uipc_usrreq.c revision 1.156 1 /* $NetBSD: uipc_usrreq.c,v 1.156 2014/07/06 03:33:33 rtr Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2000, 2004, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
62 */
63
64 /*
65 * Copyright (c) 1997 Christopher G. Demetriou. All rights reserved.
66 *
67 * Redistribution and use in source and binary forms, with or without
68 * modification, are permitted provided that the following conditions
69 * are met:
70 * 1. Redistributions of source code must retain the above copyright
71 * notice, this list of conditions and the following disclaimer.
72 * 2. Redistributions in binary form must reproduce the above copyright
73 * notice, this list of conditions and the following disclaimer in the
74 * documentation and/or other materials provided with the distribution.
75 * 3. All advertising materials mentioning features or use of this software
76 * must display the following acknowledgement:
77 * This product includes software developed by the University of
78 * California, Berkeley and its contributors.
79 * 4. Neither the name of the University nor the names of its contributors
80 * may be used to endorse or promote products derived from this software
81 * without specific prior written permission.
82 *
83 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
84 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
85 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
86 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
87 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
88 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
89 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
90 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
91 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
92 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
93 * SUCH DAMAGE.
94 *
95 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
96 */
97
98 #include <sys/cdefs.h>
99 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.156 2014/07/06 03:33:33 rtr Exp $");
100
101 #include <sys/param.h>
102 #include <sys/systm.h>
103 #include <sys/proc.h>
104 #include <sys/filedesc.h>
105 #include <sys/domain.h>
106 #include <sys/protosw.h>
107 #include <sys/socket.h>
108 #include <sys/socketvar.h>
109 #include <sys/unpcb.h>
110 #include <sys/un.h>
111 #include <sys/namei.h>
112 #include <sys/vnode.h>
113 #include <sys/file.h>
114 #include <sys/stat.h>
115 #include <sys/mbuf.h>
116 #include <sys/kauth.h>
117 #include <sys/kmem.h>
118 #include <sys/atomic.h>
119 #include <sys/uidinfo.h>
120 #include <sys/kernel.h>
121 #include <sys/kthread.h>
122
123 /*
124 * Unix communications domain.
125 *
126 * TODO:
127 * RDM
128 * rethink name space problems
129 * need a proper out-of-band
130 *
131 * Notes on locking:
132 *
133 * The generic rules noted in uipc_socket2.c apply. In addition:
134 *
135 * o We have a global lock, uipc_lock.
136 *
137 * o All datagram sockets are locked by uipc_lock.
138 *
139 * o For stream socketpairs, the two endpoints are created sharing the same
140 * independent lock. Sockets presented to PRU_CONNECT2 must already have
141 * matching locks.
142 *
143 * o Stream sockets created via socket() start life with their own
144 * independent lock.
145 *
146 * o Stream connections to a named endpoint are slightly more complicated.
147 * Sockets that have called listen() have their lock pointer mutated to
148 * the global uipc_lock. When establishing a connection, the connecting
149 * socket also has its lock mutated to uipc_lock, which matches the head
150 * (listening socket). We create a new socket for accept() to return, and
151 * that also shares the head's lock. Until the connection is completely
152 * done on both ends, all three sockets are locked by uipc_lock. Once the
153 * connection is complete, the association with the head's lock is broken.
154 * The connecting socket and the socket returned from accept() have their
155 * lock pointers mutated away from uipc_lock, and back to the connecting
156 * socket's original, independent lock. The head continues to be locked
157 * by uipc_lock.
158 *
159 * o If uipc_lock is determined to be a significant source of contention,
160 * it could easily be hashed out. It is difficult to simply make it an
161 * independent lock because of visibility / garbage collection issues:
162 * if a socket has been associated with a lock at any point, that lock
163 * must remain valid until the socket is no longer visible in the system.
164 * The lock must not be freed or otherwise destroyed until any sockets
165 * that had referenced it have also been destroyed.
166 */
167 const struct sockaddr_un sun_noname = {
168 .sun_len = offsetof(struct sockaddr_un, sun_path),
169 .sun_family = AF_LOCAL,
170 };
171 ino_t unp_ino; /* prototype for fake inode numbers */
172
173 static void unp_detach(struct socket *);
174 struct mbuf *unp_addsockcred(struct lwp *, struct mbuf *);
175 static void unp_mark(file_t *);
176 static void unp_scan(struct mbuf *, void (*)(file_t *), int);
177 static void unp_discard_now(file_t *);
178 static void unp_discard_later(file_t *);
179 static void unp_thread(void *);
180 static void unp_thread_kick(void);
181 static kmutex_t *uipc_lock;
182
183 static kcondvar_t unp_thread_cv;
184 static lwp_t *unp_thread_lwp;
185 static SLIST_HEAD(,file) unp_thread_discard;
186 static int unp_defer;
187
188 /*
189 * Initialize Unix protocols.
190 */
191 void
192 uipc_init(void)
193 {
194 int error;
195
196 uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
197 cv_init(&unp_thread_cv, "unpgc");
198
199 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread,
200 NULL, &unp_thread_lwp, "unpgc");
201 if (error != 0)
202 panic("uipc_init %d", error);
203 }
204
205 /*
206 * A connection succeeded: disassociate both endpoints from the head's
207 * lock, and make them share their own lock. There is a race here: for
208 * a very brief time one endpoint will be locked by a different lock
209 * than the other end. However, since the current thread holds the old
210 * lock (the listening socket's lock, the head) access can still only be
211 * made to one side of the connection.
212 */
213 static void
214 unp_setpeerlocks(struct socket *so, struct socket *so2)
215 {
216 struct unpcb *unp;
217 kmutex_t *lock;
218
219 KASSERT(solocked2(so, so2));
220
221 /*
222 * Bail out if either end of the socket is not yet fully
223 * connected or accepted. We only break the lock association
224 * with the head when the pair of sockets stand completely
225 * on their own.
226 */
227 KASSERT(so->so_head == NULL);
228 if (so2->so_head != NULL)
229 return;
230
231 /*
232 * Drop references to old lock. A third reference (from the
233 * queue head) must be held as we still hold its lock. Bonus:
234 * we don't need to worry about garbage collecting the lock.
235 */
236 lock = so->so_lock;
237 KASSERT(lock == uipc_lock);
238 mutex_obj_free(lock);
239 mutex_obj_free(lock);
240
241 /*
242 * Grab stream lock from the initiator and share between the two
243 * endpoints. Issue memory barrier to ensure all modifications
244 * become globally visible before the lock change. so2 is
245 * assumed not to have a stream lock, because it was created
246 * purely for the server side to accept this connection and
247 * started out life using the domain-wide lock.
248 */
249 unp = sotounpcb(so);
250 KASSERT(unp->unp_streamlock != NULL);
251 KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
252 lock = unp->unp_streamlock;
253 unp->unp_streamlock = NULL;
254 mutex_obj_hold(lock);
255 membar_exit();
256 /*
257 * possible race if lock is not held - see comment in
258 * uipc_usrreq(PRU_ACCEPT).
259 */
260 KASSERT(mutex_owned(lock));
261 solockreset(so, lock);
262 solockreset(so2, lock);
263 }
264
265 /*
266 * Reset a socket's lock back to the domain-wide lock.
