Home | History | Annotate | Line # | Download | only in kern
uipc_usrreq.c revision 1.166
      1 /*	$NetBSD: uipc_usrreq.c,v 1.166 2014/08/05 07:55:31 rtr Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 2000, 2004, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
     62  */
     63 
     64 /*
     65  * Copyright (c) 1997 Christopher G. Demetriou.  All rights reserved.
     66  *
     67  * Redistribution and use in source and binary forms, with or without
     68  * modification, are permitted provided that the following conditions
     69  * are met:
     70  * 1. Redistributions of source code must retain the above copyright
     71  *    notice, this list of conditions and the following disclaimer.
     72  * 2. Redistributions in binary form must reproduce the above copyright
     73  *    notice, this list of conditions and the following disclaimer in the
     74  *    documentation and/or other materials provided with the distribution.
     75  * 3. All advertising materials mentioning features or use of this software
     76  *    must display the following acknowledgement:
     77  *	This product includes software developed by the University of
     78  *	California, Berkeley and its contributors.
     79  * 4. Neither the name of the University nor the names of its contributors
     80  *    may be used to endorse or promote products derived from this software
     81  *    without specific prior written permission.
     82  *
     83  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     84  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     85  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     86  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     87  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     88  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     89  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     90  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     91  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     92  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     93  * SUCH DAMAGE.
     94  *
     95  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
     96  */
     97 
     98 #include <sys/cdefs.h>
     99 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.166 2014/08/05 07:55:31 rtr Exp $");
    100 
    101 #include <sys/param.h>
    102 #include <sys/systm.h>
    103 #include <sys/proc.h>
    104 #include <sys/filedesc.h>
    105 #include <sys/domain.h>
    106 #include <sys/protosw.h>
    107 #include <sys/socket.h>
    108 #include <sys/socketvar.h>
    109 #include <sys/unpcb.h>
    110 #include <sys/un.h>
    111 #include <sys/namei.h>
    112 #include <sys/vnode.h>
    113 #include <sys/file.h>
    114 #include <sys/stat.h>
    115 #include <sys/mbuf.h>
    116 #include <sys/kauth.h>
    117 #include <sys/kmem.h>
    118 #include <sys/atomic.h>
    119 #include <sys/uidinfo.h>
    120 #include <sys/kernel.h>
    121 #include <sys/kthread.h>
    122 
    123 /*
    124  * Unix communications domain.
    125  *
    126  * TODO:
    127  *	RDM
    128  *	rethink name space problems
    129  *	need a proper out-of-band
    130  *
    131  * Notes on locking:
    132  *
    133  * The generic rules noted in uipc_socket2.c apply.  In addition:
    134  *
    135  * o We have a global lock, uipc_lock.
    136  *
    137  * o All datagram sockets are locked by uipc_lock.
    138  *
    139  * o For stream socketpairs, the two endpoints are created sharing the same
    140  *   independent lock.  Sockets presented to PRU_CONNECT2 must already have
    141  *   matching locks.
    142  *
    143  * o Stream sockets created via socket() start life with their own
    144  *   independent lock.
    145  *
    146  * o Stream connections to a named endpoint are slightly more complicated.
    147  *   Sockets that have called listen() have their lock pointer mutated to
    148  *   the global uipc_lock.  When establishing a connection, the connecting
    149  *   socket also has its lock mutated to uipc_lock, which matches the head
    150  *   (listening socket).  We create a new socket for accept() to return, and
    151  *   that also shares the head's lock.  Until the connection is completely
    152  *   done on both ends, all three sockets are locked by uipc_lock.  Once the
    153  *   connection is complete, the association with the head's lock is broken.
    154  *   The connecting socket and the socket returned from accept() have their
    155  *   lock pointers mutated away from uipc_lock, and back to the connecting
    156  *   socket's original, independent lock.  The head continues to be locked
    157  *   by uipc_lock.
    158  *
    159  * o If uipc_lock is determined to be a significant source of contention,
    160  *   it could easily be hashed out.  It is difficult to simply make it an
    161  *   independent lock because of visibility / garbage collection issues:
    162  *   if a socket has been associated with a lock at any point, that lock
    163  *   must remain valid until the socket is no longer visible in the system.
    164  *   The lock must not be freed or otherwise destroyed until any sockets
    165  *   that had referenced it have also been destroyed.
    166  */
    167 const struct sockaddr_un sun_noname = {
    168 	.sun_len = offsetof(struct sockaddr_un, sun_path),
    169 	.sun_family = AF_LOCAL,
    170 };
    171 ino_t	unp_ino;			/* prototype for fake inode numbers */
    172 
    173 static struct mbuf * unp_addsockcred(struct lwp *, struct mbuf *);
    174 static void   unp_discard_later(file_t *);
    175 static void   unp_discard_now(file_t *);
    176 static void   unp_disconnect1(struct unpcb *);
    177 static bool   unp_drop(struct unpcb *, int);
    178 static int    unp_internalize(struct mbuf **);
    179 static void   unp_mark(file_t *);
    180 static void   unp_scan(struct mbuf *, void (*)(file_t *), int);
    181 static void   unp_shutdown1(struct unpcb *);
    182 static void   unp_thread(void *);
    183 static void   unp_thread_kick(void);
    184 
    185 static kmutex_t *uipc_lock;
    186 
    187 static kcondvar_t unp_thread_cv;
    188 static lwp_t *unp_thread_lwp;
    189 static SLIST_HEAD(,file) unp_thread_discard;
    190 static int unp_defer;
    191 
    192 /*
    193  * Initialize Unix protocols.
    194  */
    195 void
    196 uipc_init(void)
    197 {
    198 	int error;
    199 
    200 	uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    201 	cv_init(&unp_thread_cv, "unpgc");
    202 
    203 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread,
    204 	    NULL, &unp_thread_lwp, "unpgc");
    205 	if (error != 0)
    206 		panic("uipc_init %d", error);
    207 }
    208 
    209 /*
    210  * A connection succeeded: disassociate both endpoints from the head's
    211  * lock, and make them share their own lock.  There is a race here: for
    212  * a very brief time one endpoint will be locked by a different lock
    213  * than the other end.  However, since the current thread holds the old
    214  * lock (the listening socket's lock, the head) access can still only be
    215  * made to one side of the connection.
    216  */
    217 static void
    218 unp_setpeerlocks(struct socket *so, struct socket *so2)
    219 {
    220 	struct unpcb *unp;
    221 	kmutex_t *lock;
    222 
    223 	KASSERT(solocked2(so, so2));
    224 
    225 	/*
    226 	 * Bail out if either end of the socket is not yet fully
    227 	 * connected or accepted.  We only break the lock association
    228 	 * with the head when the pair of sockets stand completely
    229 	 * on their own.
    230 	 */
    231 	KASSERT(so->so_head == NULL);
    232 	if (so2->so_head != NULL)
    233 		return;
    234 
    235 	/*
    236 	 * Drop references to old lock.  A third reference (from the
    237 	 * queue head) must be held as we still hold its lock.  Bonus:
    238 	 * we don't need to worry about garbage collecting the lock.
    239 	 */
    240 	lock = so->so_lock;
    241 	KASSERT(lock == uipc_lock);
    242 	mutex_obj_free(lock);
    243 	mutex_obj_free(lock);
    244 
    245 	/*
    246 	 * Grab stream lock from the initiator and share between the two
    247 	 * endpoints.  Issue memory barrier to ensure all modifications
    248 	 * become globally visible before the lock change.  so2 is
    249 	 * assumed not to have a stream lock, because it was created
    250 	 * purely for the server side to accept this connection and
    251 	 * started out life using the domain-wide lock.
    252 	 */
    253 	unp = sotounpcb(so);
    254 	KASSERT(unp->unp_streamlock != NULL);
    255 	KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
    256 	lock = unp->unp_streamlock;
    257 	unp->unp_streamlock = NULL;
    258 	mutex_obj_hold(lock);
    259 	membar_exit();
    260 	/*
    261 	 * possible race if lock is not held - see comment in
    262 	 * uipc_usrreq(PRU_ACCEPT).
    263 	 */
    264 	KASSERT(mutex_owned(lock));
    265 	solockreset(so, lock);
    266 	solockreset(so2, lock);
    267 }
    268 
    269 /*
    270  * Reset a socket's lock back to the domain-wide lock.
