Home | History | Annotate | Line # | Download | only in kern
uipc_usrreq.c revision 1.163
      1 /*	$NetBSD: uipc_usrreq.c,v 1.163 2014/07/31 03:39:35 rtr Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 2000, 2004, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
     62  */
     63 
     64 /*
     65  * Copyright (c) 1997 Christopher G. Demetriou.  All rights reserved.
     66  *
     67  * Redistribution and use in source and binary forms, with or without
     68  * modification, are permitted provided that the following conditions
     69  * are met:
     70  * 1. Redistributions of source code must retain the above copyright
     71  *    notice, this list of conditions and the following disclaimer.
     72  * 2. Redistributions in binary form must reproduce the above copyright
     73  *    notice, this list of conditions and the following disclaimer in the
     74  *    documentation and/or other materials provided with the distribution.
     75  * 3. All advertising materials mentioning features or use of this software
     76  *    must display the following acknowledgement:
     77  *	This product includes software developed by the University of
     78  *	California, Berkeley and its contributors.
     79  * 4. Neither the name of the University nor the names of its contributors
     80  *    may be used to endorse or promote products derived from this software
     81  *    without specific prior written permission.
     82  *
     83  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     84  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     85  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     86  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     87  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     88  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     89  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     90  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     91  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     92  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     93  * SUCH DAMAGE.
     94  *
     95  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
     96  */
     97 
     98 #include <sys/cdefs.h>
     99 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.163 2014/07/31 03:39:35 rtr Exp $");
    100 
    101 #include <sys/param.h>
    102 #include <sys/systm.h>
    103 #include <sys/proc.h>
    104 #include <sys/filedesc.h>
    105 #include <sys/domain.h>
    106 #include <sys/protosw.h>
    107 #include <sys/socket.h>
    108 #include <sys/socketvar.h>
    109 #include <sys/unpcb.h>
    110 #include <sys/un.h>
    111 #include <sys/namei.h>
    112 #include <sys/vnode.h>
    113 #include <sys/file.h>
    114 #include <sys/stat.h>
    115 #include <sys/mbuf.h>
    116 #include <sys/kauth.h>
    117 #include <sys/kmem.h>
    118 #include <sys/atomic.h>
    119 #include <sys/uidinfo.h>
    120 #include <sys/kernel.h>
    121 #include <sys/kthread.h>
    122 
    123 /*
    124  * Unix communications domain.
    125  *
    126  * TODO:
    127  *	RDM
    128  *	rethink name space problems
    129  *	need a proper out-of-band
    130  *
    131  * Notes on locking:
    132  *
    133  * The generic rules noted in uipc_socket2.c apply.  In addition:
    134  *
    135  * o We have a global lock, uipc_lock.
    136  *
    137  * o All datagram sockets are locked by uipc_lock.
    138  *
    139  * o For stream socketpairs, the two endpoints are created sharing the same
    140  *   independent lock.  Sockets presented to PRU_CONNECT2 must already have
    141  *   matching locks.
    142  *
    143  * o Stream sockets created via socket() start life with their own
    144  *   independent lock.
    145  *
    146  * o Stream connections to a named endpoint are slightly more complicated.
    147  *   Sockets that have called listen() have their lock pointer mutated to
    148  *   the global uipc_lock.  When establishing a connection, the connecting
    149  *   socket also has its lock mutated to uipc_lock, which matches the head
    150  *   (listening socket).  We create a new socket for accept() to return, and
    151  *   that also shares the head's lock.  Until the connection is completely
    152  *   done on both ends, all three sockets are locked by uipc_lock.  Once the
    153  *   connection is complete, the association with the head's lock is broken.
    154  *   The connecting socket and the socket returned from accept() have their
    155  *   lock pointers mutated away from uipc_lock, and back to the connecting
    156  *   socket's original, independent lock.  The head continues to be locked
    157  *   by uipc_lock.
    158  *
    159  * o If uipc_lock is determined to be a significant source of contention,
    160  *   it could easily be hashed out.  It is difficult to simply make it an
    161  *   independent lock because of visibility / garbage collection issues:
    162  *   if a socket has been associated with a lock at any point, that lock
    163  *   must remain valid until the socket is no longer visible in the system.
    164  *   The lock must not be freed or otherwise destroyed until any sockets
    165  *   that had referenced it have also been destroyed.
    166  */
    167 const struct sockaddr_un sun_noname = {
    168 	.sun_len = offsetof(struct sockaddr_un, sun_path),
    169 	.sun_family = AF_LOCAL,
    170 };
    171 ino_t	unp_ino;			/* prototype for fake inode numbers */
    172 
    173 static void unp_detach(struct socket *);
    174 struct mbuf *unp_addsockcred(struct lwp *, struct mbuf *);
    175 static void unp_mark(file_t *);
    176 static void unp_scan(struct mbuf *, void (*)(file_t *), int);
    177 static void unp_discard_now(file_t *);
    178 static void unp_discard_later(file_t *);
    179 static void unp_thread(void *);
    180 static void unp_thread_kick(void);
    181 static kmutex_t *uipc_lock;
    182 
    183 static kcondvar_t unp_thread_cv;
    184 static lwp_t *unp_thread_lwp;
    185 static SLIST_HEAD(,file) unp_thread_discard;
    186 static int unp_defer;
    187 
    188 /*
    189  * Initialize Unix protocols.
    190  */
    191 void
    192 uipc_init(void)
    193 {
    194 	int error;
    195 
    196 	uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    197 	cv_init(&unp_thread_cv, "unpgc");
    198 
    199 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread,
    200 	    NULL, &unp_thread_lwp, "unpgc");
    201 	if (error != 0)
    202 		panic("uipc_init %d", error);
    203 }
    204 
    205 /*
    206  * A connection succeeded: disassociate both endpoints from the head's
    207  * lock, and make them share their own lock.  There is a race here: for
    208  * a very brief time one endpoint will be locked by a different lock
    209  * than the other end.  However, since the current thread holds the old
    210  * lock (the listening socket's lock, the head) access can still only be
    211  * made to one side of the connection.
    212  */
    213 static void
    214 unp_setpeerlocks(struct socket *so, struct socket *so2)
    215 {
    216 	struct unpcb *unp;
    217 	kmutex_t *lock;
    218 
    219 	KASSERT(solocked2(so, so2));
    220 
    221 	/*
    222 	 * Bail out if either end of the socket is not yet fully
    223 	 * connected or accepted.  We only break the lock association
    224 	 * with the head when the pair of sockets stand completely
    225 	 * on their own.
    226 	 */
    227 	KASSERT(so->so_head == NULL);
    228 	if (so2->so_head != NULL)
    229 		return;
    230 
    231 	/*
    232 	 * Drop references to old lock.  A third reference (from the
    233 	 * queue head) must be held as we still hold its lock.  Bonus:
    234 	 * we don't need to worry about garbage collecting the lock.
    235 	 */
    236 	lock = so->so_lock;
    237 	KASSERT(lock == uipc_lock);
    238 	mutex_obj_free(lock);
    239 	mutex_obj_free(lock);
    240 
    241 	/*
    242 	 * Grab stream lock from the initiator and share between the two
    243 	 * endpoints.  Issue memory barrier to ensure all modifications
    244 	 * become globally visible before the lock change.  so2 is
    245 	 * assumed not to have a stream lock, because it was created
    246 	 * purely for the server side to accept this connection and
    247 	 * started out life using the domain-wide lock.
    248 	 */
    249 	unp = sotounpcb(so);
    250 	KASSERT(unp->unp_streamlock != NULL);
    251 	KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
    252 	lock = unp->unp_streamlock;
    253 	unp->unp_streamlock = NULL;
    254 	mutex_obj_hold(lock);
    255 	membar_exit();
    256 	/*
    257 	 * possible race if lock is not held - see comment in
    258 	 * uipc_usrreq(PRU_ACCEPT).
    259 	 */
    260 	KASSERT(mutex_owned(lock));
    261 	solockreset(so, lock);
    262 	solockreset(so2, lock);
    263 }
    264 
    265 /*
    266  * Reset a socket's lock back to the domain-wide lock.