267 */
268 static void
269 unp_resetlock(struct socket *so)
270 {
271 kmutex_t *olock, *nlock;
272 struct unpcb *unp;
273
274 KASSERT(solocked(so));
275
276 olock = so->so_lock;
277 nlock = uipc_lock;
278 if (olock == nlock)
279 return;
280 unp = sotounpcb(so);
281 KASSERT(unp->unp_streamlock == NULL);
282 unp->unp_streamlock = olock;
283 mutex_obj_hold(nlock);
284 mutex_enter(nlock);
285 solockreset(so, nlock);
286 mutex_exit(olock);
287 }
288
289 static void
290 unp_free(struct unpcb *unp)
291 {
292 if (unp->unp_addr)
293 free(unp->unp_addr, M_SONAME);
294 if (unp->unp_streamlock != NULL)
295 mutex_obj_free(unp->unp_streamlock);
296 kmem_free(unp, sizeof(*unp));
297 }
298
299 int
300 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp,
301 struct lwp *l)
302 {
303 struct socket *so2;
304 const struct sockaddr_un *sun;
305
306 /* XXX: server side closed the socket */
307 if (unp->unp_conn == NULL)
308 return ECONNREFUSED;
309 so2 = unp->unp_conn->unp_socket;
310
311 KASSERT(solocked(so2));
312
313 if (unp->unp_addr)
314 sun = unp->unp_addr;
315 else
316 sun = &sun_noname;
317 if (unp->unp_conn->unp_flags & UNP_WANTCRED)
318 control = unp_addsockcred(l, control);
319 if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
320 control) == 0) {
321 so2->so_rcv.sb_overflowed++;
322 unp_dispose(control);
323 m_freem(control);
324 m_freem(m);
325 return (ENOBUFS);
326 } else {
327 sorwakeup(so2);
328 return (0);
329 }
330 }
331
332 void
333 unp_setaddr(struct socket *so, struct mbuf *nam, bool peeraddr)
334 {
335 const struct sockaddr_un *sun;
336 struct unpcb *unp;
337 bool ext;
338
339 KASSERT(solocked(so));
340 unp = sotounpcb(so);
341 ext = false;
342
343 for (;;) {
344 sun = NULL;
345 if (peeraddr) {
346 if (unp->unp_conn && unp->unp_conn->unp_addr)
347 sun = unp->unp_conn->unp_addr;
348 } else {
349 if (unp->unp_addr)
350 sun = unp->unp_addr;
351 }
352 if (sun == NULL)
353 sun = &sun_noname;
354 nam->m_len = sun->sun_len;
355 if (nam->m_len > MLEN && !ext) {
356 sounlock(so);
357 MEXTMALLOC(nam, MAXPATHLEN * 2, M_WAITOK);
358 solock(so);
359 ext = true;
360 } else {
361 KASSERT(nam->m_len <= MAXPATHLEN * 2);
362 memcpy(mtod(nam, void *), sun, (size_t)nam->m_len);
363 break;
364 }
365 }
366 }
367
368 static int
369 unp_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
370 struct mbuf *control, struct lwp *l)
371 {
372 struct unpcb *unp;
373 struct socket *so2;
374 u_int newhiwat;
375 int error = 0;
376
377 KASSERT(req != PRU_ATTACH);
378 KASSERT(req != PRU_DETACH);
379 KASSERT(req != PRU_CONTROL);
380 KASSERT(req != PRU_SENSE);
381
382 KASSERT(solocked(so));
383 unp = sotounpcb(so);
384
385 KASSERT(!control || (req == PRU_SEND || req == PRU_SENDOOB));
386 if (unp == NULL) {
387 error = EINVAL;
388 goto release;
389 }
390
391 switch (req) {
392 case PRU_BIND:
393 KASSERT(l != NULL);
394 error = unp_bind(so, nam, l);
395 break;
396
397 case PRU_LISTEN:
398 /*
399 * If the socket can accept a connection, it must be
400 * locked by uipc_lock.
401 */
402 unp_resetlock(so);
403 if (unp->unp_vnode == NULL)
404 error = EINVAL;
405 break;
406
407 case PRU_CONNECT:
408 KASSERT(l != NULL);
409 error = unp_connect(so, nam, l);
410 break;
411
412 case PRU_CONNECT2:
413 error = unp_connect2(so, (struct socket *)nam, PRU_CONNECT2);
414 break;
415
416 case PRU_DISCONNECT:
417 unp_disconnect(unp);
418 break;
419
420 case PRU_ACCEPT:
421 KASSERT(so->so_lock == uipc_lock);
422 /*
423 * Mark the initiating STREAM socket as connected *ONLY*
424 * after it's been accepted. This prevents a client from
425 * overrunning a server and receiving ECONNREFUSED.
426 */
427 if (unp->unp_conn == NULL) {
428 /*
429 * This will use the empty socket and will not
430 * allocate.
431 */
432 unp_setaddr(so, nam, true);
433 break;
434 }
435 so2 = unp->unp_conn->unp_socket;
436 if (so2->so_state & SS_ISCONNECTING) {
437 KASSERT(solocked2(so, so->so_head));
438 KASSERT(solocked2(so2, so->so_head));
439 soisconnected(so2);
440 }
441 /*
442 * If the connection is fully established, break the
443 * association with uipc_lock and give the connected
444 * pair a separate lock to share.
445 * There is a race here: sotounpcb(so2)->unp_streamlock
446 * is not locked, so when changing so2->so_lock
447 * another thread can grab it while so->so_lock is still
448 * pointing to the (locked) uipc_lock.
449 * this should be harmless, except that this makes
450 * solocked2() and solocked() unreliable.
451 * Another problem is that unp_setaddr() expects the
452 * the socket locked. Grabing sotounpcb(so2)->unp_streamlock
453 * fixes both issues.
454 */
455 mutex_enter(sotounpcb(so2)->unp_streamlock);
456 unp_setpeerlocks(so2, so);
457 /*
458 * Only now return peer's address, as we may need to
459 * block in order to allocate memory.
460 *
461 * XXX Minor race: connection can be broken while
462 * lock is dropped in unp_setaddr(). We will return
463 * error == 0 and sun_noname as the peer address.
464 */
465 unp_setaddr(so, nam, true);
466 /* so_lock now points to unp_streamlock */
467 mutex_exit(so2->so_lock);
468 break;
469
470 case PRU_SHUTDOWN:
471 socantsendmore(so);
472 unp_shutdown(unp);
473 break;
474
475 case PRU_RCVD:
476 switch (so->so_type) {
477
478 case SOCK_DGRAM:
479 panic("uipc 1");
480 /*NOTREACHED*/
481
482 case SOCK_SEQPACKET: /* FALLTHROUGH */
483 case SOCK_STREAM:
484 #define rcv (&so->so_rcv)
485 #define snd (&so2->so_snd)
486 if (unp->unp_conn == 0)
487 break;
488 so2 = unp->unp_conn->unp_socket;
489 KASSERT(solocked2(so, so2));
490 /*
491 * Adjust backpressure on sender
492 * and wakeup any waiting to write.