    271  */
    272 static void
    273 unp_resetlock(struct socket *so)
    274 {
    275 	kmutex_t *olock, *nlock;
    276 	struct unpcb *unp;
    277 
    278 	KASSERT(solocked(so));
    279 
    280 	olock = so->so_lock;
    281 	nlock = uipc_lock;
    282 	if (olock == nlock)
    283 		return;
    284 	unp = sotounpcb(so);
    285 	KASSERT(unp->unp_streamlock == NULL);
    286 	unp->unp_streamlock = olock;
    287 	mutex_obj_hold(nlock);
    288 	mutex_enter(nlock);
    289 	solockreset(so, nlock);
    290 	mutex_exit(olock);
    291 }
    292 
    293 static void
    294 unp_free(struct unpcb *unp)
    295 {
    296 	if (unp->unp_addr)
    297 		free(unp->unp_addr, M_SONAME);
    298 	if (unp->unp_streamlock != NULL)
    299 		mutex_obj_free(unp->unp_streamlock);
    300 	kmem_free(unp, sizeof(*unp));
    301 }
    302 
    303 static int
    304 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp)
    305 {
    306 	struct socket *so2;
    307 	const struct sockaddr_un *sun;
    308 
    309 	/* XXX: server side closed the socket */
    310 	if (unp->unp_conn == NULL)
    311 		return ECONNREFUSED;
    312 	so2 = unp->unp_conn->unp_socket;
    313 
    314 	KASSERT(solocked(so2));
    315 
    316 	if (unp->unp_addr)
    317 		sun = unp->unp_addr;
    318 	else
    319 		sun = &sun_noname;
    320 	if (unp->unp_conn->unp_flags & UNP_WANTCRED)
    321 		control = unp_addsockcred(curlwp, control);
    322 	if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
    323 	    control) == 0) {
    324 		so2->so_rcv.sb_overflowed++;
    325 		unp_dispose(control);
    326 		m_freem(control);
    327 		m_freem(m);
    328 		return (ENOBUFS);
    329 	} else {
    330 		sorwakeup(so2);
    331 		return (0);
    332 	}
    333 }
    334 
    335 static void
    336 unp_setaddr(struct socket *so, struct mbuf *nam, bool peeraddr)
    337 {
    338 	const struct sockaddr_un *sun;
    339 	struct unpcb *unp;
    340 	bool ext;
    341 
    342 	KASSERT(solocked(so));
    343 	unp = sotounpcb(so);
    344 	ext = false;
    345 
    346 	for (;;) {
    347 		sun = NULL;
    348 		if (peeraddr) {
    349 			if (unp->unp_conn && unp->unp_conn->unp_addr)
    350 				sun = unp->unp_conn->unp_addr;
    351 		} else {
    352 			if (unp->unp_addr)
    353 				sun = unp->unp_addr;
    354 		}
    355 		if (sun == NULL)
    356 			sun = &sun_noname;
    357 		nam->m_len = sun->sun_len;
    358 		if (nam->m_len > MLEN && !ext) {
    359 			sounlock(so);
    360 			MEXTMALLOC(nam, MAXPATHLEN * 2, M_WAITOK);
    361 			solock(so);
    362 			ext = true;
    363 		} else {
    364 			KASSERT(nam->m_len <= MAXPATHLEN * 2);
    365 			memcpy(mtod(nam, void *), sun, (size_t)nam->m_len);
    366 			break;
    367 		}
    368 	}
    369 }
    370 
    371 static int
    372 unp_recvoob(struct socket *so, struct mbuf *m, int flags)
    373 {
    374 	KASSERT(solocked(so));
    375 
    376 	return EOPNOTSUPP;
    377 }
    378 
    379 static int
    380 unp_send(struct socket *so, struct mbuf *m, struct mbuf *nam,
    381     struct mbuf *control, struct lwp *l)
    382 {
    383 	struct unpcb *unp = sotounpcb(so);
    384 	int error = 0;
    385 	u_int newhiwat;
    386 	struct socket *so2;
    387 
    388 	KASSERT(solocked(so));
    389 	KASSERT(unp != NULL);
    390 	KASSERT(m != NULL);
    391 
    392 	/*
    393 	 * Note: unp_internalize() rejects any control message
    394 	 * other than SCM_RIGHTS, and only allows one.  This
    395 	 * has the side-effect of preventing a caller from
    396 	 * forging SCM_CREDS.
    397 	 */
    398 	if (control) {
    399 		sounlock(so);
    400 		error = unp_internalize(&control);
    401 		solock(so);
    402 		if (error != 0) {
    403 			m_freem(control);
    404 			m_freem(m);
    405 			return error;
    406 		}
    407 	}
    408 
    409 	switch (so->so_type) {
    410 
    411 	case SOCK_DGRAM: {
    412 		KASSERT(so->so_lock == uipc_lock);
    413 		if (nam) {
    414 			if ((so->so_state & SS_ISCONNECTED) != 0)
    415 				error = EISCONN;
    416 			else {
    417 				/*
    418 				 * Note: once connected, the
    419 				 * socket's lock must not be
    420 				 * dropped until we have sent
    421 				 * the message and disconnected.
    422 				 * This is necessary to prevent
    423 				 * intervening control ops, like
    424 				 * another connection.
    425 				 */
    426 				error = unp_connect(so, nam, l);
    427 			}
    428 		} else {
    429 			if ((so->so_state & SS_ISCONNECTED) == 0)
    430 				error = ENOTCONN;
    431 		}
    432 		if (error) {
    433 			unp_dispose(control);
    434 			m_freem(control);
    435 			m_freem(m);
    436 			return error;
    437 		}
    438 		error = unp_output(m, control, unp);
    439 		if (nam)
    440 			unp_disconnect1(unp);
    441 		break;
    442 	}
    443 
    444 	case SOCK_SEQPACKET: /* FALLTHROUGH */
    445 	case SOCK_STREAM:
    446 #define	rcv (&so2->so_rcv)
    447 #define	snd (&so->so_snd)
    448 		if (unp->unp_conn == NULL) {
    449 			error = ENOTCONN;
    450 			break;
    451 		}
    452 		so2 = unp->unp_conn->unp_socket;
    453 		KASSERT(solocked2(so, so2));
    454 		if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
    455 			/*
    456 			 * Credentials are passed only once on
    457 			 * SOCK_STREAM and SOCK_SEQPACKET.
    458 			 */
    459 			unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
    460 			control = unp_addsockcred(l, control);
    461 		}
    462 		/*
    463 		 * Send to paired receive port, and then reduce
    464 		 * send buffer hiwater marks to maintain backpressure.
    465 		 * Wake up readers.
    466 		 */
    467 		if (control) {
    468 			if (sbappendcontrol(rcv, m, control) != 0)
    469 				control = NULL;
    470 		} else {
    471 			switch(so->so_type) {
    472 			case SOCK_SEQPACKET:
    473 				sbappendrecord(rcv, m);
    474 				break;
    475 			case SOCK_STREAM:
    476 				sbappend(rcv, m);
    477 				break;
    478 			default:
    479 				panic("uipc_usrreq");
    480 				break;
    481 			}
    482 		}
    483 		snd->sb_mbmax -=
    484 		    rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
    485 		unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
    486 		newhiwat = snd->sb_hiwat -
    487 		    (rcv->sb_cc - unp->unp_conn->unp_cc);
    488 		(void)chgsbsize(so->so_uidinfo,
    489 		    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
    490 		unp->unp_conn->unp_cc = rcv->sb_cc;
    491 		sorwakeup(so2);
    492 #undef snd
    493 #undef rcv
    494 		if (control != NULL) {
    495 			unp_dispose(control);
    496 			m_freem(control);
    497 		}
    498 		break;
    499 
    500 	default:
    501 		panic("uipc 4");
    502 	}
    503 
    504 	return error;
    505 }
    506 
    507 static int
    508 unp_sendoob(struct socket *so, struct mbuf *m, struct mbuf * control)
    509 {
    510 	KASSERT(solocked(so));
    511 
    512 	m_freem(m);
    513 	m_freem(control);
    514 
    515 	return EOPNOTSUPP;
    516 }
    517 
    518 static int
    519 unp_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
    520     struct mbuf *control, struct lwp *l)
    521 {
    522 	struct unpcb *unp;
    523 	struct socket *so2;
    524 	u_int newhiwat;
    525 	int error = 0;
    526 
    527 	KASSERT(req != PRU_ATTACH);
    528 	KASSERT(req != PRU_DETACH);
    529 	KASSERT(req != PRU_ACCEPT);
    530 	KASSERT(req != PRU_BIND);
    531 	KASSERT(req != PRU_LISTEN);
    532 	KASSERT(req != PRU_CONNECT);
    533 	KASSERT(req != PRU_DISCONNECT);
    534 	KASSERT(req != PRU_SHUTDOWN);
    535 	KASSERT(req != PRU_ABORT);
    536 	KASSERT(req != PRU_CONTROL);
    537 	KASSERT(req != PRU_SENSE);
    538 	KASSERT(req != PRU_PEERADDR);
    539 	KASSERT(req != PRU_SOCKADDR);
    540 	KASSERT(req != PRU_RCVOOB);
    541 	KASSERT(req != PRU_SEND);
    542 	KASSERT(req != PRU_SENDOOB);
    543 
    544 	KASSERT(solocked(so));
    545 	unp = sotounpcb(so);
    546 
    547 	KASSERT(!control);
    548 	if (unp == NULL) {
    549 		error = EINVAL;
    550 		goto release;
    551 	}
    552 
    553 	switch (req) {
    554 	case PRU_CONNECT2:
    555 		error = unp_connect2(so, (struct socket *)nam, PRU_CONNECT2);
    556 		break;
    557 
    558 	case PRU_RCVD:
    559 		switch (so->so_type) {
    560 
    561 		case SOCK_DGRAM:
    562 			panic("uipc 1");
    563 			/*NOTREACHED*/
    564 
    565 		case SOCK_SEQPACKET: /* FALLTHROUGH */
    566 		case SOCK_STREAM:
    567 #define	rcv (&so->so_rcv)
    568 #define snd (&so2->so_snd)
    569 			if (unp->unp_conn == 0)
    570 				break;
    571 			so2 = unp->unp_conn->unp_socket;
    572 			KASSERT(solocked2(so, so2));
    573 			/*
    574 			 * Adjust backpressure on sender
    575 			 * and wakeup any waiting to write.
