Home | History | Annotate | Line # | Download | only in kern
uipc_usrreq.c revision 1.168
      1 /*	$NetBSD: uipc_usrreq.c,v 1.168 2014/08/08 03:05:45 rtr Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 2000, 2004, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
     62  */
     63 
     64 /*
     65  * Copyright (c) 1997 Christopher G. Demetriou.  All rights reserved.
     66  *
     67  * Redistribution and use in source and binary forms, with or without
     68  * modification, are permitted provided that the following conditions
     69  * are met:
     70  * 1. Redistributions of source code must retain the above copyright
     71  *    notice, this list of conditions and the following disclaimer.
     72  * 2. Redistributions in binary form must reproduce the above copyright
     73  *    notice, this list of conditions and the following disclaimer in the
     74  *    documentation and/or other materials provided with the distribution.
     75  * 3. All advertising materials mentioning features or use of this software
     76  *    must display the following acknowledgement:
     77  *	This product includes software developed by the University of
     78  *	California, Berkeley and its contributors.
     79  * 4. Neither the name of the University nor the names of its contributors
     80  *    may be used to endorse or promote products derived from this software
     81  *    without specific prior written permission.
     82  *
     83  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     84  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     85  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     86  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     87  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     88  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     89  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     90  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     91  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     92  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     93  * SUCH DAMAGE.
     94  *
     95  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
     96  */
     97 
     98 #include <sys/cdefs.h>
     99 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.168 2014/08/08 03:05:45 rtr Exp $");
    100 
    101 #include <sys/param.h>
    102 #include <sys/systm.h>
    103 #include <sys/proc.h>
    104 #include <sys/filedesc.h>
    105 #include <sys/domain.h>
    106 #include <sys/protosw.h>
    107 #include <sys/socket.h>
    108 #include <sys/socketvar.h>
    109 #include <sys/unpcb.h>
    110 #include <sys/un.h>
    111 #include <sys/namei.h>
    112 #include <sys/vnode.h>
    113 #include <sys/file.h>
    114 #include <sys/stat.h>
    115 #include <sys/mbuf.h>
    116 #include <sys/kauth.h>
    117 #include <sys/kmem.h>
    118 #include <sys/atomic.h>
    119 #include <sys/uidinfo.h>
    120 #include <sys/kernel.h>
    121 #include <sys/kthread.h>
    122 
    123 /*
    124  * Unix communications domain.
    125  *
    126  * TODO:
    127  *	RDM
    128  *	rethink name space problems
    129  *	need a proper out-of-band
    130  *
    131  * Notes on locking:
    132  *
    133  * The generic rules noted in uipc_socket2.c apply.  In addition:
    134  *
    135  * o We have a global lock, uipc_lock.
    136  *
    137  * o All datagram sockets are locked by uipc_lock.
    138  *
    139  * o For stream socketpairs, the two endpoints are created sharing the same
    140  *   independent lock.  Sockets presented to PRU_CONNECT2 must already have
    141  *   matching locks.
    142  *
    143  * o Stream sockets created via socket() start life with their own
    144  *   independent lock.
    145  *
    146  * o Stream connections to a named endpoint are slightly more complicated.
    147  *   Sockets that have called listen() have their lock pointer mutated to
    148  *   the global uipc_lock.  When establishing a connection, the connecting
    149  *   socket also has its lock mutated to uipc_lock, which matches the head
    150  *   (listening socket).  We create a new socket for accept() to return, and
    151  *   that also shares the head's lock.  Until the connection is completely
    152  *   done on both ends, all three sockets are locked by uipc_lock.  Once the
    153  *   connection is complete, the association with the head's lock is broken.
    154  *   The connecting socket and the socket returned from accept() have their
    155  *   lock pointers mutated away from uipc_lock, and back to the connecting
    156  *   socket's original, independent lock.  The head continues to be locked
    157  *   by uipc_lock.
    158  *
    159  * o If uipc_lock is determined to be a significant source of contention,
    160  *   it could easily be hashed out.  It is difficult to simply make it an
    161  *   independent lock because of visibility / garbage collection issues:
    162  *   if a socket has been associated with a lock at any point, that lock
    163  *   must remain valid until the socket is no longer visible in the system.
    164  *   The lock must not be freed or otherwise destroyed until any sockets
    165  *   that had referenced it have also been destroyed.
