uipc_usrreq.c revision 1.162 1 /* $NetBSD: uipc_usrreq.c,v 1.162 2014/07/30 10:04:26 rtr Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2000, 2004, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
62 */
63
64 /*
65 * Copyright (c) 1997 Christopher G. Demetriou. All rights reserved.
66 *
67 * Redistribution and use in source and binary forms, with or without
68 * modification, are permitted provided that the following conditions
69 * are met:
70 * 1. Redistributions of source code must retain the above copyright
71 * notice, this list of conditions and the following disclaimer.
72 * 2. Redistributions in binary form must reproduce the above copyright
73 * notice, this list of conditions and the following disclaimer in the
74 * documentation and/or other materials provided with the distribution.
75 * 3. All advertising materials mentioning features or use of this software
76 * must display the following acknowledgement:
77 * This product includes software developed by the University of
78 * California, Berkeley and its contributors.
79 * 4. Neither the name of the University nor the names of its contributors
80 * may be used to endorse or promote products derived from this software
81 * without specific prior written permission.
82 *
83 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
84 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
85 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
86 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
87 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
88 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
89 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
90 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
91 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
92 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
93 * SUCH DAMAGE.
94 *
95 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
96 */
97
98 #include <sys/cdefs.h>
99 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.162 2014/07/30 10:04:26 rtr Exp $");
100
101 #include <sys/param.h>
102 #include <sys/systm.h>
103 #include <sys/proc.h>
104 #include <sys/filedesc.h>
105 #include <sys/domain.h>
106 #include <sys/protosw.h>
107 #include <sys/socket.h>
108 #include <sys/socketvar.h>
109 #include <sys/unpcb.h>
110 #include <sys/un.h>
111 #include <sys/namei.h>
112 #include <sys/vnode.h>
113 #include <sys/file.h>
114 #include <sys/stat.h>
115 #include <sys/mbuf.h>
116 #include <sys/kauth.h>
117 #include <sys/kmem.h>
118 #include <sys/atomic.h>
119 #include <sys/uidinfo.h>
120 #include <sys/kernel.h>
121 #include <sys/kthread.h>
122
123 /*
124 * Unix communications domain.
125 *
126 * TODO:
127 * RDM
128 * rethink name space problems
129 * need a proper out-of-band
130 *
131 * Notes on locking:
132 *
133 * The generic rules noted in uipc_socket2.c apply. In addition:
134 *
135 * o We have a global lock, uipc_lock.
136 *
137 * o All datagram sockets are locked by uipc_lock.
138 *
139 * o For stream socketpairs, the two endpoints are created sharing the same
140 * independent lock. Sockets presented to PRU_CONNECT2 must already have
141 * matching locks.
142 *
143 * o Stream sockets created via socket() start life with their own
144 * independent lock.
145 *
146 * o Stream connections to a named endpoint are slightly more complicated.
147 * Sockets that have called listen() have their lock pointer mutated to
148 * the global uipc_lock. When establishing a connection, the connecting
149 * socket also has its lock mutated to uipc_lock, which matches the head
150 * (listening socket). We create a new socket for accept() to return, and
151 * that also shares the head's lock. Until the connection is completely
152 * done on both ends, all three sockets are locked by uipc_lock. Once the
153 * connection is complete, the association with the head's lock is broken.
154 * The connecting socket and the socket returned from accept() have their
155 * lock pointers mutated away from uipc_lock, and back to the connecting
156 * socket's original, independent lock. The head continues to be locked
157 * by uipc_lock.
158 *
159 * o If uipc_lock is determined to be a significant source of contention,
160 * it could easily be hashed out. It is difficult to simply make it an
161 * independent lock because of visibility / garbage collection issues:
162 * if a socket has been associated with a lock at any point, that lock
163 * must remain valid until the socket is no longer visible in the system.
164 * The lock must not be freed or otherwise destroyed until any sockets
165 * that had referenced it have also been destroyed.
166 */
167 const struct sockaddr_un sun_noname = {
168 .sun_len = offsetof(struct sockaddr_un, sun_path),
169 .sun_family = AF_LOCAL,
170 };
171 ino_t unp_ino; /* prototype for fake inode numbers */
172
173 static void unp_detach(struct socket *);
174 struct mbuf *unp_addsockcred(struct lwp *, struct mbuf *);
175 static void unp_mark(file_t *);
176 static void unp_scan(struct mbuf *, void (*)(file_t *), int);
177 static void unp_discard_now(file_t *);
178 static void unp_discard_later(file_t *);
179 static void unp_thread(void *);
180 static void unp_thread_kick(void);
181 static kmutex_t *uipc_lock;
182
183 static kcondvar_t unp_thread_cv;
184 static lwp_t *unp_thread_lwp;
185 static SLIST_HEAD(,file) unp_thread_discard;
186 static int unp_defer;
187
188 /*
189 * Initialize Unix protocols.
190 */
191 void
192 uipc_init(void)
193 {
194 int error;
195
196 uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
197 cv_init(&unp_thread_cv, "unpgc");
198
199 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread,
200 NULL, &unp_thread_lwp, "unpgc");
201 if (error != 0)
202 panic("uipc_init %d", error);
203 }
204
205 /*
206 * A connection succeeded: disassociate both endpoints from the head's
207 * lock, and make them share their own lock. There is a race here: for
208 * a very brief time one endpoint will be locked by a different lock
209 * than the other end. However, since the current thread holds the old
210 * lock (the listening socket's lock, the head) access can still only be
211 * made to one side of the connection.
212 */
213 static void
214 unp_setpeerlocks(struct socket *so, struct socket *so2)
215 {
216 struct unpcb *unp;
217 kmutex_t *lock;
218
219 KASSERT(solocked2(so, so2));
220
221 /*
222 * Bail out if either end of the socket is not yet fully
223 * connected or accepted. We only break the lock association
224 * with the head when the pair of sockets stand completely
225 * on their own.
226 */
227 KASSERT(so->so_head == NULL);
228 if (so2->so_head != NULL)
229 return;
230
231 /*
232 * Drop references to old lock. A third reference (from the
233 * queue head) must be held as we still hold its lock. Bonus:
234 * we don't need to worry about garbage collecting the lock.
235 */
236 lock = so->so_lock;
237 KASSERT(lock == uipc_lock);
238 mutex_obj_free(lock);
239 mutex_obj_free(lock);
240
241 /*
242 * Grab stream lock from the initiator and share between the two
243 * endpoints. Issue memory barrier to ensure all modifications
244 * become globally visible before the lock change. so2 is
245 * assumed not to have a stream lock, because it was created
246 * purely for the server side to accept this connection and
247 * started out life using the domain-wide lock.
248 */
249 unp = sotounpcb(so);
250 KASSERT(unp->unp_streamlock != NULL);
251 KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
252 lock = unp->unp_streamlock;
253 unp->unp_streamlock = NULL;
254 mutex_obj_hold(lock);
255 membar_exit();
256 /*
257 * possible race if lock is not held - see comment in
258 * uipc_usrreq(PRU_ACCEPT).
259 */
260 KASSERT(mutex_owned(lock));
261 solockreset(so, lock);
262 solockreset(so2, lock);
263 }
264
265 /*
266 * Reset a socket's lock back to the domain-wide lock.