    576 			 */
    577 			snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
    578 			unp->unp_mbcnt = rcv->sb_mbcnt;
    579 			newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
    580 			(void)chgsbsize(so2->so_uidinfo,
    581 			    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
    582 			unp->unp_cc = rcv->sb_cc;
    583 			sowwakeup(so2);
    584 #undef snd
    585 #undef rcv
    586 			break;
    587 
    588 		default:
    589 			panic("uipc 2");
    590 		}
    591 		break;
    592 
    593 	default:
    594 		panic("piusrreq");
    595 	}
    596 
    597 release:
    598 	return (error);
    599 }
    600 
    601 /*
    602  * Unix domain socket option processing.
    603  */
    604 int
    605 uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
    606 {
    607 	struct unpcb *unp = sotounpcb(so);
    608 	int optval = 0, error = 0;
    609 
    610 	KASSERT(solocked(so));
    611 
    612 	if (sopt->sopt_level != 0) {
    613 		error = ENOPROTOOPT;
    614 	} else switch (op) {
    615 
    616 	case PRCO_SETOPT:
    617 		switch (sopt->sopt_name) {
    618 		case LOCAL_CREDS:
    619 		case LOCAL_CONNWAIT:
    620 			error = sockopt_getint(sopt, &optval);
    621 			if (error)
    622 				break;
    623 			switch (sopt->sopt_name) {
    624 #define	OPTSET(bit) \
    625 	if (optval) \
    626 		unp->unp_flags |= (bit); \
    627 	else \
    628 		unp->unp_flags &= ~(bit);
    629 
    630 			case LOCAL_CREDS:
    631 				OPTSET(UNP_WANTCRED);
    632 				break;
    633 			case LOCAL_CONNWAIT:
    634 				OPTSET(UNP_CONNWAIT);
    635 				break;
    636 			}
    637 			break;
    638 #undef OPTSET
    639 
    640 		default:
    641 			error = ENOPROTOOPT;
    642 			break;
    643 		}
    644 		break;
    645 
    646 	case PRCO_GETOPT:
    647 		sounlock(so);
    648 		switch (sopt->sopt_name) {
    649 		case LOCAL_PEEREID:
    650 			if (unp->unp_flags & UNP_EIDSVALID) {
    651 				error = sockopt_set(sopt,
    652 				    &unp->unp_connid, sizeof(unp->unp_connid));
    653 			} else {
    654 				error = EINVAL;
    655 			}
    656 			break;
    657 		case LOCAL_CREDS:
    658 #define	OPTBIT(bit)	(unp->unp_flags & (bit) ? 1 : 0)
    659 
    660 			optval = OPTBIT(UNP_WANTCRED);
    661 			error = sockopt_setint(sopt, optval);
    662 			break;
    663 #undef OPTBIT
    664 
    665 		default:
    666 			error = ENOPROTOOPT;
    667 			break;
    668 		}
    669 		solock(so);
    670 		break;
    671 	}
    672 	return (error);
    673 }
    674 
    675 /*
    676  * Both send and receive buffers are allocated PIPSIZ bytes of buffering
    677  * for stream sockets, although the total for sender and receiver is
    678  * actually only PIPSIZ.
    679  * Datagram sockets really use the sendspace as the maximum datagram size,
    680  * and don't really want to reserve the sendspace.  Their recvspace should
    681  * be large enough for at least one max-size datagram plus address.
    682  */
    683 #define	PIPSIZ	4096
    684 u_long	unpst_sendspace = PIPSIZ;
    685 u_long	unpst_recvspace = PIPSIZ;
    686 u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
    687 u_long	unpdg_recvspace = 4*1024;
    688 
    689 u_int	unp_rights;			/* files in flight */
    690 u_int	unp_rights_ratio = 2;		/* limit, fraction of maxfiles */
    691 
    692 static int
    693 unp_attach(struct socket *so, int proto)
    694 {
    695 	struct unpcb *unp = sotounpcb(so);
    696 	u_long sndspc, rcvspc;
    697 	int error;
    698 
    699 	KASSERT(unp == NULL);
    700 
    701 	switch (so->so_type) {
    702 	case SOCK_SEQPACKET:
    703 		/* FALLTHROUGH */
    704 	case SOCK_STREAM:
    705 		if (so->so_lock == NULL) {
    706 			so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    707 			solock(so);
    708 		}
    709 		sndspc = unpst_sendspace;
    710 		rcvspc = unpst_recvspace;
    711 		break;
    712 
    713 	case SOCK_DGRAM:
    714 		if (so->so_lock == NULL) {
    715 			mutex_obj_hold(uipc_lock);
    716 			so->so_lock = uipc_lock;
    717 			solock(so);
    718 		}
    719 		sndspc = unpdg_sendspace;
    720 		rcvspc = unpdg_recvspace;
    721 		break;
    722 
    723 	default:
    724 		panic("unp_attach");
    725 	}
    726 
    727 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
    728 		error = soreserve(so, sndspc, rcvspc);
    729 		if (error) {
    730 			return error;
    731 		}
    732 	}
    733 
    734 	unp = kmem_zalloc(sizeof(*unp), KM_SLEEP);
    735 	nanotime(&unp->unp_ctime);
    736 	unp->unp_socket = so;
    737 	so->so_pcb = unp;
    738 
    739 	KASSERT(solocked(so));
    740 	return 0;
    741 }
    742 
    743 static void
    744 unp_detach(struct socket *so)
    745 {
    746 	struct unpcb *unp;
    747 	vnode_t *vp;
    748 
    749 	unp = sotounpcb(so);
    750 	KASSERT(unp != NULL);
    751 	KASSERT(solocked(so));
    752  retry:
    753 	if ((vp = unp->unp_vnode) != NULL) {
    754 		sounlock(so);
    755 		/* Acquire v_interlock to protect against unp_connect(). */
    756 		/* XXXAD racy */
    757 		mutex_enter(vp->v_interlock);
    758 		vp->v_socket = NULL;
    759 		mutex_exit(vp->v_interlock);
    760 		vrele(vp);
    761 		solock(so);
    762 		unp->unp_vnode = NULL;
    763 	}
    764 	if (unp->unp_conn)
    765 		unp_disconnect1(unp);
    766 	while (unp->unp_refs) {
    767 		KASSERT(solocked2(so, unp->unp_refs->unp_socket));
    768 		if (unp_drop(unp->unp_refs, ECONNRESET)) {
    769 			solock(so);
    770 			goto retry;
    771 		}
    772 	}
    773 	soisdisconnected(so);
    774 	so->so_pcb = NULL;
    775 	if (unp_rights) {
    776 		/*
    777 		 * Normally the receive buffer is flushed later, in sofree,
    778 		 * but if our receive buffer holds references to files that
    779 		 * are now garbage, we will enqueue those file references to
    780 		 * the garbage collector and kick it into action.
    781 		 */
    782 		sorflush(so);
    783 		unp_free(unp);
    784 		unp_thread_kick();
    785 	} else
    786 		unp_free(unp);
    787 }
    788 
    789 static int
    790 unp_accept(struct socket *so, struct mbuf *nam)
    791 {
    792 	struct unpcb *unp = sotounpcb(so);
    793 	struct socket *so2;
    794 
    795 	KASSERT(solocked(so));
    796 	KASSERT(nam != NULL);
    797 
    798 	/* XXX code review required to determine if unp can ever be NULL */
    799 	if (unp == NULL)
    800 		return EINVAL;
    801 
    802 	KASSERT(so->so_lock == uipc_lock);
    803 	/*
    804 	 * Mark the initiating STREAM socket as connected *ONLY*
    805 	 * after it's been accepted.  This prevents a client from
    806 	 * overrunning a server and receiving ECONNREFUSED.
