Home | History | Annotate | Line # | Download | only in kern
uipc_usrreq.c revision 1.165
      1 /*	$NetBSD: uipc_usrreq.c,v 1.165 2014/08/05 05:24:26 rtr Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 2000, 2004, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
     62  */
     63 
     64 /*
     65  * Copyright (c) 1997 Christopher G. Demetriou.  All rights reserved.
     66  *
     67  * Redistribution and use in source and binary forms, with or without
     68  * modification, are permitted provided that the following conditions
     69  * are met:
     70  * 1. Redistributions of source code must retain the above copyright
     71  *    notice, this list of conditions and the following disclaimer.
     72  * 2. Redistributions in binary form must reproduce the above copyright
     73  *    notice, this list of conditions and the following disclaimer in the
     74  *    documentation and/or other materials provided with the distribution.
     75  * 3. All advertising materials mentioning features or use of this software
     76  *    must display the following acknowledgement:
     77  *	This product includes software developed by the University of
     78  *	California, Berkeley and its contributors.
     79  * 4. Neither the name of the University nor the names of its contributors
     80  *    may be used to endorse or promote products derived from this software
     81  *    without specific prior written permission.
     82  *
     83  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     84  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     85  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     86  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     87  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     88  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     89  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     90  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     91  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     92  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     93  * SUCH DAMAGE.
     94  *
     95  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
     96  */
     97 
     98 #include <sys/cdefs.h>
     99 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.165 2014/08/05 05:24:26 rtr Exp $");
    100 
    101 #include <sys/param.h>
    102 #include <sys/systm.h>
    103 #include <sys/proc.h>
    104 #include <sys/filedesc.h>
    105 #include <sys/domain.h>
    106 #include <sys/protosw.h>
    107 #include <sys/socket.h>
    108 #include <sys/socketvar.h>
    109 #include <sys/unpcb.h>
    110 #include <sys/un.h>
    111 #include <sys/namei.h>
    112 #include <sys/vnode.h>
    113 #include <sys/file.h>
    114 #include <sys/stat.h>
    115 #include <sys/mbuf.h>
    116 #include <sys/kauth.h>
    117 #include <sys/kmem.h>
    118 #include <sys/atomic.h>
    119 #include <sys/uidinfo.h>
    120 #include <sys/kernel.h>
    121 #include <sys/kthread.h>
    122 
    123 /*
    124  * Unix communications domain.
    125  *
    126  * TODO:
    127  *	RDM
    128  *	rethink name space problems
    129  *	need a proper out-of-band
    130  *
    131  * Notes on locking:
    132  *
    133  * The generic rules noted in uipc_socket2.c apply.  In addition:
    134  *
    135  * o We have a global lock, uipc_lock.
    136  *
    137  * o All datagram sockets are locked by uipc_lock.
    138  *
    139  * o For stream socketpairs, the two endpoints are created sharing the same
    140  *   independent lock.  Sockets presented to PRU_CONNECT2 must already have
    141  *   matching locks.
    142  *
    143  * o Stream sockets created via socket() start life with their own
    144  *   independent lock.
    145  *
    146  * o Stream connections to a named endpoint are slightly more complicated.
    147  *   Sockets that have called listen() have their lock pointer mutated to
    148  *   the global uipc_lock.  When establishing a connection, the connecting
    149  *   socket also has its lock mutated to uipc_lock, which matches the head
    150  *   (listening socket).  We create a new socket for accept() to return, and
    151  *   that also shares the head's lock.  Until the connection is completely
    152  *   done on both ends, all three sockets are locked by uipc_lock.  Once the
    153  *   connection is complete, the association with the head's lock is broken.
    154  *   The connecting socket and the socket returned from accept() have their
    155  *   lock pointers mutated away from uipc_lock, and back to the connecting
    156  *   socket's original, independent lock.  The head continues to be locked
    157  *   by uipc_lock.
    158  *
    159  * o If uipc_lock is determined to be a significant source of contention,
    160  *   it could easily be hashed out.  It is difficult to simply make it an
    161  *   independent lock because of visibility / garbage collection issues:
    162  *   if a socket has been associated with a lock at any point, that lock
    163  *   must remain valid until the socket is no longer visible in the system.
    164  *   The lock must not be freed or otherwise destroyed until any sockets
    165  *   that had referenced it have also been destroyed.
    166  */
    167 const struct sockaddr_un sun_noname = {
    168 	.sun_len = offsetof(struct sockaddr_un, sun_path),
    169 	.sun_family = AF_LOCAL,
    170 };
    171 ino_t	unp_ino;			/* prototype for fake inode numbers */
    172 
    173 static struct mbuf * unp_addsockcred(struct lwp *, struct mbuf *);
    174 static void   unp_discard_later(file_t *);
    175 static void   unp_discard_now(file_t *);
    176 static void   unp_disconnect1(struct unpcb *);
    177 static bool   unp_drop(struct unpcb *, int);
    178 static int    unp_internalize(struct mbuf **);
    179 static void   unp_mark(file_t *);
    180 static void   unp_scan(struct mbuf *, void (*)(file_t *), int);
    181 static void   unp_shutdown1(struct unpcb *);
    182 static void   unp_thread(void *);
    183 static void   unp_thread_kick(void);
    184 
    185 static kmutex_t *uipc_lock;
    186 
    187 static kcondvar_t unp_thread_cv;
    188 static lwp_t *unp_thread_lwp;
    189 static SLIST_HEAD(,file) unp_thread_discard;
    190 static int unp_defer;
    191 
    192 /*
    193  * Initialize Unix protocols.
    194  */
    195 void
    196 uipc_init(void)
    197 {
    198 	int error;
    199 
    200 	uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    201 	cv_init(&unp_thread_cv, "unpgc");
    202 
    203 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread,
    204 	    NULL, &unp_thread_lwp, "unpgc");
    205 	if (error != 0)
    206 		panic("uipc_init %d", error);
    207 }
    208 
    209 /*
    210  * A connection succeeded: disassociate both endpoints from the head's
    211  * lock, and make them share their own lock.  There is a race here: for
    212  * a very brief time one endpoint will be locked by a different lock
    213  * than the other end.  However, since the current thread holds the old
    214  * lock (the listening socket's lock, the head) access can still only be
    215  * made to one side of the connection.
    216  */
    217 static void
    218 unp_setpeerlocks(struct socket *so, struct socket *so2)
    219 {
    220 	struct unpcb *unp;
    221 	kmutex_t *lock;
    222 
    223 	KASSERT(solocked2(so, so2));
    224 
    225 	/*
    226 	 * Bail out if either end of the socket is not yet fully
    227 	 * connected or accepted.  We only break the lock association
    228 	 * with the head when the pair of sockets stand completely
    229 	 * on their own.
    230 	 */
    231 	KASSERT(so->so_head == NULL);
    232 	if (so2->so_head != NULL)
    233 		return;
    234 
    235 	/*
    236 	 * Drop references to old lock.  A third reference (from the
    237 	 * queue head) must be held as we still hold its lock.  Bonus:
    238 	 * we don't need to worry about garbage collecting the lock.
    239 	 */
    240 	lock = so->so_lock;
    241 	KASSERT(lock == uipc_lock);
    242 	mutex_obj_free(lock);
    243 	mutex_obj_free(lock);
    244 
    245 	/*
    246 	 * Grab stream lock from the initiator and share between the two
    247 	 * endpoints.  Issue memory barrier to ensure all modifications
    248 	 * become globally visible before the lock change.  so2 is
    249 	 * assumed not to have a stream lock, because it was created
    250 	 * purely for the server side to accept this connection and
    251 	 * started out life using the domain-wide lock.
    252 	 */
    253 	unp = sotounpcb(so);
    254 	KASSERT(unp->unp_streamlock != NULL);
    255 	KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
    256 	lock = unp->unp_streamlock;
    257 	unp->unp_streamlock = NULL;
    258 	mutex_obj_hold(lock);
    259 	membar_exit();
    260 	/*
    261 	 * possible race if lock is not held - see comment in
    262 	 * uipc_usrreq(PRU_ACCEPT).
    263 	 */
    264 	KASSERT(mutex_owned(lock));
    265 	solockreset(so, lock);
    266 	solockreset(so2, lock);
    267 }
    268 
    269 /*
    270  * Reset a socket's lock back to the domain-wide lock.