    166  */
    167 const struct sockaddr_un sun_noname = {
    168 	.sun_len = offsetof(struct sockaddr_un, sun_path),
    169 	.sun_family = AF_LOCAL,
    170 };
    171 ino_t	unp_ino;			/* prototype for fake inode numbers */
    172 
    173 static struct mbuf * unp_addsockcred(struct lwp *, struct mbuf *);
    174 static void   unp_discard_later(file_t *);
    175 static void   unp_discard_now(file_t *);
    176 static void   unp_disconnect1(struct unpcb *);
    177 static bool   unp_drop(struct unpcb *, int);
    178 static int    unp_internalize(struct mbuf **);
    179 static void   unp_mark(file_t *);
    180 static void   unp_scan(struct mbuf *, void (*)(file_t *), int);
    181 static void   unp_shutdown1(struct unpcb *);
    182 static void   unp_thread(void *);
    183 static void   unp_thread_kick(void);
    184 
    185 static kmutex_t *uipc_lock;
    186 
    187 static kcondvar_t unp_thread_cv;
    188 static lwp_t *unp_thread_lwp;
    189 static SLIST_HEAD(,file) unp_thread_discard;
    190 static int unp_defer;
    191 
    192 /*
    193  * Initialize Unix protocols.
    194  */
    195 void
    196 uipc_init(void)
    197 {
    198 	int error;
    199 
    200 	uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    201 	cv_init(&unp_thread_cv, "unpgc");
    202 
    203 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread,
    204 	    NULL, &unp_thread_lwp, "unpgc");
    205 	if (error != 0)
    206 		panic("uipc_init %d", error);
    207 }
    208 
    209 /*
    210  * A connection succeeded: disassociate both endpoints from the head's
    211  * lock, and make them share their own lock.  There is a race here: for
    212  * a very brief time one endpoint will be locked by a different lock
    213  * than the other end.  However, since the current thread holds the old
    214  * lock (the listening socket's lock, the head) access can still only be
    215  * made to one side of the connection.
    216  */
    217 static void
    218 unp_setpeerlocks(struct socket *so, struct socket *so2)
    219 {
    220 	struct unpcb *unp;
    221 	kmutex_t *lock;
    222 
    223 	KASSERT(solocked2(so, so2));
    224 
    225 	/*
    226 	 * Bail out if either end of the socket is not yet fully
    227 	 * connected or accepted.  We only break the lock association
    228 	 * with the head when the pair of sockets stand completely
    229 	 * on their own.
    230 	 */
    231 	KASSERT(so->so_head == NULL);
    232 	if (so2->so_head != NULL)
    233 		return;
    234 
    235 	/*
    236 	 * Drop references to old lock.  A third reference (from the
    237 	 * queue head) must be held as we still hold its lock.  Bonus:
    238 	 * we don't need to worry about garbage collecting the lock.
    239 	 */
    240 	lock = so->so_lock;
    241 	KASSERT(lock == uipc_lock);
    242 	mutex_obj_free(lock);
    243 	mutex_obj_free(lock);
    244 
    245 	/*
    246 	 * Grab stream lock from the initiator and share between the two
    247 	 * endpoints.  Issue memory barrier to ensure all modifications
    248 	 * become globally visible before the lock change.  so2 is
    249 	 * assumed not to have a stream lock, because it was created
    250 	 * purely for the server side to accept this connection and
    251 	 * started out life using the domain-wide lock.
    252 	 */
    253 	unp = sotounpcb(so);
    254 	KASSERT(unp->unp_streamlock != NULL);
    255 	KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
    256 	lock = unp->unp_streamlock;
    257 	unp->unp_streamlock = NULL;
    258 	mutex_obj_hold(lock);
    259 	membar_exit();
    260 	/*
    261 	 * possible race if lock is not held - see comment in
    262 	 * uipc_usrreq(PRU_ACCEPT).
    263 	 */
    264 	KASSERT(mutex_owned(lock));
    265 	solockreset(so, lock);
    266 	solockreset(so2, lock);
    267 }
    268 
    269 /*
    270  * Reset a socket's lock back to the domain-wide lock.