    807 	 */
    808 	if (unp->unp_conn == NULL) {
    809 		/*
    810 		 * This will use the empty socket and will not
    811 		 * allocate.
    812 		 */
    813 		unp_setaddr(so, nam, true);
    814 		return 0;
    815 	}
    816 	so2 = unp->unp_conn->unp_socket;
    817 	if (so2->so_state & SS_ISCONNECTING) {
    818 		KASSERT(solocked2(so, so->so_head));
    819 		KASSERT(solocked2(so2, so->so_head));
    820 		soisconnected(so2);
    821 	}
    822 	/*
    823 	 * If the connection is fully established, break the
    824 	 * association with uipc_lock and give the connected
    825 	 * pair a separate lock to share.
    826 	 * There is a race here: sotounpcb(so2)->unp_streamlock
    827 	 * is not locked, so when changing so2->so_lock
    828 	 * another thread can grab it while so->so_lock is still
    829 	 * pointing to the (locked) uipc_lock.
    830 	 * this should be harmless, except that this makes
    831 	 * solocked2() and solocked() unreliable.
    832 	 * Another problem is that unp_setaddr() expects the
    833 	 * the socket locked. Grabing sotounpcb(so2)->unp_streamlock
    834 	 * fixes both issues.
    835 	 */
    836 	mutex_enter(sotounpcb(so2)->unp_streamlock);
    837 	unp_setpeerlocks(so2, so);
    838 	/*
    839 	 * Only now return peer's address, as we may need to
    840 	 * block in order to allocate memory.
    841 	 *
    842 	 * XXX Minor race: connection can be broken while
    843 	 * lock is dropped in unp_setaddr().  We will return
    844 	 * error == 0 and sun_noname as the peer address.
    845 	 */
    846 	unp_setaddr(so, nam, true);
    847 	/* so_lock now points to unp_streamlock */
    848 	mutex_exit(so2->so_lock);
    849 	return 0;
    850 }
    851 
    852 static int
    853 unp_ioctl(struct socket *so, u_long cmd, void *nam, struct ifnet *ifp)
    854 {
    855 	return EOPNOTSUPP;
    856 }
    857 
    858 static int
    859 unp_stat(struct socket *so, struct stat *ub)
    860 {
    861 	struct unpcb *unp;
    862 	struct socket *so2;
    863 
    864 	KASSERT(solocked(so));
    865 
    866 	unp = sotounpcb(so);
    867 	if (unp == NULL)
    868 		return EINVAL;
    869 
    870 	ub->st_blksize = so->so_snd.sb_hiwat;
    871 	switch (so->so_type) {
    872 	case SOCK_SEQPACKET: /* FALLTHROUGH */
    873 	case SOCK_STREAM:
    874 		if (unp->unp_conn == 0)
    875 			break;
    876 
    877 		so2 = unp->unp_conn->unp_socket;
    878 		KASSERT(solocked2(so, so2));
    879 		ub->st_blksize += so2->so_rcv.sb_cc;
    880 		break;
    881 	default:
    882 		break;
    883 	}
    884 	ub->st_dev = NODEV;
    885 	if (unp->unp_ino == 0)
    886 		unp->unp_ino = unp_ino++;
    887 	ub->st_atimespec = ub->st_mtimespec = ub->st_ctimespec = unp->unp_ctime;
    888 	ub->st_ino = unp->unp_ino;
    889 	return (0);
    890 }
    891 
    892 static int
    893 unp_peeraddr(struct socket *so, struct mbuf *nam)
    894 {
    895 	KASSERT(solocked(so));
    896 	KASSERT(sotounpcb(so) != NULL);
    897 	KASSERT(nam != NULL);
    898 
    899 	unp_setaddr(so, nam, true);
    900 	return 0;
    901 }
    902 
    903 static int
    904 unp_sockaddr(struct socket *so, struct mbuf *nam)
    905 {
    906 	KASSERT(solocked(so));
    907 	KASSERT(sotounpcb(so) != NULL);
    908 	KASSERT(nam != NULL);
    909 
    910 	unp_setaddr(so, nam, false);
    911 	return 0;
    912 }
    913 
    914 /*
    915  * Allocate the new sockaddr.  We have to allocate one
    916  * extra byte so that we can ensure that the pathname
    917  * is nul-terminated. Note that unlike linux, we don't
    918  * include in the address length the NUL in the path
    919  * component, because doing so, would exceed sizeof(sockaddr_un)
    920  * for fully occupied pathnames. Linux is also inconsistent,
    921  * because it does not include the NUL in the length of
    922  * what it calls "abstract" unix sockets.
    923  */
    924 static struct sockaddr_un *
    925 makeun(struct mbuf *nam, size_t *addrlen) {
    926 	struct sockaddr_un *sun;
    927 
    928 	*addrlen = nam->m_len + 1;
    929 	sun = malloc(*addrlen, M_SONAME, M_WAITOK);
    930 	m_copydata(nam, 0, nam->m_len, (void *)sun);
    931 	*(((char *)sun) + nam->m_len) = '\0';
    932 	sun->sun_len = strlen(sun->sun_path) +
    933 	    offsetof(struct sockaddr_un, sun_path);
    934 	return sun;
    935 }
    936 
    937 static int
    938 unp_bind(struct socket *so, struct mbuf *nam, struct lwp *l)
    939 {
    940 	struct sockaddr_un *sun;
    941 	struct unpcb *unp;
    942 	vnode_t *vp;
    943 	struct vattr vattr;
    944 	size_t addrlen;
    945 	int error;
    946 	struct pathbuf *pb;
    947 	struct nameidata nd;
    948 	proc_t *p;
    949 
    950 	unp = sotounpcb(so);
    951 
    952 	KASSERT(solocked(so));
    953 	KASSERT(unp != NULL);
    954 	KASSERT(nam != NULL);
    955 
    956 	if (unp->unp_vnode != NULL)
    957 		return (EINVAL);
    958 	if ((unp->unp_flags & UNP_BUSY) != 0) {
    959 		/*
    960 		 * EALREADY may not be strictly accurate, but since this
    961 		 * is a major application error it's hardly a big deal.
    962 		 */
    963 		return (EALREADY);
    964 	}
    965 	unp->unp_flags |= UNP_BUSY;
    966 	sounlock(so);
    967 
    968 	p = l->l_proc;
    969 	sun = makeun(nam, &addrlen);
    970 
    971 	pb = pathbuf_create(sun->sun_path);
    972 	if (pb == NULL) {
    973 		error = ENOMEM;
    974 		goto bad;
    975 	}
    976 	NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, pb);
    977 
    978 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
    979 	if ((error = namei(&nd)) != 0) {
    980 		pathbuf_destroy(pb);
    981 		goto bad;
    982 	}
    983 	vp = nd.ni_vp;
    984 	if (vp != NULL) {
    985 		VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
    986 		if (nd.ni_dvp == vp)
    987 			vrele(nd.ni_dvp);
    988 		else
    989 			vput(nd.ni_dvp);
    990 		vrele(vp);
    991 		pathbuf_destroy(pb);
    992 		error = EADDRINUSE;
    993 		goto bad;
    994 	}
    995 	vattr_null(&vattr);
    996 	vattr.va_type = VSOCK;
    997 	vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
    998 	error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
    999 	if (error) {
   1000 		vput(nd.ni_dvp);
   1001 		pathbuf_destroy(pb);
   1002 		goto bad;
   1003 	}
   1004 	vp = nd.ni_vp;
   1005 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   1006 	solock(so);
   1007 	vp->v_socket = unp->unp_socket;
   1008 	unp->unp_vnode = vp;
   1009 	unp->unp_addrlen = addrlen;
   1010 	unp->unp_addr = sun;
   1011 	unp->unp_connid.unp_pid = p->p_pid;
   1012 	unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
   1013 	unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
   1014 	unp->unp_flags |= UNP_EIDSBIND;
   1015 	VOP_UNLOCK(vp);
   1016 	vput(nd.ni_dvp);
   1017 	unp->unp_flags &= ~UNP_BUSY;
   1018 	pathbuf_destroy(pb);
   1019 	return (0);
   1020 
   1021  bad:
   1022 	free(sun, M_SONAME);
   1023 	solock(so);
   1024 	unp->unp_flags &= ~UNP_BUSY;
   1025 	return (error);
   1026 }
   1027 
   1028 static int
   1029 unp_listen(struct socket *so, struct lwp *l)
   1030 {
   1031 	struct unpcb *unp = sotounpcb(so);
   1032 
   1033 	KASSERT(solocked(so));
   1034 	KASSERT(unp != NULL);
   1035 
   1036 	/*
   1037 	 * If the socket can accept a connection, it must be
   1038 	 * locked by uipc_lock.