    271  */
    272 static void
    273 unp_resetlock(struct socket *so)
    274 {
    275 	kmutex_t *olock, *nlock;
    276 	struct unpcb *unp;
    277 
    278 	KASSERT(solocked(so));
    279 
    280 	olock = so->so_lock;
    281 	nlock = uipc_lock;
    282 	if (olock == nlock)
    283 		return;
    284 	unp = sotounpcb(so);
    285 	KASSERT(unp->unp_streamlock == NULL);
    286 	unp->unp_streamlock = olock;
    287 	mutex_obj_hold(nlock);
    288 	mutex_enter(nlock);
    289 	solockreset(so, nlock);
    290 	mutex_exit(olock);
    291 }
    292 
    293 static void
    294 unp_free(struct unpcb *unp)
    295 {
    296 	if (unp->unp_addr)
    297 		free(unp->unp_addr, M_SONAME);
    298 	if (unp->unp_streamlock != NULL)
    299 		mutex_obj_free(unp->unp_streamlock);
    300 	kmem_free(unp, sizeof(*unp));
    301 }
    302 
    303 static int
    304 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp)
    305 {
    306 	struct socket *so2;
    307 	const struct sockaddr_un *sun;
    308 
    309 	/* XXX: server side closed the socket */
    310 	if (unp->unp_conn == NULL)
    311 		return ECONNREFUSED;
    312 	so2 = unp->unp_conn->unp_socket;
    313 
    314 	KASSERT(solocked(so2));
    315 
    316 	if (unp->unp_addr)
    317 		sun = unp->unp_addr;
    318 	else
    319 		sun = &sun_noname;
    320 	if (unp->unp_conn->unp_flags & UNP_WANTCRED)
    321 		control = unp_addsockcred(curlwp, control);
    322 	if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
    323 	    control) == 0) {
    324 		so2->so_rcv.sb_overflowed++;
    325 		unp_dispose(control);
    326 		m_freem(control);
    327 		m_freem(m);
    328 		return (ENOBUFS);
    329 	} else {
    330 		sorwakeup(so2);
    331 		return (0);
    332 	}
    333 }
    334 
    335 static void
    336 unp_setaddr(struct socket *so, struct mbuf *nam, bool peeraddr)
    337 {
    338 	const struct sockaddr_un *sun;
    339 	struct unpcb *unp;
    340 	bool ext;
    341 
    342 	KASSERT(solocked(so));
    343 	unp = sotounpcb(so);
    344 	ext = false;
    345 
    346 	for (;;) {
    347 		sun = NULL;
    348 		if (peeraddr) {
    349 			if (unp->unp_conn && unp->unp_conn->unp_addr)
    350 				sun = unp->unp_conn->unp_addr;
    351 		} else {
    352 			if (unp->unp_addr)
    353 				sun = unp->unp_addr;
    354 		}
    355 		if (sun == NULL)
    356 			sun = &sun_noname;
    357 		nam->m_len = sun->sun_len;
    358 		if (nam->m_len > MLEN && !ext) {
    359 			sounlock(so);
    360 			MEXTMALLOC(nam, MAXPATHLEN * 2, M_WAITOK);
    361 			solock(so);
    362 			ext = true;
    363 		} else {
    364 			KASSERT(nam->m_len <= MAXPATHLEN * 2);
    365 			memcpy(mtod(nam, void *), sun, (size_t)nam->m_len);
    366 			break;
    367 		}
    368 	}
    369 }
    370 
    371 static int
    372 unp_recvoob(struct socket *so, struct mbuf *m, int flags)
    373 {
    374 	KASSERT(solocked(so));
    375 
    376 	return EOPNOTSUPP;
    377 }
    378 
    379 static int
    380 unp_sendoob(struct socket *so, struct mbuf *m, struct mbuf * control)
    381 {
    382 	KASSERT(solocked(so));
    383 
    384 	m_freem(m);
    385 	m_freem(control);
    386 
    387 	return EOPNOTSUPP;
    388 }
    389 
    390 static int
    391 unp_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
    392     struct mbuf *control, struct lwp *l)
    393 {
    394 	struct unpcb *unp;
    395 	struct socket *so2;
    396 	u_int newhiwat;
    397 	int error = 0;
    398 
    399 	KASSERT(req != PRU_ATTACH);
    400 	KASSERT(req != PRU_DETACH);
    401 	KASSERT(req != PRU_ACCEPT);
    402 	KASSERT(req != PRU_BIND);
    403 	KASSERT(req != PRU_LISTEN);
    404 	KASSERT(req != PRU_CONNECT);
    405 	KASSERT(req != PRU_DISCONNECT);
    406 	KASSERT(req != PRU_SHUTDOWN);
    407 	KASSERT(req != PRU_ABORT);
    408 	KASSERT(req != PRU_CONTROL);
    409 	KASSERT(req != PRU_SENSE);
    410 	KASSERT(req != PRU_PEERADDR);
    411 	KASSERT(req != PRU_SOCKADDR);
    412 	KASSERT(req != PRU_RCVOOB);
    413 	KASSERT(req != PRU_SENDOOB);
    414 
    415 	KASSERT(solocked(so));
    416 	unp = sotounpcb(so);
    417 
    418 	KASSERT(!control || req == PRU_SEND);
    419 	if (unp == NULL) {
    420 		error = EINVAL;
    421 		goto release;
    422 	}
    423 
    424 	switch (req) {
    425 	case PRU_CONNECT2:
    426 		error = unp_connect2(so, (struct socket *)nam, PRU_CONNECT2);
    427 		break;
    428 
    429 	case PRU_RCVD:
    430 		switch (so->so_type) {
    431 
    432 		case SOCK_DGRAM:
    433 			panic("uipc 1");
    434 			/*NOTREACHED*/
    435 
    436 		case SOCK_SEQPACKET: /* FALLTHROUGH */
    437 		case SOCK_STREAM:
    438 #define	rcv (&so->so_rcv)
    439 #define snd (&so2->so_snd)
    440 			if (unp->unp_conn == 0)
    441 				break;
    442 			so2 = unp->unp_conn->unp_socket;
    443 			KASSERT(solocked2(so, so2));
    444 			/*
    445 			 * Adjust backpressure on sender
    446 			 * and wakeup any waiting to write.
    447 			 */
    448 			snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
    449 			unp->unp_mbcnt = rcv->sb_mbcnt;
    450 			newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
    451 			(void)chgsbsize(so2->so_uidinfo,
    452 			    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
    453 			unp->unp_cc = rcv->sb_cc;
    454 			sowwakeup(so2);
    455 #undef snd
    456 #undef rcv
    457 			break;
    458 
    459 		default:
    460 			panic("uipc 2");
    461 		}
    462 		break;
    463 
    464 	case PRU_SEND:
    465 		/*
    466 		 * Note: unp_internalize() rejects any control message
    467 		 * other than SCM_RIGHTS, and only allows one.  This
    468 		 * has the side-effect of preventing a caller from
    469 		 * forging SCM_CREDS.
    470 		 */
    471 		if (control) {
    472 			sounlock(so);
    473 			error = unp_internalize(&control);
    474 			solock(so);
    475 			if (error != 0) {
    476 				m_freem(control);
    477 				m_freem(m);
    478 				break;
    479 			}
    480 		}
    481 		switch (so->so_type) {
    482 
    483 		case SOCK_DGRAM: {
    484 			KASSERT(so->so_lock == uipc_lock);
    485 			if (nam) {
    486 				if ((so->so_state & SS_ISCONNECTED) != 0)
    487 					error = EISCONN;
    488 				else {
    489 					/*
    490 					 * Note: once connected, the
    491 					 * socket's lock must not be
    492 					 * dropped until we have sent
    493 					 * the message and disconnected.
    494 					 * This is necessary to prevent
    495 					 * intervening control ops, like
    496 					 * another connection.
    497 					 */
    498 					error = unp_connect(so, nam, l);
    499 				}
    500 			} else {
    501 				if ((so->so_state & SS_ISCONNECTED) == 0)
    502 					error = ENOTCONN;
    503 			}
    504 			if (error) {
    505 				unp_dispose(control);
    506 				m_freem(control);
    507 				m_freem(m);
    508 				break;
    509 			}
    510 			KASSERT(l != NULL);
    511 			error = unp_output(m, control, unp);
    512 			if (nam)
    513 				unp_disconnect1(unp);
    514 			break;
    515 		}
    516 
    517 		case SOCK_SEQPACKET: /* FALLTHROUGH */
    518 		case SOCK_STREAM:
    519 #define	rcv (&so2->so_rcv)
    520 #define	snd (&so->so_snd)
    521 			if (unp->unp_conn == NULL) {
    522 				error = ENOTCONN;
    523 				break;
    524 			}
    525 			so2 = unp->unp_conn->unp_socket;
    526 			KASSERT(solocked2(so, so2));
    527 			if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
    528 				/*
    529 				 * Credentials are passed only once on
    530 				 * SOCK_STREAM and SOCK_SEQPACKET.