493 */
494 snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
495 unp->unp_mbcnt = rcv->sb_mbcnt;
496 newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
497 (void)chgsbsize(so2->so_uidinfo,
498 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
499 unp->unp_cc = rcv->sb_cc;
500 sowwakeup(so2);
501 #undef snd
502 #undef rcv
503 break;
504
505 default:
506 panic("uipc 2");
507 }
508 break;
509
510 case PRU_SEND:
511 /*
512 * Note: unp_internalize() rejects any control message
513 * other than SCM_RIGHTS, and only allows one. This
514 * has the side-effect of preventing a caller from
515 * forging SCM_CREDS.
516 */
517 if (control) {
518 sounlock(so);
519 error = unp_internalize(&control);
520 solock(so);
521 if (error != 0) {
522 m_freem(control);
523 m_freem(m);
524 break;
525 }
526 }
527 switch (so->so_type) {
528
529 case SOCK_DGRAM: {
530 KASSERT(so->so_lock == uipc_lock);
531 if (nam) {
532 if ((so->so_state & SS_ISCONNECTED) != 0)
533 error = EISCONN;
534 else {
535 /*
536 * Note: once connected, the
537 * socket's lock must not be
538 * dropped until we have sent
539 * the message and disconnected.
540 * This is necessary to prevent
541 * intervening control ops, like
542 * another connection.
543 */
544 error = unp_connect(so, nam, l);
545 }
546 } else {
547 if ((so->so_state & SS_ISCONNECTED) == 0)
548 error = ENOTCONN;
549 }
550 if (error) {
551 unp_dispose(control);
552 m_freem(control);
553 m_freem(m);
554 break;
555 }
556 KASSERT(l != NULL);
557 error = unp_output(m, control, unp, l);
558 if (nam)
559 unp_disconnect(unp);
560 break;
561 }
562
563 case SOCK_SEQPACKET: /* FALLTHROUGH */
564 case SOCK_STREAM:
565 #define rcv (&so2->so_rcv)
566 #define snd (&so->so_snd)
567 if (unp->unp_conn == NULL) {
568 error = ENOTCONN;
569 break;
570 }
571 so2 = unp->unp_conn->unp_socket;
572 KASSERT(solocked2(so, so2));
573 if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
574 /*
575 * Credentials are passed only once on
576 * SOCK_STREAM and SOCK_SEQPACKET.
577 */
578 unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
579 control = unp_addsockcred(l, control);
580 }
581 /*
582 * Send to paired receive port, and then reduce
583 * send buffer hiwater marks to maintain backpressure.
584 * Wake up readers.
585 */
586 if (control) {
587 if (sbappendcontrol(rcv, m, control) != 0)
588 control = NULL;
589 } else {
590 switch(so->so_type) {
591 case SOCK_SEQPACKET:
592 sbappendrecord(rcv, m);
593 break;
594 case SOCK_STREAM:
595 sbappend(rcv, m);
596 break;
597 default:
598 panic("uipc_usrreq");
599 break;
600 }
601 }
602 snd->sb_mbmax -=
603 rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
604 unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
605 newhiwat = snd->sb_hiwat -
606 (rcv->sb_cc - unp->unp_conn->unp_cc);
607 (void)chgsbsize(so->so_uidinfo,
608 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
609 unp->unp_conn->unp_cc = rcv->sb_cc;
610 sorwakeup(so2);
611 #undef snd
612 #undef rcv
613 if (control != NULL) {
614 unp_dispose(control);
615 m_freem(control);
616 }
617 break;
618
619 default:
620 panic("uipc 4");
621 }
622 break;
623
624 case PRU_ABORT:
625 (void)unp_drop(unp, ECONNABORTED);
626 KASSERT(so->so_head == NULL);
627 KASSERT(so->so_pcb != NULL);
628 unp_detach(so);
629 break;
630
631 case PRU_RCVOOB:
632 error = EOPNOTSUPP;
633 break;
634
635 case PRU_SENDOOB:
636 m_freem(control);
637 m_freem(m);
638 error = EOPNOTSUPP;
639 break;
640
641 case PRU_SOCKADDR:
642 unp_setaddr(so, nam, false);
643 break;
644
645 case PRU_PEERADDR:
646 unp_setaddr(so, nam, true);
647 break;
648
649 default:
650 panic("piusrreq");
651 }
652
653 release:
654 return (error);
655 }
656
657 /*
658 * Unix domain socket option processing.
659 */
660 int
661 uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
662 {
663 struct unpcb *unp = sotounpcb(so);
664 int optval = 0, error = 0;
665
666 KASSERT(solocked(so));
667
668 if (sopt->sopt_level != 0) {
669 error = ENOPROTOOPT;
670 } else switch (op) {
671
672 case PRCO_SETOPT:
673 switch (sopt->sopt_name) {
674 case LOCAL_CREDS:
675 case LOCAL_CONNWAIT:
676 error = sockopt_getint(sopt, &optval);
677 if (error)
678 break;
679 switch (sopt->sopt_name) {
680 #define OPTSET(bit) \
681 if (optval) \
682 unp->unp_flags |= (bit); \
683 else \
684 unp->unp_flags &= ~(bit);
685
686 case LOCAL_CREDS:
687 OPTSET(UNP_WANTCRED);
688 break;
689 case LOCAL_CONNWAIT:
690 OPTSET(UNP_CONNWAIT);
691 break;
692 }
693 break;
694 #undef OPTSET
695
696 default:
697 error = ENOPROTOOPT;
698 break;
699 }
700 break;
701
702 case PRCO_GETOPT:
703 sounlock(so);
704 switch (sopt->sopt_name) {
705 case LOCAL_PEEREID:
706 if (unp->unp_flags & UNP_EIDSVALID) {
707 error = sockopt_set(sopt,
708 &unp->unp_connid, sizeof(unp->unp_connid));
709 } else {
710 error = EINVAL;
711 }
712 break;
713 case LOCAL_CREDS:
714 #define OPTBIT(bit) (unp->unp_flags & (bit) ? 1 : 0)
715
716 optval = OPTBIT(UNP_WANTCRED);
717 error = sockopt_setint(sopt, optval);
718 break;
719 #undef OPTBIT
720
721 default:
722 error = ENOPROTOOPT;
723 break;
724 }
725 solock(so);
726 break;
727 }
728 return (error);
729 }
730
731 /*
732 * Both send and receive buffers are allocated PIPSIZ bytes of buffering
733 * for stream sockets, although the total for sender and receiver is
734 * actually only PIPSIZ.
735 * Datagram sockets really use the sendspace as the maximum datagram size,
736 * and don't really want to reserve the sendspace. Their recvspace should
737 * be large enough for at least one max-size datagram plus address.