267 */
268 static void
269 unp_resetlock(struct socket *so)
270 {
271 kmutex_t *olock, *nlock;
272 struct unpcb *unp;
273
274 KASSERT(solocked(so));
275
276 olock = so->so_lock;
277 nlock = uipc_lock;
278 if (olock == nlock)
279 return;
280 unp = sotounpcb(so);
281 KASSERT(unp->unp_streamlock == NULL);
282 unp->unp_streamlock = olock;
283 mutex_obj_hold(nlock);
284 mutex_enter(nlock);
285 solockreset(so, nlock);
286 mutex_exit(olock);
287 }
288
289 static void
290 unp_free(struct unpcb *unp)
291 {
292 if (unp->unp_addr)
293 free(unp->unp_addr, M_SONAME);
294 if (unp->unp_streamlock != NULL)
295 mutex_obj_free(unp->unp_streamlock);
296 kmem_free(unp, sizeof(*unp));
297 }
298
299 int
300 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp,
301 struct lwp *l)
302 {
303 struct socket *so2;
304 const struct sockaddr_un *sun;
305
306 /* XXX: server side closed the socket */
307 if (unp->unp_conn == NULL)
308 return ECONNREFUSED;
309 so2 = unp->unp_conn->unp_socket;
310
311 KASSERT(solocked(so2));
312
313 if (unp->unp_addr)
314 sun = unp->unp_addr;
315 else
316 sun = &sun_noname;
317 if (unp->unp_conn->unp_flags & UNP_WANTCRED)
318 control = unp_addsockcred(l, control);
319 if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
320 control) == 0) {
321 so2->so_rcv.sb_overflowed++;
322 unp_dispose(control);
323 m_freem(control);
324 m_freem(m);
325 return (ENOBUFS);
326 } else {
327 sorwakeup(so2);
328 return (0);
329 }
330 }
331
332 void
333 unp_setaddr(struct socket *so, struct mbuf *nam, bool peeraddr)
334 {
335 const struct sockaddr_un *sun;
336 struct unpcb *unp;
337 bool ext;
338
339 KASSERT(solocked(so));
340 unp = sotounpcb(so);
341 ext = false;
342
343 for (;;) {
344 sun = NULL;
345 if (peeraddr) {
346 if (unp->unp_conn && unp->unp_conn->unp_addr)
347 sun = unp->unp_conn->unp_addr;
348 } else {
349 if (unp->unp_addr)
350 sun = unp->unp_addr;
351 }
352 if (sun == NULL)
353 sun = &sun_noname;
354 nam->m_len = sun->sun_len;
355 if (nam->m_len > MLEN && !ext) {
356 sounlock(so);
357 MEXTMALLOC(nam, MAXPATHLEN * 2, M_WAITOK);
358 solock(so);
359 ext = true;
360 } else {
361 KASSERT(nam->m_len <= MAXPATHLEN * 2);
362 memcpy(mtod(nam, void *), sun, (size_t)nam->m_len);
363 break;
364 }
365 }
366 }
367
368 static int
369 unp_recvoob(struct socket *so, struct mbuf *m, int flags)
370 {
371 KASSERT(solocked(so));
372
373 return EOPNOTSUPP;
374 }
375
376 static int
377 unp_sendoob(struct socket *so, struct mbuf *m, struct mbuf * control)
378 {
379 KASSERT(solocked(so));
380
381 m_freem(m);
382 m_freem(control);
383
384 return EOPNOTSUPP;
385 }
386
387 static int
388 unp_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
389 struct mbuf *control, struct lwp *l)
390 {
391 struct unpcb *unp;
392 struct socket *so2;
393 u_int newhiwat;
394 int error = 0;
395
396 KASSERT(req != PRU_ATTACH);
397 KASSERT(req != PRU_DETACH);
398 KASSERT(req != PRU_ACCEPT);
399 KASSERT(req != PRU_BIND);
400 KASSERT(req != PRU_LISTEN);
401 KASSERT(req != PRU_CONNECT);
402 KASSERT(req != PRU_CONTROL);
403 KASSERT(req != PRU_SENSE);
404 KASSERT(req != PRU_PEERADDR);
405 KASSERT(req != PRU_SOCKADDR);
406 KASSERT(req != PRU_RCVOOB);
407 KASSERT(req != PRU_SENDOOB);
408
409 KASSERT(solocked(so));
410 unp = sotounpcb(so);
411
412 KASSERT(!control || req == PRU_SEND);
413 if (unp == NULL) {
414 error = EINVAL;
415 goto release;
416 }
417
418 switch (req) {
419 case PRU_CONNECT2:
420 error = unp_connect2(so, (struct socket *)nam, PRU_CONNECT2);
421 break;
422
423 case PRU_DISCONNECT:
424 unp_disconnect(unp);
425 break;
426
427 case PRU_SHUTDOWN:
428 socantsendmore(so);
429 unp_shutdown(unp);
430 break;
431
432 case PRU_RCVD:
433 switch (so->so_type) {
434
435 case SOCK_DGRAM:
436 panic("uipc 1");
437 /*NOTREACHED*/
438
439 case SOCK_SEQPACKET: /* FALLTHROUGH */
440 case SOCK_STREAM:
441 #define rcv (&so->so_rcv)
442 #define snd (&so2->so_snd)
443 if (unp->unp_conn == 0)
444 break;
445 so2 = unp->unp_conn->unp_socket;
446 KASSERT(solocked2(so, so2));
447 /*
448 * Adjust backpressure on sender
449 * and wakeup any waiting to write.
450 */
451 snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
452 unp->unp_mbcnt = rcv->sb_mbcnt;
453 newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
454 (void)chgsbsize(so2->so_uidinfo,
455 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
456 unp->unp_cc = rcv->sb_cc;
457 sowwakeup(so2);
458 #undef snd
459 #undef rcv
460 break;
461
462 default:
463 panic("uipc 2");
464 }
465 break;
466
467 case PRU_SEND:
468 /*
469 * Note: unp_internalize() rejects any control message
470 * other than SCM_RIGHTS, and only allows one. This
471 * has the side-effect of preventing a caller from
472 * forging SCM_CREDS.
473 */
474 if (control) {
475 sounlock(so);
476 error = unp_internalize(&control);
477 solock(so);
478 if (error != 0) {
479 m_freem(control);
480 m_freem(m);
481 break;
482 }
483 }
484 switch (so->so_type) {
485
486 case SOCK_DGRAM: {
487 KASSERT(so->so_lock == uipc_lock);
488 if (nam) {
489 if ((so->so_state & SS_ISCONNECTED) != 0)
490 error = EISCONN;
491 else {
492 /*
493 * Note: once connected, the
494 * socket's lock must not be
495 * dropped until we have sent
496 * the message and disconnected.
497 * This is necessary to prevent
498 * intervening control ops, like
499 * another connection.
500 */
501 error = unp_connect(so, nam);
502 }
503 } else {
504 if ((so->so_state & SS_ISCONNECTED) == 0)
505 error = ENOTCONN;
506 }
507 if (error) {
508 unp_dispose(control);
509 m_freem(control);
510 m_freem(m);
511 break;
512 }
513 KASSERT(l != NULL);
514 error = unp_output(m, control, unp, l);
515 if (nam)
516 unp_disconnect(unp);
517 break;
518 }
519
520 case SOCK_SEQPACKET: /* FALLTHROUGH */
521 case SOCK_STREAM:
522 #define rcv (&so2->so_rcv)
523 #define snd (&so->so_snd)
524 if (unp->unp_conn == NULL) {
525 error = ENOTCONN;
526 break;
527 }
528 so2 = unp->unp_conn->unp_socket;
529 KASSERT(solocked2(so, so2));
530 if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
531 /*
532 * Credentials are passed only once on
533 * SOCK_STREAM and SOCK_SEQPACKET.