    531 				 */
    532 				unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
    533 				control = unp_addsockcred(l, control);
    534 			}
    535 			/*
    536 			 * Send to paired receive port, and then reduce
    537 			 * send buffer hiwater marks to maintain backpressure.
    538 			 * Wake up readers.
    539 			 */
    540 			if (control) {
    541 				if (sbappendcontrol(rcv, m, control) != 0)
    542 					control = NULL;
    543 			} else {
    544 				switch(so->so_type) {
    545 				case SOCK_SEQPACKET:
    546 					sbappendrecord(rcv, m);
    547 					break;
    548 				case SOCK_STREAM:
    549 					sbappend(rcv, m);
    550 					break;
    551 				default:
    552 					panic("uipc_usrreq");
    553 					break;
    554 				}
    555 			}
    556 			snd->sb_mbmax -=
    557 			    rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
    558 			unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
    559 			newhiwat = snd->sb_hiwat -
    560 			    (rcv->sb_cc - unp->unp_conn->unp_cc);
    561 			(void)chgsbsize(so->so_uidinfo,
    562 			    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
    563 			unp->unp_conn->unp_cc = rcv->sb_cc;
    564 			sorwakeup(so2);
    565 #undef snd
    566 #undef rcv
    567 			if (control != NULL) {
    568 				unp_dispose(control);
    569 				m_freem(control);
    570 			}
    571 			break;
    572 
    573 		default:
    574 			panic("uipc 4");
    575 		}
    576 		break;
    577 
    578 	default:
    579 		panic("piusrreq");
    580 	}
    581 
    582 release:
    583 	return (error);
    584 }
    585 
    586 /*
    587  * Unix domain socket option processing.
    588  */
    589 int
    590 uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
    591 {
    592 	struct unpcb *unp = sotounpcb(so);
    593 	int optval = 0, error = 0;
    594 
    595 	KASSERT(solocked(so));
    596 
    597 	if (sopt->sopt_level != 0) {
    598 		error = ENOPROTOOPT;
    599 	} else switch (op) {
    600 
    601 	case PRCO_SETOPT:
    602 		switch (sopt->sopt_name) {
    603 		case LOCAL_CREDS:
    604 		case LOCAL_CONNWAIT:
    605 			error = sockopt_getint(sopt, &optval);
    606 			if (error)
    607 				break;
    608 			switch (sopt->sopt_name) {
    609 #define	OPTSET(bit) \
    610 	if (optval) \
    611 		unp->unp_flags |= (bit); \
    612 	else \
    613 		unp->unp_flags &= ~(bit);
    614 
    615 			case LOCAL_CREDS:
    616 				OPTSET(UNP_WANTCRED);
    617 				break;
    618 			case LOCAL_CONNWAIT:
    619 				OPTSET(UNP_CONNWAIT);
    620 				break;
    621 			}
    622 			break;
    623 #undef OPTSET
    624 
    625 		default:
    626 			error = ENOPROTOOPT;
    627 			break;
    628 		}
    629 		break;
    630 
    631 	case PRCO_GETOPT:
    632 		sounlock(so);
    633 		switch (sopt->sopt_name) {
    634 		case LOCAL_PEEREID:
    635 			if (unp->unp_flags & UNP_EIDSVALID) {
    636 				error = sockopt_set(sopt,
    637 				    &unp->unp_connid, sizeof(unp->unp_connid));
    638 			} else {
    639 				error = EINVAL;
    640 			}
    641 			break;
    642 		case LOCAL_CREDS:
    643 #define	OPTBIT(bit)	(unp->unp_flags & (bit) ? 1 : 0)
    644 
    645 			optval = OPTBIT(UNP_WANTCRED);
    646 			error = sockopt_setint(sopt, optval);
    647 			break;
    648 #undef OPTBIT
    649 
    650 		default:
    651 			error = ENOPROTOOPT;
    652 			break;
    653 		}
    654 		solock(so);
    655 		break;
    656 	}
    657 	return (error);
    658 }
    659 
    660 /*
    661  * Both send and receive buffers are allocated PIPSIZ bytes of buffering
    662  * for stream sockets, although the total for sender and receiver is
    663  * actually only PIPSIZ.
    664  * Datagram sockets really use the sendspace as the maximum datagram size,
    665  * and don't really want to reserve the sendspace.  Their recvspace should
    666  * be large enough for at least one max-size datagram plus address.
    667  */
    668 #define	PIPSIZ	4096
    669 u_long	unpst_sendspace = PIPSIZ;
    670 u_long	unpst_recvspace = PIPSIZ;
    671 u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
    672 u_long	unpdg_recvspace = 4*1024;
    673 
    674 u_int	unp_rights;			/* files in flight */
    675 u_int	unp_rights_ratio = 2;		/* limit, fraction of maxfiles */
    676 
    677 static int
    678 unp_attach(struct socket *so, int proto)
    679 {
    680 	struct unpcb *unp = sotounpcb(so);
    681 	u_long sndspc, rcvspc;
    682 	int error;
    683 
    684 	KASSERT(unp == NULL);
    685 
    686 	switch (so->so_type) {
    687 	case SOCK_SEQPACKET:
    688 		/* FALLTHROUGH */
    689 	case SOCK_STREAM:
    690 		if (so->so_lock == NULL) {
    691 			so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    692 			solock(so);
    693 		}
    694 		sndspc = unpst_sendspace;
    695 		rcvspc = unpst_recvspace;
    696 		break;
    697 
    698 	case SOCK_DGRAM:
    699 		if (so->so_lock == NULL) {
    700 			mutex_obj_hold(uipc_lock);
    701 			so->so_lock = uipc_lock;
    702 			solock(so);
    703 		}
    704 		sndspc = unpdg_sendspace;
    705 		rcvspc = unpdg_recvspace;
    706 		break;
    707 
    708 	default:
    709 		panic("unp_attach");
    710 	}
    711 
    712 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
    713 		error = soreserve(so, sndspc, rcvspc);
    714 		if (error) {
    715 			return error;
    716 		}
    717 	}
    718 
    719 	unp = kmem_zalloc(sizeof(*unp), KM_SLEEP);
    720 	nanotime(&unp->unp_ctime);
    721 	unp->unp_socket = so;
    722 	so->so_pcb = unp;
    723 
    724 	KASSERT(solocked(so));
    725 	return 0;
    726 }
    727 
    728 static void
    729 unp_detach(struct socket *so)
    730 {
    731 	struct unpcb *unp;
    732 	vnode_t *vp;
    733 
    734 	unp = sotounpcb(so);
    735 	KASSERT(unp != NULL);
    736 	KASSERT(solocked(so));
    737  retry:
    738 	if ((vp = unp->unp_vnode) != NULL) {
    739 		sounlock(so);
    740 		/* Acquire v_interlock to protect against unp_connect(). */
    741 		/* XXXAD racy */
    742 		mutex_enter(vp->v_interlock);
    743 		vp->v_socket = NULL;
    744 		mutex_exit(vp->v_interlock);
    745 		vrele(vp);
    746 		solock(so);
    747 		unp->unp_vnode = NULL;
    748 	}
    749 	if (unp->unp_conn)
    750 		unp_disconnect1(unp);
    751 	while (unp->unp_refs) {
    752 		KASSERT(solocked2(so, unp->unp_refs->unp_socket));
    753 		if (unp_drop(unp->unp_refs, ECONNRESET)) {
    754 			solock(so);
    755 			goto retry;
    756 		}
    757 	}
    758 	soisdisconnected(so);
    759 	so->so_pcb = NULL;
    760 	if (unp_rights) {
    761 		/*
    762 		 * Normally the receive buffer is flushed later, in sofree,
    763 		 * but if our receive buffer holds references to files that
    764 		 * are now garbage, we will enqueue those file references to
    765 		 * the garbage collector and kick it into action.
    766 		 */
    767 		sorflush(so);
    768 		unp_free(unp);
    769 		unp_thread_kick();
    770 	} else
    771 		unp_free(unp);
    772 }
    773 
    774 static int
    775 unp_accept(struct socket *so, struct mbuf *nam)
    776 {
    777 	struct unpcb *unp = sotounpcb(so);
    778 	struct socket *so2;
    779 
    780 	KASSERT(solocked(so));
    781 	KASSERT(nam != NULL);
    782 
    783 	/* XXX code review required to determine if unp can ever be NULL */
    784 	if (unp == NULL)
    785 		return EINVAL;
    786 
    787 	KASSERT(so->so_lock == uipc_lock);
    788 	/*
    789 	 * Mark the initiating STREAM socket as connected *ONLY*
    790 	 * after it's been accepted.  This prevents a client from
    791 	 * overrunning a server and receiving ECONNREFUSED.