    267  */
    268 static void
    269 unp_resetlock(struct socket *so)
    270 {
    271 	kmutex_t *olock, *nlock;
    272 	struct unpcb *unp;
    273 
    274 	KASSERT(solocked(so));
    275 
    276 	olock = so->so_lock;
    277 	nlock = uipc_lock;
    278 	if (olock == nlock)
    279 		return;
    280 	unp = sotounpcb(so);
    281 	KASSERT(unp->unp_streamlock == NULL);
    282 	unp->unp_streamlock = olock;
    283 	mutex_obj_hold(nlock);
    284 	mutex_enter(nlock);
    285 	solockreset(so, nlock);
    286 	mutex_exit(olock);
    287 }
    288 
    289 static void
    290 unp_free(struct unpcb *unp)
    291 {
    292 	if (unp->unp_addr)
    293 		free(unp->unp_addr, M_SONAME);
    294 	if (unp->unp_streamlock != NULL)
    295 		mutex_obj_free(unp->unp_streamlock);
    296 	kmem_free(unp, sizeof(*unp));
    297 }
    298 
    299 int
    300 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp,
    301 	struct lwp *l)
    302 {
    303 	struct socket *so2;
    304 	const struct sockaddr_un *sun;
    305 
    306 	/* XXX: server side closed the socket */
    307 	if (unp->unp_conn == NULL)
    308 		return ECONNREFUSED;
    309 	so2 = unp->unp_conn->unp_socket;
    310 
    311 	KASSERT(solocked(so2));
    312 
    313 	if (unp->unp_addr)
    314 		sun = unp->unp_addr;
    315 	else
    316 		sun = &sun_noname;
    317 	if (unp->unp_conn->unp_flags & UNP_WANTCRED)
    318 		control = unp_addsockcred(l, control);
    319 	if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
    320 	    control) == 0) {
    321 		so2->so_rcv.sb_overflowed++;
    322 		unp_dispose(control);
    323 		m_freem(control);
    324 		m_freem(m);
    325 		return (ENOBUFS);
    326 	} else {
    327 		sorwakeup(so2);
    328 		return (0);
    329 	}
    330 }
    331 
    332 void
    333 unp_setaddr(struct socket *so, struct mbuf *nam, bool peeraddr)
    334 {
    335 	const struct sockaddr_un *sun;
    336 	struct unpcb *unp;
    337 	bool ext;
    338 
    339 	KASSERT(solocked(so));
    340 	unp = sotounpcb(so);
    341 	ext = false;
    342 
    343 	for (;;) {
    344 		sun = NULL;
    345 		if (peeraddr) {
    346 			if (unp->unp_conn && unp->unp_conn->unp_addr)
    347 				sun = unp->unp_conn->unp_addr;
    348 		} else {
    349 			if (unp->unp_addr)
    350 				sun = unp->unp_addr;
    351 		}
    352 		if (sun == NULL)
    353 			sun = &sun_noname;
    354 		nam->m_len = sun->sun_len;
    355 		if (nam->m_len > MLEN && !ext) {
    356 			sounlock(so);
    357 			MEXTMALLOC(nam, MAXPATHLEN * 2, M_WAITOK);
    358 			solock(so);
    359 			ext = true;
    360 		} else {
    361 			KASSERT(nam->m_len <= MAXPATHLEN * 2);
    362 			memcpy(mtod(nam, void *), sun, (size_t)nam->m_len);
    363 			break;
    364 		}
    365 	}
    366 }
    367 
    368 static int
    369 unp_recvoob(struct socket *so, struct mbuf *m, int flags)
    370 {
    371 	KASSERT(solocked(so));
    372 
    373 	return EOPNOTSUPP;
    374 }
    375 
    376 static int
    377 unp_sendoob(struct socket *so, struct mbuf *m, struct mbuf * control)
    378 {
    379 	KASSERT(solocked(so));
    380 
    381 	m_freem(m);
    382 	m_freem(control);
    383 
    384 	return EOPNOTSUPP;
    385 }
    386 
    387 static int
    388 unp_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
    389     struct mbuf *control, struct lwp *l)
    390 {
    391 	struct unpcb *unp;
    392 	struct socket *so2;
    393 	u_int newhiwat;
    394 	int error = 0;
    395 
    396 	KASSERT(req != PRU_ATTACH);
    397 	KASSERT(req != PRU_DETACH);
    398 	KASSERT(req != PRU_ACCEPT);
    399 	KASSERT(req != PRU_BIND);
    400 	KASSERT(req != PRU_LISTEN);
    401 	KASSERT(req != PRU_CONNECT);
    402 	KASSERT(req != PRU_DISCONNECT);
    403 	KASSERT(req != PRU_SHUTDOWN);
    404 	KASSERT(req != PRU_ABORT);
    405 	KASSERT(req != PRU_CONTROL);
    406 	KASSERT(req != PRU_SENSE);
    407 	KASSERT(req != PRU_PEERADDR);
    408 	KASSERT(req != PRU_SOCKADDR);
    409 	KASSERT(req != PRU_RCVOOB);
    410 	KASSERT(req != PRU_SENDOOB);
    411 
    412 	KASSERT(solocked(so));
    413 	unp = sotounpcb(so);
    414 
    415 	KASSERT(!control || req == PRU_SEND);
    416 	if (unp == NULL) {
    417 		error = EINVAL;
    418 		goto release;
    419 	}
    420 
    421 	switch (req) {
    422 	case PRU_CONNECT2:
    423 		error = unp_connect2(so, (struct socket *)nam, PRU_CONNECT2);
    424 		break;
    425 
    426 	case PRU_RCVD:
    427 		switch (so->so_type) {
    428 
    429 		case SOCK_DGRAM:
    430 			panic("uipc 1");
    431 			/*NOTREACHED*/
    432 
    433 		case SOCK_SEQPACKET: /* FALLTHROUGH */
    434 		case SOCK_STREAM:
    435 #define	rcv (&so->so_rcv)
    436 #define snd (&so2->so_snd)
    437 			if (unp->unp_conn == 0)
    438 				break;
    439 			so2 = unp->unp_conn->unp_socket;
    440 			KASSERT(solocked2(so, so2));
    441 			/*
    442 			 * Adjust backpressure on sender
    443 			 * and wakeup any waiting to write.
    444 			 */
    445 			snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
    446 			unp->unp_mbcnt = rcv->sb_mbcnt;
    447 			newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
    448 			(void)chgsbsize(so2->so_uidinfo,
    449 			    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
    450 			unp->unp_cc = rcv->sb_cc;
    451 			sowwakeup(so2);
    452 #undef snd
    453 #undef rcv
    454 			break;
    455 
    456 		default:
    457 			panic("uipc 2");
    458 		}
    459 		break;
    460 
    461 	case PRU_SEND:
    462 		/*
    463 		 * Note: unp_internalize() rejects any control message
    464 		 * other than SCM_RIGHTS, and only allows one.  This
    465 		 * has the side-effect of preventing a caller from
    466 		 * forging SCM_CREDS.
    467 		 */
    468 		if (control) {
    469 			sounlock(so);
    470 			error = unp_internalize(&control);
    471 			solock(so);
    472 			if (error != 0) {
    473 				m_freem(control);
    474 				m_freem(m);
    475 				break;
    476 			}
    477 		}
    478 		switch (so->so_type) {
    479 
    480 		case SOCK_DGRAM: {
    481 			KASSERT(so->so_lock == uipc_lock);
    482 			if (nam) {
    483 				if ((so->so_state & SS_ISCONNECTED) != 0)
    484 					error = EISCONN;
    485 				else {
    486 					/*
    487 					 * Note: once connected, the
    488 					 * socket's lock must not be
    489 					 * dropped until we have sent
    490 					 * the message and disconnected.
    491 					 * This is necessary to prevent
    492 					 * intervening control ops, like
    493 					 * another connection.
    494 					 */
    495 					error = unp_connect(so, nam);
    496 				}
    497 			} else {
    498 				if ((so->so_state & SS_ISCONNECTED) == 0)
    499 					error = ENOTCONN;
    500 			}
    501 			if (error) {
    502 				unp_dispose(control);
    503 				m_freem(control);
    504 				m_freem(m);
    505 				break;
    506 			}
    507 			KASSERT(l != NULL);
    508 			error = unp_output(m, control, unp, l);
    509 			if (nam)
    510 				unp_disconnect1(unp);
    511 			break;
    512 		}
    513 
    514 		case SOCK_SEQPACKET: /* FALLTHROUGH */
    515 		case SOCK_STREAM:
    516 #define	rcv (&so2->so_rcv)
    517 #define	snd (&so->so_snd)
    518 			if (unp->unp_conn == NULL) {
    519 				error = ENOTCONN;
    520 				break;
    521 			}
    522 			so2 = unp->unp_conn->unp_socket;
    523 			KASSERT(solocked2(so, so2));
    524 			if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
    525 				/*
    526 				 * Credentials are passed only once on
    527 				 * SOCK_STREAM and SOCK_SEQPACKET.
    528 				 */
    529 				unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
    530 				control = unp_addsockcred(l, control);
    531 			}
    532 			/*
    533 			 * Send to paired receive port, and then reduce
    534 			 * send buffer hiwater marks to maintain backpressure.
