Home | History | Annotate | Line # | Download | only in kern
uipc_usrreq.c revision 1.161
      1 /*	$NetBSD: uipc_usrreq.c,v 1.161 2014/07/24 15:12:03 rtr Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 2000, 2004, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
     62  */
     63 
     64 /*
     65  * Copyright (c) 1997 Christopher G. Demetriou.  All rights reserved.
     66  *
     67  * Redistribution and use in source and binary forms, with or without
     68  * modification, are permitted provided that the following conditions
     69  * are met:
     70  * 1. Redistributions of source code must retain the above copyright
     71  *    notice, this list of conditions and the following disclaimer.
     72  * 2. Redistributions in binary form must reproduce the above copyright
     73  *    notice, this list of conditions and the following disclaimer in the
     74  *    documentation and/or other materials provided with the distribution.
     75  * 3. All advertising materials mentioning features or use of this software
     76  *    must display the following acknowledgement:
     77  *	This product includes software developed by the University of
     78  *	California, Berkeley and its contributors.
     79  * 4. Neither the name of the University nor the names of its contributors
     80  *    may be used to endorse or promote products derived from this software
     81  *    without specific prior written permission.
     82  *
     83  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     84  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     85  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     86  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     87  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     88  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     89  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     90  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     91  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     92  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     93  * SUCH DAMAGE.
     94  *
     95  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
     96  */
     97 
     98 #include <sys/cdefs.h>
     99 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.161 2014/07/24 15:12:03 rtr Exp $");
    100 
    101 #include <sys/param.h>
    102 #include <sys/systm.h>
    103 #include <sys/proc.h>
    104 #include <sys/filedesc.h>
    105 #include <sys/domain.h>
    106 #include <sys/protosw.h>
    107 #include <sys/socket.h>
    108 #include <sys/socketvar.h>
    109 #include <sys/unpcb.h>
    110 #include <sys/un.h>
    111 #include <sys/namei.h>
    112 #include <sys/vnode.h>
    113 #include <sys/file.h>
    114 #include <sys/stat.h>
    115 #include <sys/mbuf.h>
    116 #include <sys/kauth.h>
    117 #include <sys/kmem.h>
    118 #include <sys/atomic.h>
    119 #include <sys/uidinfo.h>
    120 #include <sys/kernel.h>
    121 #include <sys/kthread.h>
    122 
    123 /*
    124  * Unix communications domain.
    125  *
    126  * TODO:
    127  *	RDM
    128  *	rethink name space problems
    129  *	need a proper out-of-band
    130  *
    131  * Notes on locking:
    132  *
    133  * The generic rules noted in uipc_socket2.c apply.  In addition:
    134  *
    135  * o We have a global lock, uipc_lock.
    136  *
    137  * o All datagram sockets are locked by uipc_lock.
    138  *
    139  * o For stream socketpairs, the two endpoints are created sharing the same
    140  *   independent lock.  Sockets presented to PRU_CONNECT2 must already have
    141  *   matching locks.
    142  *
    143  * o Stream sockets created via socket() start life with their own
    144  *   independent lock.
    145  *
    146  * o Stream connections to a named endpoint are slightly more complicated.
    147  *   Sockets that have called listen() have their lock pointer mutated to
    148  *   the global uipc_lock.  When establishing a connection, the connecting
    149  *   socket also has its lock mutated to uipc_lock, which matches the head
    150  *   (listening socket).  We create a new socket for accept() to return, and
    151  *   that also shares the head's lock.  Until the connection is completely
    152  *   done on both ends, all three sockets are locked by uipc_lock.  Once the
    153  *   connection is complete, the association with the head's lock is broken.
    154  *   The connecting socket and the socket returned from accept() have their
    155  *   lock pointers mutated away from uipc_lock, and back to the connecting
    156  *   socket's original, independent lock.  The head continues to be locked
    157  *   by uipc_lock.
    158  *
    159  * o If uipc_lock is determined to be a significant source of contention,
    160  *   it could easily be hashed out.  It is difficult to simply make it an
    161  *   independent lock because of visibility / garbage collection issues:
    162  *   if a socket has been associated with a lock at any point, that lock
    163  *   must remain valid until the socket is no longer visible in the system.
    164  *   The lock must not be freed or otherwise destroyed until any sockets
    165  *   that had referenced it have also been destroyed.
    166  */
    167 const struct sockaddr_un sun_noname = {
    168 	.sun_len = offsetof(struct sockaddr_un, sun_path),
    169 	.sun_family = AF_LOCAL,
    170 };
    171 ino_t	unp_ino;			/* prototype for fake inode numbers */
    172 
    173 static void unp_detach(struct socket *);
    174 struct mbuf *unp_addsockcred(struct lwp *, struct mbuf *);
    175 static void unp_mark(file_t *);
    176 static void unp_scan(struct mbuf *, void (*)(file_t *), int);
    177 static void unp_discard_now(file_t *);
    178 static void unp_discard_later(file_t *);
    179 static void unp_thread(void *);
    180 static void unp_thread_kick(void);
    181 static kmutex_t *uipc_lock;
    182 
    183 static kcondvar_t unp_thread_cv;
    184 static lwp_t *unp_thread_lwp;
    185 static SLIST_HEAD(,file) unp_thread_discard;
    186 static int unp_defer;
    187 
    188 /*
    189  * Initialize Unix protocols.
    190  */
    191 void
    192 uipc_init(void)
    193 {
    194 	int error;
    195 
    196 	uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    197 	cv_init(&unp_thread_cv, "unpgc");
    198 
    199 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread,
    200 	    NULL, &unp_thread_lwp, "unpgc");
    201 	if (error != 0)
    202 		panic("uipc_init %d", error);
    203 }
    204 
    205 /*
    206  * A connection succeeded: disassociate both endpoints from the head's
    207  * lock, and make them share their own lock.  There is a race here: for
    208  * a very brief time one endpoint will be locked by a different lock
    209  * than the other end.  However, since the current thread holds the old
    210  * lock (the listening socket's lock, the head) access can still only be
    211  * made to one side of the connection.
    212  */
    213 static void
    214 unp_setpeerlocks(struct socket *so, struct socket *so2)
    215 {
    216 	struct unpcb *unp;
    217 	kmutex_t *lock;
    218 
    219 	KASSERT(solocked2(so, so2));
    220 
    221 	/*
    222 	 * Bail out if either end of the socket is not yet fully
    223 	 * connected or accepted.  We only break the lock association
    224 	 * with the head when the pair of sockets stand completely
    225 	 * on their own.
    226 	 */
    227 	KASSERT(so->so_head == NULL);
    228 	if (so2->so_head != NULL)
    229 		return;
    230 
    231 	/*
    232 	 * Drop references to old lock.  A third reference (from the
    233 	 * queue head) must be held as we still hold its lock.  Bonus:
    234 	 * we don't need to worry about garbage collecting the lock.
    235 	 */
    236 	lock = so->so_lock;
    237 	KASSERT(lock == uipc_lock);
    238 	mutex_obj_free(lock);
    239 	mutex_obj_free(lock);
    240 
    241 	/*
    242 	 * Grab stream lock from the initiator and share between the two
    243 	 * endpoints.  Issue memory barrier to ensure all modifications
    244 	 * become globally visible before the lock change.  so2 is
    245 	 * assumed not to have a stream lock, because it was created
    246 	 * purely for the server side to accept this connection and
    247 	 * started out life using the domain-wide lock.
    248 	 */
    249 	unp = sotounpcb(so);
    250 	KASSERT(unp->unp_streamlock != NULL);
    251 	KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
    252 	lock = unp->unp_streamlock;
    253 	unp->unp_streamlock = NULL;
    254 	mutex_obj_hold(lock);
    255 	membar_exit();
    256 	/*
    257 	 * possible race if lock is not held - see comment in
    258 	 * uipc_usrreq(PRU_ACCEPT).
    259 	 */
    260 	KASSERT(mutex_owned(lock));
    261 	solockreset(so, lock);
    262 	solockreset(so2, lock);
    263 }
    264 
    265 /*
    266  * Reset a socket's lock back to the domain-wide lock.