    792 	 */
    793 	if (unp->unp_conn == NULL) {
    794 		/*
    795 		 * This will use the empty socket and will not
    796 		 * allocate.
    797 		 */
    798 		unp_setaddr(so, nam, true);
    799 		return 0;
    800 	}
    801 	so2 = unp->unp_conn->unp_socket;
    802 	if (so2->so_state & SS_ISCONNECTING) {
    803 		KASSERT(solocked2(so, so->so_head));
    804 		KASSERT(solocked2(so2, so->so_head));
    805 		soisconnected(so2);
    806 	}
    807 	/*
    808 	 * If the connection is fully established, break the
    809 	 * association with uipc_lock and give the connected
    810 	 * pair a separate lock to share.
    811 	 * There is a race here: sotounpcb(so2)->unp_streamlock
    812 	 * is not locked, so when changing so2->so_lock
    813 	 * another thread can grab it while so->so_lock is still
    814 	 * pointing to the (locked) uipc_lock.
    815 	 * this should be harmless, except that this makes
    816 	 * solocked2() and solocked() unreliable.
    817 	 * Another problem is that unp_setaddr() expects the
    818 	 * the socket locked. Grabing sotounpcb(so2)->unp_streamlock
    819 	 * fixes both issues.
    820 	 */
    821 	mutex_enter(sotounpcb(so2)->unp_streamlock);
    822 	unp_setpeerlocks(so2, so);
    823 	/*
    824 	 * Only now return peer's address, as we may need to
    825 	 * block in order to allocate memory.
    826 	 *
    827 	 * XXX Minor race: connection can be broken while
    828 	 * lock is dropped in unp_setaddr().  We will return
    829 	 * error == 0 and sun_noname as the peer address.
    830 	 */
    831 	unp_setaddr(so, nam, true);
    832 	/* so_lock now points to unp_streamlock */
    833 	mutex_exit(so2->so_lock);
    834 	return 0;
    835 }
    836 
    837 static int
    838 unp_ioctl(struct socket *so, u_long cmd, void *nam, struct ifnet *ifp)
    839 {
    840 	return EOPNOTSUPP;
    841 }
    842 
    843 static int
    844 unp_stat(struct socket *so, struct stat *ub)
    845 {
    846 	struct unpcb *unp;
    847 	struct socket *so2;
    848 
    849 	KASSERT(solocked(so));
    850 
    851 	unp = sotounpcb(so);
    852 	if (unp == NULL)
    853 		return EINVAL;
    854 
    855 	ub->st_blksize = so->so_snd.sb_hiwat;
    856 	switch (so->so_type) {
    857 	case SOCK_SEQPACKET: /* FALLTHROUGH */
    858 	case SOCK_STREAM:
    859 		if (unp->unp_conn == 0)
    860 			break;
    861 
    862 		so2 = unp->unp_conn->unp_socket;
    863 		KASSERT(solocked2(so, so2));
    864 		ub->st_blksize += so2->so_rcv.sb_cc;
    865 		break;
    866 	default:
    867 		break;
    868 	}
    869 	ub->st_dev = NODEV;
    870 	if (unp->unp_ino == 0)
    871 		unp->unp_ino = unp_ino++;
    872 	ub->st_atimespec = ub->st_mtimespec = ub->st_ctimespec = unp->unp_ctime;
    873 	ub->st_ino = unp->unp_ino;
    874 	return (0);
    875 }
    876 
    877 static int
    878 unp_peeraddr(struct socket *so, struct mbuf *nam)
    879 {
    880 	KASSERT(solocked(so));
    881 	KASSERT(sotounpcb(so) != NULL);
    882 	KASSERT(nam != NULL);
    883 
    884 	unp_setaddr(so, nam, true);
    885 	return 0;
    886 }
    887 
    888 static int
    889 unp_sockaddr(struct socket *so, struct mbuf *nam)
    890 {
    891 	KASSERT(solocked(so));
    892 	KASSERT(sotounpcb(so) != NULL);
    893 	KASSERT(nam != NULL);
    894 
    895 	unp_setaddr(so, nam, false);
    896 	return 0;
    897 }
    898 
    899 /*
    900  * Allocate the new sockaddr.  We have to allocate one
    901  * extra byte so that we can ensure that the pathname
    902  * is nul-terminated. Note that unlike linux, we don't
    903  * include in the address length the NUL in the path
    904  * component, because doing so, would exceed sizeof(sockaddr_un)
    905  * for fully occupied pathnames. Linux is also inconsistent,
    906  * because it does not include the NUL in the length of
    907  * what it calls "abstract" unix sockets.
    908  */
    909 static struct sockaddr_un *
    910 makeun(struct mbuf *nam, size_t *addrlen) {
    911 	struct sockaddr_un *sun;
    912 
    913 	*addrlen = nam->m_len + 1;
    914 	sun = malloc(*addrlen, M_SONAME, M_WAITOK);
    915 	m_copydata(nam, 0, nam->m_len, (void *)sun);
    916 	*(((char *)sun) + nam->m_len) = '\0';
    917 	sun->sun_len = strlen(sun->sun_path) +
    918 	    offsetof(struct sockaddr_un, sun_path);
    919 	return sun;
    920 }
    921 
    922 static int
    923 unp_bind(struct socket *so, struct mbuf *nam, struct lwp *l)
    924 {
    925 	struct sockaddr_un *sun;
    926 	struct unpcb *unp;
    927 	vnode_t *vp;
    928 	struct vattr vattr;
    929 	size_t addrlen;
    930 	int error;
    931 	struct pathbuf *pb;
    932 	struct nameidata nd;
    933 	proc_t *p;
    934 
    935 	unp = sotounpcb(so);
    936 
    937 	KASSERT(solocked(so));
    938 	KASSERT(unp != NULL);
    939 	KASSERT(nam != NULL);
    940 
    941 	if (unp->unp_vnode != NULL)
    942 		return (EINVAL);
    943 	if ((unp->unp_flags & UNP_BUSY) != 0) {
    944 		/*
    945 		 * EALREADY may not be strictly accurate, but since this
    946 		 * is a major application error it's hardly a big deal.
    947 		 */
    948 		return (EALREADY);
    949 	}
    950 	unp->unp_flags |= UNP_BUSY;
    951 	sounlock(so);
    952 
    953 	p = l->l_proc;
    954 	sun = makeun(nam, &addrlen);
    955 
    956 	pb = pathbuf_create(sun->sun_path);
    957 	if (pb == NULL) {
    958 		error = ENOMEM;
    959 		goto bad;
    960 	}
    961 	NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, pb);
    962 
    963 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
    964 	if ((error = namei(&nd)) != 0) {
    965 		pathbuf_destroy(pb);
    966 		goto bad;
    967 	}
    968 	vp = nd.ni_vp;
    969 	if (vp != NULL) {
    970 		VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
    971 		if (nd.ni_dvp == vp)
    972 			vrele(nd.ni_dvp);
    973 		else
    974 			vput(nd.ni_dvp);
    975 		vrele(vp);
    976 		pathbuf_destroy(pb);
    977 		error = EADDRINUSE;
    978 		goto bad;
    979 	}
    980 	vattr_null(&vattr);
    981 	vattr.va_type = VSOCK;
    982 	vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
    983 	error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
    984 	if (error) {
    985 		vput(nd.ni_dvp);
    986 		pathbuf_destroy(pb);
    987 		goto bad;
    988 	}
    989 	vp = nd.ni_vp;
    990 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    991 	solock(so);
    992 	vp->v_socket = unp->unp_socket;
    993 	unp->unp_vnode = vp;
    994 	unp->unp_addrlen = addrlen;
    995 	unp->unp_addr = sun;
    996 	unp->unp_connid.unp_pid = p->p_pid;
    997 	unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
    998 	unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
    999 	unp->unp_flags |= UNP_EIDSBIND;
   1000 	VOP_UNLOCK(vp);
   1001 	vput(nd.ni_dvp);
   1002 	unp->unp_flags &= ~UNP_BUSY;
   1003 	pathbuf_destroy(pb);
   1004 	return (0);
   1005 
   1006  bad:
   1007 	free(sun, M_SONAME);
   1008 	solock(so);
   1009 	unp->unp_flags &= ~UNP_BUSY;
   1010 	return (error);
   1011 }
   1012 
   1013 static int
   1014 unp_listen(struct socket *so, struct lwp *l)
   1015 {
   1016 	struct unpcb *unp = sotounpcb(so);
   1017 
   1018 	KASSERT(solocked(so));
   1019 	KASSERT(unp != NULL);
   1020 
   1021 	/*
   1022 	 * If the socket can accept a connection, it must be
   1023 	 * locked by uipc_lock.