    535 			 * Wake up readers.
    536 			 */
    537 			if (control) {
    538 				if (sbappendcontrol(rcv, m, control) != 0)
    539 					control = NULL;
    540 			} else {
    541 				switch(so->so_type) {
    542 				case SOCK_SEQPACKET:
    543 					sbappendrecord(rcv, m);
    544 					break;
    545 				case SOCK_STREAM:
    546 					sbappend(rcv, m);
    547 					break;
    548 				default:
    549 					panic("uipc_usrreq");
    550 					break;
    551 				}
    552 			}
    553 			snd->sb_mbmax -=
    554 			    rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
    555 			unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
    556 			newhiwat = snd->sb_hiwat -
    557 			    (rcv->sb_cc - unp->unp_conn->unp_cc);
    558 			(void)chgsbsize(so->so_uidinfo,
    559 			    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
    560 			unp->unp_conn->unp_cc = rcv->sb_cc;
    561 			sorwakeup(so2);
    562 #undef snd
    563 #undef rcv
    564 			if (control != NULL) {
    565 				unp_dispose(control);
    566 				m_freem(control);
    567 			}
    568 			break;
    569 
    570 		default:
    571 			panic("uipc 4");
    572 		}
    573 		break;
    574 
    575 	default:
    576 		panic("piusrreq");
    577 	}
    578 
    579 release:
    580 	return (error);
    581 }
    582 
    583 /*
    584  * Unix domain socket option processing.
    585  */
    586 int
    587 uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
    588 {
    589 	struct unpcb *unp = sotounpcb(so);
    590 	int optval = 0, error = 0;
    591 
    592 	KASSERT(solocked(so));
    593 
    594 	if (sopt->sopt_level != 0) {
    595 		error = ENOPROTOOPT;
    596 	} else switch (op) {
    597 
    598 	case PRCO_SETOPT:
    599 		switch (sopt->sopt_name) {
    600 		case LOCAL_CREDS:
    601 		case LOCAL_CONNWAIT:
    602 			error = sockopt_getint(sopt, &optval);
    603 			if (error)
    604 				break;
    605 			switch (sopt->sopt_name) {
    606 #define	OPTSET(bit) \
    607 	if (optval) \
    608 		unp->unp_flags |= (bit); \
    609 	else \
    610 		unp->unp_flags &= ~(bit);
    611 
    612 			case LOCAL_CREDS:
    613 				OPTSET(UNP_WANTCRED);
    614 				break;
    615 			case LOCAL_CONNWAIT:
    616 				OPTSET(UNP_CONNWAIT);
    617 				break;
    618 			}
    619 			break;
    620 #undef OPTSET
    621 
    622 		default:
    623 			error = ENOPROTOOPT;
    624 			break;
    625 		}
    626 		break;
    627 
    628 	case PRCO_GETOPT:
    629 		sounlock(so);
    630 		switch (sopt->sopt_name) {
    631 		case LOCAL_PEEREID:
    632 			if (unp->unp_flags & UNP_EIDSVALID) {
    633 				error = sockopt_set(sopt,
    634 				    &unp->unp_connid, sizeof(unp->unp_connid));
    635 			} else {
    636 				error = EINVAL;
    637 			}
    638 			break;
    639 		case LOCAL_CREDS:
    640 #define	OPTBIT(bit)	(unp->unp_flags & (bit) ? 1 : 0)
    641 
    642 			optval = OPTBIT(UNP_WANTCRED);
    643 			error = sockopt_setint(sopt, optval);
    644 			break;
    645 #undef OPTBIT
    646 
    647 		default:
    648 			error = ENOPROTOOPT;
    649 			break;
    650 		}
    651 		solock(so);
    652 		break;
    653 	}
    654 	return (error);
    655 }
    656 
    657 /*
    658  * Both send and receive buffers are allocated PIPSIZ bytes of buffering
    659  * for stream sockets, although the total for sender and receiver is
    660  * actually only PIPSIZ.
    661  * Datagram sockets really use the sendspace as the maximum datagram size,
    662  * and don't really want to reserve the sendspace.  Their recvspace should
    663  * be large enough for at least one max-size datagram plus address.
    664  */
    665 #define	PIPSIZ	4096
    666 u_long	unpst_sendspace = PIPSIZ;
    667 u_long	unpst_recvspace = PIPSIZ;
    668 u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
    669 u_long	unpdg_recvspace = 4*1024;
    670 
    671 u_int	unp_rights;			/* files in flight */
    672 u_int	unp_rights_ratio = 2;		/* limit, fraction of maxfiles */
    673 
    674 static int
    675 unp_attach(struct socket *so, int proto)
    676 {
    677 	struct unpcb *unp = sotounpcb(so);
    678 	u_long sndspc, rcvspc;
    679 	int error;
    680 
    681 	KASSERT(unp == NULL);
    682 
    683 	switch (so->so_type) {
    684 	case SOCK_SEQPACKET:
    685 		/* FALLTHROUGH */
    686 	case SOCK_STREAM:
    687 		if (so->so_lock == NULL) {
    688 			so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    689 			solock(so);
    690 		}
    691 		sndspc = unpst_sendspace;
    692 		rcvspc = unpst_recvspace;
    693 		break;
    694 
    695 	case SOCK_DGRAM:
    696 		if (so->so_lock == NULL) {
    697 			mutex_obj_hold(uipc_lock);
    698 			so->so_lock = uipc_lock;
    699 			solock(so);
    700 		}
    701 		sndspc = unpdg_sendspace;
    702 		rcvspc = unpdg_recvspace;
    703 		break;
    704 
    705 	default:
    706 		panic("unp_attach");
    707 	}
    708 
    709 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
    710 		error = soreserve(so, sndspc, rcvspc);
    711 		if (error) {
    712 			return error;
    713 		}
    714 	}
    715 
    716 	unp = kmem_zalloc(sizeof(*unp), KM_SLEEP);
    717 	nanotime(&unp->unp_ctime);
    718 	unp->unp_socket = so;
    719 	so->so_pcb = unp;
    720 
    721 	KASSERT(solocked(so));
    722 	return 0;
    723 }
    724 
    725 static void
    726 unp_detach(struct socket *so)
    727 {
    728 	struct unpcb *unp;
    729 	vnode_t *vp;
    730 
    731 	unp = sotounpcb(so);
    732 	KASSERT(unp != NULL);
    733 	KASSERT(solocked(so));
    734  retry:
    735 	if ((vp = unp->unp_vnode) != NULL) {
    736 		sounlock(so);
    737 		/* Acquire v_interlock to protect against unp_connect(). */
    738 		/* XXXAD racy */
    739 		mutex_enter(vp->v_interlock);
    740 		vp->v_socket = NULL;
    741 		mutex_exit(vp->v_interlock);
    742 		vrele(vp);
    743 		solock(so);
    744 		unp->unp_vnode = NULL;
    745 	}
    746 	if (unp->unp_conn)
    747 		unp_disconnect1(unp);
    748 	while (unp->unp_refs) {
    749 		KASSERT(solocked2(so, unp->unp_refs->unp_socket));
    750 		if (unp_drop(unp->unp_refs, ECONNRESET)) {
    751 			solock(so);
    752 			goto retry;
    753 		}
    754 	}
    755 	soisdisconnected(so);
    756 	so->so_pcb = NULL;
    757 	if (unp_rights) {
    758 		/*
    759 		 * Normally the receive buffer is flushed later, in sofree,
    760 		 * but if our receive buffer holds references to files that
    761 		 * are now garbage, we will enqueue those file references to
    762 		 * the garbage collector and kick it into action.
    763 		 */
    764 		sorflush(so);
    765 		unp_free(unp);
    766 		unp_thread_kick();
    767 	} else
    768 		unp_free(unp);
    769 }
    770 
    771 static int
    772 unp_accept(struct socket *so, struct mbuf *nam)
    773 {
    774 	struct unpcb *unp = sotounpcb(so);
    775 	struct socket *so2;
    776 
    777 	KASSERT(solocked(so));
    778 	KASSERT(nam != NULL);
    779 
    780 	/* XXX code review required to determine if unp can ever be NULL */
    781 	if (unp == NULL)
    782 		return EINVAL;
    783 
    784 	KASSERT(so->so_lock == uipc_lock);
    785 	/*
    786 	 * Mark the initiating STREAM socket as connected *ONLY*
    787 	 * after it's been accepted.  This prevents a client from
    788 	 * overrunning a server and receiving ECONNREFUSED.
    789 	 */
    790 	if (unp->unp_conn == NULL) {
    791 		/*
    792 		 * This will use the empty socket and will not
    793 		 * allocate.
