_NEXT(dp, f_list);
   1662 		LIST_REMOVE(dp, f_list);
   1663 	}
   1664 }
   1665 
   1666 /*
   1667  * Garbage collector thread.  While SCM_RIGHTS messages are in transit,
   1668  * wake once per second to garbage collect.  Run continually while we
   1669  * have deferred closes to process.
   1670  */
   1671 static void
   1672 unp_thread(void *cookie)
   1673 {
   1674 	file_t *dp;
   1675 
   1676 	/* Allocate a dummy file for our scans. */
   1677 	if ((dp = fgetdummy()) == NULL) {
   1678 		panic("unp_thread");
   1679 	}
   1680 
   1681 	mutex_enter(&filelist_lock);
   1682 	for (;;) {
   1683 		KASSERT(mutex_owned(&filelist_lock));
   1684 		if (SLIST_EMPTY(&unp_thread_discard)) {
   1685 			if (unp_rights != 0) {
   1686 				(void)cv_timedwait(&unp_thread_cv,
   1687 				    &filelist_lock, hz);
   1688 			} else {
   1689 				cv_wait(&unp_thread_cv, &filelist_lock);
   1690 			}
   1691 		}
   1692 		unp_gc(dp);
   1693 	}
   1694 	/* NOTREACHED */
   1695 }
   1696 
   1697 /*
   1698  * Kick the garbage collector into action if there is something for
   1699  * it to process.
   1700  */
   1701 static void
   1702 unp_thread_kick(void)
   1703 {
   1704 
   1705 	if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) {
   1706 		mutex_enter(&filelist_lock);
   1707 		cv_signal(&unp_thread_cv);
   1708 		mutex_exit(&filelist_lock);
   1709 	}
   1710 }
   1711 
   1712 void
   1713 unp_dispose(struct mbuf *m)
   1714 {
   1715 
   1716 	if (m)
   1717 		unp_scan(m, unp_discard_later, 1);
   1718 }
   1719 
   1720 void
   1721 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
   1722 {
   1723 	struct mbuf *m;
   1724 	file_t **rp, *fp;
   1725 	struct cmsghdr *cm;
   1726 	int i, qfds;
   1727 
   1728 	while (m0) {
   1729 		for (m = m0; m; m = m->m_next) {
   1730 			if (m->m_type != MT_CONTROL ||
   1731 			    m->m_len < sizeof(*cm)) {
   1732 			    	continue;
   1733 			}
   1734 			cm = mtod(m, struct cmsghdr *);
   1735 			if (cm->cmsg_level != SOL_SOCKET ||
   1736 			    cm->cmsg_type != SCM_RIGHTS)
   1737 				continue;
   1738 			qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
   1739 			    / sizeof(file_t *);
   1740 			rp = (file_t **)CMSG_DATA(cm);
   1741 			for (i = 0; i < qfds; i++) {
   1742 				fp = *rp;
   1743 				if (discard) {
   1744 					*rp = 0;
   1745 				}
   1746 				(*op)(fp);
   1747 				rp++;
   1748 			}
   1749 		}
   1750 		m0 = m0->m_nextpkt;
   1751 	}
   1752 }
   1753 
   1754 void
   1755 unp_mark(file_t *fp)
   1756 {
   1757 
   1758 	if (fp == NULL)
   1759 		return;
   1760 
   1761 	/* If we're already deferred, don't screw up the defer count */
   1762 	mutex_enter(&fp->f_lock);
   1763 	if (fp->f_flag & (FMARK | FDEFER)) {
   1764 		mutex_exit(&fp->f_lock);
   1765 		return;
   1766 	}
   1767 
   1768 	/*
   1769 	 * Minimize the number of deferrals...  Sockets are the only type of
   1770 	 * file which can hold references to another file, so just mark
   1771 	 * other files, and defer unmarked sockets for the next pass.
   1772 	 */
   1773 	if (fp->f_type == DTYPE_SOCKET) {
   1774 		unp_defer++;
   1775 		KASSERT(fp->f_count != 0);
   1776 		atomic_or_uint(&fp->f_flag, FDEFER);
   1777 	} else {
   1778 		atomic_or_uint(&fp->f_flag, FMARK);
   1779 	}
   1780 	mutex_exit(&fp->f_lock);
   1781 }
   1782 
   1783 static void
   1784 unp_discard_now(file_t *fp)
   1785 {
   1786 
   1787 	if (fp == NULL)
   1788 		return;
   1789 
   1790 	KASSERT(fp->f_count > 0);
   1791 	KASSERT(fp->f_msgcount > 0);
   1792 
   1793 	mutex_enter(&fp->f_lock);
   1794 	fp->f_msgcount--;
   1795 	mutex_exit(&fp->f_lock);
   1796 	atomic_dec_uint(&unp_rights);
   1797 	(void)closef(fp);
   1798 }
   1799 
   1800 static void
   1801 unp_discard_later(file_t *fp)
   1802 {
   1803 
   1804 	if (fp == NULL)
   1805 		return;
   1806 
   1807 	KASSERT(fp->f_count > 0);
   1808 	KASSERT(fp->f_msgcount > 0);
   1809 
   1810 	mutex_enter(&filelist_lock);
   1811 	if (fp->f_unpcount++ == 0) {
   1812 		SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist);
   1813 	}
   1814 	mutex_exit(&filelist_lock);
   1815 }
   1816 
   1817 const struct pr_usrreqs unp_usrreqs = {
   1818 	.pr_attach	= unp_attach,
   1819 	.pr_detach	= unp_detach,
   1820 	.pr_ioctl	= unp_ioctl,
   1821 	.pr_generic	= unp_usrreq,
   1822 };
   1823