   1024 	 */
   1025 	unp_resetlock(so);
   1026 	if (unp->unp_vnode == NULL)
   1027 		return EINVAL;
   1028 
   1029 	return 0;
   1030 }
   1031 
   1032 static int
   1033 unp_disconnect(struct socket *so)
   1034 {
   1035 	KASSERT(solocked(so));
   1036 	KASSERT(sotounpcb(so) != NULL);
   1037 
   1038 	unp_disconnect1(sotounpcb(so));
   1039 	return 0;
   1040 }
   1041 
   1042 static int
   1043 unp_shutdown(struct socket *so)
   1044 {
   1045 	KASSERT(solocked(so));
   1046 	KASSERT(sotounpcb(so) != NULL);
   1047 
   1048 	socantsendmore(so);
   1049 	unp_shutdown1(sotounpcb(so));
   1050 	return 0;
   1051 }
   1052 
   1053 static int
   1054 unp_abort(struct socket *so)
   1055 {
   1056 	KASSERT(solocked(so));
   1057 	KASSERT(sotounpcb(so) != NULL);
   1058 
   1059 	(void)unp_drop(sotounpcb(so), ECONNABORTED);
   1060 	KASSERT(so->so_head == NULL);
   1061 	KASSERT(so->so_pcb != NULL);
   1062 	unp_detach(so);
   1063 	return 0;
   1064 }
   1065 
   1066 int
   1067 unp_connect(struct socket *so, struct mbuf *nam, struct lwp *l)
   1068 {
   1069 	struct sockaddr_un *sun;
   1070 	vnode_t *vp;
   1071 	struct socket *so2, *so3;
   1072 	struct unpcb *unp, *unp2, *unp3;
   1073 	size_t addrlen;
   1074 	int error;
   1075 	struct pathbuf *pb;
   1076 	struct nameidata nd;
   1077 
   1078 	unp = sotounpcb(so);
   1079 	if ((unp->unp_flags & UNP_BUSY) != 0) {
   1080 		/*
   1081 		 * EALREADY may not be strictly accurate, but since this
   1082 		 * is a major application error it's hardly a big deal.
   1083 		 */
   1084 		return (EALREADY);
   1085 	}
   1086 	unp->unp_flags |= UNP_BUSY;
   1087 	sounlock(so);
   1088 
   1089 	sun = makeun(nam, &addrlen);
   1090 	pb = pathbuf_create(sun->sun_path);
   1091 	if (pb == NULL) {
   1092 		error = ENOMEM;
   1093 		goto bad2;
   1094 	}
   1095 
   1096 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
   1097 
   1098 	if ((error = namei(&nd)) != 0) {
   1099 		pathbuf_destroy(pb);
   1100 		goto bad2;
   1101 	}
   1102 	vp = nd.ni_vp;
   1103 	if (vp->v_type != VSOCK) {
   1104 		error = ENOTSOCK;
   1105 		goto bad;
   1106 	}
   1107 	pathbuf_destroy(pb);
   1108 	if ((error = VOP_ACCESS(vp, VWRITE, curlwp->l_cred)) != 0)
   1109 		goto bad;
   1110 	/* Acquire v_interlock to protect against unp_detach(). */
   1111 	mutex_enter(vp->v_interlock);
   1112 	so2 = vp->v_socket;
   1113 	if (so2 == NULL) {
   1114 		mutex_exit(vp->v_interlock);
   1115 		error = ECONNREFUSED;
   1116 		goto bad;
   1117 	}
   1118 	if (so->so_type != so2->so_type) {
   1119 		mutex_exit(vp->v_interlock);
   1120 		error = EPROTOTYPE;
   1121 		goto bad;
   1122 	}
   1123 	solock(so);
   1124 	unp_resetlock(so);
   1125 	mutex_exit(vp->v_interlock);
   1126 	if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
   1127 		/*
   1128 		 * This may seem somewhat fragile but is OK: if we can
   1129 		 * see SO_ACCEPTCONN set on the endpoint, then it must
   1130 		 * be locked by the domain-wide uipc_lock.
   1131 		 */
   1132 		KASSERT((so2->so_options & SO_ACCEPTCONN) == 0 ||
   1133 		    so2->so_lock == uipc_lock);
   1134 		if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
   1135 		    (so3 = sonewconn(so2, false)) == NULL) {
   1136 			error = ECONNREFUSED;
   1137 			sounlock(so);
   1138 			goto bad;
   1139 		}
   1140 		unp2 = sotounpcb(so2);
   1141 		unp3 = sotounpcb(so3);
   1142 		if (unp2->unp_addr) {
   1143 			unp3->unp_addr = malloc(unp2->unp_addrlen,
   1144 			    M_SONAME, M_WAITOK);
   1145 			memcpy(unp3->unp_addr, unp2->unp_addr,
   1146 			    unp2->unp_addrlen);
   1147 			unp3->unp_addrlen = unp2->unp_addrlen;
   1148 		}
   1149 		unp3->unp_flags = unp2->unp_flags;
   1150 		unp3->unp_connid.unp_pid = curlwp->l_proc->p_pid;
   1151 		unp3->unp_connid.unp_euid = kauth_cred_geteuid(curlwp->l_cred);
   1152 		unp3->unp_connid.unp_egid = kauth_cred_getegid(curlwp->l_cred);
   1153 		unp3->unp_flags |= UNP_EIDSVALID;
   1154 		if (unp2->unp_flags & UNP_EIDSBIND) {
   1155 			unp->unp_connid = unp2->unp_connid;
   1156 			unp->unp_flags |= UNP_EIDSVALID;
   1157 		}
   1158 		so2 = so3;
   1159 	}
   1160 	error = unp_connect2(so, so2, PRU_CONNECT);
   1161 	sounlock(so);
   1162  bad:
   1163 	vput(vp);
   1164  bad2:
   1165 	free(sun, M_SONAME);
   1166 	solock(so);
   1167 	unp->unp_flags &= ~UNP_BUSY;
   1168 	return (error);
   1169 }
   1170 
   1171 int
   1172 unp_connect2(struct socket *so, struct socket *so2, int req)
   1173 {
   1174 	struct unpcb *unp = sotounpcb(so);
   1175 	struct unpcb *unp2;
   1176 
   1177 	if (so2->so_type != so->so_type)
   1178 		return (EPROTOTYPE);
   1179 
   1180 	/*
   1181 	 * All three sockets involved must be locked by same lock:
   1182 	 *
   1183 	 * local endpoint (so)
   1184 	 * remote endpoint (so2)
   1185 	 * queue head (so2->so_head, only if PR_CONNREQUIRED)
   1186 	 */
   1187 	KASSERT(solocked2(so, so2));
   1188 	KASSERT(so->so_head == NULL);
   1189 	if (so2->so_head != NULL) {
   1190 		KASSERT(so2->so_lock == uipc_lock);
   1191 		KASSERT(solocked2(so2, so2->so_head));
   1192 	}
   1193 
   1194 	unp2 = sotounpcb(so2);
   1195 	unp->unp_conn = unp2;
   1196 	switch (so->so_type) {
   1197 
   1198 	case SOCK_DGRAM:
   1199 		unp->unp_nextref = unp2->unp_refs;
   1200 		unp2->unp_refs = unp;
   1201 		soisconnected(so);
   1202 		break;
   1203 
   1204 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1205 	case SOCK_STREAM:
   1206 		unp2->unp_conn = unp;
   1207 		if (req == PRU_CONNECT &&
   1208 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
   1209 			soisconnecting(so);
   1210 		else
   1211 			soisconnected(so);
   1212 		soisconnected(so2);
   1213 		/*
   1214 		 * If the connection is fully established, break the
   1215 		 * association with uipc_lock and give the connected
   1216 		 * pair a seperate lock to share.  For CONNECT2, we
   1217 		 * require that the locks already match (the sockets
   1218 		 * are created that way).