    267  */
    268 static void
    269 unp_resetlock(struct socket *so)
    270 {
    271 	kmutex_t *olock, *nlock;
    272 	struct unpcb *unp;
    273 
    274 	KASSERT(solocked(so));
    275 
    276 	olock = so->so_lock;
    277 	nlock = uipc_lock;
    278 	if (olock == nlock)
    279 		return;
    280 	unp = sotounpcb(so);
    281 	KASSERT(unp->unp_streamlock == NULL);
    282 	unp->unp_streamlock = olock;
    283 	mutex_obj_hold(nlock);
    284 	mutex_enter(nlock);
    285 	solockreset(so, nlock);
    286 	mutex_exit(olock);
    287 }
    288 
    289 static void
    290 unp_free(struct unpcb *unp)
    291 {
    292 	if (unp->unp_addr)
    293 		free(unp->unp_addr, M_SONAME);
    294 	if (unp->unp_streamlock != NULL)
    295 		mutex_obj_free(unp->unp_streamlock);
    296 	kmem_free(unp, sizeof(*unp));
    297 }
    298 
    299 int
    300 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp,
    301 	struct lwp *l)
    302 {
    303 	struct socket *so2;
    304 	const struct sockaddr_un *sun;
    305 
    306 	/* XXX: server side closed the socket */
    307 	if (unp->unp_conn == NULL)
    308 		return ECONNREFUSED;
    309 	so2 = unp->unp_conn->unp_socket;
    310 
    311 	KASSERT(solocked(so2));
    312 
    313 	if (unp->unp_addr)
    314 		sun = unp->unp_addr;
    315 	else
    316 		sun = &sun_noname;
    317 	if (unp->unp_conn->unp_flags & UNP_WANTCRED)
    318 		control = unp_addsockcred(l, control);
    319 	if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
    320 	    control) == 0) {
    321 		so2->so_rcv.sb_overflowed++;
    322 		unp_dispose(control);
    323 		m_freem(control);
    324 		m_freem(m);
    325 		return (ENOBUFS);
    326 	} else {
    327 		sorwakeup(so2);
    328 		return (0);
    329 	}
    330 }
    331 
    332 void
    333 unp_setaddr(struct socket *so, struct mbuf *nam, bool peeraddr)
    334 {
    335 	const struct sockaddr_un *sun;
    336 	struct unpcb *unp;
    337 	bool ext;
    338 
    339 	KASSERT(solocked(so));
    340 	unp = sotounpcb(so);
    341 	ext = false;
    342 
    343 	for (;;) {
    344 		sun = NULL;
    345 		if (peeraddr) {
    346 			if (unp->unp_conn && unp->unp_conn->unp_addr)
    347 				sun = unp->unp_conn->unp_addr;
    348 		} else {
    349 			if (unp->unp_addr)
    350 				sun = unp->unp_addr;
    351 		}
    352 		if (sun == NULL)
    353 			sun = &sun_noname;
    354 		nam->m_len = sun->sun_len;
    355 		if (nam->m_len > MLEN && !ext) {
    356 			sounlock(so);
    357 			MEXTMALLOC(nam, MAXPATHLEN * 2, M_WAITOK);
    358 			solock(so);
    359 			ext = true;
    360 		} else {
    361 			KASSERT(nam->m_len <= MAXPATHLEN * 2);
    362 			memcpy(mtod(nam, void *), sun, (size_t)nam->m_len);
    363 			break;
    364 		}
    365 	}
    366 }
    367 
    368 static int
    369 unp_recvoob(struct socket *so, struct mbuf *m, int flags)
    370 {
    371 	KASSERT(solocked(so));
    372 
    373 	return EOPNOTSUPP;
    374 }
    375 
    376 static int
    377 unp_sendoob(struct socket *so, struct mbuf *m, struct mbuf * control)
    378 {
    379 	KASSERT(solocked(so));
    380 
    381 	m_freem(m);
    382 	m_freem(control);
    383 
    384 	return EOPNOTSUPP;
    385 }
    386 
    387 static int
    388 unp_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
    389     struct mbuf *control, struct lwp *l)
    390 {
    391 	struct unpcb *unp;
    392 	struct socket *so2;
    393 	u_int newhiwat;
    394 	int error = 0;
    395 
    396 	KASSERT(req != PRU_ATTACH);
    397 	KASSERT(req != PRU_DETACH);
    398 	KASSERT(req != PRU_ACCEPT);
    399 	KASSERT(req != PRU_BIND);
    400 	KASSERT(req != PRU_LISTEN);
    401 	KASSERT(req != PRU_CONTROL);
    402 	KASSERT(req != PRU_SENSE);
    403 	KASSERT(req != PRU_PEERADDR);
    404 	KASSERT(req != PRU_SOCKADDR);
    405 	KASSERT(req != PRU_RCVOOB);
    406 	KASSERT(req != PRU_SENDOOB);
    407 
    408 	KASSERT(solocked(so));
    409 	unp = sotounpcb(so);
    410 
    411 	KASSERT(!control || req == PRU_SEND);
    412 	if (unp == NULL) {
    413 		error = EINVAL;
    414 		goto release;
    415 	}
    416 
    417 	switch (req) {
    418 	case PRU_CONNECT:
    419 		KASSERT(l != NULL);
    420 		error = unp_connect(so, nam, l);
    421 		break;
    422 
    423 	case PRU_CONNECT2:
    424 		error = unp_connect2(so, (struct socket *)nam, PRU_CONNECT2);
    425 		break;
    426 
    427 	case PRU_DISCONNECT:
    428 		unp_disconnect(unp);
    429 		break;
    430 
    431 	case PRU_SHUTDOWN:
    432 		socantsendmore(so);
    433 		unp_shutdown(unp);
    434 		break;
    435 
    436 	case PRU_RCVD:
    437 		switch (so->so_type) {
    438 
    439 		case SOCK_DGRAM:
    440 			panic("uipc 1");
    441 			/*NOTREACHED*/
    442 
    443 		case SOCK_SEQPACKET: /* FALLTHROUGH */
    444 		case SOCK_STREAM:
    445 #define	rcv (&so->so_rcv)
    446 #define snd (&so2->so_snd)
    447 			if (unp->unp_conn == 0)
    448 				break;
    449 			so2 = unp->unp_conn->unp_socket;
    450 			KASSERT(solocked2(so, so2));
    451 			/*
    452 			 * Adjust backpressure on sender
    453 			 * and wakeup any waiting to write.
    454 			 */
    455 			snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
    456 			unp->unp_mbcnt = rcv->sb_mbcnt;
    457 			newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
    458 			(void)chgsbsize(so2->so_uidinfo,
    459 			    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
    460 			unp->unp_cc = rcv->sb_cc;
    461 			sowwakeup(so2);
    462 #undef snd
    463 #undef rcv
    464 			break;
    465 
    466 		default:
    467 			panic("uipc 2");
    468 		}
    469 		break;
    470 
    471 	case PRU_SEND:
    472 		/*
    473 		 * Note: unp_internalize() rejects any control message
    474 		 * other than SCM_RIGHTS, and only allows one.  This
    475 		 * has the side-effect of preventing a caller from
    476 		 * forging SCM_CREDS.
    477 		 */
    478 		if (control) {
    479 			sounlock(so);
    480 			error = unp_internalize(&control);
    481 			solock(so);
    482 			if (error != 0) {
    483 				m_freem(control);
    484 				m_freem(m);
    485 				break;
    486 			}
    487 		}
    488 		switch (so->so_type) {
    489 
    490 		case SOCK_DGRAM: {
    491 			KASSERT(so->so_lock == uipc_lock);
    492 			if (nam) {
    493 				if ((so->so_state & SS_ISCONNECTED) != 0)
    494 					error = EISCONN;
    495 				else {
    496 					/*
    497 					 * Note: once connected, the
    498 					 * socket's lock must not be
    499 					 * dropped until we have sent
    500 					 * the message and disconnected.
    501 					 * This is necessary to prevent
    502 					 * intervening control ops, like
    503 					 * another connection.
    504 					 */
    505 					error = unp_connect(so, nam, l);
    506 				}
    507 			} else {
    508 				if ((so->so_state & SS_ISCONNECTED) == 0)
    509 					error = ENOTCONN;
    510 			}
    511 			if (error) {
    512 				unp_dispose(control);
    513 				m_freem(control);
    514 				m_freem(m);
    515 				break;
    516 			}
    517 			KASSERT(l != NULL);
    518 			error = unp_output(m, control, unp, l);
    519 			if (nam)
    520 				unp_disconnect(unp);
    521 			break;
    522 		}
    523 
    524 		case SOCK_SEQPACKET: /* FALLTHROUGH */
    525 		case SOCK_STREAM:
    526 #define	rcv (&so2->so_rcv)
    527 #define	snd (&so->so_snd)
    528 			if (unp->unp_conn == NULL) {
    529 				error = ENOTCONN;
    530 				break;
    531 			}
    532 			so2 = unp->unp_conn->unp_socket;
    533 			KASSERT(solocked2(so, so2));
    534 			if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
    535 				/*
    536 				 * Credentials are passed only once on
    537 				 * SOCK_STREAM and SOCK_SEQPACKET.