    794 		 */
    795 		unp_setaddr(so, nam, true);
    796 		return 0;
    797 	}
    798 	so2 = unp->unp_conn->unp_socket;
    799 	if (so2->so_state & SS_ISCONNECTING) {
    800 		KASSERT(solocked2(so, so->so_head));
    801 		KASSERT(solocked2(so2, so->so_head));
    802 		soisconnected(so2);
    803 	}
    804 	/*
    805 	 * If the connection is fully established, break the
    806 	 * association with uipc_lock and give the connected
    807 	 * pair a separate lock to share.
    808 	 * There is a race here: sotounpcb(so2)->unp_streamlock
    809 	 * is not locked, so when changing so2->so_lock
    810 	 * another thread can grab it while so->so_lock is still
    811 	 * pointing to the (locked) uipc_lock.
    812 	 * this should be harmless, except that this makes
    813 	 * solocked2() and solocked() unreliable.
    814 	 * Another problem is that unp_setaddr() expects the
    815 	 * the socket locked. Grabing sotounpcb(so2)->unp_streamlock
    816 	 * fixes both issues.
    817 	 */
    818 	mutex_enter(sotounpcb(so2)->unp_streamlock);
    819 	unp_setpeerlocks(so2, so);
    820 	/*
    821 	 * Only now return peer's address, as we may need to
    822 	 * block in order to allocate memory.
    823 	 *
    824 	 * XXX Minor race: connection can be broken while
    825 	 * lock is dropped in unp_setaddr().  We will return
    826 	 * error == 0 and sun_noname as the peer address.
    827 	 */
    828 	unp_setaddr(so, nam, true);
    829 	/* so_lock now points to unp_streamlock */
    830 	mutex_exit(so2->so_lock);
    831 	return 0;
    832 }
    833 
    834 static int
    835 unp_ioctl(struct socket *so, u_long cmd, void *nam, struct ifnet *ifp)
    836 {
    837 	return EOPNOTSUPP;
    838 }
    839 
    840 static int
    841 unp_stat(struct socket *so, struct stat *ub)
    842 {
    843 	struct unpcb *unp;
    844 	struct socket *so2;
    845 
    846 	KASSERT(solocked(so));
    847 
    848 	unp = sotounpcb(so);
    849 	if (unp == NULL)
    850 		return EINVAL;
    851 
    852 	ub->st_blksize = so->so_snd.sb_hiwat;
    853 	switch (so->so_type) {
    854 	case SOCK_SEQPACKET: /* FALLTHROUGH */
    855 	case SOCK_STREAM:
    856 		if (unp->unp_conn == 0)
    857 			break;
    858 
    859 		so2 = unp->unp_conn->unp_socket;
    860 		KASSERT(solocked2(so, so2));
    861 		ub->st_blksize += so2->so_rcv.sb_cc;
    862 		break;
    863 	default:
    864 		break;
    865 	}
    866 	ub->st_dev = NODEV;
    867 	if (unp->unp_ino == 0)
    868 		unp->unp_ino = unp_ino++;
    869 	ub->st_atimespec = ub->st_mtimespec = ub->st_ctimespec = unp->unp_ctime;
    870 	ub->st_ino = unp->unp_ino;
    871 	return (0);
    872 }
    873 
    874 static int
    875 unp_peeraddr(struct socket *so, struct mbuf *nam)
    876 {
    877 	KASSERT(solocked(so));
    878 	KASSERT(sotounpcb(so) != NULL);
    879 	KASSERT(nam != NULL);
    880 
    881 	unp_setaddr(so, nam, true);
    882 	return 0;
    883 }
    884 
    885 static int
    886 unp_sockaddr(struct socket *so, struct mbuf *nam)
    887 {
    888 	KASSERT(solocked(so));
    889 	KASSERT(sotounpcb(so) != NULL);
    890 	KASSERT(nam != NULL);
    891 
    892 	unp_setaddr(so, nam, false);
    893 	return 0;
    894 }
    895 
    896 /*
    897  * Allocate the new sockaddr.  We have to allocate one
    898  * extra byte so that we can ensure that the pathname
    899  * is nul-terminated. Note that unlike linux, we don't
    900  * include in the address length the NUL in the path
    901  * component, because doing so, would exceed sizeof(sockaddr_un)
    902  * for fully occupied pathnames. Linux is also inconsistent,
    903  * because it does not include the NUL in the length of
    904  * what it calls "abstract" unix sockets.
    905  */
    906 static struct sockaddr_un *
    907 makeun(struct mbuf *nam, size_t *addrlen) {
    908 	struct sockaddr_un *sun;
    909 
    910 	*addrlen = nam->m_len + 1;
    911 	sun = malloc(*addrlen, M_SONAME, M_WAITOK);
    912 	m_copydata(nam, 0, nam->m_len, (void *)sun);
    913 	*(((char *)sun) + nam->m_len) = '\0';
    914 	sun->sun_len = strlen(sun->sun_path) +
    915 	    offsetof(struct sockaddr_un, sun_path);
    916 	return sun;
    917 }
    918 
    919 int
    920 unp_bind(struct socket *so, struct mbuf *nam)
    921 {
    922 	struct sockaddr_un *sun;
    923 	struct unpcb *unp;
    924 	vnode_t *vp;
    925 	struct vattr vattr;
    926 	size_t addrlen;
    927 	int error;
    928 	struct pathbuf *pb;
    929 	struct nameidata nd;
    930 	proc_t *p;
    931 
    932 	unp = sotounpcb(so);
    933 
    934 	KASSERT(solocked(so));
    935 	KASSERT(unp != NULL);
    936 	KASSERT(nam != NULL);
    937 
    938 	if (unp->unp_vnode != NULL)
    939 		return (EINVAL);
    940 	if ((unp->unp_flags & UNP_BUSY) != 0) {
    941 		/*
    942 		 * EALREADY may not be strictly accurate, but since this
    943 		 * is a major application error it's hardly a big deal.
    944 		 */
    945 		return (EALREADY);
    946 	}
    947 	unp->unp_flags |= UNP_BUSY;
    948 	sounlock(so);
    949 
    950 	p = curlwp->l_proc;
    951 	sun = makeun(nam, &addrlen);
    952 
    953 	pb = pathbuf_create(sun->sun_path);
    954 	if (pb == NULL) {
    955 		error = ENOMEM;
    956 		goto bad;
    957 	}
    958 	NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, pb);
    959 
    960 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
    961 	if ((error = namei(&nd)) != 0) {
    962 		pathbuf_destroy(pb);
    963 		goto bad;
    964 	}
    965 	vp = nd.ni_vp;
    966 	if (vp != NULL) {
    967 		VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
    968 		if (nd.ni_dvp == vp)
    969 			vrele(nd.ni_dvp);
    970 		else
    971 			vput(nd.ni_dvp);
    972 		vrele(vp);
    973 		pathbuf_destroy(pb);
    974 		error = EADDRINUSE;
    975 		goto bad;
    976 	}
    977 	vattr_null(&vattr);
    978 	vattr.va_type = VSOCK;
    979 	vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
    980 	error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
    981 	if (error) {
    982 		vput(nd.ni_dvp);
    983 		pathbuf_destroy(pb);
    984 		goto bad;
    985 	}
    986 	vp = nd.ni_vp;
    987 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    988 	solock(so);
    989 	vp->v_socket = unp->unp_socket;
    990 	unp->unp_vnode = vp;
    991 	unp->unp_addrlen = addrlen;
    992 	unp->unp_addr = sun;
    993 	unp->unp_connid.unp_pid = p->p_pid;
    994 	unp->unp_connid.unp_euid = kauth_cred_geteuid(curlwp->l_cred);
    995 	unp->unp_connid.unp_egid = kauth_cred_getegid(curlwp->l_cred);
    996 	unp->unp_flags |= UNP_EIDSBIND;
    997 	VOP_UNLOCK(vp);
    998 	vput(nd.ni_dvp);
    999 	unp->unp_flags &= ~UNP_BUSY;
   1000 	pathbuf_destroy(pb);
   1001 	return (0);
   1002 
   1003  bad:
   1004 	free(sun, M_SONAME);
   1005 	solock(so);
   1006 	unp->unp_flags &= ~UNP_BUSY;
   1007 	return (error);
   1008 }
   1009 
   1010 static int
   1011 unp_listen(struct socket *so)
   1012 {
   1013 	struct unpcb *unp = sotounpcb(so);
   1014 
   1015 	KASSERT(solocked(so));
   1016 	KASSERT(unp != NULL);
   1017 
   1018 	/*
   1019 	 * If the socket can accept a connection, it must be
   1020 	 * locked by uipc_lock.