   1219 		 */
   1220 		if (req == PRU_CONNECT) {
   1221 			KASSERT(so2->so_head != NULL);
   1222 			unp_setpeerlocks(so, so2);
   1223 		}
   1224 		break;
   1225 
   1226 	default:
   1227 		panic("unp_connect2");
   1228 	}
   1229 	return (0);
   1230 }
   1231 
   1232 static void
   1233 unp_disconnect1(struct unpcb *unp)
   1234 {
   1235 	struct unpcb *unp2 = unp->unp_conn;
   1236 	struct socket *so;
   1237 
   1238 	if (unp2 == 0)
   1239 		return;
   1240 	unp->unp_conn = 0;
   1241 	so = unp->unp_socket;
   1242 	switch (so->so_type) {
   1243 	case SOCK_DGRAM:
   1244 		if (unp2->unp_refs == unp)
   1245 			unp2->unp_refs = unp->unp_nextref;
   1246 		else {
   1247 			unp2 = unp2->unp_refs;
   1248 			for (;;) {
   1249 				KASSERT(solocked2(so, unp2->unp_socket));
   1250 				if (unp2 == 0)
   1251 					panic("unp_disconnect1");
   1252 				if (unp2->unp_nextref == unp)
   1253 					break;
   1254 				unp2 = unp2->unp_nextref;
   1255 			}
   1256 			unp2->unp_nextref = unp->unp_nextref;
   1257 		}
   1258 		unp->unp_nextref = 0;
   1259 		so->so_state &= ~SS_ISCONNECTED;
   1260 		break;
   1261 
   1262 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1263 	case SOCK_STREAM:
   1264 		KASSERT(solocked2(so, unp2->unp_socket));
   1265 		soisdisconnected(so);
   1266 		unp2->unp_conn = 0;
   1267 		soisdisconnected(unp2->unp_socket);
   1268 		break;
   1269 	}
   1270 }
   1271 
   1272 static void
   1273 unp_shutdown1(struct unpcb *unp)
   1274 {
   1275 	struct socket *so;
   1276 
   1277 	switch(unp->unp_socket->so_type) {
   1278 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1279 	case SOCK_STREAM:
   1280 		if (unp->unp_conn && (so = unp->unp_conn->unp_socket))
   1281 			socantrcvmore(so);
   1282 		break;
   1283 	default:
   1284 		break;
   1285 	}
   1286 }
   1287 
   1288 static bool
   1289 unp_drop(struct unpcb *unp, int errno)
   1290 {
   1291 	struct socket *so = unp->unp_socket;
   1292 
   1293 	KASSERT(solocked(so));
   1294 
   1295 	so->so_error = errno;
   1296 	unp_disconnect1(unp);
   1297 	if (so->so_head) {
   1298 		so->so_pcb = NULL;
   1299 		/* sofree() drops the socket lock */
   1300 		sofree(so);
   1301 		unp_free(unp);
   1302 		return true;
   1303 	}
   1304 	return false;
   1305 }
   1306 
   1307 #ifdef notdef
   1308 unp_drain(void)
   1309 {
   1310 
   1311 }
   1312 #endif
   1313 
   1314 int
   1315 unp_externalize(struct mbuf *rights, struct lwp *l, int flags)
   1316 {
   1317 	struct cmsghdr * const cm = mtod(rights, struct cmsghdr *);
   1318 	struct proc * const p = l->l_proc;
   1319 	file_t **rp;
   1320 	int error = 0;
   1321 
   1322 	const size_t nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
   1323 	    sizeof(file_t *);
   1324 	if (nfds == 0)
   1325 		goto noop;
   1326 
   1327 	int * const fdp = kmem_alloc(nfds * sizeof(int), KM_SLEEP);
   1328 	rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
   1329 
   1330 	/* Make sure the recipient should be able to see the files.. */
   1331 	rp = (file_t **)CMSG_DATA(cm);
   1332 	for (size_t i = 0; i < nfds; i++) {
   1333 		file_t * const fp = *rp++;
   1334 		if (fp == NULL) {
   1335 			error = EINVAL;
   1336 			goto out;
   1337 		}
   1338 		/*
   1339 		 * If we are in a chroot'ed directory, and
   1340 		 * someone wants to pass us a directory, make
   1341 		 * sure it's inside the subtree we're allowed
   1342 		 * to access.
   1343 		 */
   1344 		if (p->p_cwdi->cwdi_rdir != NULL && fp->f_type == DTYPE_VNODE) {
   1345 			vnode_t *vp = (vnode_t *)fp->f_data;
   1346 			if ((vp->v_type == VDIR) &&
   1347 			    !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
   1348 				error = EPERM;
   1349 				goto out;
   1350 			}
   1351 		}
   1352 	}
   1353 
   1354  restart:
   1355 	/*
   1356 	 * First loop -- allocate file descriptor table slots for the
   1357 	 * new files.
   1358 	 */
   1359 	for (size_t i = 0; i < nfds; i++) {
   1360 		if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
   1361 			/*
   1362 			 * Back out what we've done so far.
   1363 			 */
   1364 			while (i-- > 0) {
   1365 				fd_abort(p, NULL, fdp[i]);
   1366 			}
   1367 			if (error == ENOSPC) {
   1368 				fd_tryexpand(p);
   1369 				error = 0;
   1370 				goto restart;
   1371 			}
   1372 			/*
   1373 			 * This is the error that has historically
   1374 			 * been returned, and some callers may
   1375 			 * expect it.
   1376 			 */
   1377 			error = EMSGSIZE;
   1378 			goto out;
   1379 		}
   1380 	}
   1381 
   1382 	/*
   1383 	 * Now that adding them has succeeded, update all of the
   1384 	 * file passing state and affix the descriptors.
   1385 	 */
   1386 	rp = (file_t **)CMSG_DATA(cm);
   1387 	int *ofdp = (int *)CMSG_DATA(cm);
   1388 	for (size_t i = 0; i < nfds; i++) {
   1389 		file_t * const fp = *rp++;
   1390 		const int fd = fdp[i];
   1391 		atomic_dec_uint(&unp_rights);
   1392 		fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
   1393 		fd_affix(p, fp, fd);
   1394 		/*
   1395 		 * Done with this file pointer, replace it with a fd;
   1396 		 */
   1397 		*ofdp++ = fd;
   1398 		mutex_enter(&fp->f_lock);
   1399 		fp->f_msgcount--;
   1400 		mutex_exit(&fp->f_lock);
   1401 		/*
   1402 		 * Note that fd_affix() adds a reference to the file.
   1403 		 * The file may already have been closed by another
   1404 		 * LWP in the process, so we must drop the reference
   1405 		 * added by unp_internalize() with closef().
   1406 		 */
   1407 		closef(fp);
   1408 	}
   1409 
   1410 	/*
   1411 	 * Adjust length, in case of transition from large file_t
   1412 	 * pointers to ints.
   1413 	 */
   1414 	if (sizeof(file_t *) != sizeof(int)) {
   1415 		cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
   1416 		rights->m_len = CMSG_SPACE(nfds * sizeof(int));
   1417 	}
   1418  out:
   1419 	if (__predict_false(error != 0)) {
   1420 		file_t **const fpp = (file_t **)CMSG_DATA(cm);
   1421 		for (size_t i = 0; i < nfds; i++)
   1422 			unp_discard_now(fpp[i]);
   1423 		/*
   1424 		 * Truncate the array so that nobody will try to interpret
   1425 		 * what is now garbage in it.
   1426 		 */
   1427 		cm->cmsg_len = CMSG_LEN(0);
   1428 		rights->m_len = CMSG_SPACE(0);
   1429 	}
   1430 	rw_exit(&p->p_cwdi->cwdi_lock);
   1431 	kmem_free(fdp, nfds * sizeof(int));
   1432 
   1433  noop:
   1434 	/*
   1435 	 * Don't disclose kernel memory in the alignment space.
   1436 	 */
   1437 	KASSERT(cm->cmsg_len <= rights->m_len);
   1438 	memset(&mtod(rights, char *)[cm->cmsg_len], 0, rights->m_len -
   1439 	    cm->cmsg_len);
   1440 	return error;
   1441 }
   1442 
   1443 static int
   1444 unp_internalize(struct mbuf **controlp)
   1445 {
   1446 	filedesc_t *fdescp = curlwp->l_fd;
   1447 	struct mbuf *control = *controlp;
   1448 	struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
   1449 	file_t **rp, **files;
   1450 	file_t *fp;
   1451 	int i, fd, *fdp;
   1452 	int nfds, error;
   1453 	u_int maxmsg;
   1454 
   1455 	error = 0;
   1456 	newcm = NULL;
   1457 
   1458 	/* Sanity check the control message header. */
   1459 	if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
   1460 	    cm->cmsg_len > control->m_len ||
   1461 	    cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
   1462 		return (EINVAL);
   1463 
   1464 	/*
   1465 	 * Verify that the file descriptors are valid, and acquire
   1466 	 * a reference to each.