534 */
535 unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
536 control = unp_addsockcred(l, control);
537 }
538 /*
539 * Send to paired receive port, and then reduce
540 * send buffer hiwater marks to maintain backpressure.
541 * Wake up readers.
542 */
543 if (control) {
544 if (sbappendcontrol(rcv, m, control) != 0)
545 control = NULL;
546 } else {
547 switch(so->so_type) {
548 case SOCK_SEQPACKET:
549 sbappendrecord(rcv, m);
550 break;
551 case SOCK_STREAM:
552 sbappend(rcv, m);
553 break;
554 default:
555 panic("uipc_usrreq");
556 break;
557 }
558 }
559 snd->sb_mbmax -=
560 rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
561 unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
562 newhiwat = snd->sb_hiwat -
563 (rcv->sb_cc - unp->unp_conn->unp_cc);
564 (void)chgsbsize(so->so_uidinfo,
565 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
566 unp->unp_conn->unp_cc = rcv->sb_cc;
567 sorwakeup(so2);
568 #undef snd
569 #undef rcv
570 if (control != NULL) {
571 unp_dispose(control);
572 m_freem(control);
573 }
574 break;
575
576 default:
577 panic("uipc 4");
578 }
579 break;
580
581 case PRU_ABORT:
582 (void)unp_drop(unp, ECONNABORTED);
583 KASSERT(so->so_head == NULL);
584 KASSERT(so->so_pcb != NULL);
585 unp_detach(so);
586 break;
587
588 default:
589 panic("piusrreq");
590 }
591
592 release:
593 return (error);
594 }
595
596 /*
597 * Unix domain socket option processing.
598 */
599 int
600 uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
601 {
602 struct unpcb *unp = sotounpcb(so);
603 int optval = 0, error = 0;
604
605 KASSERT(solocked(so));
606
607 if (sopt->sopt_level != 0) {
608 error = ENOPROTOOPT;
609 } else switch (op) {
610
611 case PRCO_SETOPT:
612 switch (sopt->sopt_name) {
613 case LOCAL_CREDS:
614 case LOCAL_CONNWAIT:
615 error = sockopt_getint(sopt, &optval);
616 if (error)
617 break;
618 switch (sopt->sopt_name) {
619 #define OPTSET(bit) \
620 if (optval) \
621 unp->unp_flags |= (bit); \
622 else \
623 unp->unp_flags &= ~(bit);
624
625 case LOCAL_CREDS:
626 OPTSET(UNP_WANTCRED);
627 break;
628 case LOCAL_CONNWAIT:
629 OPTSET(UNP_CONNWAIT);
630 break;
631 }
632 break;
633 #undef OPTSET
634
635 default:
636 error = ENOPROTOOPT;
637 break;
638 }
639 break;
640
641 case PRCO_GETOPT:
642 sounlock(so);
643 switch (sopt->sopt_name) {
644 case LOCAL_PEEREID:
645 if (unp->unp_flags & UNP_EIDSVALID) {
646 error = sockopt_set(sopt,
647 &unp->unp_connid, sizeof(unp->unp_connid));
648 } else {
649 error = EINVAL;
650 }
651 break;
652 case LOCAL_CREDS:
653 #define OPTBIT(bit) (unp->unp_flags & (bit) ? 1 : 0)
654
655 optval = OPTBIT(UNP_WANTCRED);
656 error = sockopt_setint(sopt, optval);
657 break;
658 #undef OPTBIT
659
660 default:
661 error = ENOPROTOOPT;
662 break;
663 }
664 solock(so);
665 break;
666 }
667 return (error);
668 }
669
670 /*
671 * Both send and receive buffers are allocated PIPSIZ bytes of buffering
672 * for stream sockets, although the total for sender and receiver is
673 * actually only PIPSIZ.
674 * Datagram sockets really use the sendspace as the maximum datagram size,
675 * and don't really want to reserve the sendspace. Their recvspace should
676 * be large enough for at least one max-size datagram plus address.
677 */
678 #define PIPSIZ 4096
679 u_long unpst_sendspace = PIPSIZ;
680 u_long unpst_recvspace = PIPSIZ;
681 u_long unpdg_sendspace = 2*1024; /* really max datagram size */
682 u_long unpdg_recvspace = 4*1024;
683
684 u_int unp_rights; /* files in flight */
685 u_int unp_rights_ratio = 2; /* limit, fraction of maxfiles */
686
687 static int
688 unp_attach(struct socket *so, int proto)
689 {
690 struct unpcb *unp = sotounpcb(so);
691 u_long sndspc, rcvspc;
692 int error;
693
694 KASSERT(unp == NULL);
695
696 switch (so->so_type) {
697 case SOCK_SEQPACKET:
698 /* FALLTHROUGH */
699 case SOCK_STREAM:
700 if (so->so_lock == NULL) {
701 so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
702 solock(so);
703 }
704 sndspc = unpst_sendspace;
705 rcvspc = unpst_recvspace;
706 break;
707
708 case SOCK_DGRAM:
709 if (so->so_lock == NULL) {
710 mutex_obj_hold(uipc_lock);
711 so->so_lock = uipc_lock;
712 solock(so);
713 }
714 sndspc = unpdg_sendspace;
715 rcvspc = unpdg_recvspace;
716 break;
717
718 default:
719 panic("unp_attach");
720 }
721
722 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
723 error = soreserve(so, sndspc, rcvspc);
724 if (error) {
725 return error;
726 }
727 }
728
729 unp = kmem_zalloc(sizeof(*unp), KM_SLEEP);
730 nanotime(&unp->unp_ctime);
731 unp->unp_socket = so;
732 so->so_pcb = unp;
733
734 KASSERT(solocked(so));
735 return 0;
736 }
737
738 static void
739 unp_detach(struct socket *so)
740 {
741 struct unpcb *unp;
742 vnode_t *vp;
743
744 unp = sotounpcb(so);
745 KASSERT(unp != NULL);
746 KASSERT(solocked(so));
747 retry:
748 if ((vp = unp->unp_vnode) != NULL) {
749 sounlock(so);
750 /* Acquire v_interlock to protect against unp_connect(). */
751 /* XXXAD racy */
752 mutex_enter(vp->v_interlock);
753 vp->v_socket = NULL;
754 mutex_exit(vp->v_interlock);
755 vrele(vp);
756 solock(so);
757 unp->unp_vnode = NULL;
758 }
759 if (unp->unp_conn)
760 unp_disconnect(unp);
761 while (unp->unp_refs) {
762 KASSERT(solocked2(so, unp->unp_refs->unp_socket));
763 if (unp_drop(unp->unp_refs, ECONNRESET)) {
764 solock(so);
765 goto retry;
766 }
767 }
768 soisdisconnected(so);
769 so->so_pcb = NULL;
770 if (unp_rights) {
771 /*
772 * Normally the receive buffer is flushed later, in sofree,
773 * but if our receive buffer holds references to files that
774 * are now garbage, we will enqueue those file references to
775 * the garbage collector and kick it into action.