   1021 	 */
   1022 	unp_resetlock(so);
   1023 	if (unp->unp_vnode == NULL)
   1024 		return EINVAL;
   1025 
   1026 	return 0;
   1027 }
   1028 
   1029 static int
   1030 unp_disconnect(struct socket *so)
   1031 {
   1032 	KASSERT(solocked(so));
   1033 	KASSERT(sotounpcb(so) != NULL);
   1034 
   1035 	unp_disconnect1(sotounpcb(so));
   1036 	return 0;
   1037 }
   1038 
   1039 static int
   1040 unp_shutdown(struct socket *so)
   1041 {
   1042 	KASSERT(solocked(so));
   1043 	KASSERT(sotounpcb(so) != NULL);
   1044 
   1045 	socantsendmore(so);
   1046 	unp_shutdown1(sotounpcb(so));
   1047 	return 0;
   1048 }
   1049 
   1050 static int
   1051 unp_abort(struct socket *so)
   1052 {
   1053 	KASSERT(solocked(so));
   1054 	KASSERT(sotounpcb(so) != NULL);
   1055 
   1056 	(void)unp_drop(sotounpcb(so), ECONNABORTED);
   1057 	KASSERT(so->so_head == NULL);
   1058 	KASSERT(so->so_pcb != NULL);
   1059 	unp_detach(so);
   1060 	return 0;
   1061 }
   1062 
   1063 int
   1064 unp_connect(struct socket *so, struct mbuf *nam)
   1065 {
   1066 	struct sockaddr_un *sun;
   1067 	vnode_t *vp;
   1068 	struct socket *so2, *so3;
   1069 	struct unpcb *unp, *unp2, *unp3;
   1070 	size_t addrlen;
   1071 	int error;
   1072 	struct pathbuf *pb;
   1073 	struct nameidata nd;
   1074 
   1075 	unp = sotounpcb(so);
   1076 	if ((unp->unp_flags & UNP_BUSY) != 0) {
   1077 		/*
   1078 		 * EALREADY may not be strictly accurate, but since this
   1079 		 * is a major application error it's hardly a big deal.
   1080 		 */
   1081 		return (EALREADY);
   1082 	}
   1083 	unp->unp_flags |= UNP_BUSY;
   1084 	sounlock(so);
   1085 
   1086 	sun = makeun(nam, &addrlen);
   1087 	pb = pathbuf_create(sun->sun_path);
   1088 	if (pb == NULL) {
   1089 		error = ENOMEM;
   1090 		goto bad2;
   1091 	}
   1092 
   1093 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
   1094 
   1095 	if ((error = namei(&nd)) != 0) {
   1096 		pathbuf_destroy(pb);
   1097 		goto bad2;
   1098 	}
   1099 	vp = nd.ni_vp;
   1100 	if (vp->v_type != VSOCK) {
   1101 		error = ENOTSOCK;
   1102 		goto bad;
   1103 	}
   1104 	pathbuf_destroy(pb);
   1105 	if ((error = VOP_ACCESS(vp, VWRITE, curlwp->l_cred)) != 0)
   1106 		goto bad;
   1107 	/* Acquire v_interlock to protect against unp_detach(). */
   1108 	mutex_enter(vp->v_interlock);
   1109 	so2 = vp->v_socket;
   1110 	if (so2 == NULL) {
   1111 		mutex_exit(vp->v_interlock);
   1112 		error = ECONNREFUSED;
   1113 		goto bad;
   1114 	}
   1115 	if (so->so_type != so2->so_type) {
   1116 		mutex_exit(vp->v_interlock);
   1117 		error = EPROTOTYPE;
   1118 		goto bad;
   1119 	}
   1120 	solock(so);
   1121 	unp_resetlock(so);
   1122 	mutex_exit(vp->v_interlock);
   1123 	if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
   1124 		/*
   1125 		 * This may seem somewhat fragile but is OK: if we can
   1126 		 * see SO_ACCEPTCONN set on the endpoint, then it must
   1127 		 * be locked by the domain-wide uipc_lock.
   1128 		 */
   1129 		KASSERT((so2->so_options & SO_ACCEPTCONN) == 0 ||
   1130 		    so2->so_lock == uipc_lock);
   1131 		if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
   1132 		    (so3 = sonewconn(so2, false)) == NULL) {
   1133 			error = ECONNREFUSED;
   1134 			sounlock(so);
   1135 			goto bad;
   1136 		}
   1137 		unp2 = sotounpcb(so2);
   1138 		unp3 = sotounpcb(so3);
   1139 		if (unp2->unp_addr) {
   1140 			unp3->unp_addr = malloc(unp2->unp_addrlen,
   1141 			    M_SONAME, M_WAITOK);
   1142 			memcpy(unp3->unp_addr, unp2->unp_addr,
   1143 			    unp2->unp_addrlen);
   1144 			unp3->unp_addrlen = unp2->unp_addrlen;
   1145 		}
   1146 		unp3->unp_flags = unp2->unp_flags;
   1147 		unp3->unp_connid.unp_pid = curlwp->l_proc->p_pid;
   1148 		unp3->unp_connid.unp_euid = kauth_cred_geteuid(curlwp->l_cred);
   1149 		unp3->unp_connid.unp_egid = kauth_cred_getegid(curlwp->l_cred);
   1150 		unp3->unp_flags |= UNP_EIDSVALID;
   1151 		if (unp2->unp_flags & UNP_EIDSBIND) {
   1152 			unp->unp_connid = unp2->unp_connid;
   1153 			unp->unp_flags |= UNP_EIDSVALID;
   1154 		}
   1155 		so2 = so3;
   1156 	}
   1157 	error = unp_connect2(so, so2, PRU_CONNECT);
   1158 	sounlock(so);
   1159  bad:
   1160 	vput(vp);
   1161  bad2:
   1162 	free(sun, M_SONAME);
   1163 	solock(so);
   1164 	unp->unp_flags &= ~UNP_BUSY;
   1165 	return (error);
   1166 }
   1167 
   1168 int
   1169 unp_connect2(struct socket *so, struct socket *so2, int req)
   1170 {
   1171 	struct unpcb *unp = sotounpcb(so);
   1172 	struct unpcb *unp2;
   1173 
   1174 	if (so2->so_type != so->so_type)
   1175 		return (EPROTOTYPE);
   1176 
   1177 	/*
   1178 	 * All three sockets involved must be locked by same lock:
   1179 	 *
   1180 	 * local endpoint (so)
   1181 	 * remote endpoint (so2)
   1182 	 * queue head (so2->so_head, only if PR_CONNREQUIRED)
   1183 	 */
   1184 	KASSERT(solocked2(so, so2));
   1185 	KASSERT(so->so_head == NULL);
   1186 	if (so2->so_head != NULL) {
   1187 		KASSERT(so2->so_lock == uipc_lock);
   1188 		KASSERT(solocked2(so2, so2->so_head));
   1189 	}
   1190 
   1191 	unp2 = sotounpcb(so2);
   1192 	unp->unp_conn = unp2;
   1193 	switch (so->so_type) {
   1194 
   1195 	case SOCK_DGRAM:
   1196 		unp->unp_nextref = unp2->unp_refs;
   1197 		unp2->unp_refs = unp;
   1198 		soisconnected(so);
   1199 		break;
   1200 
   1201 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1202 	case SOCK_STREAM:
   1203 		unp2->unp_conn = unp;
   1204 		if (req == PRU_CONNECT &&
   1205 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
   1206 			soisconnecting(so);
   1207 		else
   1208 			soisconnected(so);
   1209 		soisconnected(so2);
   1210 		/*
   1211 		 * If the connection is fully established, break the
   1212 		 * association with uipc_lock and give the connected
   1213 		 * pair a seperate lock to share.  For CONNECT2, we
   1214 		 * require that the locks already match (the sockets
   1215 		 * are created that way).