    271  */
    272 static void
    273 unp_resetlock(struct socket *so)
    274 {
    275 	kmutex_t *olock, *nlock;
    276 	struct unpcb *unp;
    277 
    278 	KASSERT(solocked(so));
    279 
    280 	olock = so->so_lock;
    281 	nlock = uipc_lock;
    282 	if (olock == nlock)
    283 		return;
    284 	unp = sotounpcb(so);
    285 	KASSERT(unp->unp_streamlock == NULL);
    286 	unp->unp_streamlock = olock;
    287 	mutex_obj_hold(nlock);
    288 	mutex_enter(nlock);
    289 	solockreset(so, nlock);
    290 	mutex_exit(olock);
    291 }
    292 
    293 static void
    294 unp_free(struct unpcb *unp)
    295 {
    296 	if (unp->unp_addr)
    297 		free(unp->unp_addr, M_SONAME);
    298 	if (unp->unp_streamlock != NULL)
    299 		mutex_obj_free(unp->unp_streamlock);
    300 	kmem_free(unp, sizeof(*unp));
    301 }
    302 
    303 static int
    304 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp)
    305 {
    306 	struct socket *so2;
    307 	const struct sockaddr_un *sun;
    308 
    309 	/* XXX: server side closed the socket */
    310 	if (unp->unp_conn == NULL)
    311 		return ECONNREFUSED;
    312 	so2 = unp->unp_conn->unp_socket;
    313 
    314 	KASSERT(solocked(so2));
    315 
    316 	if (unp->unp_addr)
    317 		sun = unp->unp_addr;
    318 	else
    319 		sun = &sun_noname;
    320 	if (unp->unp_conn->unp_flags & UNP_WANTCRED)
    321 		control = unp_addsockcred(curlwp, control);
    322 	if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
    323 	    control) == 0) {
    324 		so2->so_rcv.sb_overflowed++;
    325 		unp_dispose(control);
    326 		m_freem(control);
    327 		m_freem(m);
    328 		return (ENOBUFS);
    329 	} else {
    330 		sorwakeup(so2);
    331 		return (0);
    332 	}
    333 }
    334 
    335 static void
    336 unp_setaddr(struct socket *so, struct mbuf *nam, bool peeraddr)
    337 {
    338 	const struct sockaddr_un *sun;
    339 	struct unpcb *unp;
    340 	bool ext;
    341 
    342 	KASSERT(solocked(so));
    343 	unp = sotounpcb(so);
    344 	ext = false;
    345 
    346 	for (;;) {
    347 		sun = NULL;
    348 		if (peeraddr) {
    349 			if (unp->unp_conn && unp->unp_conn->unp_addr)
    350 				sun = unp->unp_conn->unp_addr;
    351 		} else {
    352 			if (unp->unp_addr)
    353 				sun = unp->unp_addr;
    354 		}
    355 		if (sun == NULL)
    356 			sun = &sun_noname;
    357 		nam->m_len = sun->sun_len;
    358 		if (nam->m_len > MLEN && !ext) {
    359 			sounlock(so);
    360 			MEXTMALLOC(nam, MAXPATHLEN * 2, M_WAITOK);
    361 			solock(so);
    362 			ext = true;
    363 		} else {
    364 			KASSERT(nam->m_len <= MAXPATHLEN * 2);
    365 			memcpy(mtod(nam, void *), sun, (size_t)nam->m_len);
    366 			break;
    367 		}
    368 	}
    369 }
    370 
    371 static int
    372 unp_rcvd(struct socket *so, int flags, struct lwp *l)
    373 {
    374 	struct unpcb *unp = sotounpcb(so);
    375 	struct socket *so2;
    376 	u_int newhiwat;
    377 
    378 	KASSERT(solocked(so));
    379 	KASSERT(unp != NULL);
    380 
    381 	switch (so->so_type) {
    382 
    383 	case SOCK_DGRAM:
    384 		panic("uipc 1");
    385 		/*NOTREACHED*/
    386 
    387 	case SOCK_SEQPACKET: /* FALLTHROUGH */
    388 	case SOCK_STREAM:
    389 #define	rcv (&so->so_rcv)
    390 #define snd (&so2->so_snd)
    391 		if (unp->unp_conn == 0)
    392 			break;
    393 		so2 = unp->unp_conn->unp_socket;
    394 		KASSERT(solocked2(so, so2));
    395 		/*
    396 		 * Adjust backpressure on sender
    397 		 * and wakeup any waiting to write.
    398 		 */
    399 		snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
    400 		unp->unp_mbcnt = rcv->sb_mbcnt;
    401 		newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
    402 		(void)chgsbsize(so2->so_uidinfo,
    403 		    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
    404 		unp->unp_cc = rcv->sb_cc;
    405 		sowwakeup(so2);
    406 #undef snd
    407 #undef rcv
    408 		break;
    409 
    410 	default:
    411 		panic("uipc 2");
    412 	}
    413 
    414 	return 0;
    415 }
    416 
    417 static int
    418 unp_recvoob(struct socket *so, struct mbuf *m, int flags)
    419 {
    420 	KASSERT(solocked(so));
    421 
    422 	return EOPNOTSUPP;
    423 }
    424 
    425 static int
    426 unp_send(struct socket *so, struct mbuf *m, struct mbuf *nam,
    427     struct mbuf *control, struct lwp *l)
    428 {
    429 	struct unpcb *unp = sotounpcb(so);
    430 	int error = 0;
    431 	u_int newhiwat;
    432 	struct socket *so2;
    433 
    434 	KASSERT(solocked(so));
    435 	KASSERT(unp != NULL);
    436 	KASSERT(m != NULL);
    437 
    438 	/*
    439 	 * Note: unp_internalize() rejects any control message
    440 	 * other than SCM_RIGHTS, and only allows one.  This
    441 	 * has the side-effect of preventing a caller from
    442 	 * forging SCM_CREDS.