776 */
777 sorflush(so);
778 unp_free(unp);
779 unp_thread_kick();
780 } else
781 unp_free(unp);
782 }
783
784 static int
785 unp_accept(struct socket *so, struct mbuf *nam)
786 {
787 struct unpcb *unp = sotounpcb(so);
788 struct socket *so2;
789
790 KASSERT(solocked(so));
791 KASSERT(nam != NULL);
792
793 /* XXX code review required to determine if unp can ever be NULL */
794 if (unp == NULL)
795 return EINVAL;
796
797 KASSERT(so->so_lock == uipc_lock);
798 /*
799 * Mark the initiating STREAM socket as connected *ONLY*
800 * after it's been accepted. This prevents a client from
801 * overrunning a server and receiving ECONNREFUSED.
802 */
803 if (unp->unp_conn == NULL) {
804 /*
805 * This will use the empty socket and will not
806 * allocate.
807 */
808 unp_setaddr(so, nam, true);
809 return 0;
810 }
811 so2 = unp->unp_conn->unp_socket;
812 if (so2->so_state & SS_ISCONNECTING) {
813 KASSERT(solocked2(so, so->so_head));
814 KASSERT(solocked2(so2, so->so_head));
815 soisconnected(so2);
816 }
817 /*
818 * If the connection is fully established, break the
819 * association with uipc_lock and give the connected
820 * pair a separate lock to share.
821 * There is a race here: sotounpcb(so2)->unp_streamlock
822 * is not locked, so when changing so2->so_lock
823 * another thread can grab it while so->so_lock is still
824 * pointing to the (locked) uipc_lock.
825 * this should be harmless, except that this makes
826 * solocked2() and solocked() unreliable.
827 * Another problem is that unp_setaddr() expects the
828 * the socket locked. Grabing sotounpcb(so2)->unp_streamlock
829 * fixes both issues.
830 */
831 mutex_enter(sotounpcb(so2)->unp_streamlock);
832 unp_setpeerlocks(so2, so);
833 /*
834 * Only now return peer's address, as we may need to
835 * block in order to allocate memory.
836 *
837 * XXX Minor race: connection can be broken while
838 * lock is dropped in unp_setaddr(). We will return
839 * error == 0 and sun_noname as the peer address.
840 */
841 unp_setaddr(so, nam, true);
842 /* so_lock now points to unp_streamlock */
843 mutex_exit(so2->so_lock);
844 return 0;
845 }
846
847 static int
848 unp_ioctl(struct socket *so, u_long cmd, void *nam, struct ifnet *ifp)
849 {
850 return EOPNOTSUPP;
851 }
852
853 static int
854 unp_stat(struct socket *so, struct stat *ub)
855 {
856 struct unpcb *unp;
857 struct socket *so2;
858
859 KASSERT(solocked(so));
860
861 unp = sotounpcb(so);
862 if (unp == NULL)
863 return EINVAL;
864
865 ub->st_blksize = so->so_snd.sb_hiwat;
866 switch (so->so_type) {
867 case SOCK_SEQPACKET: /* FALLTHROUGH */
868 case SOCK_STREAM:
869 if (unp->unp_conn == 0)
870 break;
871
872 so2 = unp->unp_conn->unp_socket;
873 KASSERT(solocked2(so, so2));
874 ub->st_blksize += so2->so_rcv.sb_cc;
875 break;
876 default:
877 break;
878 }
879 ub->st_dev = NODEV;
880 if (unp->unp_ino == 0)
881 unp->unp_ino = unp_ino++;
882 ub->st_atimespec = ub->st_mtimespec = ub->st_ctimespec = unp->unp_ctime;
883 ub->st_ino = unp->unp_ino;
884 return (0);
885 }
886
887 static int
888 unp_peeraddr(struct socket *so, struct mbuf *nam)
889 {
890 KASSERT(solocked(so));
891 KASSERT(sotounpcb(so) != NULL);
892 KASSERT(nam != NULL);
893
894 unp_setaddr(so, nam, true);
895 return 0;
896 }
897
898 static int
899 unp_sockaddr(struct socket *so, struct mbuf *nam)
900 {
901 KASSERT(solocked(so));
902 KASSERT(sotounpcb(so) != NULL);
903 KASSERT(nam != NULL);
904
905 unp_setaddr(so, nam, false);
906 return 0;
907 }
908
909 /*
910 * Allocate the new sockaddr. We have to allocate one
911 * extra byte so that we can ensure that the pathname
912 * is nul-terminated. Note that unlike linux, we don't
913 * include in the address length the NUL in the path
914 * component, because doing so, would exceed sizeof(sockaddr_un)
915 * for fully occupied pathnames. Linux is also inconsistent,
916 * because it does not include the NUL in the length of
917 * what it calls "abstract" unix sockets.
918 */
919 static struct sockaddr_un *
920 makeun(struct mbuf *nam, size_t *addrlen) {
921 struct sockaddr_un *sun;
922
923 *addrlen = nam->m_len + 1;
924 sun = malloc(*addrlen, M_SONAME, M_WAITOK);
925 m_copydata(nam, 0, nam->m_len, (void *)sun);
926 *(((char *)sun) + nam->m_len) = '\0';
927 sun->sun_len = strlen(sun->sun_path) +
928 offsetof(struct sockaddr_un, sun_path);
929 return sun;
930 }
931
932 int
933 unp_bind(struct socket *so, struct mbuf *nam)
934 {
935 struct sockaddr_un *sun;
936 struct unpcb *unp;
937 vnode_t *vp;
938 struct vattr vattr;
939 size_t addrlen;
940 int error;
941 struct pathbuf *pb;
942 struct nameidata nd;
943 proc_t *p;
944
945 unp = sotounpcb(so);
946
947 KASSERT(solocked(so));
948 KASSERT(unp != NULL);
949 KASSERT(nam != NULL);
950
951 if (unp->unp_vnode != NULL)
952 return (EINVAL);
953 if ((unp->unp_flags & UNP_BUSY) != 0) {
954 /*
955 * EALREADY may not be strictly accurate, but since this
956 * is a major application error it's hardly a big deal.
957 */
958 return (EALREADY);
959 }
960 unp->unp_flags |= UNP_BUSY;
961 sounlock(so);
962
963 p = curlwp->l_proc;
964 sun = makeun(nam, &addrlen);
965
966 pb = pathbuf_create(sun->sun_path);
967 if (pb == NULL) {
968 error = ENOMEM;
969 goto bad;
970 }
971 NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, pb);
972
973 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
974 if ((error = namei(&nd)) != 0) {
975 pathbuf_destroy(pb);
976 goto bad;
977 }
978 vp = nd.ni_vp;
979 if (vp != NULL) {
980 VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
981 if (nd.ni_dvp == vp)
982 vrele(nd.ni_dvp);
983 else
984 vput(nd.ni_dvp);
985 vrele(vp);
986 pathbuf_destroy(pb);
987 error = EADDRINUSE;
988 goto bad;
989 }
990 vattr_null(&vattr);
991 vattr.va_type = VSOCK;
992 vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
993 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
994 if (error) {
995 vput(nd.ni_dvp);
996 pathbuf_destroy(pb);
997 goto bad;
998 }
999 vp = nd.ni_vp;
1000 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1001 solock(so);
1002 vp->v_socket = unp->unp_socket;
1003 unp->unp_vnode = vp;
1004 unp->unp_addrlen = addrlen;
1005 unp->unp_addr = sun;
1006 unp->unp_connid.unp_pid = p->p_pid;
1007 unp->unp_connid.unp_euid = kauth_cred_geteuid(curlwp->l_cred);
1008 unp->unp_connid.unp_egid = kauth_cred_getegid(curlwp->l_cred);
1009 unp->unp_flags |= UNP_EIDSBIND;
1010 VOP_UNLOCK(vp);
1011 vput(nd.ni_dvp);
1012 unp->unp_flags &= ~UNP_BUSY;
1013 pathbuf_destroy(pb);
1014 return (0);
1015
1016 bad:
1017 free(sun, M_SONAME);
1018 solock(so);
1019 unp->unp_flags &= ~UNP_BUSY;
1020 return (error);
1021 }
1022
1023 static int
1024 unp_listen(struct socket *so)
1025 {
1026 struct unpcb *unp = sotounpcb(so);
1027
1028 KASSERT(solocked(so));
1029 KASSERT(unp != NULL);
1030
1031 /*
1032 * If the socket can accept a connection, it must be
1033 * locked by uipc_lock.