    538 				 */
    539 				unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
    540 				control = unp_addsockcred(l, control);
    541 			}
    542 			/*
    543 			 * Send to paired receive port, and then reduce
    544 			 * send buffer hiwater marks to maintain backpressure.
    545 			 * Wake up readers.
    546 			 */
    547 			if (control) {
    548 				if (sbappendcontrol(rcv, m, control) != 0)
    549 					control = NULL;
    550 			} else {
    551 				switch(so->so_type) {
    552 				case SOCK_SEQPACKET:
    553 					sbappendrecord(rcv, m);
    554 					break;
    555 				case SOCK_STREAM:
    556 					sbappend(rcv, m);
    557 					break;
    558 				default:
    559 					panic("uipc_usrreq");
    560 					break;
    561 				}
    562 			}
    563 			snd->sb_mbmax -=
    564 			    rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
    565 			unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
    566 			newhiwat = snd->sb_hiwat -
    567 			    (rcv->sb_cc - unp->unp_conn->unp_cc);
    568 			(void)chgsbsize(so->so_uidinfo,
    569 			    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
    570 			unp->unp_conn->unp_cc = rcv->sb_cc;
    571 			sorwakeup(so2);
    572 #undef snd
    573 #undef rcv
    574 			if (control != NULL) {
    575 				unp_dispose(control);
    576 				m_freem(control);
    577 			}
    578 			break;
    579 
    580 		default:
    581 			panic("uipc 4");
    582 		}
    583 		break;
    584 
    585 	case PRU_ABORT:
    586 		(void)unp_drop(unp, ECONNABORTED);
    587 		KASSERT(so->so_head == NULL);
    588 		KASSERT(so->so_pcb != NULL);
    589 		unp_detach(so);
    590 		break;
    591 
    592 	default:
    593 		panic("piusrreq");
    594 	}
    595 
    596 release:
    597 	return (error);
    598 }
    599 
    600 /*
    601  * Unix domain socket option processing.
    602  */
    603 int
    604 uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
    605 {
    606 	struct unpcb *unp = sotounpcb(so);
    607 	int optval = 0, error = 0;
    608 
    609 	KASSERT(solocked(so));
    610 
    611 	if (sopt->sopt_level != 0) {
    612 		error = ENOPROTOOPT;
    613 	} else switch (op) {
    614 
    615 	case PRCO_SETOPT:
    616 		switch (sopt->sopt_name) {
    617 		case LOCAL_CREDS:
    618 		case LOCAL_CONNWAIT:
    619 			error = sockopt_getint(sopt, &optval);
    620 			if (error)
    621 				break;
    622 			switch (sopt->sopt_name) {
    623 #define	OPTSET(bit) \
    624 	if (optval) \
    625 		unp->unp_flags |= (bit); \
    626 	else \
    627 		unp->unp_flags &= ~(bit);
    628 
    629 			case LOCAL_CREDS:
    630 				OPTSET(UNP_WANTCRED);
    631 				break;
    632 			case LOCAL_CONNWAIT:
    633 				OPTSET(UNP_CONNWAIT);
    634 				break;
    635 			}
    636 			break;
    637 #undef OPTSET
    638 
    639 		default:
    640 			error = ENOPROTOOPT;
    641 			break;
    642 		}
    643 		break;
    644 
    645 	case PRCO_GETOPT:
    646 		sounlock(so);
    647 		switch (sopt->sopt_name) {
    648 		case LOCAL_PEEREID:
    649 			if (unp->unp_flags & UNP_EIDSVALID) {
    650 				error = sockopt_set(sopt,
    651 				    &unp->unp_connid, sizeof(unp->unp_connid));
    652 			} else {
    653 				error = EINVAL;
    654 			}
    655 			break;
    656 		case LOCAL_CREDS:
    657 #define	OPTBIT(bit)	(unp->unp_flags & (bit) ? 1 : 0)
    658 
    659 			optval = OPTBIT(UNP_WANTCRED);
    660 			error = sockopt_setint(sopt, optval);
    661 			break;
    662 #undef OPTBIT
    663 
    664 		default:
    665 			error = ENOPROTOOPT;
    666 			break;
    667 		}
    668 		solock(so);
    669 		break;
    670 	}
    671 	return (error);
    672 }
    673 
    674 /*
    675  * Both send and receive buffers are allocated PIPSIZ bytes of buffering
    676  * for stream sockets, although the total for sender and receiver is
    677  * actually only PIPSIZ.
    678  * Datagram sockets really use the sendspace as the maximum datagram size,
    679  * and don't really want to reserve the sendspace.  Their recvspace should
    680  * be large enough for at least one max-size datagram plus address.
    681  */
    682 #define	PIPSIZ	4096
    683 u_long	unpst_sendspace = PIPSIZ;
    684 u_long	unpst_recvspace = PIPSIZ;
    685 u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
    686 u_long	unpdg_recvspace = 4*1024;
    687 
    688 u_int	unp_rights;			/* files in flight */
    689 u_int	unp_rights_ratio = 2;		/* limit, fraction of maxfiles */
    690 
    691 static int
    692 unp_attach(struct socket *so, int proto)
    693 {
    694 	struct unpcb *unp = sotounpcb(so);
    695 	u_long sndspc, rcvspc;
    696 	int error;
    697 
    698 	KASSERT(unp == NULL);
    699 
    700 	switch (so->so_type) {
    701 	case SOCK_SEQPACKET:
    702 		/* FALLTHROUGH */
    703 	case SOCK_STREAM:
    704 		if (so->so_lock == NULL) {
    705 			so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    706 			solock(so);
    707 		}
    708 		sndspc = unpst_sendspace;
    709 		rcvspc = unpst_recvspace;
    710 		break;
    711 
    712 	case SOCK_DGRAM:
    713 		if (so->so_lock == NULL) {
    714 			mutex_obj_hold(uipc_lock);
    715 			so->so_lock = uipc_lock;
    716 			solock(so);
    717 		}
    718 		sndspc = unpdg_sendspace;
    719 		rcvspc = unpdg_recvspace;
    720 		break;
    721 
    722 	default:
    723 		panic("unp_attach");
    724 	}
    725 
    726 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
    727 		error = soreserve(so, sndspc, rcvspc);
    728 		if (error) {
    729 			return error;
    730 		}
    731 	}
    732 
    733 	unp = kmem_zalloc(sizeof(*unp), KM_SLEEP);
    734 	nanotime(&unp->unp_ctime);
    735 	unp->unp_socket = so;
    736 	so->so_pcb = unp;
    737 
    738 	KASSERT(solocked(so));
    739 	return 0;
    740 }
    741 
    742 static void
    743 unp_detach(struct socket *so)
    744 {
    745 	struct unpcb *unp;
    746 	vnode_t *vp;
    747 
    748 	unp = sotounpcb(so);
    749 	KASSERT(unp != NULL);
    750 	KASSERT(solocked(so));
    751  retry:
    752 	if ((vp = unp->unp_vnode) != NULL) {
    753 		sounlock(so);
    754 		/* Acquire v_interlock to protect against unp_connect(). */
    755 		/* XXXAD racy */
    756 		mutex_enter(vp->v_interlock);
    757 		vp->v_socket = NULL;
    758 		mutex_exit(vp->v_interlock);
    759 		vrele(vp);
    760 		solock(so);
    761 		unp->unp_vnode = NULL;
    762 	}
    763 	if (unp->unp_conn)
    764 		unp_disconnect(unp);
    765 	while (unp->unp_refs) {
    766 		KASSERT(solocked2(so, unp->unp_refs->unp_socket));
    767 		if (unp_drop(unp->unp_refs, ECONNRESET)) {
    768 			solock(so);
    769 			goto retry;
    770 		}
    771 	}
    772 	soisdisconnected(so);
    773 	so->so_pcb = NULL;
    774 	if (unp_rights) {
    775 		/*
    776 		 * Normally the receive buffer is flushed later, in sofree,
    777 		 * but if our receive buffer holds references to files that
    778 		 * are now garbage, we will enqueue those file references to
    779 		 * the garbage collector and kick it into action.