    443 	 */
    444 	if (control) {
    445 		sounlock(so);
    446 		error = unp_internalize(&control);
    447 		solock(so);
    448 		if (error != 0) {
    449 			m_freem(control);
    450 			m_freem(m);
    451 			return error;
    452 		}
    453 	}
    454 
    455 	switch (so->so_type) {
    456 
    457 	case SOCK_DGRAM: {
    458 		KASSERT(so->so_lock == uipc_lock);
    459 		if (nam) {
    460 			if ((so->so_state & SS_ISCONNECTED) != 0)
    461 				error = EISCONN;
    462 			else {
    463 				/*
    464 				 * Note: once connected, the
    465 				 * socket's lock must not be
    466 				 * dropped until we have sent
    467 				 * the message and disconnected.
    468 				 * This is necessary to prevent
    469 				 * intervening control ops, like
    470 				 * another connection.
    471 				 */
    472 				error = unp_connect(so, nam, l);
    473 			}
    474 		} else {
    475 			if ((so->so_state & SS_ISCONNECTED) == 0)
    476 				error = ENOTCONN;
    477 		}
    478 		if (error) {
    479 			unp_dispose(control);
    480 			m_freem(control);
    481 			m_freem(m);
    482 			return error;
    483 		}
    484 		error = unp_output(m, control, unp);
    485 		if (nam)
    486 			unp_disconnect1(unp);
    487 		break;
    488 	}
    489 
    490 	case SOCK_SEQPACKET: /* FALLTHROUGH */
    491 	case SOCK_STREAM:
    492 #define	rcv (&so2->so_rcv)
    493 #define	snd (&so->so_snd)
    494 		if (unp->unp_conn == NULL) {
    495 			error = ENOTCONN;
    496 			break;
    497 		}
    498 		so2 = unp->unp_conn->unp_socket;
    499 		KASSERT(solocked2(so, so2));
    500 		if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
    501 			/*
    502 			 * Credentials are passed only once on
    503 			 * SOCK_STREAM and SOCK_SEQPACKET.
    504 			 */
    505 			unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
    506 			control = unp_addsockcred(l, control);
    507 		}
    508 		/*
    509 		 * Send to paired receive port, and then reduce
    510 		 * send buffer hiwater marks to maintain backpressure.
    511 		 * Wake up readers.
    512 		 */
    513 		if (control) {
    514 			if (sbappendcontrol(rcv, m, control) != 0)
    515 				control = NULL;
    516 		} else {
    517 			switch(so->so_type) {
    518 			case SOCK_SEQPACKET:
    519 				sbappendrecord(rcv, m);
    520 				break;
    521 			case SOCK_STREAM:
    522 				sbappend(rcv, m);
    523 				break;
    524 			default:
    525 				panic("uipc_usrreq");
    526 				break;
    527 			}
    528 		}
    529 		snd->sb_mbmax -=
    530 		    rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
    531 		unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
    532 		newhiwat = snd->sb_hiwat -
    533 		    (rcv->sb_cc - unp->unp_conn->unp_cc);
    534 		(void)chgsbsize(so->so_uidinfo,
    535 		    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
    536 		unp->unp_conn->unp_cc = rcv->sb_cc;
    537 		sorwakeup(so2);
    538 #undef snd
    539 #undef rcv
    540 		if (control != NULL) {
    541 			unp_dispose(control);
    542 			m_freem(control);
    543 		}
    544 		break;
    545 
    546 	default:
    547 		panic("uipc 4");
    548 	}
    549 
    550 	return error;
    551 }
    552 
    553 static int
    554 unp_sendoob(struct socket *so, struct mbuf *m, struct mbuf * control)
    555 {
    556 	KASSERT(solocked(so));
    557 
    558 	m_freem(m);
    559 	m_freem(control);
    560 
    561 	return EOPNOTSUPP;
    562 }
    563 
    564 static int
    565 unp_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
    566     struct mbuf *control, struct lwp *l)
    567 {
    568 	struct unpcb *unp;
    569 	int error = 0;
    570 
    571 	KASSERT(req != PRU_ATTACH);
    572 	KASSERT(req != PRU_DETACH);
    573 	KASSERT(req != PRU_ACCEPT);
    574 	KASSERT(req != PRU_BIND);
    575 	KASSERT(req != PRU_LISTEN);
    576 	KASSERT(req != PRU_CONNECT);
    577 	KASSERT(req != PRU_DISCONNECT);
    578 	KASSERT(req != PRU_SHUTDOWN);
    579 	KASSERT(req != PRU_ABORT);
    580 	KASSERT(req != PRU_CONTROL);
    581 	KASSERT(req != PRU_SENSE);
    582 	KASSERT(req != PRU_PEERADDR);
    583 	KASSERT(req != PRU_SOCKADDR);
    584 	KASSERT(req != PRU_RCVD);
    585 	KASSERT(req != PRU_RCVOOB);
    586 	KASSERT(req != PRU_SEND);
    587 	KASSERT(req != PRU_SENDOOB);
    588 
    589 	KASSERT(solocked(so));
    590 	unp = sotounpcb(so);
    591 
    592 	KASSERT(!control);
    593 	if (unp == NULL) {
    594 		error = EINVAL;
    595 		goto release;
    596 	}
    597 
    598 	switch (req) {
    599 	case PRU_CONNECT2:
    600 		error = unp_connect2(so, (struct socket *)nam, PRU_CONNECT2);
    601 		break;
    602 
    603 	default:
    604 		panic("piusrreq");
    605 	}
    606 
    607 release:
    608 	return (error);
    609 }
    610 
    611 /*
    612  * Unix domain socket option processing.