738 */
739 #define PIPSIZ 4096
740 u_long unpst_sendspace = PIPSIZ;
741 u_long unpst_recvspace = PIPSIZ;
742 u_long unpdg_sendspace = 2*1024; /* really max datagram size */
743 u_long unpdg_recvspace = 4*1024;
744
745 u_int unp_rights; /* files in flight */
746 u_int unp_rights_ratio = 2; /* limit, fraction of maxfiles */
747
748 static int
749 unp_attach(struct socket *so, int proto)
750 {
751 struct unpcb *unp = sotounpcb(so);
752 u_long sndspc, rcvspc;
753 int error;
754
755 KASSERT(unp == NULL);
756
757 switch (so->so_type) {
758 case SOCK_SEQPACKET:
759 /* FALLTHROUGH */
760 case SOCK_STREAM:
761 if (so->so_lock == NULL) {
762 so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
763 solock(so);
764 }
765 sndspc = unpst_sendspace;
766 rcvspc = unpst_recvspace;
767 break;
768
769 case SOCK_DGRAM:
770 if (so->so_lock == NULL) {
771 mutex_obj_hold(uipc_lock);
772 so->so_lock = uipc_lock;
773 solock(so);
774 }
775 sndspc = unpdg_sendspace;
776 rcvspc = unpdg_recvspace;
777 break;
778
779 default:
780 panic("unp_attach");
781 }
782
783 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
784 error = soreserve(so, sndspc, rcvspc);
785 if (error) {
786 return error;
787 }
788 }
789
790 unp = kmem_zalloc(sizeof(*unp), KM_SLEEP);
791 nanotime(&unp->unp_ctime);
792 unp->unp_socket = so;
793 so->so_pcb = unp;
794
795 KASSERT(solocked(so));
796 return 0;
797 }
798
799 static void
800 unp_detach(struct socket *so)
801 {
802 struct unpcb *unp;
803 vnode_t *vp;
804
805 unp = sotounpcb(so);
806 KASSERT(unp != NULL);
807 KASSERT(solocked(so));
808 retry:
809 if ((vp = unp->unp_vnode) != NULL) {
810 sounlock(so);
811 /* Acquire v_interlock to protect against unp_connect(). */
812 /* XXXAD racy */
813 mutex_enter(vp->v_interlock);
814 vp->v_socket = NULL;
815 mutex_exit(vp->v_interlock);
816 vrele(vp);
817 solock(so);
818 unp->unp_vnode = NULL;
819 }
820 if (unp->unp_conn)
821 unp_disconnect(unp);
822 while (unp->unp_refs) {
823 KASSERT(solocked2(so, unp->unp_refs->unp_socket));
824 if (unp_drop(unp->unp_refs, ECONNRESET)) {
825 solock(so);
826 goto retry;
827 }
828 }
829 soisdisconnected(so);
830 so->so_pcb = NULL;
831 if (unp_rights) {
832 /*
833 * Normally the receive buffer is flushed later, in sofree,
834 * but if our receive buffer holds references to files that
835 * are now garbage, we will enqueue those file references to
836 * the garbage collector and kick it into action.
837 */
838 sorflush(so);
839 unp_free(unp);
840 unp_thread_kick();
841 } else
842 unp_free(unp);
843 }
844
845 static int
846 unp_ioctl(struct socket *so, u_long cmd, void *nam, struct ifnet *ifp)
847 {
848 return EOPNOTSUPP;
849 }
850
851 static int
852 unp_stat(struct socket *so, struct stat *ub)
853 {
854 struct unpcb *unp;
855 struct socket *so2;
856
857 unp = sotounpcb(so);
858 if (unp == NULL)
859 return EINVAL;
860
861 ub->st_blksize = so->so_snd.sb_hiwat;
862 switch (so->so_type) {
863 case SOCK_SEQPACKET: /* FALLTHROUGH */
864 case SOCK_STREAM:
865 if (unp->unp_conn == 0)
866 break;
867
868 so2 = unp->unp_conn->unp_socket;
869 KASSERT(solocked2(so, so2));
870 ub->st_blksize += so2->so_rcv.sb_cc;
871 break;
872 default:
873 break;
874 }
875 ub->st_dev = NODEV;
876 if (unp->unp_ino == 0)
877 unp->unp_ino = unp_ino++;
878 ub->st_atimespec = ub->st_mtimespec = ub->st_ctimespec = unp->unp_ctime;
879 ub->st_ino = unp->unp_ino;
880 return (0);
881 }
882
883 /*
884 * Allocate the new sockaddr. We have to allocate one
885 * extra byte so that we can ensure that the pathname
886 * is nul-terminated. Note that unlike linux, we don't
887 * include in the address length the NUL in the path
888 * component, because doing so, would exceed sizeof(sockaddr_un)
889 * for fully occupied pathnames. Linux is also inconsistent,
890 * because it does not include the NUL in the length of
891 * what it calls "abstract" unix sockets.
892 */
893 static struct sockaddr_un *
894 makeun(struct mbuf *nam, size_t *addrlen) {
895 struct sockaddr_un *sun;
896
897 *addrlen = nam->m_len + 1;
898 sun = malloc(*addrlen, M_SONAME, M_WAITOK);
899 m_copydata(nam, 0, nam->m_len, (void *)sun);
900 *(((char *)sun) + nam->m_len) = '\0';
901 sun->sun_len = strlen(sun->sun_path) +
902 offsetof(struct sockaddr_un, sun_path);
903 return sun;
904 }
905
906 int
907 unp_bind(struct socket *so, struct mbuf *nam, struct lwp *l)
908 {
909 struct sockaddr_un *sun;
910 struct unpcb *unp;
911 vnode_t *vp;
912 struct vattr vattr;
913 size_t addrlen;
914 int error;
915 struct pathbuf *pb;
916 struct nameidata nd;
917 proc_t *p;
918
919 unp = sotounpcb(so);
920 if (unp->unp_vnode != NULL)
921 return (EINVAL);
922 if ((unp->unp_flags & UNP_BUSY) != 0) {
923 /*
924 * EALREADY may not be strictly accurate, but since this
925 * is a major application error it's hardly a big deal.
926 */
927 return (EALREADY);
928 }
929 unp->unp_flags |= UNP_BUSY;
930 sounlock(so);
931
932 p = l->l_proc;
933 sun = makeun(nam, &addrlen);
934
935 pb = pathbuf_create(sun->sun_path);
936 if (pb == NULL) {
937 error = ENOMEM;
938 goto bad;
939 }
940 NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, pb);
941
942 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
943 if ((error = namei(&nd)) != 0) {
944 pathbuf_destroy(pb);
945 goto bad;
946 }
947 vp = nd.ni_vp;
948 if (vp != NULL) {
949 VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
950 if (nd.ni_dvp == vp)
951 vrele(nd.ni_dvp);
952 else
953 vput(nd.ni_dvp);
954 vrele(vp);
955 pathbuf_destroy(pb);
956 error = EADDRINUSE;
957 goto bad;
958 }
959 vattr_null(&vattr);
960 vattr.va_type = VSOCK;
961 vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
962 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
963 if (error) {
964 vput(nd.ni_dvp);
965 pathbuf_destroy(pb);
966 goto bad;
967 }
968 vp = nd.ni_vp;
969 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
970 solock(so);
971 vp->v_socket = unp->unp_socket;
972 unp->unp_vnode = vp;
973 unp->unp_addrlen = addrlen;
974 unp->unp_addr = sun;
975 unp->unp_connid.unp_pid = p->p_pid;
976 unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
977 unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
978 unp->unp_flags |= UNP_EIDSBIND;
979 VOP_UNLOCK(vp);
980 vput(nd.ni_dvp);
981 unp->unp_flags &= ~UNP_BUSY;
982 pathbuf_destroy(pb);
983 return (0);
984
985 bad:
986 free(sun, M_SONAME);
987 solock(so);
988 unp->unp_flags &= ~UNP_BUSY;
989 return (error);
990 }
991
992 int
993 unp_connect(struct socket *so, struct mbuf *nam, struct lwp *l)
994 {
995 struct sockaddr_un *sun;
996 vnode_t *vp;
997 struct socket *so2, *so3;
998 struct unpcb *unp, *unp2, *unp3;
999 size_t addrlen;
1000 int error;
1001 struct pathbuf *pb;
1002 struct nameidata nd;
1003
1004 unp = sotounpcb(so);
1005 if ((unp->unp_flags & UNP_BUSY) != 0) {
1006 /*
1007 * EALREADY may not be strictly accurate, but since this
1008 * is a major application error it's hardly a big deal.