    780 		 */
    781 		sorflush(so);
    782 		unp_free(unp);
    783 		unp_thread_kick();
    784 	} else
    785 		unp_free(unp);
    786 }
    787 
    788 static int
    789 unp_accept(struct socket *so, struct mbuf *nam)
    790 {
    791 	struct unpcb *unp = sotounpcb(so);
    792 	struct socket *so2;
    793 
    794 	KASSERT(solocked(so));
    795 	KASSERT(nam != NULL);
    796 
    797 	/* XXX code review required to determine if unp can ever be NULL */
    798 	if (unp == NULL)
    799 		return EINVAL;
    800 
    801 	KASSERT(so->so_lock == uipc_lock);
    802 	/*
    803 	 * Mark the initiating STREAM socket as connected *ONLY*
    804 	 * after it's been accepted.  This prevents a client from
    805 	 * overrunning a server and receiving ECONNREFUSED.
    806 	 */
    807 	if (unp->unp_conn == NULL) {
    808 		/*
    809 		 * This will use the empty socket and will not
    810 		 * allocate.
    811 		 */
    812 		unp_setaddr(so, nam, true);
    813 		return 0;
    814 	}
    815 	so2 = unp->unp_conn->unp_socket;
    816 	if (so2->so_state & SS_ISCONNECTING) {
    817 		KASSERT(solocked2(so, so->so_head));
    818 		KASSERT(solocked2(so2, so->so_head));
    819 		soisconnected(so2);
    820 	}
    821 	/*
    822 	 * If the connection is fully established, break the
    823 	 * association with uipc_lock and give the connected
    824 	 * pair a separate lock to share.
    825 	 * There is a race here: sotounpcb(so2)->unp_streamlock
    826 	 * is not locked, so when changing so2->so_lock
    827 	 * another thread can grab it while so->so_lock is still
    828 	 * pointing to the (locked) uipc_lock.
    829 	 * this should be harmless, except that this makes
    830 	 * solocked2() and solocked() unreliable.
    831 	 * Another problem is that unp_setaddr() expects the
    832 	 * the socket locked. Grabing sotounpcb(so2)->unp_streamlock
    833 	 * fixes both issues.
    834 	 */
    835 	mutex_enter(sotounpcb(so2)->unp_streamlock);
    836 	unp_setpeerlocks(so2, so);
    837 	/*
    838 	 * Only now return peer's address, as we may need to
    839 	 * block in order to allocate memory.
    840 	 *
    841 	 * XXX Minor race: connection can be broken while
    842 	 * lock is dropped in unp_setaddr().  We will return
    843 	 * error == 0 and sun_noname as the peer address.
    844 	 */
    845 	unp_setaddr(so, nam, true);
    846 	/* so_lock now points to unp_streamlock */
    847 	mutex_exit(so2->so_lock);
    848 	return 0;
    849 }
    850 
    851 static int
    852 unp_ioctl(struct socket *so, u_long cmd, void *nam, struct ifnet *ifp)
    853 {
    854 	return EOPNOTSUPP;
    855 }
    856 
    857 static int
    858 unp_stat(struct socket *so, struct stat *ub)
    859 {
    860 	struct unpcb *unp;
    861 	struct socket *so2;
    862 
    863 	KASSERT(solocked(so));
    864 
    865 	unp = sotounpcb(so);
    866 	if (unp == NULL)
    867 		return EINVAL;
    868 
    869 	ub->st_blksize = so->so_snd.sb_hiwat;
    870 	switch (so->so_type) {
    871 	case SOCK_SEQPACKET: /* FALLTHROUGH */
    872 	case SOCK_STREAM:
    873 		if (unp->unp_conn == 0)
    874 			break;
    875 
    876 		so2 = unp->unp_conn->unp_socket;
    877 		KASSERT(solocked2(so, so2));
    878 		ub->st_blksize += so2->so_rcv.sb_cc;
    879 		break;
    880 	default:
    881 		break;
    882 	}
    883 	ub->st_dev = NODEV;
    884 	if (unp->unp_ino == 0)
    885 		unp->unp_ino = unp_ino++;
    886 	ub->st_atimespec = ub->st_mtimespec = ub->st_ctimespec = unp->unp_ctime;
    887 	ub->st_ino = unp->unp_ino;
    888 	return (0);
    889 }
    890 
    891 static int
    892 unp_peeraddr(struct socket *so, struct mbuf *nam)
    893 {
    894 	KASSERT(solocked(so));
    895 	KASSERT(sotounpcb(so) != NULL);
    896 	KASSERT(nam != NULL);
    897 
    898 	unp_setaddr(so, nam, true);
    899 	return 0;
    900 }
    901 
    902 static int
    903 unp_sockaddr(struct socket *so, struct mbuf *nam)
    904 {
    905 	KASSERT(solocked(so));
    906 	KASSERT(sotounpcb(so) != NULL);
    907 	KASSERT(nam != NULL);
    908 
    909 	unp_setaddr(so, nam, false);
    910 	return 0;
    911 }
    912 
    913 /*
    914  * Allocate the new sockaddr.  We have to allocate one
    915  * extra byte so that we can ensure that the pathname
    916  * is nul-terminated. Note that unlike linux, we don't
    917  * include in the address length the NUL in the path
    918  * component, because doing so, would exceed sizeof(sockaddr_un)
    919  * for fully occupied pathnames. Linux is also inconsistent,
    920  * because it does not include the NUL in the length of
    921  * what it calls "abstract" unix sockets.
    922  */
    923 static struct sockaddr_un *
    924 makeun(struct mbuf *nam, size_t *addrlen) {
    925 	struct sockaddr_un *sun;
    926 
    927 	*addrlen = nam->m_len + 1;
    928 	sun = malloc(*addrlen, M_SONAME, M_WAITOK);
    929 	m_copydata(nam, 0, nam->m_len, (void *)sun);
    930 	*(((char *)sun) + nam->m_len) = '\0';
    931 	sun->sun_len = strlen(sun->sun_path) +
    932 	    offsetof(struct sockaddr_un, sun_path);
    933 	return sun;
    934 }
    935 
    936 int
    937 unp_bind(struct socket *so, struct mbuf *nam)
    938 {
    939 	struct sockaddr_un *sun;
    940 	struct unpcb *unp;
    941 	vnode_t *vp;
    942 	struct vattr vattr;
    943 	size_t addrlen;
    944 	int error;
    945 	struct pathbuf *pb;
    946 	struct nameidata nd;
    947 	proc_t *p;
    948 
    949 	unp = sotounpcb(so);
    950 
    951 	KASSERT(solocked(so));
    952 	KASSERT(unp != NULL);
    953 	KASSERT(nam != NULL);
    954 
    955 	if (unp->unp_vnode != NULL)
    956 		return (EINVAL);
    957 	if ((unp->unp_flags & UNP_BUSY) != 0) {
    958 		/*
    959 		 * EALREADY may not be strictly accurate, but since this
    960 		 * is a major application error it's hardly a big deal.
    961 		 */
    962 		return (EALREADY);
    963 	}
    964 	unp->unp_flags |= UNP_BUSY;
    965 	sounlock(so);
    966 
    967 	p = curlwp->l_proc;
    968 	sun = makeun(nam, &addrlen);
    969 
    970 	pb = pathbuf_create(sun->sun_path);
    971 	if (pb == NULL) {
    972 		error = ENOMEM;
    973 		goto bad;
    974 	}
    975 	NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, pb);
    976 
    977 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
    978 	if ((error = namei(&nd)) != 0) {
    979 		pathbuf_destroy(pb);
    980 		goto bad;
    981 	}
    982 	vp = nd.ni_vp;
    983 	if (vp != NULL) {
    984 		VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
    985 		if (nd.ni_dvp == vp)
    986 			vrele(nd.ni_dvp);
    987 		else
    988 			vput(nd.ni_dvp);
    989 		vrele(vp);
    990 		pathbuf_destroy(pb);
    991 		error = EADDRINUSE;
    992 		goto bad;
    993 	}
    994 	vattr_null(&vattr);
    995 	vattr.va_type = VSOCK;
    996 	vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
    997 	error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
    998 	if (error) {
    999 		vput(nd.ni_dvp);
   1000 		pathbuf_destroy(pb);
   1001 		goto bad;
   1002 	}
   1003 	vp = nd.ni_vp;
   1004 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   1005 	solock(so);
   1006 	vp->v_socket = unp->unp_socket;
   1007 	unp->unp_vnode = vp;
   1008 	unp->unp_addrlen = addrlen;
   1009 	unp->unp_addr = sun;
   1010 	unp->unp_connid.unp_pid = p->p_pid;
   1011 	unp->unp_connid.unp_euid = kauth_cred_geteuid(curlwp->l_cred);
   1012 	unp->unp_connid.unp_egid = kauth_cred_getegid(curlwp->l_cred);
   1013 	unp->unp_flags |= UNP_EIDSBIND;
   1014 	VOP_UNLOCK(vp);
   1015 	vput(nd.ni_dvp);
   1016 	unp->unp_flags &= ~UNP_BUSY;
   1017 	pathbuf_destroy(pb);
   1018 	return (0);
   1019 
   1020  bad:
   1021 	free(sun, M_SONAME);
   1022 	solock(so);
   1023 	unp->unp_flags &= ~UNP_BUSY;
   1024 	return (error);
   1025 }
   1026 
   1027 static int
   1028 unp_listen(struct socket *so)
   1029 {
   1030 	struct unpcb *unp = sotounpcb(so);
   1031 
   1032 	KASSERT(solocked(so));
   1033 	KASSERT(unp != NULL);
   1034 
   1035 	/*
   1036 	 * If the socket can accept a connection, it must be
   1037 	 * locked by uipc_lock.