    613  */
    614 int
    615 uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
    616 {
    617 	struct unpcb *unp = sotounpcb(so);
    618 	int optval = 0, error = 0;
    619 
    620 	KASSERT(solocked(so));
    621 
    622 	if (sopt->sopt_level != 0) {
    623 		error = ENOPROTOOPT;
    624 	} else switch (op) {
    625 
    626 	case PRCO_SETOPT:
    627 		switch (sopt->sopt_name) {
    628 		case LOCAL_CREDS:
    629 		case LOCAL_CONNWAIT:
    630 			error = sockopt_getint(sopt, &optval);
    631 			if (error)
    632 				break;
    633 			switch (sopt->sopt_name) {
    634 #define	OPTSET(bit) \
    635 	if (optval) \
    636 		unp->unp_flags |= (bit); \
    637 	else \
    638 		unp->unp_flags &= ~(bit);
    639 
    640 			case LOCAL_CREDS:
    641 				OPTSET(UNP_WANTCRED);
    642 				break;
    643 			case LOCAL_CONNWAIT:
    644 				OPTSET(UNP_CONNWAIT);
    645 				break;
    646 			}
    647 			break;
    648 #undef OPTSET
    649 
    650 		default:
    651 			error = ENOPROTOOPT;
    652 			break;
    653 		}
    654 		break;
    655 
    656 	case PRCO_GETOPT:
    657 		sounlock(so);
    658 		switch (sopt->sopt_name) {
    659 		case LOCAL_PEEREID:
    660 			if (unp->unp_flags & UNP_EIDSVALID) {
    661 				error = sockopt_set(sopt,
    662 				    &unp->unp_connid, sizeof(unp->unp_connid));
    663 			} else {
    664 				error = EINVAL;
    665 			}
    666 			break;
    667 		case LOCAL_CREDS:
    668 #define	OPTBIT(bit)	(unp->unp_flags & (bit) ? 1 : 0)
    669 
    670 			optval = OPTBIT(UNP_WANTCRED);
    671 			error = sockopt_setint(sopt, optval);
    672 			break;
    673 #undef OPTBIT
    674 
    675 		default:
    676 			error = ENOPROTOOPT;
    677 			break;
    678 		}
    679 		solock(so);
    680 		break;
    681 	}
    682 	return (error);
    683 }
    684 
    685 /*
    686  * Both send and receive buffers are allocated PIPSIZ bytes of buffering
    687  * for stream sockets, although the total for sender and receiver is
    688  * actually only PIPSIZ.
    689  * Datagram sockets really use the sendspace as the maximum datagram size,
    690  * and don't really want to reserve the sendspace.  Their recvspace should
    691  * be large enough for at least one max-size datagram plus address.
    692  */
    693 #define	PIPSIZ	4096
    694 u_long	unpst_sendspace = PIPSIZ;
    695 u_long	unpst_recvspace = PIPSIZ;
    696 u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
    697 u_long	unpdg_recvspace = 4*1024;
    698 
    699 u_int	unp_rights;			/* files in flight */
    700 u_int	unp_rights_ratio = 2;		/* limit, fraction of maxfiles */
    701 
    702 static int
    703 unp_attach(struct socket *so, int proto)
    704 {
    705 	struct unpcb *unp = sotounpcb(so);
    706 	u_long sndspc, rcvspc;
    707 	int error;
    708 
    709 	KASSERT(unp == NULL);
    710 
    711 	switch (so->so_type) {
    712 	case SOCK_SEQPACKET:
    713 		/* FALLTHROUGH */
    714 	case SOCK_STREAM:
    715 		if (so->so_lock == NULL) {
    716 			so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    717 			solock(so);
    718 		}
    719 		sndspc = unpst_sendspace;
    720 		rcvspc = unpst_recvspace;
    721 		break;
    722 
    723 	case SOCK_DGRAM:
    724 		if (so->so_lock == NULL) {
    725 			mutex_obj_hold(uipc_lock);
    726 			so->so_lock = uipc_lock;
    727 			solock(so);
    728 		}
    729 		sndspc = unpdg_sendspace;
    730 		rcvspc = unpdg_recvspace;
    731 		break;
    732 
    733 	default:
    734 		panic("unp_attach");
    735 	}
    736 
    737 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
    738 		error = soreserve(so, sndspc, rcvspc);
    739 		if (error) {
    740 			return error;
    741 		}
    742 	}
    743 
    744 	unp = kmem_zalloc(sizeof(*unp), KM_SLEEP);