1009 */
1010 return (EALREADY);
1011 }
1012 unp->unp_flags |= UNP_BUSY;
1013 sounlock(so);
1014
1015 sun = makeun(nam, &addrlen);
1016 pb = pathbuf_create(sun->sun_path);
1017 if (pb == NULL) {
1018 error = ENOMEM;
1019 goto bad2;
1020 }
1021
1022 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
1023
1024 if ((error = namei(&nd)) != 0) {
1025 pathbuf_destroy(pb);
1026 goto bad2;
1027 }
1028 vp = nd.ni_vp;
1029 if (vp->v_type != VSOCK) {
1030 error = ENOTSOCK;
1031 goto bad;
1032 }
1033 pathbuf_destroy(pb);
1034 if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
1035 goto bad;
1036 /* Acquire v_interlock to protect against unp_detach(). */
1037 mutex_enter(vp->v_interlock);
1038 so2 = vp->v_socket;
1039 if (so2 == NULL) {
1040 mutex_exit(vp->v_interlock);
1041 error = ECONNREFUSED;
1042 goto bad;
1043 }
1044 if (so->so_type != so2->so_type) {
1045 mutex_exit(vp->v_interlock);
1046 error = EPROTOTYPE;
1047 goto bad;
1048 }
1049 solock(so);
1050 unp_resetlock(so);
1051 mutex_exit(vp->v_interlock);
1052 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
1053 /*
1054 * This may seem somewhat fragile but is OK: if we can
1055 * see SO_ACCEPTCONN set on the endpoint, then it must
1056 * be locked by the domain-wide uipc_lock.
1057 */
1058 KASSERT((so2->so_options & SO_ACCEPTCONN) == 0 ||
1059 so2->so_lock == uipc_lock);
1060 if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
1061 (so3 = sonewconn(so2, false)) == NULL) {
1062 error = ECONNREFUSED;
1063 sounlock(so);
1064 goto bad;
1065 }
1066 unp2 = sotounpcb(so2);
1067 unp3 = sotounpcb(so3);
1068 if (unp2->unp_addr) {
1069 unp3->unp_addr = malloc(unp2->unp_addrlen,
1070 M_SONAME, M_WAITOK);
1071 memcpy(unp3->unp_addr, unp2->unp_addr,
1072 unp2->unp_addrlen);
1073 unp3->unp_addrlen = unp2->unp_addrlen;
1074 }
1075 unp3->unp_flags = unp2->unp_flags;
1076 unp3->unp_connid.unp_pid = l->l_proc->p_pid;
1077 unp3->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
1078 unp3->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
1079 unp3->unp_flags |= UNP_EIDSVALID;
1080 if (unp2->unp_flags & UNP_EIDSBIND) {
1081 unp->unp_connid = unp2->unp_connid;
1082 unp->unp_flags |= UNP_EIDSVALID;
1083 }
1084 so2 = so3;
1085 }
1086 error = unp_connect2(so, so2, PRU_CONNECT);
1087 sounlock(so);
1088 bad:
1089 vput(vp);
1090 bad2:
1091 free(sun, M_SONAME);
1092 solock(so);
1093 unp->unp_flags &= ~UNP_BUSY;
1094 return (error);
1095 }
1096
1097 int
1098 unp_connect2(struct socket *so, struct socket *so2, int req)
1099 {
1100 struct unpcb *unp = sotounpcb(so);
1101 struct unpcb *unp2;
1102
1103 if (so2->so_type != so->so_type)
1104 return (EPROTOTYPE);
1105
1106 /*
1107 * All three sockets involved must be locked by same lock:
1108 *
1109 * local endpoint (so)
1110 * remote endpoint (so2)
1111 * queue head (so2->so_head, only if PR_CONNREQUIRED)
1112 */
1113 KASSERT(solocked2(so, so2));
1114 KASSERT(so->so_head == NULL);
1115 if (so2->so_head != NULL) {
1116 KASSERT(so2->so_lock == uipc_lock);
1117 KASSERT(solocked2(so2, so2->so_head));
1118 }
1119
1120 unp2 = sotounpcb(so2);
1121 unp->unp_conn = unp2;
1122 switch (so->so_type) {
1123
1124 case SOCK_DGRAM:
1125 unp->unp_nextref = unp2->unp_refs;
1126 unp2->unp_refs = unp;
1127 soisconnected(so);
1128 break;
1129
1130 case SOCK_SEQPACKET: /* FALLTHROUGH */
1131 case SOCK_STREAM:
1132 unp2->unp_conn = unp;
1133 if (req == PRU_CONNECT &&
1134 ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1135 soisconnecting(so);
1136 else
1137 soisconnected(so);
1138 soisconnected(so2);
1139 /*
1140 * If the connection is fully established, break the
1141 * association with uipc_lock and give the connected
1142 * pair a seperate lock to share. For CONNECT2, we
1143 * require that the locks already match (the sockets
1144 * are created that way).