   1039 	 */
   1040 	unp_resetlock(so);
   1041 	if (unp->unp_vnode == NULL)
   1042 		return EINVAL;
   1043 
   1044 	return 0;
   1045 }
   1046 
   1047 static int
   1048 unp_disconnect(struct socket *so)
   1049 {
   1050 	KASSERT(solocked(so));
   1051 	KASSERT(sotounpcb(so) != NULL);
   1052 
   1053 	unp_disconnect1(sotounpcb(so));
   1054 	return 0;
   1055 }
   1056 
   1057 static int
   1058 unp_shutdown(struct socket *so)
   1059 {
   1060 	KASSERT(solocked(so));
   1061 	KASSERT(sotounpcb(so) != NULL);
   1062 
   1063 	socantsendmore(so);
   1064 	unp_shutdown1(sotounpcb(so));
   1065 	return 0;
   1066 }
   1067 
   1068 static int
   1069 unp_abort(struct socket *so)
   1070 {
   1071 	KASSERT(solocked(so));
   1072 	KASSERT(sotounpcb(so) != NULL);
   1073 
   1074 	(void)unp_drop(sotounpcb(so), ECONNABORTED);
   1075 	KASSERT(so->so_head == NULL);
   1076 	KASSERT(so->so_pcb != NULL);
   1077 	unp_detach(so);
   1078 	return 0;
   1079 }
   1080 
   1081 int
   1082 unp_connect(struct socket *so, struct mbuf *nam, struct lwp *l)
   1083 {
   1084 	struct sockaddr_un *sun;
   1085 	vnode_t *vp;
   1086 	struct socket *so2, *so3;
   1087 	struct unpcb *unp, *unp2, *unp3;
   1088 	size_t addrlen;
   1089 	int error;
   1090 	struct pathbuf *pb;
   1091 	struct nameidata nd;
   1092 
   1093 	unp = sotounpcb(so);
   1094 	if ((unp->unp_flags & UNP_BUSY) != 0) {
   1095 		/*
   1096 		 * EALREADY may not be strictly accurate, but since this
   1097 		 * is a major application error it's hardly a big deal.
   1098 		 */
   1099 		return (EALREADY);
   1100 	}
   1101 	unp->unp_flags |= UNP_BUSY;
   1102 	sounlock(so);
   1103 
   1104 	sun = makeun(nam, &addrlen);
   1105 	pb = pathbuf_create(sun->sun_path);
   1106 	if (pb == NULL) {
   1107 		error = ENOMEM;
   1108 		goto bad2;
   1109 	}
   1110 
   1111 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
   1112 
   1113 	if ((error = namei(&nd)) != 0) {
   1114 		pathbuf_destroy(pb);
   1115 		goto bad2;
   1116 	}
   1117 	vp = nd.ni_vp;
   1118 	if (vp->v_type != VSOCK) {
   1119 		error = ENOTSOCK;
   1120 		goto bad;
   1121 	}
   1122 	pathbuf_destroy(pb);
   1123 	if ((error = VOP_ACCESS(vp, VWRITE, curlwp->l_cred)) != 0)
   1124 		goto bad;
   1125 	/* Acquire v_interlock to protect against unp_detach(). */
   1126 	mutex_enter(vp->v_interlock);
   1127 	so2 = vp->v_socket;
   1128 	if (so2 == NULL) {
   1129 		mutex_exit(vp->v_interlock);
   1130 		error = ECONNREFUSED;
   1131 		goto bad;
   1132 	}
   1133 	if (so->so_type != so2->so_type) {
   1134 		mutex_exit(vp->v_interlock);
   1135 		error = EPROTOTYPE;
   1136 		goto bad;
   1137 	}
   1138 	solock(so);
   1139 	unp_resetlock(so);
   1140 	mutex_exit(vp->v_interlock);
   1141 	if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
   1142 		/*
   1143 		 * This may seem somewhat fragile but is OK: if we can
   1144 		 * see SO_ACCEPTCONN set on the endpoint, then it must
   1145 		 * be locked by the domain-wide uipc_lock.
   1146 		 */
   1147 		KASSERT((so2->so_options & SO_ACCEPTCONN) == 0 ||
   1148 		    so2->so_lock == uipc_lock);
   1149 		if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
   1150 		    (so3 = sonewconn(so2, false)) == NULL) {
   1151 			error = ECONNREFUSED;
   1152 			sounlock(so);
   1153 			goto bad;
   1154 		}
   1155 		unp2 = sotounpcb(so2);
   1156 		unp3 = sotounpcb(so3);
   1157 		if (unp2->unp_addr) {
   1158 			unp3->unp_addr = malloc(unp2->unp_addrlen,
   1159 			    M_SONAME, M_WAITOK);
   1160 			memcpy(unp3->unp_addr, unp2->unp_addr,
   1161 			    unp2->unp_addrlen);
   1162 			unp3->unp_addrlen = unp2->unp_addrlen;
   1163 		}
   1164 		unp3->unp_flags = unp2->unp_flags;
   1165 		unp3->unp_connid.unp_pid = curlwp->l_proc->p_pid;
   1166 		unp3->unp_connid.unp_euid = kauth_cred_geteuid(curlwp->l_cred);
   1167 		unp3->unp_connid.unp_egid = kauth_cred_getegid(curlwp->l_cred);
   1168 		unp3->unp_flags |= UNP_EIDSVALID;
   1169 		if (unp2->unp_flags & UNP_EIDSBIND) {
   1170 			unp->unp_connid = unp2->unp_connid;
   1171 			unp->unp_flags |= UNP_EIDSVALID;
   1172 		}
   1173 		so2 = so3;
   1174 	}
   1175 	error = unp_connect2(so, so2, PRU_CONNECT);
   1176 	sounlock(so);
   1177  bad:
   1178 	vput(vp);
   1179  bad2:
   1180 	free(sun, M_SONAME);
   1181 	solock(so);
   1182 	unp->unp_flags &= ~UNP_BUSY;
   1183 	return (error);
   1184 }
   1185 
   1186 int
   1187 unp_connect2(struct socket *so, struct socket *so2, int req)
   1188 {
   1189 	struct unpcb *unp = sotounpcb(so);
   1190 	struct unpcb *unp2;
   1191 
   1192 	if (so2->so_type != so->so_type)
   1193 		return (EPROTOTYPE);
   1194 
   1195 	/*
   1196 	 * All three sockets involved must be locked by same lock:
   1197 	 *
   1198 	 * local endpoint (so)
   1199 	 * remote endpoint (so2)
   1200 	 * queue head (so2->so_head, only if PR_CONNREQUIRED)
   1201 	 */
   1202 	KASSERT(solocked2(so, so2));
   1203 	KASSERT(so->so_head == NULL);
   1204 	if (so2->so_head != NULL) {
   1205 		KASSERT(so2->so_lock == uipc_lock);
   1206 		KASSERT(solocked2(so2, so2->so_head));
   1207 	}
   1208 
   1209 	unp2 = sotounpcb(so2);
   1210 	unp->unp_conn = unp2;
   1211 	switch (so->so_type) {
   1212 
   1213 	case SOCK_DGRAM:
   1214 		unp->unp_nextref = unp2->unp_refs;
   1215 		unp2->unp_refs = unp;
   1216 		soisconnected(so);
   1217 		break;
   1218 
   1219 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1220 	case SOCK_STREAM:
   1221 		unp2->unp_conn = unp;
   1222 		if (req == PRU_CONNECT &&
   1223 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
   1224 			soisconnecting(so);
   1225 		else
   1226 			soisconnected(so);
   1227 		soisconnected(so2);
   1228 		/*
   1229 		 * If the connection is fully established, break the
   1230 		 * association with uipc_lock and give the connected
   1231 		 * pair a seperate lock to share.  For CONNECT2, we
   1232 		 * require that the locks already match (the sockets
   1233 		 * are created that way).