    745 	nanotime(&unp->unp_ctime);
    746 	unp->unp_socket = so;
    747 	so->so_pcb = unp;
    748 
    749 	KASSERT(solocked(so));
    750 	return 0;
    751 }
    752 
    753 static void
    754 unp_detach(struct socket *so)
    755 {
    756 	struct unpcb *unp;
    757 	vnode_t *vp;
    758 
    759 	unp = sotounpcb(so);
    760 	KASSERT(unp != NULL);
    761 	KASSERT(solocked(so));
    762  retry:
    763 	if ((vp = unp->unp_vnode) != NULL) {
    764 		sounlock(so);
    765 		/* Acquire v_interlock to protect against unp_connect(). */
    766 		/* XXXAD racy */
    767 		mutex_enter(vp->v_interlock);
    768 		vp->v_socket = NULL;
    769 		mutex_exit(vp->v_interlock);
    770 		vrele(vp);
    771 		solock(so);
    772 		unp->unp_vnode = NULL;
    773 	}
    774 	if (unp->unp_conn)
    775 		unp_disconnect1(unp);
    776 	while (unp->unp_refs) {
    777 		KASSERT(solocked2(so, unp->unp_refs->unp_socket));
    778 		if (unp_drop(unp->unp_refs, ECONNRESET)) {
    779 			solock(so);
    780 			goto retry;
    781 		}
    782 	}
    783 	soisdisconnected(so);
    784 	so->so_pcb = NULL;
    785 	if (unp_rights) {
    786 		/*
    787 		 * Normally the receive buffer is flushed later, in sofree,
    788 		 * but if our receive buffer holds references to files that
    789 		 * are now garbage, we will enqueue those file references to
    790 		 * the garbage collector and kick it into action.
    791 		 */
    792 		sorflush(so);
    793 		unp_free(unp);
    794 		unp_thread_kick();
    795 	} else
    796 		unp_free(unp);
    797 }
    798 
    799 static int
    800 unp_accept(struct socket *so, struct mbuf *nam)
    801 {
    802 	struct unpcb *unp = sotounpcb(so);
    803 	struct socket *so2;
    804 
    805 	KASSERT(solocked(so));
    806 	KASSERT(nam != NULL);
    807 
    808 	/* XXX code review required to determine if unp can ever be NULL */
    809 	if (unp == NULL)
    810 		return EINVAL;
    811 
    812 	KASSERT(so->so_lock == uipc_lock);
    813 	/*
    814 	 * Mark the initiating STREAM socket as connected *ONLY*
    815 	 * after it's been accepted.  This prevents a client from
    816 	 * overrunning a server and receiving ECONNREFUSED.
    817 	 */
    818 	if (unp->unp_conn == NULL) {
    819 		/*
    820 		 * This will use the empty socket and will not
    821 		 * allocate.
    822 		 */
    823 		unp_setaddr(so, nam, true);
    824 		return 0;
    825 	}
    826 	so2 = unp->unp_conn->unp_socket;
    827 	if (so2->so_state & SS_ISCONNECTING) {
    828 		KASSERT(solocked2(so, so->so_head));
    829 		KASSERT(solocked2(so2, so->so_head));
    830 		soisconnected(so2);
    831 	}
    832 	/*
    833 	 * If the connection is fully established, break the
    834 	 * association with uipc_lock and give the connected
    835 	 * pair a separate lock to share.
    836 	 * There is a race here: sotounpcb(so2)->unp_streamlock
    837 	 * is not locked, so when changing so2->so_lock
    838 	 * another thread can grab it while so->so_lock is still
    839 	 * pointing to the (locked) uipc_lock.
    840 	 * this should be harmless, except that this makes
    841 	 * solocked2() and solocked() unreliable.
    842 	 * Another problem is that unp_setaddr() expects the
    843 	 * the socket locked. Grabing sotounpcb(so2)->unp_streamlock
    844 	 * fixes both issues.
    845 	 */
    846 	mutex_enter(sotounpcb(so2)->unp_streamlock);
    847 	unp_setpeerlocks(so2, so);
    848 	/*
    849 	 * Only now return peer's address, as we may need to
    850 	 * block in order to allocate memory.
    851 	 *
    852 	 * XXX Minor race: connection can be broken while
    853 	 * lock is dropped in unp_setaddr().  We will return
    854 	 * error == 0 and sun_noname as the peer address.