   1216 		 */
   1217 		if (req == PRU_CONNECT) {
   1218 			KASSERT(so2->so_head != NULL);
   1219 			unp_setpeerlocks(so, so2);
   1220 		}
   1221 		break;
   1222 
   1223 	default:
   1224 		panic("unp_connect2");
   1225 	}
   1226 	return (0);
   1227 }
   1228 
   1229 void
   1230 unp_disconnect1(struct unpcb *unp)
   1231 {
   1232 	struct unpcb *unp2 = unp->unp_conn;
   1233 	struct socket *so;
   1234 
   1235 	if (unp2 == 0)
   1236 		return;
   1237 	unp->unp_conn = 0;
   1238 	so = unp->unp_socket;
   1239 	switch (so->so_type) {
   1240 	case SOCK_DGRAM:
   1241 		if (unp2->unp_refs == unp)
   1242 			unp2->unp_refs = unp->unp_nextref;
   1243 		else {
   1244 			unp2 = unp2->unp_refs;
   1245 			for (;;) {
   1246 				KASSERT(solocked2(so, unp2->unp_socket));
   1247 				if (unp2 == 0)
   1248 					panic("unp_disconnect1");
   1249 				if (unp2->unp_nextref == unp)
   1250 					break;
   1251 				unp2 = unp2->unp_nextref;
   1252 			}
   1253 			unp2->unp_nextref = unp->unp_nextref;
   1254 		}
   1255 		unp->unp_nextref = 0;
   1256 		so->so_state &= ~SS_ISCONNECTED;
   1257 		break;
   1258 
   1259 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1260 	case SOCK_STREAM:
   1261 		KASSERT(solocked2(so, unp2->unp_socket));
   1262 		soisdisconnected(so);
   1263 		unp2->unp_conn = 0;
   1264 		soisdisconnected(unp2->unp_socket);
   1265 		break;
   1266 	}
   1267 }
   1268 
   1269 void
   1270 unp_shutdown1(struct unpcb *unp)
   1271 {
   1272 	struct socket *so;
   1273 
   1274 	switch(unp->unp_socket->so_type) {
   1275 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1276 	case SOCK_STREAM:
   1277 		if (unp->unp_conn && (so = unp->unp_conn->unp_socket))
   1278 			socantrcvmore(so);
   1279 		break;
   1280 	default:
   1281 		break;
   1282 	}
   1283 }
   1284 
   1285 bool
   1286 unp_drop(struct unpcb *unp, int errno)
   1287 {
   1288 	struct socket *so = unp->unp_socket;
   1289 
   1290 	KASSERT(solocked(so));
   1291 
   1292 	so->so_error = errno;
   1293 	unp_disconnect1(unp);
   1294 	if (so->so_head) {
   1295 		so->so_pcb = NULL;
   1296 		/* sofree() drops the socket lock */
   1297 		sofree(so);
   1298 		unp_free(unp);
   1299 		return true;
   1300 	}
   1301 	return false;
   1302 }
   1303 
   1304 #ifdef notdef
   1305 unp_drain(void)
   1306 {
   1307 
   1308 }
   1309 #endif
   1310 
   1311 int
   1312 unp_externalize(struct mbuf *rights, struct lwp *l, int flags)
   1313 {
   1314 	struct cmsghdr * const cm = mtod(rights, struct cmsghdr *);
   1315 	struct proc * const p = l->l_proc;
   1316 	file_t **rp;
   1317 	int error = 0;
   1318 
   1319 	const size_t nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
   1320 	    sizeof(file_t *);
   1321 	if (nfds == 0)
   1322 		goto noop;
   1323 
   1324 	int * const fdp = kmem_alloc(nfds * sizeof(int), KM_SLEEP);
   1325 	rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
   1326 
   1327 	/* Make sure the recipient should be able to see the files.. */
   1328 	rp = (file_t **)CMSG_DATA(cm);
   1329 	for (size_t i = 0; i < nfds; i++) {
   1330 		file_t * const fp = *rp++;
   1331 		if (fp == NULL) {
   1332 			error = EINVAL;
   1333 			goto out;
   1334 		}
   1335 		/*
   1336 		 * If we are in a chroot'ed directory, and
   1337 		 * someone wants to pass us a directory, make
   1338 		 * sure it's inside the subtree we're allowed
   1339 		 * to access.
   1340 		 */
   1341 		if (p->p_cwdi->cwdi_rdir != NULL && fp->f_type == DTYPE_VNODE) {
   1342 			vnode_t *vp = (vnode_t *)fp->f_data;
   1343 			if ((vp->v_type == VDIR) &&
   1344 			    !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
   1345 				error = EPERM;
   1346 				goto out;
   1347 			}
   1348 		}
   1349 	}
   1350 
   1351  restart:
   1352 	/*
   1353 	 * First loop -- allocate file descriptor table slots for the
   1354 	 * new files.
   1355 	 */
   1356 	for (size_t i = 0; i < nfds; i++) {
   1357 		if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
   1358 			/*
   1359 			 * Back out what we've done so far.
   1360 			 */
   1361 			while (i-- > 0) {
   1362 				fd_abort(p, NULL, fdp[i]);
   1363 			}
   1364 			if (error == ENOSPC) {
   1365 				fd_tryexpand(p);
   1366 				error = 0;
   1367 				goto restart;
   1368 			}
   1369 			/*
   1370 			 * This is the error that has historically
   1371 			 * been returned, and some callers may
   1372 			 * expect it.
   1373 			 */
   1374 			error = EMSGSIZE;
   1375 			goto out;
   1376 		}
   1377 	}
   1378 
   1379 	/*
   1380 	 * Now that adding them has succeeded, update all of the
   1381 	 * file passing state and affix the descriptors.
   1382 	 */
   1383 	rp = (file_t **)CMSG_DATA(cm);
   1384 	int *ofdp = (int *)CMSG_DATA(cm);
   1385 	for (size_t i = 0; i < nfds; i++) {
   1386 		file_t * const fp = *rp++;
   1387 		const int fd = fdp[i];
   1388 		atomic_dec_uint(&unp_rights);
   1389 		fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
   1390 		fd_affix(p, fp, fd);
   1391 		/*
   1392 		 * Done with this file pointer, replace it with a fd;
   1393 		 */
   1394 		*ofdp++ = fd;
   1395 		mutex_enter(&fp->f_lock);
   1396 		fp->f_msgcount--;
   1397 		mutex_exit(&fp->f_lock);
   1398 		/*
   1399 		 * Note that fd_affix() adds a reference to the file.
   1400 		 * The file may already have been closed by another
   1401 		 * LWP in the process, so we must drop the reference
   1402 		 * added by unp_internalize() with closef().
   1403 		 */
   1404 		closef(fp);
   1405 	}
   1406 
   1407 	/*
   1408 	 * Adjust length, in case of transition from large file_t
   1409 	 * pointers to ints.
   1410 	 */
   1411 	if (sizeof(file_t *) != sizeof(int)) {
   1412 		cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
   1413 		rights->m_len = CMSG_SPACE(nfds * sizeof(int));
   1414 	}
   1415  out:
   1416 	if (__predict_false(error != 0)) {
   1417 		file_t **const fpp = (file_t **)CMSG_DATA(cm);
   1418 		for (size_t i = 0; i < nfds; i++)
   1419 			unp_discard_now(fpp[i]);
   1420 		/*
   1421 		 * Truncate the array so that nobody will try to interpret
   1422 		 * what is now garbage in it.
   1423 		 */
   1424 		cm->cmsg_len = CMSG_LEN(0);
   1425 		rights->m_len = CMSG_SPACE(0);
   1426 	}
   1427 	rw_exit(&p->p_cwdi->cwdi_lock);
   1428 	kmem_free(fdp, nfds * sizeof(int));
   1429 
   1430  noop:
   1431 	/*
   1432 	 * Don't disclose kernel memory in the alignment space.
   1433 	 */
   1434 	KASSERT(cm->cmsg_len <= rights->m_len);
   1435 	memset(&mtod(rights, char *)[cm->cmsg_len], 0, rights->m_len -
   1436 	    cm->cmsg_len);
   1437 	return error;
   1438 }
   1439 
   1440 int
   1441 unp_internalize(struct mbuf **controlp)
   1442 {
   1443 	filedesc_t *fdescp = curlwp->l_fd;
   1444 	struct mbuf *control = *controlp;
   1445 	struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
   1446 	file_t **rp, **files;
   1447 	file_t *fp;
   1448 	int i, fd, *fdp;
   1449 	int nfds, error;
   1450 	u_int maxmsg;
   1451 
   1452 	error = 0;
   1453 	newcm = NULL;
   1454 
   1455 	/* Sanity check the control message header. */
   1456 	if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
   1457 	    cm->cmsg_len > control->m_len ||
   1458 	    cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
   1459 		return (EINVAL);
   1460 
   1461 	/*
   1462 	 * Verify that the file descriptors are valid, and acquire
   1463 	 * a reference to each.