   1234 		 */
   1235 		if (req == PRU_CONNECT) {
   1236 			KASSERT(so2->so_head != NULL);
   1237 			unp_setpeerlocks(so, so2);
   1238 		}
   1239 		break;
   1240 
   1241 	default:
   1242 		panic("unp_connect2");
   1243 	}
   1244 	return (0);
   1245 }
   1246 
   1247 static void
   1248 unp_disconnect1(struct unpcb *unp)
   1249 {
   1250 	struct unpcb *unp2 = unp->unp_conn;
   1251 	struct socket *so;
   1252 
   1253 	if (unp2 == 0)
   1254 		return;
   1255 	unp->unp_conn = 0;
   1256 	so = unp->unp_socket;
   1257 	switch (so->so_type) {
   1258 	case SOCK_DGRAM:
   1259 		if (unp2->unp_refs == unp)
   1260 			unp2->unp_refs = unp->unp_nextref;
   1261 		else {
   1262 			unp2 = unp2->unp_refs;
   1263 			for (;;) {
   1264 				KASSERT(solocked2(so, unp2->unp_socket));
   1265 				if (unp2 == 0)
   1266 					panic("unp_disconnect1");
   1267 				if (unp2->unp_nextref == unp)
   1268 					break;
   1269 				unp2 = unp2->unp_nextref;
   1270 			}
   1271 			unp2->unp_nextref = unp->unp_nextref;
   1272 		}
   1273 		unp->unp_nextref = 0;
   1274 		so->so_state &= ~SS_ISCONNECTED;
   1275 		break;
   1276 
   1277 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1278 	case SOCK_STREAM:
   1279 		KASSERT(solocked2(so, unp2->unp_socket));
   1280 		soisdisconnected(so);
   1281 		unp2->unp_conn = 0;
   1282 		soisdisconnected(unp2->unp_socket);
   1283 		break;
   1284 	}
   1285 }
   1286 
   1287 static void
   1288 unp_shutdown1(struct unpcb *unp)
   1289 {
   1290 	struct socket *so;
   1291 
   1292 	switch(unp->unp_socket->so_type) {
   1293 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1294 	case SOCK_STREAM:
   1295 		if (unp->unp_conn && (so = unp->unp_conn->unp_socket))
   1296 			socantrcvmore(so);
   1297 		break;
   1298 	default:
   1299 		break;
   1300 	}
   1301 }
   1302 
   1303 static bool
   1304 unp_drop(struct unpcb *unp, int errno)
   1305 {
   1306 	struct socket *so = unp->unp_socket;
   1307 
   1308 	KASSERT(solocked(so));
   1309 
   1310 	so->so_error = errno;
   1311 	unp_disconnect1(unp);
   1312 	if (so->so_head) {
   1313 		so->so_pcb = NULL;
   1314 		/* sofree() drops the socket lock */
   1315 		sofree(so);
   1316 		unp_free(unp);
   1317 		return true;
   1318 	}
   1319 	return false;
   1320 }
   1321 
   1322 #ifdef notdef
   1323 unp_drain(void)
   1324 {
   1325 
   1326 }
   1327 #endif
   1328 
   1329 int
   1330 unp_externalize(struct mbuf *rights, struct lwp *l, int flags)
   1331 {
   1332 	struct cmsghdr * const cm = mtod(rights, struct cmsghdr *);
   1333 	struct proc * const p = l->l_proc;
   1334 	file_t **rp;
   1335 	int error = 0;
   1336 
   1337 	const size_t nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
   1338 	    sizeof(file_t *);
   1339 	if (nfds == 0)
   1340 		goto noop;
   1341 
   1342 	int * const fdp = kmem_alloc(nfds * sizeof(int), KM_SLEEP);
   1343 	rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
   1344 
   1345 	/* Make sure the recipient should be able to see the files.. */
   1346 	rp = (file_t **)CMSG_DATA(cm);
   1347 	for (size_t i = 0; i < nfds; i++) {
   1348 		file_t * const fp = *rp++;
   1349 		if (fp == NULL) {
   1350 			error = EINVAL;
   1351 			goto out;
   1352 		}
   1353 		/*
   1354 		 * If we are in a chroot'ed directory, and
   1355 		 * someone wants to pass us a directory, make
   1356 		 * sure it's inside the subtree we're allowed
   1357 		 * to access.
   1358 		 */
   1359 		if (p->p_cwdi->cwdi_rdir != NULL && fp->f_type == DTYPE_VNODE) {
   1360 			vnode_t *vp = (vnode_t *)fp->f_data;
   1361 			if ((vp->v_type == VDIR) &&
   1362 			    !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
   1363 				error = EPERM;
   1364 				goto out;
   1365 			}
   1366 		}
   1367 	}
   1368 
   1369  restart:
   1370 	/*
   1371 	 * First loop -- allocate file descriptor table slots for the
   1372 	 * new files.
   1373 	 */
   1374 	for (size_t i = 0; i < nfds; i++) {
   1375 		if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
   1376 			/*
   1377 			 * Back out what we've done so far.
   1378 			 */
   1379 			while (i-- > 0) {
   1380 				fd_abort(p, NULL, fdp[i]);
   1381 			}
   1382 			if (error == ENOSPC) {
   1383 				fd_tryexpand(p);
   1384 				error = 0;
   1385 				goto restart;
   1386 			}
   1387 			/*
   1388 			 * This is the error that has historically
   1389 			 * been returned, and some callers may
   1390 			 * expect it.
   1391 			 */
   1392 			error = EMSGSIZE;
   1393 			goto out;
   1394 		}
   1395 	}
   1396 
   1397 	/*
   1398 	 * Now that adding them has succeeded, update all of the
   1399 	 * file passing state and affix the descriptors.
   1400 	 */
   1401 	rp = (file_t **)CMSG_DATA(cm);
   1402 	int *ofdp = (int *)CMSG_DATA(cm);
   1403 	for (size_t i = 0; i < nfds; i++) {
   1404 		file_t * const fp = *rp++;
   1405 		const int fd = fdp[i];
   1406 		atomic_dec_uint(&unp_rights);
   1407 		fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
   1408 		fd_affix(p, fp, fd);
   1409 		/*
   1410 		 * Done with this file pointer, replace it with a fd;
   1411 		 */
   1412 		*ofdp++ = fd;
   1413 		mutex_enter(&fp->f_lock);
   1414 		fp->f_msgcount--;
   1415 		mutex_exit(&fp->f_lock);
   1416 		/*
   1417 		 * Note that fd_affix() adds a reference to the file.
   1418 		 * The file may already have been closed by another
   1419 		 * LWP in the process, so we must drop the reference
   1420 		 * added by unp_internalize() with closef().
   1421 		 */
   1422 		closef(fp);
   1423 	}
   1424 
   1425 	/*
   1426 	 * Adjust length, in case of transition from large file_t
   1427 	 * pointers to ints.
   1428 	 */
   1429 	if (sizeof(file_t *) != sizeof(int)) {
   1430 		cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
   1431 		rights->m_len = CMSG_SPACE(nfds * sizeof(int));
   1432 	}
   1433  out:
   1434 	if (__predict_false(error != 0)) {
   1435 		file_t **const fpp = (file_t **)CMSG_DATA(cm);
   1436 		for (size_t i = 0; i < nfds; i++)
   1437 			unp_discard_now(fpp[i]);
   1438 		/*
   1439 		 * Truncate the array so that nobody will try to interpret
   1440 		 * what is now garbage in it.
   1441 		 */
   1442 		cm->cmsg_len = CMSG_LEN(0);
   1443 		rights->m_len = CMSG_SPACE(0);
   1444 	}
   1445 	rw_exit(&p->p_cwdi->cwdi_lock);
   1446 	kmem_free(fdp, nfds * sizeof(int));
   1447 
   1448  noop:
   1449 	/*
   1450 	 * Don't disclose kernel memory in the alignment space.
   1451 	 */
   1452 	KASSERT(cm->cmsg_len <= rights->m_len);
   1453 	memset(&mtod(rights, char *)[cm->cmsg_len], 0, rights->m_len -
   1454 	    cm->cmsg_len);
   1455 	return error;
   1456 }
   1457 
   1458 static int
   1459 unp_internalize(struct mbuf **controlp)
   1460 {
   1461 	filedesc_t *fdescp = curlwp->l_fd;
   1462 	struct mbuf *control = *controlp;
   1463 	struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
   1464 	file_t **rp, **files;
   1465 	file_t *fp;
   1466 	int i, fd, *fdp;
   1467 	int nfds, error;
   1468 	u_int maxmsg;
   1469 
   1470 	error = 0;
   1471 	newcm = NULL;
   1472 
   1473 	/* Sanity check the control message header. */
   1474 	if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
   1475 	    cm->cmsg_len > control->m_len ||
   1476 	    cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
   1477 		return (EINVAL);
   1478 
   1479 	/*
   1480 	 * Verify that the file descriptors are valid, and acquire
   1481 	 * a reference to each.