   1038 	 */
   1039 	unp_resetlock(so);
   1040 	if (unp->unp_vnode == NULL)
   1041 		return EINVAL;
   1042 
   1043 	return 0;
   1044 }
   1045 
   1046 int
   1047 unp_connect(struct socket *so, struct mbuf *nam, struct lwp *l)
   1048 {
   1049 	struct sockaddr_un *sun;
   1050 	vnode_t *vp;
   1051 	struct socket *so2, *so3;
   1052 	struct unpcb *unp, *unp2, *unp3;
   1053 	size_t addrlen;
   1054 	int error;
   1055 	struct pathbuf *pb;
   1056 	struct nameidata nd;
   1057 
   1058 	unp = sotounpcb(so);
   1059 	if ((unp->unp_flags & UNP_BUSY) != 0) {
   1060 		/*
   1061 		 * EALREADY may not be strictly accurate, but since this
   1062 		 * is a major application error it's hardly a big deal.
   1063 		 */
   1064 		return (EALREADY);
   1065 	}
   1066 	unp->unp_flags |= UNP_BUSY;
   1067 	sounlock(so);
   1068 
   1069 	sun = makeun(nam, &addrlen);
   1070 	pb = pathbuf_create(sun->sun_path);
   1071 	if (pb == NULL) {
   1072 		error = ENOMEM;
   1073 		goto bad2;
   1074 	}
   1075 
   1076 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
   1077 
   1078 	if ((error = namei(&nd)) != 0) {
   1079 		pathbuf_destroy(pb);
   1080 		goto bad2;
   1081 	}
   1082 	vp = nd.ni_vp;
   1083 	if (vp->v_type != VSOCK) {
   1084 		error = ENOTSOCK;
   1085 		goto bad;
   1086 	}
   1087 	pathbuf_destroy(pb);
   1088 	if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
   1089 		goto bad;
   1090 	/* Acquire v_interlock to protect against unp_detach(). */
   1091 	mutex_enter(vp->v_interlock);
   1092 	so2 = vp->v_socket;
   1093 	if (so2 == NULL) {
   1094 		mutex_exit(vp->v_interlock);
   1095 		error = ECONNREFUSED;
   1096 		goto bad;
   1097 	}
   1098 	if (so->so_type != so2->so_type) {
   1099 		mutex_exit(vp->v_interlock);
   1100 		error = EPROTOTYPE;
   1101 		goto bad;
   1102 	}
   1103 	solock(so);
   1104 	unp_resetlock(so);
   1105 	mutex_exit(vp->v_interlock);
   1106 	if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
   1107 		/*
   1108 		 * This may seem somewhat fragile but is OK: if we can
   1109 		 * see SO_ACCEPTCONN set on the endpoint, then it must
   1110 		 * be locked by the domain-wide uipc_lock.
   1111 		 */
   1112 		KASSERT((so2->so_options & SO_ACCEPTCONN) == 0 ||
   1113 		    so2->so_lock == uipc_lock);
   1114 		if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
   1115 		    (so3 = sonewconn(so2, false)) == NULL) {
   1116 			error = ECONNREFUSED;
   1117 			sounlock(so);
   1118 			goto bad;
   1119 		}
   1120 		unp2 = sotounpcb(so2);
   1121 		unp3 = sotounpcb(so3);
   1122 		if (unp2->unp_addr) {
   1123 			unp3->unp_addr = malloc(unp2->unp_addrlen,
   1124 			    M_SONAME, M_WAITOK);
   1125 			memcpy(unp3->unp_addr, unp2->unp_addr,
   1126 			    unp2->unp_addrlen);
   1127 			unp3->unp_addrlen = unp2->unp_addrlen;
   1128 		}
   1129 		unp3->unp_flags = unp2->unp_flags;
   1130 		unp3->unp_connid.unp_pid = l->l_proc->p_pid;
   1131 		unp3->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
   1132 		unp3->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
   1133 		unp3->unp_flags |= UNP_EIDSVALID;
   1134 		if (unp2->unp_flags & UNP_EIDSBIND) {
   1135 			unp->unp_connid = unp2->unp_connid;
   1136 			unp->unp_flags |= UNP_EIDSVALID;
   1137 		}
   1138 		so2 = so3;
   1139 	}
   1140 	error = unp_connect2(so, so2, PRU_CONNECT);
   1141 	sounlock(so);
   1142  bad:
   1143 	vput(vp);
   1144  bad2:
   1145 	free(sun, M_SONAME);
   1146 	solock(so);
   1147 	unp->unp_flags &= ~UNP_BUSY;
   1148 	return (error);
   1149 }
   1150 
   1151 int
   1152 unp_connect2(struct socket *so, struct socket *so2, int req)
   1153 {
   1154 	struct unpcb *unp = sotounpcb(so);
   1155 	struct unpcb *unp2;
   1156 
   1157 	if (so2->so_type != so->so_type)
   1158 		return (EPROTOTYPE);
   1159 
   1160 	/*
   1161 	 * All three sockets involved must be locked by same lock:
   1162 	 *
   1163 	 * local endpoint (so)
   1164 	 * remote endpoint (so2)
   1165 	 * queue head (so2->so_head, only if PR_CONNREQUIRED)
   1166 	 */
   1167 	KASSERT(solocked2(so, so2));
   1168 	KASSERT(so->so_head == NULL);
   1169 	if (so2->so_head != NULL) {
   1170 		KASSERT(so2->so_lock == uipc_lock);
   1171 		KASSERT(solocked2(so2, so2->so_head));
   1172 	}
   1173 
   1174 	unp2 = sotounpcb(so2);
   1175 	unp->unp_conn = unp2;
   1176 	switch (so->so_type) {
   1177 
   1178 	case SOCK_DGRAM:
   1179 		unp->unp_nextref = unp2->unp_refs;
   1180 		unp2->unp_refs = unp;
   1181 		soisconnected(so);
   1182 		break;
   1183 
   1184 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1185 	case SOCK_STREAM:
   1186 		unp2->unp_conn = unp;
   1187 		if (req == PRU_CONNECT &&
   1188 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
   1189 			soisconnecting(so);
   1190 		else
   1191 			soisconnected(so);
   1192 		soisconnected(so2);
   1193 		/*
   1194 		 * If the connection is fully established, break the
   1195 		 * association with uipc_lock and give the connected
   1196 		 * pair a seperate lock to share.  For CONNECT2, we
   1197 		 * require that the locks already match (the sockets
   1198 		 * are created that way).