   1467 	 */
   1468 	nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
   1469 	fdp = (int *)CMSG_DATA(cm);
   1470 	maxmsg = maxfiles / unp_rights_ratio;
   1471 	for (i = 0; i < nfds; i++) {
   1472 		fd = *fdp++;
   1473 		if (atomic_inc_uint_nv(&unp_rights) > maxmsg) {
   1474 			atomic_dec_uint(&unp_rights);
   1475 			nfds = i;
   1476 			error = EAGAIN;
   1477 			goto out;
   1478 		}
   1479 		if ((fp = fd_getfile(fd)) == NULL
   1480 		    || fp->f_type == DTYPE_KQUEUE) {
   1481 		    	if (fp)
   1482 		    		fd_putfile(fd);
   1483 			atomic_dec_uint(&unp_rights);
   1484 			nfds = i;
   1485 			error = EBADF;
   1486 			goto out;
   1487 		}
   1488 	}
   1489 
   1490 	/* Allocate new space and copy header into it. */
   1491 	newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
   1492 	if (newcm == NULL) {
   1493 		error = E2BIG;
   1494 		goto out;
   1495 	}
   1496 	memcpy(newcm, cm, sizeof(struct cmsghdr));
   1497 	files = (file_t **)CMSG_DATA(newcm);
   1498 
   1499 	/*
   1500 	 * Transform the file descriptors into file_t pointers, in
   1501 	 * reverse order so that if pointers are bigger than ints, the
   1502 	 * int won't get until we're done.  No need to lock, as we have
   1503 	 * already validated the descriptors with fd_getfile().
   1504 	 */
   1505 	fdp = (int *)CMSG_DATA(cm) + nfds;
   1506 	rp = files + nfds;
   1507 	for (i = 0; i < nfds; i++) {
   1508 		fp = fdescp->fd_dt->dt_ff[*--fdp]->ff_file;
   1509 		KASSERT(fp != NULL);
   1510 		mutex_enter(&fp->f_lock);
   1511 		*--rp = fp;
   1512 		fp->f_count++;
   1513 		fp->f_msgcount++;
   1514 		mutex_exit(&fp->f_lock);
   1515 	}
   1516 
   1517  out:
   1518  	/* Release descriptor references. */
   1519 	fdp = (int *)CMSG_DATA(cm);
   1520 	for (i = 0; i < nfds; i++) {
   1521 		fd_putfile(*fdp++);
   1522 		if (error != 0) {
   1523 			atomic_dec_uint(&unp_rights);
   1524 		}
   1525 	}
   1526 
   1527 	if (error == 0) {
   1528 		if (control->m_flags & M_EXT) {
   1529 			m_freem(control);
   1530 			*controlp = control = m_get(M_WAIT, MT_CONTROL);
   1531 		}
   1532 		MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
   1533 		    M_MBUF, NULL, NULL);
   1534 		cm = newcm;
   1535 		/*
   1536 		 * Adjust message & mbuf to note amount of space
   1537 		 * actually used.
   1538 		 */
   1539 		cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
   1540 		control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
   1541 	}
   1542 
   1543 	return error;
   1544 }
   1545 
   1546 struct mbuf *
   1547 unp_addsockcred(struct lwp *l, struct mbuf *control)
   1548 {
   1549 	struct sockcred *sc;
   1550 	struct mbuf *m;
   1551 	void *p;
   1552 
   1553 	m = sbcreatecontrol1(&p, SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)),
   1554 		SCM_CREDS, SOL_SOCKET, M_WAITOK);
   1555 	if (m == NULL)
   1556 		return control;
   1557 
   1558 	sc = p;
   1559 	sc->sc_uid = kauth_cred_getuid(l->l_cred);
   1560 	sc->sc_euid = kauth_cred_geteuid(l->l_cred);
   1561 	sc->sc_gid = kauth_cred_getgid(l->l_cred);
   1562 	sc->sc_egid = kauth_cred_getegid(l->l_cred);
   1563 	sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
   1564 
   1565 	for (int i = 0; i < sc->sc_ngroups; i++)
   1566 		sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
   1567 
   1568 	return m_add(control, m);
   1569 }
   1570 
   1571 /*
   1572  * Do a mark-sweep GC of files in the system, to free up any which are
   1573  * caught in flight to an about-to-be-closed socket.  Additionally,
   1574  * process deferred file closures.
   1575  */
   1576 static void
   1577 unp_gc(file_t *dp)
   1578 {
   1579 	extern	struct domain unixdomain;
   1580 	file_t *fp, *np;
   1581 	struct socket *so, *so1;
   1582 	u_int i, old, new;
   1583 	bool didwork;
   1584 
   1585 	KASSERT(curlwp == unp_thread_lwp);
   1586 	KASSERT(mutex_owned(&filelist_lock));
   1587 
   1588 	/*
   1589 	 * First, process deferred file closures.
   1590 	 */
   1591 	while (!SLIST_EMPTY(&unp_thread_discard)) {
   1592 		fp = SLIST_FIRST(&unp_thread_discard);
   1593 		KASSERT(fp->f_unpcount > 0);
   1594 		KASSERT(fp->f_count > 0);
   1595 		KASSERT(fp->f_msgcount > 0);
   1596 		KASSERT(fp->f_count >= fp->f_unpcount);
   1597 		KASSERT(fp->f_count >= fp->f_msgcount);
   1598 		KASSERT(fp->f_msgcount >= fp->f_unpcount);
   1599 		SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist);
   1600 		i = fp->f_unpcount;
   1601 		fp->f_unpcount = 0;
   1602 		mutex_exit(&filelist_lock);
   1603 		for (; i != 0; i--) {
   1604 			unp_discard_now(fp);
   1605 		}
   1606 		mutex_enter(&filelist_lock);
   1607 	}
   1608 
   1609 	/*
   1610 	 * Clear mark bits.  Ensure that we don't consider new files
   1611 	 * entering the file table during this loop (they will not have
   1612 	 * FSCAN set).
   1613 	 */
   1614 	unp_defer = 0;
   1615 	LIST_FOREACH(fp, &filehead, f_list) {
   1616 		for (old = fp->f_flag;; old = new) {
   1617 			new = atomic_cas_uint(&fp->f_flag, old,
   1618 			    (old | FSCAN) & ~(FMARK|FDEFER));
   1619 			if (__predict_true(old == new)) {
   1620 				break;
   1621 			}
   1622 		}
   1623 	}
   1624 
   1625 	/*
   1626 	 * Iterate over the set of sockets, marking ones believed (based on
   1627 	 * refcount) to be referenced from a process, and marking for rescan
   1628 	 * sockets which are queued on a socket.  Recan continues descending
   1629 	 * and searching for sockets referenced by sockets (FDEFER), until
   1630 	 * there are no more socket->socket references to be discovered.
   1631 	 */
   1632 	do {
   1633 		didwork = false;
   1634 		for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
   1635 			KASSERT(mutex_owned(&filelist_lock));
   1636 			np = LIST_NEXT(fp, f_list);
   1637 			mutex_enter(&fp->f_lock);
   1638 			if ((fp->f_flag & FDEFER) != 0) {
   1639 				atomic_and_uint(&fp->f_flag, ~FDEFER);
   1640 				unp_defer--;
   1641 				KASSERT(fp->f_count != 0);
   1642 			} else {
   1643 				if (fp->f_count == 0 ||
   1644 				    (fp->f_flag & FMARK) != 0 ||
   1645 				    fp->f_count == fp->f_msgcount ||
   1646 				    fp->f_unpcount != 0) {
   1647 					mutex_exit(&fp->f_lock);
   1648 					continue;
   1649 				}
   1650 			}
   1651 			atomic_or_uint(&fp->f_flag, FMARK);
   1652 
   1653 			if (fp->f_type != DTYPE_SOCKET ||
   1654 			    (so = fp->f_data) == NULL ||
   1655 			    so->so_proto->pr_domain != &unixdomain ||
   1656 			    (so->so_proto->pr_flags & PR_RIGHTS) == 0) {
   1657 				mutex_exit(&fp->f_lock);
   1658 				continue;
   1659 			}
   1660 
   1661 			/* Gain file ref, mark our position, and unlock. */
   1662 			didwork = true;
   1663 			LIST_INSERT_AFTER(fp, dp, f_list);
   1664 			fp->f_count++;
   1665 			mutex_exit(&fp->f_lock);
   1666 			mutex_exit(&filelist_lock);
   1667 
   1668 			/*
   1669 			 * Mark files referenced from sockets queued on the
   1670 			 * accept queue as well.
   1671 			 */
   1672 			solock(so);
   1673 			unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
   1674 			if ((so->so_options & SO_ACCEPTCONN) != 0) {
   1675 				TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
   1676 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
   1677 				}
   1678 				TAILQ_FOREACH(so1, &so->so_q, so_qe) {
   1679 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
   1680 				}
   1681 			}
   1682 			sounlock(so);
   1683 
   1684 			/* Re-lock and restart from where we left off. */
   1685 			closef(fp);
   1686 			mutex_enter(&filelist_lock);
   1687 			np = LIST_NEXT(dp, f_list);
   1688 			LIST_REMOVE(dp, f_list);
   1689 		}
   1690 		/*
   1691 		 * Bail early if we did nothing in the loop above.  Could
   1692 		 * happen because of concurrent activity causing unp_defer
   1693 		 * to get out of sync.