   1482 	 */
   1483 	nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
   1484 	fdp = (int *)CMSG_DATA(cm);
   1485 	maxmsg = maxfiles / unp_rights_ratio;
   1486 	for (i = 0; i < nfds; i++) {
   1487 		fd = *fdp++;
   1488 		if (atomic_inc_uint_nv(&unp_rights) > maxmsg) {
   1489 			atomic_dec_uint(&unp_rights);
   1490 			nfds = i;
   1491 			error = EAGAIN;
   1492 			goto out;
   1493 		}
   1494 		if ((fp = fd_getfile(fd)) == NULL
   1495 		    || fp->f_type == DTYPE_KQUEUE) {
   1496 		    	if (fp)
   1497 		    		fd_putfile(fd);
   1498 			atomic_dec_uint(&unp_rights);
   1499 			nfds = i;
   1500 			error = EBADF;
   1501 			goto out;
   1502 		}
   1503 	}
   1504 
   1505 	/* Allocate new space and copy header into it. */
   1506 	newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
   1507 	if (newcm == NULL) {
   1508 		error = E2BIG;
   1509 		goto out;
   1510 	}
   1511 	memcpy(newcm, cm, sizeof(struct cmsghdr));
   1512 	files = (file_t **)CMSG_DATA(newcm);
   1513 
   1514 	/*
   1515 	 * Transform the file descriptors into file_t pointers, in
   1516 	 * reverse order so that if pointers are bigger than ints, the
   1517 	 * int won't get until we're done.  No need to lock, as we have
   1518 	 * already validated the descriptors with fd_getfile().
   1519 	 */
   1520 	fdp = (int *)CMSG_DATA(cm) + nfds;
   1521 	rp = files + nfds;
   1522 	for (i = 0; i < nfds; i++) {
   1523 		fp = fdescp->fd_dt->dt_ff[*--fdp]->ff_file;
   1524 		KASSERT(fp != NULL);
   1525 		mutex_enter(&fp->f_lock);
   1526 		*--rp = fp;
   1527 		fp->f_count++;
   1528 		fp->f_msgcount++;
   1529 		mutex_exit(&fp->f_lock);
   1530 	}
   1531 
   1532  out:
   1533  	/* Release descriptor references. */
   1534 	fdp = (int *)CMSG_DATA(cm);
   1535 	for (i = 0; i < nfds; i++) {
   1536 		fd_putfile(*fdp++);
   1537 		if (error != 0) {
   1538 			atomic_dec_uint(&unp_rights);
   1539 		}
   1540 	}
   1541 
   1542 	if (error == 0) {
   1543 		if (control->m_flags & M_EXT) {
   1544 			m_freem(control);
   1545 			*controlp = control = m_get(M_WAIT, MT_CONTROL);
   1546 		}
   1547 		MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
   1548 		    M_MBUF, NULL, NULL);
   1549 		cm = newcm;
   1550 		/*
   1551 		 * Adjust message & mbuf to note amount of space
   1552 		 * actually used.
   1553 		 */
   1554 		cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
   1555 		control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
   1556 	}
   1557 
   1558 	return error;
   1559 }
   1560 
   1561 struct mbuf *
   1562 unp_addsockcred(struct lwp *l, struct mbuf *control)
   1563 {
   1564 	struct sockcred *sc;
   1565 	struct mbuf *m;
   1566 	void *p;
   1567 
   1568 	m = sbcreatecontrol1(&p, SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)),
   1569 		SCM_CREDS, SOL_SOCKET, M_WAITOK);
   1570 	if (m == NULL)
   1571 		return control;
   1572 
   1573 	sc = p;
   1574 	sc->sc_uid = kauth_cred_getuid(l->l_cred);
   1575 	sc->sc_euid = kauth_cred_geteuid(l->l_cred);
   1576 	sc->sc_gid = kauth_cred_getgid(l->l_cred);
   1577 	sc->sc_egid = kauth_cred_getegid(l->l_cred);
   1578 	sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
   1579 
   1580 	for (int i = 0; i < sc->sc_ngroups; i++)
   1581 		sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
   1582 
   1583 	return m_add(control, m);
   1584 }
   1585 
   1586 /*
   1587  * Do a mark-sweep GC of files in the system, to free up any which are
   1588  * caught in flight to an about-to-be-closed socket.  Additionally,
   1589  * process deferred file closures.
   1590  */
   1591 static void
   1592 unp_gc(file_t *dp)
   1593 {
   1594 	extern	struct domain unixdomain;
   1595 	file_t *fp, *np;
   1596 	struct socket *so, *so1;
   1597 	u_int i, old, new;
   1598 	bool didwork;
   1599 
   1600 	KASSERT(curlwp == unp_thread_lwp);
   1601 	KASSERT(mutex_owned(&filelist_lock));
   1602 
   1603 	/*
   1604 	 * First, process deferred file closures.
   1605 	 */
   1606 	while (!SLIST_EMPTY(&unp_thread_discard)) {
   1607 		fp = SLIST_FIRST(&unp_thread_discard);
   1608 		KASSERT(fp->f_unpcount > 0);
   1609 		KASSERT(fp->f_count > 0);
   1610 		KASSERT(fp->f_msgcount > 0);
   1611 		KASSERT(fp->f_count >= fp->f_unpcount);
   1612 		KASSERT(fp->f_count >= fp->f_msgcount);
   1613 		KASSERT(fp->f_msgcount >= fp->f_unpcount);
   1614 		SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist);
   1615 		i = fp->f_unpcount;
   1616 		fp->f_unpcount = 0;
   1617 		mutex_exit(&filelist_lock);
   1618 		for (; i != 0; i--) {
   1619 			unp_discard_now(fp);
   1620 		}
   1621 		mutex_enter(&filelist_lock);
   1622 	}
   1623 
   1624 	/*
   1625 	 * Clear mark bits.  Ensure that we don't consider new files
   1626 	 * entering the file table during this loop (they will not have
   1627 	 * FSCAN set).
   1628 	 */
   1629 	unp_defer = 0;
   1630 	LIST_FOREACH(fp, &filehead, f_list) {
   1631 		for (old = fp->f_flag;; old = new) {
   1632 			new = atomic_cas_uint(&fp->f_flag, old,
   1633 			    (old | FSCAN) & ~(FMARK|FDEFER));
   1634 			if (__predict_true(old == new)) {
   1635 				break;
   1636 			}
   1637 		}
   1638 	}
   1639 
   1640 	/*
   1641 	 * Iterate over the set of sockets, marking ones believed (based on
   1642 	 * refcount) to be referenced from a process, and marking for rescan
   1643 	 * sockets which are queued on a socket.  Recan continues descending
   1644 	 * and searching for sockets referenced by sockets (FDEFER), until
   1645 	 * there are no more socket->socket references to be discovered.
   1646 	 */
   1647 	do {
   1648 		didwork = false;
   1649 		for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
   1650 			KASSERT(mutex_owned(&filelist_lock));
   1651 			np = LIST_NEXT(fp, f_list);
   1652 			mutex_enter(&fp->f_lock);
   1653 			if ((fp->f_flag & FDEFER) != 0) {
   1654 				atomic_and_uint(&fp->f_flag, ~FDEFER);
   1655 				unp_defer--;
   1656 				KASSERT(fp->f_count != 0);
   1657 			} else {
   1658 				if (fp->f_count == 0 ||
   1659 				    (fp->f_flag & FMARK) != 0 ||
   1660 				    fp->f_count == fp->f_msgcount ||
   1661 				    fp->f_unpcount != 0) {
   1662 					mutex_exit(&fp->f_lock);
   1663 					continue;
   1664 				}
   1665 			}
   1666 			atomic_or_uint(&fp->f_flag, FMARK);
   1667 
   1668 			if (fp->f_type != DTYPE_SOCKET ||
   1669 			    (so = fp->f_data) == NULL ||
   1670 			    so->so_proto->pr_domain != &unixdomain ||
   1671 			    (so->so_proto->pr_flags & PR_RIGHTS) == 0) {
   1672 				mutex_exit(&fp->f_lock);
   1673 				continue;
   1674 			}
   1675 
   1676 			/* Gain file ref, mark our position, and unlock. */
   1677 			didwork = true;
   1678 			LIST_INSERT_AFTER(fp, dp, f_list);
   1679 			fp->f_count++;
   1680 			mutex_exit(&fp->f_lock);
   1681 			mutex_exit(&filelist_lock);
   1682 
   1683 			/*
   1684 			 * Mark files referenced from sockets queued on the
   1685 			 * accept queue as well.
   1686 			 */
   1687 			solock(so);
   1688 			unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
   1689 			if ((so->so_options & SO_ACCEPTCONN) != 0) {
   1690 				TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
   1691 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
   1692 				}
   1693 				TAILQ_FOREACH(so1, &so->so_q, so_qe) {
   1694 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
   1695 				}
   1696 			}
   1697 			sounlock(so);
   1698 
   1699 			/* Re-lock and restart from where we left off. */
   1700 			closef(fp);
   1701 			mutex_enter(&filelist_lock);
   1702 			np = LIST_NEXT(dp, f_list);
   1703 			LIST_REMOVE(dp, f_list);
   1704 		}
   1705 		/*
   1706 		 * Bail early if we did nothing in the loop above.  Could
   1707 		 * happen because of concurrent activity causing unp_defer
   1708 		 * to get out of sync.