1034 */
1035 unp_resetlock(so);
1036 if (unp->unp_vnode == NULL)
1037 return EINVAL;
1038
1039 return 0;
1040 }
1041
1042 int
1043 unp_connect(struct socket *so, struct mbuf *nam)
1044 {
1045 struct sockaddr_un *sun;
1046 vnode_t *vp;
1047 struct socket *so2, *so3;
1048 struct unpcb *unp, *unp2, *unp3;
1049 size_t addrlen;
1050 int error;
1051 struct pathbuf *pb;
1052 struct nameidata nd;
1053
1054 unp = sotounpcb(so);
1055 if ((unp->unp_flags & UNP_BUSY) != 0) {
1056 /*
1057 * EALREADY may not be strictly accurate, but since this
1058 * is a major application error it's hardly a big deal.
1059 */
1060 return (EALREADY);
1061 }
1062 unp->unp_flags |= UNP_BUSY;
1063 sounlock(so);
1064
1065 sun = makeun(nam, &addrlen);
1066 pb = pathbuf_create(sun->sun_path);
1067 if (pb == NULL) {
1068 error = ENOMEM;
1069 goto bad2;
1070 }
1071
1072 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
1073
1074 if ((error = namei(&nd)) != 0) {
1075 pathbuf_destroy(pb);
1076 goto bad2;
1077 }
1078 vp = nd.ni_vp;
1079 if (vp->v_type != VSOCK) {
1080 error = ENOTSOCK;
1081 goto bad;
1082 }
1083 pathbuf_destroy(pb);
1084 if ((error = VOP_ACCESS(vp, VWRITE, curlwp->l_cred)) != 0)
1085 goto bad;
1086 /* Acquire v_interlock to protect against unp_detach(). */
1087 mutex_enter(vp->v_interlock);
1088 so2 = vp->v_socket;
1089 if (so2 == NULL) {
1090 mutex_exit(vp->v_interlock);
1091 error = ECONNREFUSED;
1092 goto bad;
1093 }
1094 if (so->so_type != so2->so_type) {
1095 mutex_exit(vp->v_interlock);
1096 error = EPROTOTYPE;
1097 goto bad;
1098 }
1099 solock(so);
1100 unp_resetlock(so);
1101 mutex_exit(vp->v_interlock);
1102 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
1103 /*
1104 * This may seem somewhat fragile but is OK: if we can
1105 * see SO_ACCEPTCONN set on the endpoint, then it must
1106 * be locked by the domain-wide uipc_lock.
1107 */
1108 KASSERT((so2->so_options & SO_ACCEPTCONN) == 0 ||
1109 so2->so_lock == uipc_lock);
1110 if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
1111 (so3 = sonewconn(so2, false)) == NULL) {
1112 error = ECONNREFUSED;
1113 sounlock(so);
1114 goto bad;
1115 }
1116 unp2 = sotounpcb(so2);
1117 unp3 = sotounpcb(so3);
1118 if (unp2->unp_addr) {
1119 unp3->unp_addr = malloc(unp2->unp_addrlen,
1120 M_SONAME, M_WAITOK);
1121 memcpy(unp3->unp_addr, unp2->unp_addr,
1122 unp2->unp_addrlen);
1123 unp3->unp_addrlen = unp2->unp_addrlen;
1124 }
1125 unp3->unp_flags = unp2->unp_flags;
1126 unp3->unp_connid.unp_pid = curlwp->l_proc->p_pid;
1127 unp3->unp_connid.unp_euid = kauth_cred_geteuid(curlwp->l_cred);
1128 unp3->unp_connid.unp_egid = kauth_cred_getegid(curlwp->l_cred);
1129 unp3->unp_flags |= UNP_EIDSVALID;
1130 if (unp2->unp_flags & UNP_EIDSBIND) {
1131 unp->unp_connid = unp2->unp_connid;
1132 unp->unp_flags |= UNP_EIDSVALID;
1133 }
1134 so2 = so3;
1135 }
1136 error = unp_connect2(so, so2, PRU_CONNECT);
1137 sounlock(so);
1138 bad:
1139 vput(vp);
1140 bad2:
1141 free(sun, M_SONAME);
1142 solock(so);
1143 unp->unp_flags &= ~UNP_BUSY;
1144 return (error);
1145 }
1146
1147 int
1148 unp_connect2(struct socket *so, struct socket *so2, int req)
1149 {
1150 struct unpcb *unp = sotounpcb(so);
1151 struct unpcb *unp2;
1152
1153 if (so2->so_type != so->so_type)
1154 return (EPROTOTYPE);
1155
1156 /*
1157 * All three sockets involved must be locked by same lock:
1158 *
1159 * local endpoint (so)
1160 * remote endpoint (so2)
1161 * queue head (so2->so_head, only if PR_CONNREQUIRED)
1162 */
1163 KASSERT(solocked2(so, so2));
1164 KASSERT(so->so_head == NULL);
1165 if (so2->so_head != NULL) {
1166 KASSERT(so2->so_lock == uipc_lock);
1167 KASSERT(solocked2(so2, so2->so_head));
1168 }
1169
1170 unp2 = sotounpcb(so2);
1171 unp->unp_conn = unp2;
1172 switch (so->so_type) {
1173
1174 case SOCK_DGRAM:
1175 unp->unp_nextref = unp2->unp_refs;
1176 unp2->unp_refs = unp;
1177 soisconnected(so);
1178 break;
1179
1180 case SOCK_SEQPACKET: /* FALLTHROUGH */
1181 case SOCK_STREAM:
1182 unp2->unp_conn = unp;
1183 if (req == PRU_CONNECT &&
1184 ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1185 soisconnecting(so);
1186 else
1187 soisconnected(so);
1188 soisconnected(so2);
1189 /*
1190 * If the connection is fully established, break the
1191 * association with uipc_lock and give the connected
1192 * pair a seperate lock to share. For CONNECT2, we
1193 * require that the locks already match (the sockets
1194 * are created that way).