   1464 	 */
   1465 	nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
   1466 	fdp = (int *)CMSG_DATA(cm);
   1467 	maxmsg = maxfiles / unp_rights_ratio;
   1468 	for (i = 0; i < nfds; i++) {
   1469 		fd = *fdp++;
   1470 		if (atomic_inc_uint_nv(&unp_rights) > maxmsg) {
   1471 			atomic_dec_uint(&unp_rights);
   1472 			nfds = i;
   1473 			error = EAGAIN;
   1474 			goto out;
   1475 		}
   1476 		if ((fp = fd_getfile(fd)) == NULL
   1477 		    || fp->f_type == DTYPE_KQUEUE) {
   1478 		    	if (fp)
   1479 		    		fd_putfile(fd);
   1480 			atomic_dec_uint(&unp_rights);
   1481 			nfds = i;
   1482 			error = EBADF;
   1483 			goto out;
   1484 		}
   1485 	}
   1486 
   1487 	/* Allocate new space and copy header into it. */
   1488 	newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
   1489 	if (newcm == NULL) {
   1490 		error = E2BIG;
   1491 		goto out;
   1492 	}
   1493 	memcpy(newcm, cm, sizeof(struct cmsghdr));
   1494 	files = (file_t **)CMSG_DATA(newcm);
   1495 
   1496 	/*
   1497 	 * Transform the file descriptors into file_t pointers, in
   1498 	 * reverse order so that if pointers are bigger than ints, the
   1499 	 * int won't get until we're done.  No need to lock, as we have
   1500 	 * already validated the descriptors with fd_getfile().
   1501 	 */
   1502 	fdp = (int *)CMSG_DATA(cm) + nfds;
   1503 	rp = files + nfds;
   1504 	for (i = 0; i < nfds; i++) {
   1505 		fp = fdescp->fd_dt->dt_ff[*--fdp]->ff_file;
   1506 		KASSERT(fp != NULL);
   1507 		mutex_enter(&fp->f_lock);
   1508 		*--rp = fp;
   1509 		fp->f_count++;
   1510 		fp->f_msgcount++;
   1511 		mutex_exit(&fp->f_lock);
   1512 	}
   1513 
   1514  out:
   1515  	/* Release descriptor references. */
   1516 	fdp = (int *)CMSG_DATA(cm);
   1517 	for (i = 0; i < nfds; i++) {
   1518 		fd_putfile(*fdp++);
   1519 		if (error != 0) {
   1520 			atomic_dec_uint(&unp_rights);
   1521 		}
   1522 	}
   1523 
   1524 	if (error == 0) {
   1525 		if (control->m_flags & M_EXT) {
   1526 			m_freem(control);
   1527 			*controlp = control = m_get(M_WAIT, MT_CONTROL);
   1528 		}
   1529 		MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
   1530 		    M_MBUF, NULL, NULL);
   1531 		cm = newcm;
   1532 		/*
   1533 		 * Adjust message & mbuf to note amount of space
   1534 		 * actually used.
   1535 		 */
   1536 		cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
   1537 		control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
   1538 	}
   1539 
   1540 	return error;
   1541 }
   1542 
   1543 struct mbuf *
   1544 unp_addsockcred(struct lwp *l, struct mbuf *control)
   1545 {
   1546 	struct sockcred *sc;
   1547 	struct mbuf *m;
   1548 	void *p;
   1549 
   1550 	m = sbcreatecontrol1(&p, SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)),
   1551 		SCM_CREDS, SOL_SOCKET, M_WAITOK);
   1552 	if (m == NULL)
   1553 		return control;
   1554 
   1555 	sc = p;
   1556 	sc->sc_uid = kauth_cred_getuid(l->l_cred);
   1557 	sc->sc_euid = kauth_cred_geteuid(l->l_cred);
   1558 	sc->sc_gid = kauth_cred_getgid(l->l_cred);
   1559 	sc->sc_egid = kauth_cred_getegid(l->l_cred);
   1560 	sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
   1561 
   1562 	for (int i = 0; i < sc->sc_ngroups; i++)
   1563 		sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
   1564 
   1565 	return m_add(control, m);
   1566 }
   1567 
   1568 /*
   1569  * Do a mark-sweep GC of files in the system, to free up any which are
   1570  * caught in flight to an about-to-be-closed socket.  Additionally,
   1571  * process deferred file closures.
   1572  */
   1573 static void
   1574 unp_gc(file_t *dp)
   1575 {
   1576 	extern	struct domain unixdomain;
   1577 	file_t *fp, *np;
   1578 	struct socket *so, *so1;
   1579 	u_int i, old, new;
   1580 	bool didwork;
   1581 
   1582 	KASSERT(curlwp == unp_thread_lwp);
   1583 	KASSERT(mutex_owned(&filelist_lock));
   1584 
   1585 	/*
   1586 	 * First, process deferred file closures.
   1587 	 */
   1588 	while (!SLIST_EMPTY(&unp_thread_discard)) {
   1589 		fp = SLIST_FIRST(&unp_thread_discard);
   1590 		KASSERT(fp->f_unpcount > 0);
   1591 		KASSERT(fp->f_count > 0);
   1592 		KASSERT(fp->f_msgcount > 0);
   1593 		KASSERT(fp->f_count >= fp->f_unpcount);
   1594 		KASSERT(fp->f_count >= fp->f_msgcount);
   1595 		KASSERT(fp->f_msgcount >= fp->f_unpcount);
   1596 		SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist);
   1597 		i = fp->f_unpcount;
   1598 		fp->f_unpcount = 0;
   1599 		mutex_exit(&filelist_lock);
   1600 		for (; i != 0; i--) {
   1601 			unp_discard_now(fp);
   1602 		}
   1603 		mutex_enter(&filelist_lock);
   1604 	}
   1605 
   1606 	/*
   1607 	 * Clear mark bits.  Ensure that we don't consider new files
   1608 	 * entering the file table during this loop (they will not have
   1609 	 * FSCAN set).
   1610 	 */
   1611 	unp_defer = 0;
   1612 	LIST_FOREACH(fp, &filehead, f_list) {
   1613 		for (old = fp->f_flag;; old = new) {
   1614 			new = atomic_cas_uint(&fp->f_flag, old,
   1615 			    (old | FSCAN) & ~(FMARK|FDEFER));
   1616 			if (__predict_true(old == new)) {
   1617 				break;
   1618 			}
   1619 		}
   1620 	}
   1621 
   1622 	/*
   1623 	 * Iterate over the set of sockets, marking ones believed (based on
   1624 	 * refcount) to be referenced from a process, and marking for rescan
   1625 	 * sockets which are queued on a socket.  Recan continues descending
   1626 	 * and searching for sockets referenced by sockets (FDEFER), until
   1627 	 * there are no more socket->socket references to be discovered.
   1628 	 */
   1629 	do {
   1630 		didwork = false;
   1631 		for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
   1632 			KASSERT(mutex_owned(&filelist_lock));
   1633 			np = LIST_NEXT(fp, f_list);
   1634 			mutex_enter(&fp->f_lock);
   1635 			if ((fp->f_flag & FDEFER) != 0) {
   1636 				atomic_and_uint(&fp->f_flag, ~FDEFER);
   1637 				unp_defer--;
   1638 				KASSERT(fp->f_count != 0);
   1639 			} else {
   1640 				if (fp->f_count == 0 ||
   1641 				    (fp->f_flag & FMARK) != 0 ||
   1642 				    fp->f_count == fp->f_msgcount ||
   1643 				    fp->f_unpcount != 0) {
   1644 					mutex_exit(&fp->f_lock);
   1645 					continue;
   1646 				}
   1647 			}
   1648 			atomic_or_uint(&fp->f_flag, FMARK);
   1649 
   1650 			if (fp->f_type != DTYPE_SOCKET ||
   1651 			    (so = fp->f_data) == NULL ||
   1652 			    so->so_proto->pr_domain != &unixdomain ||
   1653 			    (so->so_proto->pr_flags & PR_RIGHTS) == 0) {
   1654 				mutex_exit(&fp->f_lock);
   1655 				continue;
   1656 			}
   1657 
   1658 			/* Gain file ref, mark our position, and unlock. */
   1659 			didwork = true;
   1660 			LIST_INSERT_AFTER(fp, dp, f_list);
   1661 			fp->f_count++;
   1662 			mutex_exit(&fp->f_lock);
   1663 			mutex_exit(&filelist_lock);
   1664 
   1665 			/*
   1666 			 * Mark files referenced from sockets queued on the
   1667 			 * accept queue as well.
   1668 			 */
   1669 			solock(so);
   1670 			unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
   1671 			if ((so->so_options & SO_ACCEPTCONN) != 0) {
   1672 				TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
   1673 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
   1674 				}
   1675 				TAILQ_FOREACH(so1, &so->so_q, so_qe) {
   1676 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
   1677 				}
   1678 			}
   1679 			sounlock(so);
   1680 
   1681 			/* Re-lock and restart from where we left off. */
   1682 			closef(fp);
   1683 			mutex_enter(&filelist_lock);
   1684 			np = LIST_NEXT(dp, f_list);
   1685 			LIST_REMOVE(dp, f_list);
   1686 		}
   1687 		/*
   1688 		 * Bail early if we did nothing in the loop above.  Could
   1689 		 * happen because of concurrent activity causing unp_defer
   1690 		 * to get out of sync.