    855 	 */
    856 	unp_setaddr(so, nam, true);
    857 	/* so_lock now points to unp_streamlock */
    858 	mutex_exit(so2->so_lock);
    859 	return 0;
    860 }
    861 
    862 static int
    863 unp_ioctl(struct socket *so, u_long cmd, void *nam, struct ifnet *ifp)
    864 {
    865 	return EOPNOTSUPP;
    866 }
    867 
    868 static int
    869 unp_stat(struct socket *so, struct stat *ub)
    870 {
    871 	struct unpcb *unp;
    872 	struct socket *so2;
    873 
    874 	KASSERT(solocked(so));
    875 
    876 	unp = sotounpcb(so);
    877 	if (unp == NULL)
    878 		return EINVAL;
    879 
    880 	ub->st_blksize = so->so_snd.sb_hiwat;
    881 	switch (so->so_type) {
    882 	case SOCK_SEQPACKET: /* FALLTHROUGH */
    883 	case SOCK_STREAM:
    884 		if (unp->unp_conn == 0)
    885 			break;
    886 
    887 		so2 = unp->unp_conn->unp_socket;
    888 		KASSERT(solocked2(so, so2));
    889 		ub->st_blksize += so2->so_rcv.sb_cc;
    890 		break;
    891 	default:
    892 		break;
    893 	}
    894 	ub->st_dev = NODEV;
    895 	if (unp->unp_ino == 0)
    896 		unp->unp_ino = unp_ino++;
    897 	ub->st_atimespec = ub->st_mtimespec = ub->st_ctimespec = unp->unp_ctime;
    898 	ub->st_ino = unp->unp_ino;
    899 	return (0);
    900 }
    901 
    902 static int
    903 unp_peeraddr(struct socket *so, struct mbuf *nam)
    904 {
    905 	KASSERT(solocked(so));
    906 	KASSERT(sotounpcb(so) != NULL);
    907 	KASSERT(nam != NULL);
    908 
    909 	unp_setaddr(so, nam, true);
    910 	return 0;
    911 }
    912 
    913 static int
    914 unp_sockaddr(struct socket *so, struct mbuf *nam)
    915 {
    916 	KASSERT(solocked(so));
    917 	KASSERT(sotounpcb(so) != NULL);
    918 	KASSERT(nam != NULL);
    919 
    920 	unp_setaddr(so, nam, false);
    921 	return 0;
    922 }
    923 
    924 /*
    925  * Allocate the new sockaddr.  We have to allocate one
    926  * extra byte so that we can ensure that the pathname
    927  * is nul-terminated. Note that unlike linux, we don't
    928  * include in the address length the NUL in the path
    929  * component, because doing so, would exceed sizeof(sockaddr_un)
    930  * for fully occupied pathnames. Linux is also inconsistent,
    931  * because it does not include the NUL in the length of
    932  * what it calls "abstract" unix sockets.
    933  */
    934 static struct sockaddr_un *
    935 makeun(struct mbuf *nam, size_t *addrlen) {
    936 	struct sockaddr_un *sun;
    937 
    938 	*addrlen = nam->m_len + 1;
    939 	sun = malloc(*addrlen, M_SONAME, M_WAITOK);
    940 	m_copydata(nam, 0, nam->m_len, (void *)sun);
    941 	*(((char *)sun) + nam->m_len) = '\0';
    942 	sun->sun_len = strlen(sun->sun_path) +
    943 	    offsetof(struct sockaddr_un, sun_path);
    944 	return sun;
    945 }
    946 
    947 static int
    948 unp_bind(struct socket *so, struct mbuf *nam, struct lwp *l)
    949 {
    950 	struct sockaddr_un *sun;
    951 	struct unpcb *unp;
    952 	vnode_t *vp;
    953 	struct vattr vattr;
    954 	size_t addrlen;
    955 	int error;
    956 	struct pathbuf *pb;
    957 	struct nameidata nd;
    958 	proc_t *p;
    959 
    960 	unp = sotounpcb(so);
    961 
    962 	KASSERT(solocked(so));
    963 	KASSERT(unp != NULL);
    964 	KASSERT(nam != NULL);
    965 
    966 	if (unp->unp_vnode != NULL)
    967 		return (EINVAL);
    968 	if ((unp->unp_flags & UNP_BUSY) != 0) {
    969 		/*
    970 		 * EALREADY may not be strictly accurate, but since this
    971 		 * is a major application error it's hardly a big deal.