1195 */
1196 if (req == PRU_CONNECT) {
1197 KASSERT(so2->so_head != NULL);
1198 unp_setpeerlocks(so, so2);
1199 }
1200 break;
1201
1202 default:
1203 panic("unp_connect2");
1204 }
1205 return (0);
1206 }
1207
1208 void
1209 unp_disconnect(struct unpcb *unp)
1210 {
1211 struct unpcb *unp2 = unp->unp_conn;
1212 struct socket *so;
1213
1214 if (unp2 == 0)
1215 return;
1216 unp->unp_conn = 0;
1217 so = unp->unp_socket;
1218 switch (so->so_type) {
1219 case SOCK_DGRAM:
1220 if (unp2->unp_refs == unp)
1221 unp2->unp_refs = unp->unp_nextref;
1222 else {
1223 unp2 = unp2->unp_refs;
1224 for (;;) {
1225 KASSERT(solocked2(so, unp2->unp_socket));
1226 if (unp2 == 0)
1227 panic("unp_disconnect");
1228 if (unp2->unp_nextref == unp)
1229 break;
1230 unp2 = unp2->unp_nextref;
1231 }
1232 unp2->unp_nextref = unp->unp_nextref;
1233 }
1234 unp->unp_nextref = 0;
1235 so->so_state &= ~SS_ISCONNECTED;
1236 break;
1237
1238 case SOCK_SEQPACKET: /* FALLTHROUGH */
1239 case SOCK_STREAM:
1240 KASSERT(solocked2(so, unp2->unp_socket));
1241 soisdisconnected(so);
1242 unp2->unp_conn = 0;
1243 soisdisconnected(unp2->unp_socket);
1244 break;
1245 }
1246 }
1247
1248 void
1249 unp_shutdown(struct unpcb *unp)
1250 {
1251 struct socket *so;
1252
1253 switch(unp->unp_socket->so_type) {
1254 case SOCK_SEQPACKET: /* FALLTHROUGH */
1255 case SOCK_STREAM:
1256 if (unp->unp_conn && (so = unp->unp_conn->unp_socket))
1257 socantrcvmore(so);
1258 break;
1259 default:
1260 break;
1261 }
1262 }
1263
1264 bool
1265 unp_drop(struct unpcb *unp, int errno)
1266 {
1267 struct socket *so = unp->unp_socket;
1268
1269 KASSERT(solocked(so));
1270
1271 so->so_error = errno;
1272 unp_disconnect(unp);
1273 if (so->so_head) {
1274 so->so_pcb = NULL;
1275 /* sofree() drops the socket lock */
1276 sofree(so);
1277 unp_free(unp);
1278 return true;
1279 }
1280 return false;
1281 }
1282
1283 #ifdef notdef
1284 unp_drain(void)
1285 {
1286
1287 }
1288 #endif
1289
1290 int
1291 unp_externalize(struct mbuf *rights, struct lwp *l, int flags)
1292 {
1293 struct cmsghdr * const cm = mtod(rights, struct cmsghdr *);
1294 struct proc * const p = l->l_proc;
1295 file_t **rp;
1296 int error = 0;
1297
1298 const size_t nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
1299 sizeof(file_t *);
1300 if (nfds == 0)
1301 goto noop;
1302
1303 int * const fdp = kmem_alloc(nfds * sizeof(int), KM_SLEEP);
1304 rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
1305
1306 /* Make sure the recipient should be able to see the files.. */
1307 rp = (file_t **)CMSG_DATA(cm);
1308 for (size_t i = 0; i < nfds; i++) {
1309 file_t * const fp = *rp++;
1310 if (fp == NULL) {
1311 error = EINVAL;
1312 goto out;
1313 }
1314 /*
1315 * If we are in a chroot'ed directory, and
1316 * someone wants to pass us a directory, make
1317 * sure it's inside the subtree we're allowed
1318 * to access.
1319 */
1320 if (p->p_cwdi->cwdi_rdir != NULL && fp->f_type == DTYPE_VNODE) {
1321 vnode_t *vp = (vnode_t *)fp->f_data;
1322 if ((vp->v_type == VDIR) &&
1323 !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
1324 error = EPERM;
1325 goto out;
1326 }
1327 }
1328 }
1329
1330 restart:
1331 /*
1332 * First loop -- allocate file descriptor table slots for the
1333 * new files.
1334 */
1335 for (size_t i = 0; i < nfds; i++) {
1336 if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
1337 /*
1338 * Back out what we've done so far.
1339 */
1340 while (i-- > 0) {
1341 fd_abort(p, NULL, fdp[i]);
1342 }
1343 if (error == ENOSPC) {
1344 fd_tryexpand(p);
1345 error = 0;
1346 goto restart;
1347 }
1348 /*
1349 * This is the error that has historically
1350 * been returned, and some callers may
1351 * expect it.
1352 */
1353 error = EMSGSIZE;
1354 goto out;
1355 }
1356 }
1357
1358 /*
1359 * Now that adding them has succeeded, update all of the
1360 * file passing state and affix the descriptors.
1361 */
1362 rp = (file_t **)CMSG_DATA(cm);
1363 int *ofdp = (int *)CMSG_DATA(cm);
1364 for (size_t i = 0; i < nfds; i++) {
1365 file_t * const fp = *rp++;
1366 const int fd = fdp[i];
1367 atomic_dec_uint(&unp_rights);
1368 fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
1369 fd_affix(p, fp, fd);
1370 /*
1371 * Done with this file pointer, replace it with a fd;
1372 */
1373 *ofdp++ = fd;
1374 mutex_enter(&fp->f_lock);
1375 fp->f_msgcount--;
1376 mutex_exit(&fp->f_lock);
1377 /*
1378 * Note that fd_affix() adds a reference to the file.
1379 * The file may already have been closed by another
1380 * LWP in the process, so we must drop the reference
1381 * added by unp_internalize() with closef().
1382 */
1383 closef(fp);
1384 }
1385
1386 /*
1387 * Adjust length, in case of transition from large file_t
1388 * pointers to ints.
1389 */
1390 if (sizeof(file_t *) != sizeof(int)) {
1391 cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
1392 rights->m_len = CMSG_SPACE(nfds * sizeof(int));
1393 }
1394 out:
1395 if (__predict_false(error != 0)) {
1396 file_t **const fpp = (file_t **)CMSG_DATA(cm);
1397 for (size_t i = 0; i < nfds; i++)
1398 unp_discard_now(fpp[i]);
1399 /*
1400 * Truncate the array so that nobody will try to interpret
1401 * what is now garbage in it.
1402 */
1403 cm->cmsg_len = CMSG_LEN(0);
1404 rights->m_len = CMSG_SPACE(0);
1405 }
1406 rw_exit(&p->p_cwdi->cwdi_lock);
1407 kmem_free(fdp, nfds * sizeof(int));
1408
1409 noop:
1410 /*
1411 * Don't disclose kernel memory in the alignment space.
1412 */
1413 KASSERT(cm->cmsg_len <= rights->m_len);
1414 memset(&mtod(rights, char *)[cm->cmsg_len], 0, rights->m_len -
1415 cm->cmsg_len);
1416 return error;
1417 }
1418
1419 int
1420 unp_internalize(struct mbuf **controlp)
1421 {
1422 filedesc_t *fdescp = curlwp->l_fd;
1423 struct mbuf *control = *controlp;
1424 struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
1425 file_t **rp, **files;
1426 file_t *fp;
1427 int i, fd, *fdp;
1428 int nfds, error;
1429 u_int maxmsg;
1430
1431 error = 0;
1432 newcm = NULL;
1433
1434 /* Sanity check the control message header. */
1435 if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
1436 cm->cmsg_len > control->m_len ||
1437 cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
1438 return (EINVAL);
1439
1440 /*
1441 * Verify that the file descriptors are valid, and acquire
1442 * a reference to each.