   1199 		 */
   1200 		if (req == PRU_CONNECT) {
   1201 			KASSERT(so2->so_head != NULL);
   1202 			unp_setpeerlocks(so, so2);
   1203 		}
   1204 		break;
   1205 
   1206 	default:
   1207 		panic("unp_connect2");
   1208 	}
   1209 	return (0);
   1210 }
   1211 
   1212 void
   1213 unp_disconnect(struct unpcb *unp)
   1214 {
   1215 	struct unpcb *unp2 = unp->unp_conn;
   1216 	struct socket *so;
   1217 
   1218 	if (unp2 == 0)
   1219 		return;
   1220 	unp->unp_conn = 0;
   1221 	so = unp->unp_socket;
   1222 	switch (so->so_type) {
   1223 	case SOCK_DGRAM:
   1224 		if (unp2->unp_refs == unp)
   1225 			unp2->unp_refs = unp->unp_nextref;
   1226 		else {
   1227 			unp2 = unp2->unp_refs;
   1228 			for (;;) {
   1229 				KASSERT(solocked2(so, unp2->unp_socket));
   1230 				if (unp2 == 0)
   1231 					panic("unp_disconnect");
   1232 				if (unp2->unp_nextref == unp)
   1233 					break;
   1234 				unp2 = unp2->unp_nextref;
   1235 			}
   1236 			unp2->unp_nextref = unp->unp_nextref;
   1237 		}
   1238 		unp->unp_nextref = 0;
   1239 		so->so_state &= ~SS_ISCONNECTED;
   1240 		break;
   1241 
   1242 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1243 	case SOCK_STREAM:
   1244 		KASSERT(solocked2(so, unp2->unp_socket));
   1245 		soisdisconnected(so);
   1246 		unp2->unp_conn = 0;
   1247 		soisdisconnected(unp2->unp_socket);
   1248 		break;
   1249 	}
   1250 }
   1251 
   1252 void
   1253 unp_shutdown(struct unpcb *unp)
   1254 {
   1255 	struct socket *so;
   1256 
   1257 	switch(unp->unp_socket->so_type) {
   1258 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1259 	case SOCK_STREAM:
   1260 		if (unp->unp_conn && (so = unp->unp_conn->unp_socket))
   1261 			socantrcvmore(so);
   1262 		break;
   1263 	default:
   1264 		break;
   1265 	}
   1266 }
   1267 
   1268 bool
   1269 unp_drop(struct unpcb *unp, int errno)
   1270 {
   1271 	struct socket *so = unp->unp_socket;
   1272 
   1273 	KASSERT(solocked(so));
   1274 
   1275 	so->so_error = errno;
   1276 	unp_disconnect(unp);
   1277 	if (so->so_head) {
   1278 		so->so_pcb = NULL;
   1279 		/* sofree() drops the socket lock */
   1280 		sofree(so);
   1281 		unp_free(unp);
   1282 		return true;
   1283 	}
   1284 	return false;
   1285 }
   1286 
   1287 #ifdef notdef
   1288 unp_drain(void)
   1289 {
   1290 
   1291 }
   1292 #endif
   1293 
   1294 int
   1295 unp_externalize(struct mbuf *rights, struct lwp *l, int flags)
   1296 {
   1297 	struct cmsghdr * const cm = mtod(rights, struct cmsghdr *);
   1298 	struct proc * const p = l->l_proc;
   1299 	file_t **rp;
   1300 	int error = 0;
   1301 
   1302 	const size_t nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
   1303 	    sizeof(file_t *);
   1304 	if (nfds == 0)
   1305 		goto noop;
   1306 
   1307 	int * const fdp = kmem_alloc(nfds * sizeof(int), KM_SLEEP);
   1308 	rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
   1309 
   1310 	/* Make sure the recipient should be able to see the files.. */
   1311 	rp = (file_t **)CMSG_DATA(cm);
   1312 	for (size_t i = 0; i < nfds; i++) {
   1313 		file_t * const fp = *rp++;
   1314 		if (fp == NULL) {
   1315 			error = EINVAL;
   1316 			goto out;
   1317 		}
   1318 		/*
   1319 		 * If we are in a chroot'ed directory, and
   1320 		 * someone wants to pass us a directory, make
   1321 		 * sure it's inside the subtree we're allowed
   1322 		 * to access.
   1323 		 */
   1324 		if (p->p_cwdi->cwdi_rdir != NULL && fp->f_type == DTYPE_VNODE) {
   1325 			vnode_t *vp = (vnode_t *)fp->f_data;
   1326 			if ((vp->v_type == VDIR) &&
   1327 			    !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
   1328 				error = EPERM;
   1329 				goto out;
   1330 			}
   1331 		}
   1332 	}
   1333 
   1334  restart:
   1335 	/*
   1336 	 * First loop -- allocate file descriptor table slots for the
   1337 	 * new files.
   1338 	 */
   1339 	for (size_t i = 0; i < nfds; i++) {
   1340 		if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
   1341 			/*
   1342 			 * Back out what we've done so far.
   1343 			 */
   1344 			while (i-- > 0) {
   1345 				fd_abort(p, NULL, fdp[i]);
   1346 			}
   1347 			if (error == ENOSPC) {
   1348 				fd_tryexpand(p);
   1349 				error = 0;
   1350 				goto restart;
   1351 			}
   1352 			/*
   1353 			 * This is the error that has historically
   1354 			 * been returned, and some callers may
   1355 			 * expect it.
   1356 			 */
   1357 			error = EMSGSIZE;
   1358 			goto out;
   1359 		}
   1360 	}
   1361 
   1362 	/*
   1363 	 * Now that adding them has succeeded, update all of the
   1364 	 * file passing state and affix the descriptors.
   1365 	 */
   1366 	rp = (file_t **)CMSG_DATA(cm);
   1367 	int *ofdp = (int *)CMSG_DATA(cm);
   1368 	for (size_t i = 0; i < nfds; i++) {
   1369 		file_t * const fp = *rp++;
   1370 		const int fd = fdp[i];
   1371 		atomic_dec_uint(&unp_rights);
   1372 		fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
   1373 		fd_affix(p, fp, fd);
   1374 		/*
   1375 		 * Done with this file pointer, replace it with a fd;
   1376 		 */
   1377 		*ofdp++ = fd;
   1378 		mutex_enter(&fp->f_lock);
   1379 		fp->f_msgcount--;
   1380 		mutex_exit(&fp->f_lock);
   1381 		/*
   1382 		 * Note that fd_affix() adds a reference to the file.
   1383 		 * The file may already have been closed by another
   1384 		 * LWP in the process, so we must drop the reference
   1385 		 * added by unp_internalize() with closef().
   1386 		 */
   1387 		closef(fp);
   1388 	}
   1389 
   1390 	/*
   1391 	 * Adjust length, in case of transition from large file_t
   1392 	 * pointers to ints.
   1393 	 */
   1394 	if (sizeof(file_t *) != sizeof(int)) {
   1395 		cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
   1396 		rights->m_len = CMSG_SPACE(nfds * sizeof(int));
   1397 	}
   1398  out:
   1399 	if (__predict_false(error != 0)) {
   1400 		file_t **const fpp = (file_t **)CMSG_DATA(cm);
   1401 		for (size_t i = 0; i < nfds; i++)
   1402 			unp_discard_now(fpp[i]);
   1403 		/*
   1404 		 * Truncate the array so that nobody will try to interpret
   1405 		 * what is now garbage in it.
   1406 		 */
   1407 		cm->cmsg_len = CMSG_LEN(0);
   1408 		rights->m_len = CMSG_SPACE(0);
   1409 	}
   1410 	rw_exit(&p->p_cwdi->cwdi_lock);
   1411 	kmem_free(fdp, nfds * sizeof(int));
   1412 
   1413  noop:
   1414 	/*
   1415 	 * Don't disclose kernel memory in the alignment space.
   1416 	 */
   1417 	KASSERT(cm->cmsg_len <= rights->m_len);
   1418 	memset(&mtod(rights, char *)[cm->cmsg_len], 0, rights->m_len -
   1419 	    cm->cmsg_len);
   1420 	return error;
   1421 }
   1422 
   1423 int
   1424 unp_internalize(struct mbuf **controlp)
   1425 {
   1426 	filedesc_t *fdescp = curlwp->l_fd;
   1427 	struct mbuf *control = *controlp;
   1428 	struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
   1429 	file_t **rp, **files;
   1430 	file_t *fp;
   1431 	int i, fd, *fdp;
   1432 	int nfds, error;
   1433 	u_int maxmsg;
   1434 
   1435 	error = 0;
   1436 	newcm = NULL;
   1437 
   1438 	/* Sanity check the control message header. */
   1439 	if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
   1440 	    cm->cmsg_len > control->m_len ||
   1441 	    cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
   1442 		return (EINVAL);
   1443 
   1444 	/*
   1445 	 * Verify that the file descriptors are valid, and acquire
   1446 	 * a reference to each.