1145 */
1146 if (req == PRU_CONNECT) {
1147 KASSERT(so2->so_head != NULL);
1148 unp_setpeerlocks(so, so2);
1149 }
1150 break;
1151
1152 default:
1153 panic("unp_connect2");
1154 }
1155 return (0);
1156 }
1157
1158 void
1159 unp_disconnect(struct unpcb *unp)
1160 {
1161 struct unpcb *unp2 = unp->unp_conn;
1162 struct socket *so;
1163
1164 if (unp2 == 0)
1165 return;
1166 unp->unp_conn = 0;
1167 so = unp->unp_socket;
1168 switch (so->so_type) {
1169 case SOCK_DGRAM:
1170 if (unp2->unp_refs == unp)
1171 unp2->unp_refs = unp->unp_nextref;
1172 else {
1173 unp2 = unp2->unp_refs;
1174 for (;;) {
1175 KASSERT(solocked2(so, unp2->unp_socket));
1176 if (unp2 == 0)
1177 panic("unp_disconnect");
1178 if (unp2->unp_nextref == unp)
1179 break;
1180 unp2 = unp2->unp_nextref;
1181 }
1182 unp2->unp_nextref = unp->unp_nextref;
1183 }
1184 unp->unp_nextref = 0;
1185 so->so_state &= ~SS_ISCONNECTED;
1186 break;
1187
1188 case SOCK_SEQPACKET: /* FALLTHROUGH */
1189 case SOCK_STREAM:
1190 KASSERT(solocked2(so, unp2->unp_socket));
1191 soisdisconnected(so);
1192 unp2->unp_conn = 0;
1193 soisdisconnected(unp2->unp_socket);
1194 break;
1195 }
1196 }
1197
1198 void
1199 unp_shutdown(struct unpcb *unp)
1200 {
1201 struct socket *so;
1202
1203 switch(unp->unp_socket->so_type) {
1204 case SOCK_SEQPACKET: /* FALLTHROUGH */
1205 case SOCK_STREAM:
1206 if (unp->unp_conn && (so = unp->unp_conn->unp_socket))
1207 socantrcvmore(so);
1208 break;
1209 default:
1210 break;
1211 }
1212 }
1213
1214 bool
1215 unp_drop(struct unpcb *unp, int errno)
1216 {
1217 struct socket *so = unp->unp_socket;
1218
1219 KASSERT(solocked(so));
1220
1221 so->so_error = errno;
1222 unp_disconnect(unp);
1223 if (so->so_head) {
1224 so->so_pcb = NULL;
1225 /* sofree() drops the socket lock */
1226 sofree(so);
1227 unp_free(unp);
1228 return true;
1229 }
1230 return false;
1231 }
1232
1233 #ifdef notdef
1234 unp_drain(void)
1235 {
1236
1237 }
1238 #endif
1239
1240 int
1241 unp_externalize(struct mbuf *rights, struct lwp *l, int flags)
1242 {
1243 struct cmsghdr * const cm = mtod(rights, struct cmsghdr *);
1244 struct proc * const p = l->l_proc;
1245 file_t **rp;
1246 int error = 0;
1247
1248 const size_t nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
1249 sizeof(file_t *);
1250 if (nfds == 0)
1251 goto noop;
1252
1253 int * const fdp = kmem_alloc(nfds * sizeof(int), KM_SLEEP);
1254 rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
1255
1256 /* Make sure the recipient should be able to see the files.. */
1257 rp = (file_t **)CMSG_DATA(cm);
1258 for (size_t i = 0; i < nfds; i++) {
1259 file_t * const fp = *rp++;
1260 if (fp == NULL) {
1261 error = EINVAL;
1262 goto out;
1263 }
1264 /*
1265 * If we are in a chroot'ed directory, and
1266 * someone wants to pass us a directory, make
1267 * sure it's inside the subtree we're allowed
1268 * to access.
1269 */
1270 if (p->p_cwdi->cwdi_rdir != NULL && fp->f_type == DTYPE_VNODE) {
1271 vnode_t *vp = (vnode_t *)fp->f_data;
1272 if ((vp->v_type == VDIR) &&
1273 !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
1274 error = EPERM;
1275 goto out;
1276 }
1277 }
1278 }
1279
1280 restart:
1281 /*
1282 * First loop -- allocate file descriptor table slots for the
1283 * new files.
1284 */
1285 for (size_t i = 0; i < nfds; i++) {
1286 if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
1287 /*
1288 * Back out what we've done so far.
1289 */
1290 while (i-- > 0) {
1291 fd_abort(p, NULL, fdp[i]);
1292 }
1293 if (error == ENOSPC) {
1294 fd_tryexpand(p);
1295 error = 0;
1296 goto restart;
1297 }
1298 /*
1299 * This is the error that has historically
1300 * been returned, and some callers may
1301 * expect it.
1302 */
1303 error = EMSGSIZE;
1304 goto out;
1305 }
1306 }
1307
1308 /*
1309 * Now that adding them has succeeded, update all of the
1310 * file passing state and affix the descriptors.
1311 */
1312 rp = (file_t **)CMSG_DATA(cm);
1313 int *ofdp = (int *)CMSG_DATA(cm);
1314 for (size_t i = 0; i < nfds; i++) {
1315 file_t * const fp = *rp++;
1316 const int fd = fdp[i];
1317 atomic_dec_uint(&unp_rights);
1318 fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
1319 fd_affix(p, fp, fd);
1320 /*
1321 * Done with this file pointer, replace it with a fd;
1322 */
1323 *ofdp++ = fd;
1324 mutex_enter(&fp->f_lock);
1325 fp->f_msgcount--;
1326 mutex_exit(&fp->f_lock);
1327 /*
1328 * Note that fd_affix() adds a reference to the file.
1329 * The file may already have been closed by another
1330 * LWP in the process, so we must drop the reference
1331 * added by unp_internalize() with closef().
1332 */
1333 closef(fp);
1334 }
1335
1336 /*
1337 * Adjust length, in case of transition from large file_t
1338 * pointers to ints.
1339 */
1340 if (sizeof(file_t *) != sizeof(int)) {
1341 cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
1342 rights->m_len = CMSG_SPACE(nfds * sizeof(int));
1343 }
1344 out:
1345 if (__predict_false(error != 0)) {
1346 file_t **const fpp = (file_t **)CMSG_DATA(cm);
1347 for (size_t i = 0; i < nfds; i++)
1348 unp_discard_now(fpp[i]);
1349 /*
1350 * Truncate the array so that nobody will try to interpret
1351 * what is now garbage in it.
1352 */
1353 cm->cmsg_len = CMSG_LEN(0);
1354 rights->m_len = CMSG_SPACE(0);
1355 }
1356 rw_exit(&p->p_cwdi->cwdi_lock);
1357 kmem_free(fdp, nfds * sizeof(int));
1358
1359 noop:
1360 /*
1361 * Don't disclose kernel memory in the alignment space.
1362 */
1363 KASSERT(cm->cmsg_len <= rights->m_len);
1364 memset(&mtod(rights, char *)[cm->cmsg_len], 0, rights->m_len -
1365 cm->cmsg_len);
1366 return error;
1367 }
1368
1369 int
1370 unp_internalize(struct mbuf **controlp)
1371 {
1372 filedesc_t *fdescp = curlwp->l_fd;
1373 struct mbuf *control = *controlp;
1374 struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
1375 file_t **rp, **files;
1376 file_t *fp;
1377 int i, fd, *fdp;
1378 int nfds, error;
1379 u_int maxmsg;
1380
1381 error = 0;
1382 newcm = NULL;
1383
1384 /* Sanity check the control message header. */
1385 if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
1386 cm->cmsg_len > control->m_len ||
1387 cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
1388 return (EINVAL);
1389
1390 /*
1391 * Verify that the file descriptors are valid, and acquire
1392 * a reference to each.