1443 */
1444 nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
1445 fdp = (int *)CMSG_DATA(cm);
1446 maxmsg = maxfiles / unp_rights_ratio;
1447 for (i = 0; i < nfds; i++) {
1448 fd = *fdp++;
1449 if (atomic_inc_uint_nv(&unp_rights) > maxmsg) {
1450 atomic_dec_uint(&unp_rights);
1451 nfds = i;
1452 error = EAGAIN;
1453 goto out;
1454 }
1455 if ((fp = fd_getfile(fd)) == NULL
1456 || fp->f_type == DTYPE_KQUEUE) {
1457 if (fp)
1458 fd_putfile(fd);
1459 atomic_dec_uint(&unp_rights);
1460 nfds = i;
1461 error = EBADF;
1462 goto out;
1463 }
1464 }
1465
1466 /* Allocate new space and copy header into it. */
1467 newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
1468 if (newcm == NULL) {
1469 error = E2BIG;
1470 goto out;
1471 }
1472 memcpy(newcm, cm, sizeof(struct cmsghdr));
1473 files = (file_t **)CMSG_DATA(newcm);
1474
1475 /*
1476 * Transform the file descriptors into file_t pointers, in
1477 * reverse order so that if pointers are bigger than ints, the
1478 * int won't get until we're done. No need to lock, as we have
1479 * already validated the descriptors with fd_getfile().
1480 */
1481 fdp = (int *)CMSG_DATA(cm) + nfds;
1482 rp = files + nfds;
1483 for (i = 0; i < nfds; i++) {
1484 fp = fdescp->fd_dt->dt_ff[*--fdp]->ff_file;
1485 KASSERT(fp != NULL);
1486 mutex_enter(&fp->f_lock);
1487 *--rp = fp;
1488 fp->f_count++;
1489 fp->f_msgcount++;
1490 mutex_exit(&fp->f_lock);
1491 }
1492
1493 out:
1494 /* Release descriptor references. */
1495 fdp = (int *)CMSG_DATA(cm);
1496 for (i = 0; i < nfds; i++) {
1497 fd_putfile(*fdp++);
1498 if (error != 0) {
1499 atomic_dec_uint(&unp_rights);
1500 }
1501 }
1502
1503 if (error == 0) {
1504 if (control->m_flags & M_EXT) {
1505 m_freem(control);
1506 *controlp = control = m_get(M_WAIT, MT_CONTROL);
1507 }
1508 MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
1509 M_MBUF, NULL, NULL);
1510 cm = newcm;
1511 /*
1512 * Adjust message & mbuf to note amount of space
1513 * actually used.
1514 */
1515 cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
1516 control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
1517 }
1518
1519 return error;
1520 }
1521
1522 struct mbuf *
1523 unp_addsockcred(struct lwp *l, struct mbuf *control)
1524 {
1525 struct sockcred *sc;
1526 struct mbuf *m;
1527 void *p;
1528
1529 m = sbcreatecontrol1(&p, SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)),
1530 SCM_CREDS, SOL_SOCKET, M_WAITOK);
1531 if (m == NULL)
1532 return control;
1533
1534 sc = p;
1535 sc->sc_uid = kauth_cred_getuid(l->l_cred);
1536 sc->sc_euid = kauth_cred_geteuid(l->l_cred);
1537 sc->sc_gid = kauth_cred_getgid(l->l_cred);
1538 sc->sc_egid = kauth_cred_getegid(l->l_cred);
1539 sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
1540
1541 for (int i = 0; i < sc->sc_ngroups; i++)
1542 sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
1543
1544 return m_add(control, m);
1545 }
1546
1547 /*
1548 * Do a mark-sweep GC of files in the system, to free up any which are
1549 * caught in flight to an about-to-be-closed socket. Additionally,
1550 * process deferred file closures.
1551 */
1552 static void
1553 unp_gc(file_t *dp)
1554 {
1555 extern struct domain unixdomain;
1556 file_t *fp, *np;
1557 struct socket *so, *so1;
1558 u_int i, old, new;
1559 bool didwork;
1560
1561 KASSERT(curlwp == unp_thread_lwp);
1562 KASSERT(mutex_owned(&filelist_lock));
1563
1564 /*
1565 * First, process deferred file closures.
1566 */
1567 while (!SLIST_EMPTY(&unp_thread_discard)) {
1568 fp = SLIST_FIRST(&unp_thread_discard);
1569 KASSERT(fp->f_unpcount > 0);
1570 KASSERT(fp->f_count > 0);
1571 KASSERT(fp->f_msgcount > 0);
1572 KASSERT(fp->f_count >= fp->f_unpcount);
1573 KASSERT(fp->f_count >= fp->f_msgcount);
1574 KASSERT(fp->f_msgcount >= fp->f_unpcount);
1575 SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist);
1576 i = fp->f_unpcount;
1577 fp->f_unpcount = 0;
1578 mutex_exit(&filelist_lock);
1579 for (; i != 0; i--) {
1580 unp_discard_now(fp);
1581 }
1582 mutex_enter(&filelist_lock);
1583 }
1584
1585 /*
1586 * Clear mark bits. Ensure that we don't consider new files
1587 * entering the file table during this loop (they will not have
1588 * FSCAN set).
1589 */
1590 unp_defer = 0;
1591 LIST_FOREACH(fp, &filehead, f_list) {
1592 for (old = fp->f_flag;; old = new) {
1593 new = atomic_cas_uint(&fp->f_flag, old,
1594 (old | FSCAN) & ~(FMARK|FDEFER));
1595 if (__predict_true(old == new)) {
1596 break;
1597 }
1598 }
1599 }
1600
1601 /*
1602 * Iterate over the set of sockets, marking ones believed (based on
1603 * refcount) to be referenced from a process, and marking for rescan
1604 * sockets which are queued on a socket. Recan continues descending
1605 * and searching for sockets referenced by sockets (FDEFER), until
1606 * there are no more socket->socket references to be discovered.
1607 */
1608 do {
1609 didwork = false;
1610 for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1611 KASSERT(mutex_owned(&filelist_lock));
1612 np = LIST_NEXT(fp, f_list);
1613 mutex_enter(&fp->f_lock);
1614 if ((fp->f_flag & FDEFER) != 0) {
1615 atomic_and_uint(&fp->f_flag, ~FDEFER);
1616 unp_defer--;
1617 KASSERT(fp->f_count != 0);
1618 } else {
1619 if (fp->f_count == 0 ||
1620 (fp->f_flag & FMARK) != 0 ||
1621 fp->f_count == fp->f_msgcount ||
1622 fp->f_unpcount != 0) {
1623 mutex_exit(&fp->f_lock);
1624 continue;
1625 }
1626 }
1627 atomic_or_uint(&fp->f_flag, FMARK);
1628
1629 if (fp->f_type != DTYPE_SOCKET ||
1630 (so = fp->f_data) == NULL ||
1631 so->so_proto->pr_domain != &unixdomain ||
1632 (so->so_proto->pr_flags & PR_RIGHTS) == 0) {
1633 mutex_exit(&fp->f_lock);
1634 continue;
1635 }
1636
1637 /* Gain file ref, mark our position, and unlock. */
1638 didwork = true;
1639 LIST_INSERT_AFTER(fp, dp, f_list);
1640 fp->f_count++;
1641 mutex_exit(&fp->f_lock);
1642 mutex_exit(&filelist_lock);
1643
1644 /*
1645 * Mark files referenced from sockets queued on the
1646 * accept queue as well.
1647 */
1648 solock(so);
1649 unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
1650 if ((so->so_options & SO_ACCEPTCONN) != 0) {
1651 TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
1652 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1653 }
1654 TAILQ_FOREACH(so1, &so->so_q, so_qe) {
1655 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1656 }
1657 }
1658 sounlock(so);
1659
1660 /* Re-lock and restart from where we left off. */
1661 closef(fp);
1662 mutex_enter(&filelist_lock);
1663 np = LIST_NEXT(dp, f_list);
1664 LIST_REMOVE(dp, f_list);
1665 }
1666 /*
1667 * Bail early if we did nothing in the loop above. Could
1668 * happen because of concurrent activity causing unp_defer
1669 * to get out of sync.