   1447 	 */
   1448 	nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
   1449 	fdp = (int *)CMSG_DATA(cm);
   1450 	maxmsg = maxfiles / unp_rights_ratio;
   1451 	for (i = 0; i < nfds; i++) {
   1452 		fd = *fdp++;
   1453 		if (atomic_inc_uint_nv(&unp_rights) > maxmsg) {
   1454 			atomic_dec_uint(&unp_rights);
   1455 			nfds = i;
   1456 			error = EAGAIN;
   1457 			goto out;
   1458 		}
   1459 		if ((fp = fd_getfile(fd)) == NULL
   1460 		    || fp->f_type == DTYPE_KQUEUE) {
   1461 		    	if (fp)
   1462 		    		fd_putfile(fd);
   1463 			atomic_dec_uint(&unp_rights);
   1464 			nfds = i;
   1465 			error = EBADF;
   1466 			goto out;
   1467 		}
   1468 	}
   1469 
   1470 	/* Allocate new space and copy header into it. */
   1471 	newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
   1472 	if (newcm == NULL) {
   1473 		error = E2BIG;
   1474 		goto out;
   1475 	}
   1476 	memcpy(newcm, cm, sizeof(struct cmsghdr));
   1477 	files = (file_t **)CMSG_DATA(newcm);
   1478 
   1479 	/*
   1480 	 * Transform the file descriptors into file_t pointers, in
   1481 	 * reverse order so that if pointers are bigger than ints, the
   1482 	 * int won't get until we're done.  No need to lock, as we have
   1483 	 * already validated the descriptors with fd_getfile().
   1484 	 */
   1485 	fdp = (int *)CMSG_DATA(cm) + nfds;
   1486 	rp = files + nfds;
   1487 	for (i = 0; i < nfds; i++) {
   1488 		fp = fdescp->fd_dt->dt_ff[*--fdp]->ff_file;
   1489 		KASSERT(fp != NULL);
   1490 		mutex_enter(&fp->f_lock);
   1491 		*--rp = fp;
   1492 		fp->f_count++;
   1493 		fp->f_msgcount++;
   1494 		mutex_exit(&fp->f_lock);
   1495 	}
   1496 
   1497  out:
   1498  	/* Release descriptor references. */
   1499 	fdp = (int *)CMSG_DATA(cm);
   1500 	for (i = 0; i < nfds; i++) {
   1501 		fd_putfile(*fdp++);
   1502 		if (error != 0) {
   1503 			atomic_dec_uint(&unp_rights);
   1504 		}
   1505 	}
   1506 
   1507 	if (error == 0) {
   1508 		if (control->m_flags & M_EXT) {
   1509 			m_freem(control);
   1510 			*controlp = control = m_get(M_WAIT, MT_CONTROL);
   1511 		}
   1512 		MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
   1513 		    M_MBUF, NULL, NULL);
   1514 		cm = newcm;
   1515 		/*
   1516 		 * Adjust message & mbuf to note amount of space
   1517 		 * actually used.
   1518 		 */
   1519 		cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
   1520 		control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
   1521 	}
   1522 
   1523 	return error;
   1524 }
   1525 
   1526 struct mbuf *
   1527 unp_addsockcred(struct lwp *l, struct mbuf *control)
   1528 {
   1529 	struct sockcred *sc;
   1530 	struct mbuf *m;
   1531 	void *p;
   1532 
   1533 	m = sbcreatecontrol1(&p, SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)),
   1534 		SCM_CREDS, SOL_SOCKET, M_WAITOK);
   1535 	if (m == NULL)
   1536 		return control;
   1537 
   1538 	sc = p;
   1539 	sc->sc_uid = kauth_cred_getuid(l->l_cred);
   1540 	sc->sc_euid = kauth_cred_geteuid(l->l_cred);
   1541 	sc->sc_gid = kauth_cred_getgid(l->l_cred);
   1542 	sc->sc_egid = kauth_cred_getegid(l->l_cred);
   1543 	sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
   1544 
   1545 	for (int i = 0; i < sc->sc_ngroups; i++)
   1546 		sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
   1547 
   1548 	return m_add(control, m);
   1549 }
   1550 
   1551 /*
   1552  * Do a mark-sweep GC of files in the system, to free up any which are
   1553  * caught in flight to an about-to-be-closed socket.  Additionally,
   1554  * process deferred file closures.
   1555  */
   1556 static void
   1557 unp_gc(file_t *dp)
   1558 {
   1559 	extern	struct domain unixdomain;
   1560 	file_t *fp, *np;
   1561 	struct socket *so, *so1;
   1562 	u_int i, old, new;
   1563 	bool didwork;
   1564 
   1565 	KASSERT(curlwp == unp_thread_lwp);
   1566 	KASSERT(mutex_owned(&filelist_lock));
   1567 
   1568 	/*
   1569 	 * First, process deferred file closures.
   1570 	 */
   1571 	while (!SLIST_EMPTY(&unp_thread_discard)) {
   1572 		fp = SLIST_FIRST(&unp_thread_discard);
   1573 		KASSERT(fp->f_unpcount > 0);
   1574 		KASSERT(fp->f_count > 0);
   1575 		KASSERT(fp->f_msgcount > 0);
   1576 		KASSERT(fp->f_count >= fp->f_unpcount);
   1577 		KASSERT(fp->f_count >= fp->f_msgcount);
   1578 		KASSERT(fp->f_msgcount >= fp->f_unpcount);
   1579 		SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist);
   1580 		i = fp->f_unpcount;
   1581 		fp->f_unpcount = 0;
   1582 		mutex_exit(&filelist_lock);
   1583 		for (; i != 0; i--) {
   1584 			unp_discard_now(fp);
   1585 		}
   1586 		mutex_enter(&filelist_lock);
   1587 	}
   1588 
   1589 	/*
   1590 	 * Clear mark bits.  Ensure that we don't consider new files
   1591 	 * entering the file table during this loop (they will not have
   1592 	 * FSCAN set).
   1593 	 */
   1594 	unp_defer = 0;
   1595 	LIST_FOREACH(fp, &filehead, f_list) {
   1596 		for (old = fp->f_flag;; old = new) {
   1597 			new = atomic_cas_uint(&fp->f_flag, old,
   1598 			    (old | FSCAN) & ~(FMARK|FDEFER));
   1599 			if (__predict_true(old == new)) {
   1600 				break;
   1601 			}
   1602 		}
   1603 	}
   1604 
   1605 	/*
   1606 	 * Iterate over the set of sockets, marking ones believed (based on
   1607 	 * refcount) to be referenced from a process, and marking for rescan
   1608 	 * sockets which are queued on a socket.  Recan continues descending
   1609 	 * and searching for sockets referenced by sockets (FDEFER), until
   1610 	 * there are no more socket->socket references to be discovered.
   1611 	 */
   1612 	do {
   1613 		didwork = false;
   1614 		for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
   1615 			KASSERT(mutex_owned(&filelist_lock));
   1616 			np = LIST_NEXT(fp, f_list);
   1617 			mutex_enter(&fp->f_lock);
   1618 			if ((fp->f_flag & FDEFER) != 0) {
   1619 				atomic_and_uint(&fp->f_flag, ~FDEFER);
   1620 				unp_defer--;
   1621 				KASSERT(fp->f_count != 0);
   1622 			} else {
   1623 				if (fp->f_count == 0 ||
   1624 				    (fp->f_flag & FMARK) != 0 ||
   1625 				    fp->f_count == fp->f_msgcount ||
   1626 				    fp->f_unpcount != 0) {
   1627 					mutex_exit(&fp->f_lock);
   1628 					continue;
   1629 				}
   1630 			}
   1631 			atomic_or_uint(&fp->f_flag, FMARK);
   1632 
   1633 			if (fp->f_type != DTYPE_SOCKET ||
   1634 			    (so = fp->f_data) == NULL ||
   1635 			    so->so_proto->pr_domain != &unixdomain ||
   1636 			    (so->so_proto->pr_flags & PR_RIGHTS) == 0) {
   1637 				mutex_exit(&fp->f_lock);
   1638 				continue;
   1639 			}
   1640 
   1641 			/* Gain file ref, mark our position, and unlock. */
   1642 			didwork = true;
   1643 			LIST_INSERT_AFTER(fp, dp, f_list);
   1644 			fp->f_count++;
   1645 			mutex_exit(&fp->f_lock);
   1646 			mutex_exit(&filelist_lock);
   1647 
   1648 			/*
   1649 			 * Mark files referenced from sockets queued on the
   1650 			 * accept queue as well.
   1651 			 */
   1652 			solock(so);
   1653 			unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
   1654 			if ((so->so_options & SO_ACCEPTCONN) != 0) {
   1655 				TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
   1656 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
   1657 				}
   1658 				TAILQ_FOREACH(so1, &so->so_q, so_qe) {
   1659 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
   1660 				}
   1661 			}
   1662 			sounlock(so);
   1663 
   1664 			/* Re-lock and restart from where we left off. */
   1665 			closef(fp);
   1666 			mutex_enter(&filelist_lock);
   1667 			np = LIST_NEXT(dp, f_list);
   1668 			LIST_REMOVE(dp, f_list);
   1669 		}
   1670 		/*
   1671 		 * Bail early if we did nothing in the loop above.  Could
   1672 		 * happen because of concurrent activity causing unp_defer
   1673 		 * to get out of sync.