1393 */
1394 nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
1395 fdp = (int *)CMSG_DATA(cm);
1396 maxmsg = maxfiles / unp_rights_ratio;
1397 for (i = 0; i < nfds; i++) {
1398 fd = *fdp++;
1399 if (atomic_inc_uint_nv(&unp_rights) > maxmsg) {
1400 atomic_dec_uint(&unp_rights);
1401 nfds = i;
1402 error = EAGAIN;
1403 goto out;
1404 }
1405 if ((fp = fd_getfile(fd)) == NULL
1406 || fp->f_type == DTYPE_KQUEUE) {
1407 if (fp)
1408 fd_putfile(fd);
1409 atomic_dec_uint(&unp_rights);
1410 nfds = i;
1411 error = EBADF;
1412 goto out;
1413 }
1414 }
1415
1416 /* Allocate new space and copy header into it. */
1417 newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
1418 if (newcm == NULL) {
1419 error = E2BIG;
1420 goto out;
1421 }
1422 memcpy(newcm, cm, sizeof(struct cmsghdr));
1423 files = (file_t **)CMSG_DATA(newcm);
1424
1425 /*
1426 * Transform the file descriptors into file_t pointers, in
1427 * reverse order so that if pointers are bigger than ints, the
1428 * int won't get until we're done. No need to lock, as we have
1429 * already validated the descriptors with fd_getfile().
1430 */
1431 fdp = (int *)CMSG_DATA(cm) + nfds;
1432 rp = files + nfds;
1433 for (i = 0; i < nfds; i++) {
1434 fp = fdescp->fd_dt->dt_ff[*--fdp]->ff_file;
1435 KASSERT(fp != NULL);
1436 mutex_enter(&fp->f_lock);
1437 *--rp = fp;
1438 fp->f_count++;
1439 fp->f_msgcount++;
1440 mutex_exit(&fp->f_lock);
1441 }
1442
1443 out:
1444 /* Release descriptor references. */
1445 fdp = (int *)CMSG_DATA(cm);
1446 for (i = 0; i < nfds; i++) {
1447 fd_putfile(*fdp++);
1448 if (error != 0) {
1449 atomic_dec_uint(&unp_rights);
1450 }
1451 }
1452
1453 if (error == 0) {
1454 if (control->m_flags & M_EXT) {
1455 m_freem(control);
1456 *controlp = control = m_get(M_WAIT, MT_CONTROL);
1457 }
1458 MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
1459 M_MBUF, NULL, NULL);
1460 cm = newcm;
1461 /*
1462 * Adjust message & mbuf to note amount of space
1463 * actually used.
1464 */
1465 cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
1466 control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
1467 }
1468
1469 return error;
1470 }
1471
1472 struct mbuf *
1473 unp_addsockcred(struct lwp *l, struct mbuf *control)
1474 {
1475 struct sockcred *sc;
1476 struct mbuf *m;
1477 void *p;
1478
1479 m = sbcreatecontrol1(&p, SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)),
1480 SCM_CREDS, SOL_SOCKET, M_WAITOK);
1481 if (m == NULL)
1482 return control;
1483
1484 sc = p;
1485 sc->sc_uid = kauth_cred_getuid(l->l_cred);
1486 sc->sc_euid = kauth_cred_geteuid(l->l_cred);
1487 sc->sc_gid = kauth_cred_getgid(l->l_cred);
1488 sc->sc_egid = kauth_cred_getegid(l->l_cred);
1489 sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
1490
1491 for (int i = 0; i < sc->sc_ngroups; i++)
1492 sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
1493
1494 return m_add(control, m);
1495 }
1496
1497 /*
1498 * Do a mark-sweep GC of files in the system, to free up any which are
1499 * caught in flight to an about-to-be-closed socket. Additionally,
1500 * process deferred file closures.
1501 */
1502 static void
1503 unp_gc(file_t *dp)
1504 {
1505 extern struct domain unixdomain;
1506 file_t *fp, *np;
1507 struct socket *so, *so1;
1508 u_int i, old, new;
1509 bool didwork;
1510
1511 KASSERT(curlwp == unp_thread_lwp);
1512 KASSERT(mutex_owned(&filelist_lock));
1513
1514 /*
1515 * First, process deferred file closures.
1516 */
1517 while (!SLIST_EMPTY(&unp_thread_discard)) {
1518 fp = SLIST_FIRST(&unp_thread_discard);
1519 KASSERT(fp->f_unpcount > 0);
1520 KASSERT(fp->f_count > 0);
1521 KASSERT(fp->f_msgcount > 0);
1522 KASSERT(fp->f_count >= fp->f_unpcount);
1523 KASSERT(fp->f_count >= fp->f_msgcount);
1524 KASSERT(fp->f_msgcount >= fp->f_unpcount);
1525 SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist);
1526 i = fp->f_unpcount;
1527 fp->f_unpcount = 0;
1528 mutex_exit(&filelist_lock);
1529 for (; i != 0; i--) {
1530 unp_discard_now(fp);
1531 }
1532 mutex_enter(&filelist_lock);
1533 }
1534
1535 /*
1536 * Clear mark bits. Ensure that we don't consider new files
1537 * entering the file table during this loop (they will not have
1538 * FSCAN set).
1539 */
1540 unp_defer = 0;
1541 LIST_FOREACH(fp, &filehead, f_list) {
1542 for (old = fp->f_flag;; old = new) {
1543 new = atomic_cas_uint(&fp->f_flag, old,
1544 (old | FSCAN) & ~(FMARK|FDEFER));
1545 if (__predict_true(old == new)) {
1546 break;
1547 }
1548 }
1549 }
1550
1551 /*
1552 * Iterate over the set of sockets, marking ones believed (based on
1553 * refcount) to be referenced from a process, and marking for rescan
1554 * sockets which are queued on a socket. Recan continues descending
1555 * and searching for sockets referenced by sockets (FDEFER), until
1556 * there are no more socket->socket references to be discovered.
1557 */
1558 do {
1559 didwork = false;
1560 for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1561 KASSERT(mutex_owned(&filelist_lock));
1562 np = LIST_NEXT(fp, f_list);
1563 mutex_enter(&fp->f_lock);
1564 if ((fp->f_flag & FDEFER) != 0) {
1565 atomic_and_uint(&fp->f_flag, ~FDEFER);
1566 unp_defer--;
1567 KASSERT(fp->f_count != 0);
1568 } else {
1569 if (fp->f_count == 0 ||
1570 (fp->f_flag & FMARK) != 0 ||
1571 fp->f_count == fp->f_msgcount ||
1572 fp->f_unpcount != 0) {
1573 mutex_exit(&fp->f_lock);
1574 continue;
1575 }
1576 }
1577 atomic_or_uint(&fp->f_flag, FMARK);
1578
1579 if (fp->f_type != DTYPE_SOCKET ||
1580 (so = fp->f_data) == NULL ||
1581 so->so_proto->pr_domain != &unixdomain ||
1582 (so->so_proto->pr_flags & PR_RIGHTS) == 0) {
1583 mutex_exit(&fp->f_lock);
1584 continue;
1585 }
1586
1587 /* Gain file ref, mark our position, and unlock. */
1588 didwork = true;
1589 LIST_INSERT_AFTER(fp, dp, f_list);
1590 fp->f_count++;
1591 mutex_exit(&fp->f_lock);
1592 mutex_exit(&filelist_lock);
1593
1594 /*
1595 * Mark files referenced from sockets queued on the
1596 * accept queue as well.