   1691 		 */
   1692 	} while (unp_defer != 0 && didwork);
   1693 
   1694 	/*
   1695 	 * Sweep pass.
   1696 	 *
   1697 	 * We grab an extra reference to each of the files that are
   1698 	 * not otherwise accessible and then free the rights that are
   1699 	 * stored in messages on them.
   1700 	 */
   1701 	for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
   1702 		KASSERT(mutex_owned(&filelist_lock));
   1703 		np = LIST_NEXT(fp, f_list);
   1704 		mutex_enter(&fp->f_lock);
   1705 
   1706 		/*
   1707 		 * Ignore non-sockets.
   1708 		 * Ignore dead sockets, or sockets with pending close.
   1709 		 * Ignore sockets obviously referenced elsewhere.
   1710 		 * Ignore sockets marked as referenced by our scan.
   1711 		 * Ignore new sockets that did not exist during the scan.
   1712 		 */
   1713 		if (fp->f_type != DTYPE_SOCKET ||
   1714 		    fp->f_count == 0 || fp->f_unpcount != 0 ||
   1715 		    fp->f_count != fp->f_msgcount ||
   1716 		    (fp->f_flag & (FMARK | FSCAN)) != FSCAN) {
   1717 			mutex_exit(&fp->f_lock);
   1718 			continue;
   1719 		}
   1720 
   1721 		/* Gain file ref, mark our position, and unlock. */
   1722 		LIST_INSERT_AFTER(fp, dp, f_list);
   1723 		fp->f_count++;
   1724 		mutex_exit(&fp->f_lock);
   1725 		mutex_exit(&filelist_lock);
   1726 
   1727 		/*
   1728 		 * Flush all data from the socket's receive buffer.
   1729 		 * This will cause files referenced only by the
   1730 		 * socket to be queued for close.
   1731 		 */
   1732 		so = fp->f_data;
   1733 		solock(so);
   1734 		sorflush(so);
   1735 		sounlock(so);
   1736 
   1737 		/* Re-lock and restart from where we left off. */
   1738 		closef(fp);
   1739 		mutex_enter(&filelist_lock);
   1740 		np = LIST_NEXT(dp, f_list);
   1741 		LIST_REMOVE(dp, f_list);
   1742 	}
   1743 }
   1744 
   1745 /*
   1746  * Garbage collector thread.  While SCM_RIGHTS messages are in transit,
   1747  * wake once per second to garbage collect.  Run continually while we
   1748  * have deferred closes to process.
   1749  */
   1750 static void
   1751 unp_thread(void *cookie)
   1752 {
   1753 	file_t *dp;
   1754 
   1755 	/* Allocate a dummy file for our scans. */
   1756 	if ((dp = fgetdummy()) == NULL) {
   1757 		panic("unp_thread");
   1758 	}
   1759 
   1760 	mutex_enter(&filelist_lock);
   1761 	for (;;) {
   1762 		KASSERT(mutex_owned(&filelist_lock));
   1763 		if (SLIST_EMPTY(&unp_thread_discard)) {
   1764 			if (unp_rights != 0) {
   1765 				(void)cv_timedwait(&unp_thread_cv,
   1766 				    &filelist_lock, hz);
   1767 			} else {
   1768 				cv_wait(&unp_thread_cv, &filelist_lock);
   1769 			}
   1770 		}
   1771 		unp_gc(dp);
   1772 	}
   1773 	/* NOTREACHED */
   1774 }
   1775 
   1776 /*
   1777  * Kick the garbage collector into action if there is something for
   1778  * it to process.
   1779  */
   1780 static void
   1781 unp_thread_kick(void)
   1782 {
   1783 
   1784 	if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) {
   1785 		mutex_enter(&filelist_lock);
   1786 		cv_signal(&unp_thread_cv);
   1787 		mutex_exit(&filelist_lock);
   1788 	}
   1789 }
   1790 
   1791 void
   1792 unp_dispose(struct mbuf *m)
   1793 {
   1794 
   1795 	if (m)
   1796 		unp_scan(m, unp_discard_later, 1);
   1797 }
   1798 
   1799 void
   1800 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
   1801 {
   1802 	struct mbuf *m;
   1803 	file_t **rp, *fp;
   1804 	struct cmsghdr *cm;
   1805 	int i, qfds;
   1806 
   1807 	while (m0) {
   1808 		for (m = m0; m; m = m->m_next) {
   1809 			if (m->m_type != MT_CONTROL ||
   1810 			    m->m_len < sizeof(*cm)) {
   1811 			    	continue;
   1812 			}
   1813 			cm = mtod(m, struct cmsghdr *);
   1814 			if (cm->cmsg_level != SOL_SOCKET ||
   1815 			    cm->cmsg_type != SCM_RIGHTS)
   1816 				continue;
   1817 			qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
   1818 			    / sizeof(file_t *);
   1819 			rp = (file_t **)CMSG_DATA(cm);
   1820 			for (i = 0; i < qfds; i++) {
   1821 				fp = *rp;
   1822 				if (discard) {
   1823 					*rp = 0;
   1824 				}
   1825 				(*op)(fp);
   1826 				rp++;
   1827 			}
   1828 		}
   1829 		m0 = m0->m_nextpkt;
   1830 	}
   1831 }
   1832 
   1833 void
   1834 unp_mark(file_t *fp)
   1835 {
   1836 
   1837 	if (fp == NULL)
   1838 		return;
   1839 
   1840 	/* If we're already deferred, don't screw up the defer count */
   1841 	mutex_enter(&fp->f_lock);
   1842 	if (fp->f_flag & (FMARK | FDEFER)) {
   1843 		mutex_exit(&fp->f_lock);
   1844 		return;
   1845 	}
   1846 
   1847 	/*
   1848 	 * Minimize the number of deferrals...  Sockets are the only type of
   1849 	 * file which can hold references to another file, so just mark
   1850 	 * other files, and defer unmarked sockets for the next pass.
   1851 	 */
   1852 	if (fp->f_type == DTYPE_SOCKET) {
   1853 		unp_defer++;
   1854 		KASSERT(fp->f_count != 0);
   1855 		atomic_or_uint(&fp->f_flag, FDEFER);
   1856 	} else {
   1857 		atomic_or_uint(&fp->f_flag, FMARK);
   1858 	}
   1859 	mutex_exit(&fp->f_lock);
   1860 }
   1861 
   1862 static void
   1863 unp_discard_now(file_t *fp)
   1864 {
   1865 
   1866 	if (fp == NULL)
   1867 		return;
   1868 
   1869 	KASSERT(fp->f_count > 0);
   1870 	KASSERT(fp->f_msgcount > 0);
   1871 
   1872 	mutex_enter(&fp->f_lock);
   1873 	fp->f_msgcount--;
   1874 	mutex_exit(&fp->f_lock);
   1875 	atomic_dec_uint(&unp_rights);
   1876 	(void)closef(fp);
   1877 }
   1878 
   1879 static void
   1880 unp_discard_later(file_t *fp)
   1881 {
   1882 
   1883 	if (fp == NULL)
   1884 		return;
   1885 
   1886 	KASSERT(fp->f_count > 0);
   1887 	KASSERT(fp->f_msgcount > 0);
   1888 
   1889 	mutex_enter(&filelist_lock);
   1890 	if (fp->f_unpcount++ == 0) {
   1891 		SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist);
   1892 	}
   1893 	mutex_exit(&filelist_lock);
   1894 }
   1895 
   1896 const struct pr_usrreqs unp_usrreqs = {
   1897 	.pr_attach	= unp_attach,
   1898 	.pr_detach	= unp_detach,
   1899 	.pr_accept	= unp_accept,
   1900 	.pr_bind	= unp_bind,
   1901 	.pr_listen	= unp_listen,
   1902 	.pr_connect	= unp_connect,
   1903 	.pr_disconnect	= unp_disconnect,
   1904 	.pr_shutdown	= unp_shutdown,
   1905 	.pr_abort	= unp_abort,
   1906 	.pr_ioctl	= unp_ioctl,
   1907 	.pr_stat	= unp_stat,
   1908 	.pr_peeraddr	= unp_peeraddr,
   1909 	.pr_sockaddr	= unp_sockaddr,
   1910 	.pr_recvoob	= unp_recvoob,
   1911 	.pr_sendoob	= unp_sendoob,
   1912 	.pr_generic	= unp_usrreq,
   1913 };
   1914