1670 */
1671 } while (unp_defer != 0 && didwork);
1672
1673 /*
1674 * Sweep pass.
1675 *
1676 * We grab an extra reference to each of the files that are
1677 * not otherwise accessible and then free the rights that are
1678 * stored in messages on them.
1679 */
1680 for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1681 KASSERT(mutex_owned(&filelist_lock));
1682 np = LIST_NEXT(fp, f_list);
1683 mutex_enter(&fp->f_lock);
1684
1685 /*
1686 * Ignore non-sockets.
1687 * Ignore dead sockets, or sockets with pending close.
1688 * Ignore sockets obviously referenced elsewhere.
1689 * Ignore sockets marked as referenced by our scan.
1690 * Ignore new sockets that did not exist during the scan.
1691 */
1692 if (fp->f_type != DTYPE_SOCKET ||
1693 fp->f_count == 0 || fp->f_unpcount != 0 ||
1694 fp->f_count != fp->f_msgcount ||
1695 (fp->f_flag & (FMARK | FSCAN)) != FSCAN) {
1696 mutex_exit(&fp->f_lock);
1697 continue;
1698 }
1699
1700 /* Gain file ref, mark our position, and unlock. */
1701 LIST_INSERT_AFTER(fp, dp, f_list);
1702 fp->f_count++;
1703 mutex_exit(&fp->f_lock);
1704 mutex_exit(&filelist_lock);
1705
1706 /*
1707 * Flush all data from the socket's receive buffer.
1708 * This will cause files referenced only by the
1709 * socket to be queued for close.
1710 */
1711 so = fp->f_data;
1712 solock(so);
1713 sorflush(so);
1714 sounlock(so);
1715
1716 /* Re-lock and restart from where we left off. */
1717 closef(fp);
1718 mutex_enter(&filelist_lock);
1719 np = LIST_NEXT(dp, f_list);
1720 LIST_REMOVE(dp, f_list);
1721 }
1722 }
1723
1724 /*
1725 * Garbage collector thread. While SCM_RIGHTS messages are in transit,
1726 * wake once per second to garbage collect. Run continually while we
1727 * have deferred closes to process.
1728 */
1729 static void
1730 unp_thread(void *cookie)
1731 {
1732 file_t *dp;
1733
1734 /* Allocate a dummy file for our scans. */
1735 if ((dp = fgetdummy()) == NULL) {
1736 panic("unp_thread");
1737 }
1738
1739 mutex_enter(&filelist_lock);
1740 for (;;) {
1741 KASSERT(mutex_owned(&filelist_lock));
1742 if (SLIST_EMPTY(&unp_thread_discard)) {
1743 if (unp_rights != 0) {
1744 (void)cv_timedwait(&unp_thread_cv,
1745 &filelist_lock, hz);
1746 } else {
1747 cv_wait(&unp_thread_cv, &filelist_lock);
1748 }
1749 }
1750 unp_gc(dp);
1751 }
1752 /* NOTREACHED */
1753 }
1754
1755 /*
1756 * Kick the garbage collector into action if there is something for
1757 * it to process.
1758 */
1759 static void
1760 unp_thread_kick(void)
1761 {
1762
1763 if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) {
1764 mutex_enter(&filelist_lock);
1765 cv_signal(&unp_thread_cv);
1766 mutex_exit(&filelist_lock);
1767 }
1768 }
1769
1770 void
1771 unp_dispose(struct mbuf *m)
1772 {
1773
1774 if (m)
1775 unp_scan(m, unp_discard_later, 1);
1776 }
1777
1778 void
1779 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
1780 {
1781 struct mbuf *m;
1782 file_t **rp, *fp;
1783 struct cmsghdr *cm;
1784 int i, qfds;
1785
1786 while (m0) {
1787 for (m = m0; m; m = m->m_next) {
1788 if (m->m_type != MT_CONTROL ||
1789 m->m_len < sizeof(*cm)) {
1790 continue;
1791 }
1792 cm = mtod(m, struct cmsghdr *);
1793 if (cm->cmsg_level != SOL_SOCKET ||
1794 cm->cmsg_type != SCM_RIGHTS)
1795 continue;
1796 qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
1797 / sizeof(file_t *);
1798 rp = (file_t **)CMSG_DATA(cm);
1799 for (i = 0; i < qfds; i++) {
1800 fp = *rp;
1801 if (discard) {
1802 *rp = 0;
1803 }
1804 (*op)(fp);
1805 rp++;
1806 }
1807 }
1808 m0 = m0->m_nextpkt;
1809 }
1810 }
1811
1812 void
1813 unp_mark(file_t *fp)
1814 {
1815
1816 if (fp == NULL)
1817 return;
1818
1819 /* If we're already deferred, don't screw up the defer count */
1820 mutex_enter(&fp->f_lock);
1821 if (fp->f_flag & (FMARK | FDEFER)) {
1822 mutex_exit(&fp->f_lock);
1823 return;
1824 }
1825
1826 /*
1827 * Minimize the number of deferrals... Sockets are the only type of
1828 * file which can hold references to another file, so just mark
1829 * other files, and defer unmarked sockets for the next pass.
1830 */
1831 if (fp->f_type == DTYPE_SOCKET) {
1832 unp_defer++;
1833 KASSERT(fp->f_count != 0);
1834 atomic_or_uint(&fp->f_flag, FDEFER);
1835 } else {
1836 atomic_or_uint(&fp->f_flag, FMARK);
1837 }
1838 mutex_exit(&fp->f_lock);
1839 }
1840
1841 static void
1842 unp_discard_now(file_t *fp)
1843 {
1844
1845 if (fp == NULL)
1846 return;
1847
1848 KASSERT(fp->f_count > 0);
1849 KASSERT(fp->f_msgcount > 0);
1850
1851 mutex_enter(&fp->f_lock);
1852 fp->f_msgcount--;
1853 mutex_exit(&fp->f_lock);
1854 atomic_dec_uint(&unp_rights);
1855 (void)closef(fp);
1856 }
1857
1858 static void
1859 unp_discard_later(file_t *fp)
1860 {
1861
1862 if (fp == NULL)
1863 return;
1864
1865 KASSERT(fp->f_count > 0);
1866 KASSERT(fp->f_msgcount > 0);
1867
1868 mutex_enter(&filelist_lock);
1869 if (fp->f_unpcount++ == 0) {
1870 SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist);
1871 }
1872 mutex_exit(&filelist_lock);
1873 }
1874
1875 const struct pr_usrreqs unp_usrreqs = {
1876 .pr_attach = unp_attach,
1877 .pr_detach = unp_detach,
1878 .pr_accept = unp_accept,
1879 .pr_bind = unp_bind,
1880 .pr_listen = unp_listen,
1881 .pr_connect = unp_connect,
1882 .pr_ioctl = unp_ioctl,
1883 .pr_stat = unp_stat,
1884 .pr_peeraddr = unp_peeraddr,
1885 .pr_sockaddr = unp_sockaddr,
1886 .pr_recvoob = unp_recvoob,
1887 .pr_sendoob = unp_sendoob,
1888 .pr_generic = unp_usrreq,
1889 };
1890