1597 */
1598 solock(so);
1599 unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
1600 if ((so->so_options & SO_ACCEPTCONN) != 0) {
1601 TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
1602 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1603 }
1604 TAILQ_FOREACH(so1, &so->so_q, so_qe) {
1605 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1606 }
1607 }
1608 sounlock(so);
1609
1610 /* Re-lock and restart from where we left off. */
1611 closef(fp);
1612 mutex_enter(&filelist_lock);
1613 np = LIST_NEXT(dp, f_list);
1614 LIST_REMOVE(dp, f_list);
1615 }
1616 /*
1617 * Bail early if we did nothing in the loop above. Could
1618 * happen because of concurrent activity causing unp_defer
1619 * to get out of sync.
1620 */
1621 } while (unp_defer != 0 && didwork);
1622
1623 /*
1624 * Sweep pass.
1625 *
1626 * We grab an extra reference to each of the files that are
1627 * not otherwise accessible and then free the rights that are
1628 * stored in messages on them.
1629 */
1630 for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1631 KASSERT(mutex_owned(&filelist_lock));
1632 np = LIST_NEXT(fp, f_list);
1633 mutex_enter(&fp->f_lock);
1634
1635 /*
1636 * Ignore non-sockets.
1637 * Ignore dead sockets, or sockets with pending close.
1638 * Ignore sockets obviously referenced elsewhere.
1639 * Ignore sockets marked as referenced by our scan.
1640 * Ignore new sockets that did not exist during the scan.
1641 */
1642 if (fp->f_type != DTYPE_SOCKET ||
1643 fp->f_count == 0 || fp->f_unpcount != 0 ||
1644 fp->f_count != fp->f_msgcount ||
1645 (fp->f_flag & (FMARK | FSCAN)) != FSCAN) {
1646 mutex_exit(&fp->f_lock);
1647 continue;
1648 }
1649
1650 /* Gain file ref, mark our position, and unlock. */
1651 LIST_INSERT_AFTER(fp, dp, f_list);
1652 fp->f_count++;
1653 mutex_exit(&fp->f_lock);
1654 mutex_exit(&filelist_lock);
1655
1656 /*
1657 * Flush all data from the socket's receive buffer.
1658 * This will cause files referenced only by the
1659 * socket to be queued for close.
1660 */
1661 so = fp->f_data;
1662 solock(so);
1663 sorflush(so);
1664 sounlock(so);
1665
1666 /* Re-lock and restart from where we left off. */
1667 closef(fp);
1668 mutex_enter(&filelist_lock);
1669 np = LIST_NEXT(dp, f_list);
1670 LIST_REMOVE(dp, f_list);
1671 }
1672 }
1673
1674 /*
1675 * Garbage collector thread. While SCM_RIGHTS messages are in transit,
1676 * wake once per second to garbage collect. Run continually while we
1677 * have deferred closes to process.
1678 */
1679 static void
1680 unp_thread(void *cookie)
1681 {
1682 file_t *dp;
1683
1684 /* Allocate a dummy file for our scans. */
1685 if ((dp = fgetdummy()) == NULL) {
1686 panic("unp_thread");
1687 }
1688
1689 mutex_enter(&filelist_lock);
1690 for (;;) {
1691 KASSERT(mutex_owned(&filelist_lock));
1692 if (SLIST_EMPTY(&unp_thread_discard)) {
1693 if (unp_rights != 0) {
1694 (void)cv_timedwait(&unp_thread_cv,
1695 &filelist_lock, hz);
1696 } else {
1697 cv_wait(&unp_thread_cv, &filelist_lock);
1698 }
1699 }
1700 unp_gc(dp);
1701 }
1702 /* NOTREACHED */
1703 }
1704
1705 /*
1706 * Kick the garbage collector into action if there is something for
1707 * it to process.
1708 */
1709 static void
1710 unp_thread_kick(void)
1711 {
1712
1713 if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) {
1714 mutex_enter(&filelist_lock);
1715 cv_signal(&unp_thread_cv);
1716 mutex_exit(&filelist_lock);
1717 }
1718 }
1719
1720 void
1721 unp_dispose(struct mbuf *m)
1722 {
1723
1724 if (m)
1725 unp_scan(m, unp_discard_later, 1);
1726 }
1727
1728 void
1729 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
1730 {
1731 struct mbuf *m;
1732 file_t **rp, *fp;
1733 struct cmsghdr *cm;
1734 int i, qfds;
1735
1736 while (m0) {
1737 for (m = m0; m; m = m->m_next) {
1738 if (m->m_type != MT_CONTROL ||
1739 m->m_len < sizeof(*cm)) {
1740 continue;
1741 }
1742 cm = mtod(m, struct cmsghdr *);
1743 if (cm->cmsg_level != SOL_SOCKET ||
1744 cm->cmsg_type != SCM_RIGHTS)
1745 continue;
1746 qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
1747 / sizeof(file_t *);
1748 rp = (file_t **)CMSG_DATA(cm);
1749 for (i = 0; i < qfds; i++) {
1750 fp = *rp;
1751 if (discard) {
1752 *rp = 0;
1753 }
1754 (*op)(fp);
1755 rp++;
1756 }
1757 }
1758 m0 = m0->m_nextpkt;
1759 }
1760 }
1761
1762 void
1763 unp_mark(file_t *fp)
1764 {
1765
1766 if (fp == NULL)
1767 return;
1768
1769 /* If we're already deferred, don't screw up the defer count */
1770 mutex_enter(&fp->f_lock);
1771 if (fp->f_flag & (FMARK | FDEFER)) {
1772 mutex_exit(&fp->f_lock);
1773 return;
1774 }
1775
1776 /*
1777 * Minimize the number of deferrals... Sockets are the only type of
1778 * file which can hold references to another file, so just mark
1779 * other files, and defer unmarked sockets for the next pass.
1780 */
1781 if (fp->f_type == DTYPE_SOCKET) {
1782 unp_defer++;
1783 KASSERT(fp->f_count != 0);
1784 atomic_or_uint(&fp->f_flag, FDEFER);
1785 } else {
1786 atomic_or_uint(&fp->f_flag, FMARK);
1787 }
1788 mutex_exit(&fp->f_lock);
1789 }
1790
1791 static void
1792 unp_discard_now(file_t *fp)
1793 {
1794
1795 if (fp == NULL)
1796 return;
1797
1798 KASSERT(fp->f_count > 0);
1799 KASSERT(fp->f_msgcount > 0);
1800
1801 mutex_enter(&fp->f_lock);
1802 fp->f_msgcount--;
1803 mutex_exit(&fp->f_lock);
1804 atomic_dec_uint(&unp_rights);
1805 (void)closef(fp);
1806 }
1807
1808 static void
1809 unp_discard_later(file_t *fp)
1810 {
1811
1812 if (fp == NULL)
1813 return;
1814
1815 KASSERT(fp->f_count > 0);
1816 KASSERT(fp->f_msgcount > 0);
1817
1818 mutex_enter(&filelist_lock);
1819 if (fp->f_unpcount++ == 0) {
1820 SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist);
1821 }
1822 mutex_exit(&filelist_lock);
1823 }
1824
1825 const struct pr_usrreqs unp_usrreqs = {
1826 .pr_attach = unp_attach,
1827 .pr_detach = unp_detach,
1828 .pr_ioctl = unp_ioctl,
1829 .pr_stat = unp_stat,
1830 .pr_generic = unp_usrreq,
1831 };
1832