   1709 		 */
   1710 	} while (unp_defer != 0 && didwork);
   1711 
   1712 	/*
   1713 	 * Sweep pass.
   1714 	 *
   1715 	 * We grab an extra reference to each of the files that are
   1716 	 * not otherwise accessible and then free the rights that are
   1717 	 * stored in messages on them.
   1718 	 */
   1719 	for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
   1720 		KASSERT(mutex_owned(&filelist_lock));
   1721 		np = LIST_NEXT(fp, f_list);
   1722 		mutex_enter(&fp->f_lock);
   1723 
   1724 		/*
   1725 		 * Ignore non-sockets.
   1726 		 * Ignore dead sockets, or sockets with pending close.
   1727 		 * Ignore sockets obviously referenced elsewhere.
   1728 		 * Ignore sockets marked as referenced by our scan.
   1729 		 * Ignore new sockets that did not exist during the scan.
   1730 		 */
   1731 		if (fp->f_type != DTYPE_SOCKET ||
   1732 		    fp->f_count == 0 || fp->f_unpcount != 0 ||
   1733 		    fp->f_count != fp->f_msgcount ||
   1734 		    (fp->f_flag & (FMARK | FSCAN)) != FSCAN) {
   1735 			mutex_exit(&fp->f_lock);
   1736 			continue;
   1737 		}
   1738 
   1739 		/* Gain file ref, mark our position, and unlock. */
   1740 		LIST_INSERT_AFTER(fp, dp, f_list);
   1741 		fp->f_count++;
   1742 		mutex_exit(&fp->f_lock);
   1743 		mutex_exit(&filelist_lock);
   1744 
   1745 		/*
   1746 		 * Flush all data from the socket's receive buffer.
   1747 		 * This will cause files referenced only by the
   1748 		 * socket to be queued for close.
   1749 		 */
   1750 		so = fp->f_data;
   1751 		solock(so);
   1752 		sorflush(so);
   1753 		sounlock(so);
   1754 
   1755 		/* Re-lock and restart from where we left off. */
   1756 		closef(fp);
   1757 		mutex_enter(&filelist_lock);
   1758 		np = LIST_NEXT(dp, f_list);
   1759 		LIST_REMOVE(dp, f_list);
   1760 	}
   1761 }
   1762 
   1763 /*
   1764  * Garbage collector thread.  While SCM_RIGHTS messages are in transit,
   1765  * wake once per second to garbage collect.  Run continually while we
   1766  * have deferred closes to process.
   1767  */
   1768 static void
   1769 unp_thread(void *cookie)
   1770 {
   1771 	file_t *dp;
   1772 
   1773 	/* Allocate a dummy file for our scans. */
   1774 	if ((dp = fgetdummy()) == NULL) {
   1775 		panic("unp_thread");
   1776 	}
   1777 
   1778 	mutex_enter(&filelist_lock);
   1779 	for (;;) {
   1780 		KASSERT(mutex_owned(&filelist_lock));
   1781 		if (SLIST_EMPTY(&unp_thread_discard)) {
   1782 			if (unp_rights != 0) {
   1783 				(void)cv_timedwait(&unp_thread_cv,
   1784 				    &filelist_lock, hz);
   1785 			} else {
   1786 				cv_wait(&unp_thread_cv, &filelist_lock);
   1787 			}
   1788 		}
   1789 		unp_gc(dp);
   1790 	}
   1791 	/* NOTREACHED */
   1792 }
   1793 
   1794 /*
   1795  * Kick the garbage collector into action if there is something for
   1796  * it to process.
   1797  */
   1798 static void
   1799 unp_thread_kick(void)
   1800 {
   1801 
   1802 	if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) {
   1803 		mutex_enter(&filelist_lock);
   1804 		cv_signal(&unp_thread_cv);
   1805 		mutex_exit(&filelist_lock);
   1806 	}
   1807 }
   1808 
   1809 void
   1810 unp_dispose(struct mbuf *m)
   1811 {
   1812 
   1813 	if (m)
   1814 		unp_scan(m, unp_discard_later, 1);
   1815 }
   1816 
   1817 void
   1818 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
   1819 {
   1820 	struct mbuf *m;
   1821 	file_t **rp, *fp;
   1822 	struct cmsghdr *cm;
   1823 	int i, qfds;
   1824 
   1825 	while (m0) {
   1826 		for (m = m0; m; m = m->m_next) {
   1827 			if (m->m_type != MT_CONTROL ||
   1828 			    m->m_len < sizeof(*cm)) {
   1829 			    	continue;
   1830 			}
   1831 			cm = mtod(m, struct cmsghdr *);
   1832 			if (cm->cmsg_level != SOL_SOCKET ||
   1833 			    cm->cmsg_type != SCM_RIGHTS)
   1834 				continue;
   1835 			qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
   1836 			    / sizeof(file_t *);
   1837 			rp = (file_t **)CMSG_DATA(cm);
   1838 			for (i = 0; i < qfds; i++) {
   1839 				fp = *rp;
   1840 				if (discard) {
   1841 					*rp = 0;
   1842 				}
   1843 				(*op)(fp);
   1844 				rp++;
   1845 			}
   1846 		}
   1847 		m0 = m0->m_nextpkt;
   1848 	}
   1849 }
   1850 
   1851 void
   1852 unp_mark(file_t *fp)
   1853 {
   1854 
   1855 	if (fp == NULL)
   1856 		return;
   1857 
   1858 	/* If we're already deferred, don't screw up the defer count */
   1859 	mutex_enter(&fp->f_lock);
   1860 	if (fp->f_flag & (FMARK | FDEFER)) {
   1861 		mutex_exit(&fp->f_lock);
   1862 		return;
   1863 	}
   1864 
   1865 	/*
   1866 	 * Minimize the number of deferrals...  Sockets are the only type of
   1867 	 * file which can hold references to another file, so just mark
   1868 	 * other files, and defer unmarked sockets for the next pass.
   1869 	 */
   1870 	if (fp->f_type == DTYPE_SOCKET) {
   1871 		unp_defer++;
   1872 		KASSERT(fp->f_count != 0);
   1873 		atomic_or_uint(&fp->f_flag, FDEFER);
   1874 	} else {
   1875 		atomic_or_uint(&fp->f_flag, FMARK);
   1876 	}
   1877 	mutex_exit(&fp->f_lock);
   1878 }
   1879 
   1880 static void
   1881 unp_discard_now(file_t *fp)
   1882 {
   1883 
   1884 	if (fp == NULL)
   1885 		return;
   1886 
   1887 	KASSERT(fp->f_count > 0);
   1888 	KASSERT(fp->f_msgcount > 0);
   1889 
   1890 	mutex_enter(&fp->f_lock);
   1891 	fp->f_msgcount--;
   1892 	mutex_exit(&fp->f_lock);
   1893 	atomic_dec_uint(&unp_rights);
   1894 	(void)closef(fp);
   1895 }
   1896 
   1897 static void
   1898 unp_discard_later(file_t *fp)
   1899 {
   1900 
   1901 	if (fp == NULL)
   1902 		return;
   1903 
   1904 	KASSERT(fp->f_count > 0);
   1905 	KASSERT(fp->f_msgcount > 0);
   1906 
   1907 	mutex_enter(&filelist_lock);
   1908 	if (fp->f_unpcount++ == 0) {
   1909 		SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist);
   1910 	}
   1911 	mutex_exit(&filelist_lock);
   1912 }
   1913 
   1914 const struct pr_usrreqs unp_usrreqs = {
   1915 	.pr_attach	= unp_attach,
   1916 	.pr_detach	= unp_detach,
   1917 	.pr_accept	= unp_accept,
   1918 	.pr_bind	= unp_bind,
   1919 	.pr_listen	= unp_listen,
   1920 	.pr_connect	= unp_connect,
   1921 	.pr_disconnect	= unp_disconnect,
   1922 	.pr_shutdown	= unp_shutdown,
   1923 	.pr_abort	= unp_abort,
   1924 	.pr_ioctl	= unp_ioctl,
   1925 	.pr_stat	= unp_stat,
   1926 	.pr_peeraddr	= unp_peeraddr,
   1927 	.pr_sockaddr	= unp_sockaddr,
   1928 	.pr_recvoob	= unp_recvoob,
   1929 	.pr_send	= unp_send,
   1930 	.pr_sendoob	= unp_sendoob,
   1931 	.pr_generic	= unp_usrreq,
   1932 };
   1933