   1674 		 */
   1675 	} while (unp_defer != 0 && didwork);
   1676 
   1677 	/*
   1678 	 * Sweep pass.
   1679 	 *
   1680 	 * We grab an extra reference to each of the files that are
   1681 	 * not otherwise accessible and then free the rights that are
   1682 	 * stored in messages on them.
   1683 	 */
   1684 	for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
   1685 		KASSERT(mutex_owned(&filelist_lock));
   1686 		np = LIST_NEXT(fp, f_list);
   1687 		mutex_enter(&fp->f_lock);
   1688 
   1689 		/*
   1690 		 * Ignore non-sockets.
   1691 		 * Ignore dead sockets, or sockets with pending close.
   1692 		 * Ignore sockets obviously referenced elsewhere.
   1693 		 * Ignore sockets marked as referenced by our scan.
   1694 		 * Ignore new sockets that did not exist during the scan.
   1695 		 */
   1696 		if (fp->f_type != DTYPE_SOCKET ||
   1697 		    fp->f_count == 0 || fp->f_unpcount != 0 ||
   1698 		    fp->f_count != fp->f_msgcount ||
   1699 		    (fp->f_flag & (FMARK | FSCAN)) != FSCAN) {
   1700 			mutex_exit(&fp->f_lock);
   1701 			continue;
   1702 		}
   1703 
   1704 		/* Gain file ref, mark our position, and unlock. */
   1705 		LIST_INSERT_AFTER(fp, dp, f_list);
   1706 		fp->f_count++;
   1707 		mutex_exit(&fp->f_lock);
   1708 		mutex_exit(&filelist_lock);
   1709 
   1710 		/*
   1711 		 * Flush all data from the socket's receive buffer.
   1712 		 * This will cause files referenced only by the
   1713 		 * socket to be queued for close.
   1714 		 */
   1715 		so = fp->f_data;
   1716 		solock(so);
   1717 		sorflush(so);
   1718 		sounlock(so);
   1719 
   1720 		/* Re-lock and restart from where we left off. */
   1721 		closef(fp);
   1722 		mutex_enter(&filelist_lock);
   1723 		np = LIST_NEXT(dp, f_list);
   1724 		LIST_REMOVE(dp, f_list);
   1725 	}
   1726 }
   1727 
   1728 /*
   1729  * Garbage collector thread.  While SCM_RIGHTS messages are in transit,
   1730  * wake once per second to garbage collect.  Run continually while we
   1731  * have deferred closes to process.
   1732  */
   1733 static void
   1734 unp_thread(void *cookie)
   1735 {
   1736 	file_t *dp;
   1737 
   1738 	/* Allocate a dummy file for our scans. */
   1739 	if ((dp = fgetdummy()) == NULL) {
   1740 		panic("unp_thread");
   1741 	}
   1742 
   1743 	mutex_enter(&filelist_lock);
   1744 	for (;;) {
   1745 		KASSERT(mutex_owned(&filelist_lock));
   1746 		if (SLIST_EMPTY(&unp_thread_discard)) {
   1747 			if (unp_rights != 0) {
   1748 				(void)cv_timedwait(&unp_thread_cv,
   1749 				    &filelist_lock, hz);
   1750 			} else {
   1751 				cv_wait(&unp_thread_cv, &filelist_lock);
   1752 			}
   1753 		}
   1754 		unp_gc(dp);
   1755 	}
   1756 	/* NOTREACHED */
   1757 }
   1758 
   1759 /*
   1760  * Kick the garbage collector into action if there is something for
   1761  * it to process.
   1762  */
   1763 static void
   1764 unp_thread_kick(void)
   1765 {
   1766 
   1767 	if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) {
   1768 		mutex_enter(&filelist_lock);
   1769 		cv_signal(&unp_thread_cv);
   1770 		mutex_exit(&filelist_lock);
   1771 	}
   1772 }
   1773 
   1774 void
   1775 unp_dispose(struct mbuf *m)
   1776 {
   1777 
   1778 	if (m)
   1779 		unp_scan(m, unp_discard_later, 1);
   1780 }
   1781 
   1782 void
   1783 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
   1784 {
   1785 	struct mbuf *m;
   1786 	file_t **rp, *fp;
   1787 	struct cmsghdr *cm;
   1788 	int i, qfds;
   1789 
   1790 	while (m0) {
   1791 		for (m = m0; m; m = m->m_next) {
   1792 			if (m->m_type != MT_CONTROL ||
   1793 			    m->m_len < sizeof(*cm)) {
   1794 			    	continue;
   1795 			}
   1796 			cm = mtod(m, struct cmsghdr *);
   1797 			if (cm->cmsg_level != SOL_SOCKET ||
   1798 			    cm->cmsg_type != SCM_RIGHTS)
   1799 				continue;
   1800 			qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
   1801 			    / sizeof(file_t *);
   1802 			rp = (file_t **)CMSG_DATA(cm);
   1803 			for (i = 0; i < qfds; i++) {
   1804 				fp = *rp;
   1805 				if (discard) {
   1806 					*rp = 0;
   1807 				}
   1808 				(*op)(fp);
   1809 				rp++;
   1810 			}
   1811 		}
   1812 		m0 = m0->m_nextpkt;
   1813 	}
   1814 }
   1815 
   1816 void
   1817 unp_mark(file_t *fp)
   1818 {
   1819 
   1820 	if (fp == NULL)
   1821 		return;
   1822 
   1823 	/* If we're already deferred, don't screw up the defer count */
   1824 	mutex_enter(&fp->f_lock);
   1825 	if (fp->f_flag & (FMARK | FDEFER)) {
   1826 		mutex_exit(&fp->f_lock);
   1827 		return;
   1828 	}
   1829 
   1830 	/*
   1831 	 * Minimize the number of deferrals...  Sockets are the only type of
   1832 	 * file which can hold references to another file, so just mark
   1833 	 * other files, and defer unmarked sockets for the next pass.
   1834 	 */
   1835 	if (fp->f_type == DTYPE_SOCKET) {
   1836 		unp_defer++;
   1837 		KASSERT(fp->f_count != 0);
   1838 		atomic_or_uint(&fp->f_flag, FDEFER);
   1839 	} else {
   1840 		atomic_or_uint(&fp->f_flag, FMARK);
   1841 	}
   1842 	mutex_exit(&fp->f_lock);
   1843 }
   1844 
   1845 static void
   1846 unp_discard_now(file_t *fp)
   1847 {
   1848 
   1849 	if (fp == NULL)
   1850 		return;
   1851 
   1852 	KASSERT(fp->f_count > 0);
   1853 	KASSERT(fp->f_msgcount > 0);
   1854 
   1855 	mutex_enter(&fp->f_lock);
   1856 	fp->f_msgcount--;
   1857 	mutex_exit(&fp->f_lock);
   1858 	atomic_dec_uint(&unp_rights);
   1859 	(void)closef(fp);
   1860 }
   1861 
   1862 static void
   1863 unp_discard_later(file_t *fp)
   1864 {
   1865 
   1866 	if (fp == NULL)
   1867 		return;
   1868 
   1869 	KASSERT(fp->f_count > 0);
   1870 	KASSERT(fp->f_msgcount > 0);
   1871 
   1872 	mutex_enter(&filelist_lock);
   1873 	if (fp->f_unpcount++ == 0) {
   1874 		SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist);
   1875 	}
   1876 	mutex_exit(&filelist_lock);
   1877 }
   1878 
   1879 const struct pr_usrreqs unp_usrreqs = {
   1880 	.pr_attach	= unp_attach,
   1881 	.pr_detach	= unp_detach,
   1882 	.pr_accept	= unp_accept,
   1883 	.pr_bind	= unp_bind,
   1884 	.pr_listen	= unp_listen,
   1885 	.pr_ioctl	= unp_ioctl,
   1886 	.pr_stat	= unp_stat,
   1887 	.pr_peeraddr	= unp_peeraddr,
   1888 	.pr_sockaddr	= unp_sockaddr,
   1889 	.pr_recvoob	= unp_recvoob,
   1890 	.pr_sendoob	= unp_sendoob,
   1891 	.pr_generic	= unp_usrreq,
   1892 };
   1893