   1694 		 */
   1695 	} while (unp_defer != 0 && didwork);
   1696 
   1697 	/*
   1698 	 * Sweep pass.
   1699 	 *
   1700 	 * We grab an extra reference to each of the files that are
   1701 	 * not otherwise accessible and then free the rights that are
   1702 	 * stored in messages on them.
   1703 	 */
   1704 	for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
   1705 		KASSERT(mutex_owned(&filelist_lock));
   1706 		np = LIST_NEXT(fp, f_list);
   1707 		mutex_enter(&fp->f_lock);
   1708 
   1709 		/*
   1710 		 * Ignore non-sockets.
   1711 		 * Ignore dead sockets, or sockets with pending close.
   1712 		 * Ignore sockets obviously referenced elsewhere.
   1713 		 * Ignore sockets marked as referenced by our scan.
   1714 		 * Ignore new sockets that did not exist during the scan.
   1715 		 */
   1716 		if (fp->f_type != DTYPE_SOCKET ||
   1717 		    fp->f_count == 0 || fp->f_unpcount != 0 ||
   1718 		    fp->f_count != fp->f_msgcount ||
   1719 		    (fp->f_flag & (FMARK | FSCAN)) != FSCAN) {
   1720 			mutex_exit(&fp->f_lock);
   1721 			continue;
   1722 		}
   1723 
   1724 		/* Gain file ref, mark our position, and unlock. */
   1725 		LIST_INSERT_AFTER(fp, dp, f_list);
   1726 		fp->f_count++;
   1727 		mutex_exit(&fp->f_lock);
   1728 		mutex_exit(&filelist_lock);
   1729 
   1730 		/*
   1731 		 * Flush all data from the socket's receive buffer.
   1732 		 * This will cause files referenced only by the
   1733 		 * socket to be queued for close.
   1734 		 */
   1735 		so = fp->f_data;
   1736 		solock(so);
   1737 		sorflush(so);
   1738 		sounlock(so);
   1739 
   1740 		/* Re-lock and restart from where we left off. */
   1741 		closef(fp);
   1742 		mutex_enter(&filelist_lock);
   1743 		np = LIST_NEXT(dp, f_list);
   1744 		LIST_REMOVE(dp, f_list);
   1745 	}
   1746 }
   1747 
   1748 /*
   1749  * Garbage collector thread.  While SCM_RIGHTS messages are in transit,
   1750  * wake once per second to garbage collect.  Run continually while we
   1751  * have deferred closes to process.
   1752  */
   1753 static void
   1754 unp_thread(void *cookie)
   1755 {
   1756 	file_t *dp;
   1757 
   1758 	/* Allocate a dummy file for our scans. */
   1759 	if ((dp = fgetdummy()) == NULL) {
   1760 		panic("unp_thread");
   1761 	}
   1762 
   1763 	mutex_enter(&filelist_lock);
   1764 	for (;;) {
   1765 		KASSERT(mutex_owned(&filelist_lock));
   1766 		if (SLIST_EMPTY(&unp_thread_discard)) {
   1767 			if (unp_rights != 0) {
   1768 				(void)cv_timedwait(&unp_thread_cv,
   1769 				    &filelist_lock, hz);
   1770 			} else {
   1771 				cv_wait(&unp_thread_cv, &filelist_lock);
   1772 			}
   1773 		}
   1774 		unp_gc(dp);
   1775 	}
   1776 	/* NOTREACHED */
   1777 }
   1778 
   1779 /*
   1780  * Kick the garbage collector into action if there is something for
   1781  * it to process.
   1782  */
   1783 static void
   1784 unp_thread_kick(void)
   1785 {
   1786 
   1787 	if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) {
   1788 		mutex_enter(&filelist_lock);
   1789 		cv_signal(&unp_thread_cv);
   1790 		mutex_exit(&filelist_lock);
   1791 	}
   1792 }
   1793 
   1794 void
   1795 unp_dispose(struct mbuf *m)
   1796 {
   1797 
   1798 	if (m)
   1799 		unp_scan(m, unp_discard_later, 1);
   1800 }
   1801 
   1802 void
   1803 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
   1804 {
   1805 	struct mbuf *m;
   1806 	file_t **rp, *fp;
   1807 	struct cmsghdr *cm;
   1808 	int i, qfds;
   1809 
   1810 	while (m0) {
   1811 		for (m = m0; m; m = m->m_next) {
   1812 			if (m->m_type != MT_CONTROL ||
   1813 			    m->m_len < sizeof(*cm)) {
   1814 			    	continue;
   1815 			}
   1816 			cm = mtod(m, struct cmsghdr *);
   1817 			if (cm->cmsg_level != SOL_SOCKET ||
   1818 			    cm->cmsg_type != SCM_RIGHTS)
   1819 				continue;
   1820 			qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
   1821 			    / sizeof(file_t *);
   1822 			rp = (file_t **)CMSG_DATA(cm);
   1823 			for (i = 0; i < qfds; i++) {
   1824 				fp = *rp;
   1825 				if (discard) {
   1826 					*rp = 0;
   1827 				}
   1828 				(*op)(fp);
   1829 				rp++;
   1830 			}
   1831 		}
   1832 		m0 = m0->m_nextpkt;
   1833 	}
   1834 }
   1835 
   1836 void
   1837 unp_mark(file_t *fp)
   1838 {
   1839 
   1840 	if (fp == NULL)
   1841 		return;
   1842 
   1843 	/* If we're already deferred, don't screw up the defer count */
   1844 	mutex_enter(&fp->f_lock);
   1845 	if (fp->f_flag & (FMARK | FDEFER)) {
   1846 		mutex_exit(&fp->f_lock);
   1847 		return;
   1848 	}
   1849 
   1850 	/*
   1851 	 * Minimize the number of deferrals...  Sockets are the only type of
   1852 	 * file which can hold references to another file, so just mark
   1853 	 * other files, and defer unmarked sockets for the next pass.
   1854 	 */
   1855 	if (fp->f_type == DTYPE_SOCKET) {
   1856 		unp_defer++;
   1857 		KASSERT(fp->f_count != 0);
   1858 		atomic_or_uint(&fp->f_flag, FDEFER);
   1859 	} else {
   1860 		atomic_or_uint(&fp->f_flag, FMARK);
   1861 	}
   1862 	mutex_exit(&fp->f_lock);
   1863 }
   1864 
   1865 static void
   1866 unp_discard_now(file_t *fp)
   1867 {
   1868 
   1869 	if (fp == NULL)
   1870 		return;
   1871 
   1872 	KASSERT(fp->f_count > 0);
   1873 	KASSERT(fp->f_msgcount > 0);
   1874 
   1875 	mutex_enter(&fp->f_lock);
   1876 	fp->f_msgcount--;
   1877 	mutex_exit(&fp->f_lock);
   1878 	atomic_dec_uint(&unp_rights);
   1879 	(void)closef(fp);
   1880 }
   1881 
   1882 static void
   1883 unp_discard_later(file_t *fp)
   1884 {
   1885 
   1886 	if (fp == NULL)
   1887 		return;
   1888 
   1889 	KASSERT(fp->f_count > 0);
   1890 	KASSERT(fp->f_msgcount > 0);
   1891 
   1892 	mutex_enter(&filelist_lock);
   1893 	if (fp->f_unpcount++ == 0) {
   1894 		SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist);
   1895 	}
   1896 	mutex_exit(&filelist_lock);
   1897 }
   1898 
   1899 const struct pr_usrreqs unp_usrreqs = {
   1900 	.pr_attach	= unp_attach,
   1901 	.pr_detach	= unp_detach,
   1902 	.pr_accept	= unp_accept,
   1903 	.pr_bind	= unp_bind,
   1904 	.pr_listen	= unp_listen,
   1905 	.pr_connect	= unp_connect,
   1906 	.pr_disconnect	= unp_disconnect,
   1907 	.pr_shutdown	= unp_shutdown,
   1908 	.pr_abort	= unp_abort,
   1909 	.pr_ioctl	= unp_ioctl,
   1910 	.pr_stat	= unp_stat,
   1911 	.pr_peeraddr	= unp_peeraddr,
   1912 	.pr_sockaddr	= unp_sockaddr,
   1913 	.pr_recvoob	= unp_recvoob,
   1914 	.pr_sendoob	= unp_sendoob,
   1915 	.pr_generic	= unp_usrreq,
   1916 };
   1917