    972 		 */
    973 		return (EALREADY);
    974 	}
    975 	unp->unp_flags |= UNP_BUSY;
    976 	sounlock(so);
    977 
    978 	p = l->l_proc;
    979 	sun = makeun(nam, &addrlen);
    980 
    981 	pb = pathbuf_create(sun->sun_path);
    982 	if (pb == NULL) {
    983 		error = ENOMEM;
    984 		goto bad;
    985 	}
    986 	NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, pb);
    987 
    988 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
    989 	if ((error = namei(&nd)) != 0) {
    990 		pathbuf_destroy(pb);
    991 		goto bad;
    992 	}
    993 	vp = nd.ni_vp;
    994 	if (vp != NULL) {
    995 		VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
    996 		if (nd.ni_dvp == vp)
    997 			vrele(nd.ni_dvp);
    998 		else
    999 			vput(nd.ni_dvp);
   1000 		vrele(vp);
   1001 		pathbuf_destroy(pb);
   1002 		error = EADDRINUSE;
   1003 		goto bad;
   1004 	}
   1005 	vattr_null(&vattr);
   1006 	vattr.va_type = VSOCK;
   1007 	vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
   1008 	error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
   1009 	if (error) {
   1010 		vput(nd.ni_dvp);
   1011 		pathbuf_destroy(pb);
   1012 		goto bad;
   1013 	}
   1014 	vp = nd.ni_vp;
   1015 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   1016 	solock(so);
   1017 	vp->v_socket = unp->unp_socket;
   1018 	unp->unp_vnode = vp;
   1019 	unp->unp_addrlen = addrlen;
   1020 	unp->unp_addr = sun;
   1021 	unp->unp_connid.unp_pid = p->p_pid;
   1022 	unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
   1023 	unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
   1024 	unp->unp_flags |= UNP_EIDSBIND;
   1025 	VOP_UNLOCK(vp);
   1026 	vput(nd.ni_dvp);
   1027 	unp->unp_flags &= ~UNP_BUSY;
   1028 	pathbuf_destroy(pb);
   1029 	return (0);
   1030 
   1031  bad:
   1032 	free(sun, M_SONAME);
   1033 	solock(so);
   1034 	unp->unp_flags &= ~UNP_BUSY;
   1035 	return (error);
   1036 }
   1037 
   1038 static int
   1039 unp_listen(struct socket *so, struct lwp *l)
   1040 {
   1041 	struct unpcb *unp = sotounpcb(so);
   1042 
   1043 	KASSERT(solocked(so));
   1044 	KASSERT(unp != NULL);
   1045 
   1046 	/*
   1047 	 * If the socket can accept a connection, it must be
   1048 	 * locked by uipc_lock.
   1049 	 */
   1050 	unp_resetlock(so);
   1051 	if (unp->unp_vnode == NULL)
   1052 		return EINVAL;
   1053 
   1054 	return 0;
   1055 }
   1056 
   1057 static int
   1058 unp_disconnect(struct socket *so)
   1059 {
   1060 	KASSERT(solocked(so));
   1061 	KASSERT(sotounpcb(so) != NULL);
   1062 
   1063 	unp_disconnect1(sotounpcb(so));
   1064 	return 0;
   1065 }
   1066 
   1067 static int
   1068 unp_shutdown(struct socket *so)
   1069 {
   1070 	KASSERT(solocked(so));
   1071 	KASSERT(sotounpcb(so) != NULL);
   1072 
   1073 	socantsendmore(so);
   1074 	unp_shutdown1(sotounpcb(so));
   1075 	return 0;
   1076 }
   1077 
   1078 static int
   1079 unp_abort(struct socket *so)
   1080 {
   1081 	KASSERT(solocked(so));
   1082 	KASSERT(sotounpcb(so) != NULL);
   1083 
   1084 	(void)unp_drop(sotounpcb(so), ECONNABORTED);
   1085 	KASSERT(so->so_head == NULL);
   1086 	KASSERT(so->so_pcb != NULL);
   1087 	unp_detach(so);
   1088 	return 0;
   1089 }
   1090 
   1091 int
   1092 unp_connect(struct socket *so, struct mbuf *nam, struct lwp *l)
   1093 {
   1094 	struct sockaddr_un *sun;
   1095 	vnode_t *vp;
   1096 	struct socket *so2, *so3;
   1097 	struct unpcb *unp, *unp2, *unp3;
   1098 	size_t addrlen;
   1099 	int error;
   1100 	struct pathbuf *pb;
   1101 	struct nameidata nd;
   1102 
   1103 	unp = sotounpcb(so);
   1104 	if ((unp->unp_flags & UNP_BUSY) != 0) {
   1105 		/*
   1106 		 * EALREADY may not be strictly accurate, but since this
   1107 		 * is a major application error it's hardly a big deal.
   1108 		 */
   1109 		return (EALREADY);
   1110 	}
   1111 	unp->unp_flags |= UNP_BUSY;
   1112 	sounlock(so);
   1113 
   1114 	sun = makeun(nam, &addrlen);
   1115 	pb = pathbuf_create(sun->sun_path);
   1116 	if (pb == NULL) {
   1117 		error = ENOMEM;
   1118 		goto bad2;
   1119 	}
   1120 
   1121 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
   1122 
   1123 	if ((error = namei(&nd)) != 0) {
   1124 		pathbuf_destroy(pb);
   1125 		goto bad2;
   1126 	}
   1127 	vp = nd.ni_vp;
   1128 	if (vp->v_type != VSOCK) {
   1129 		error = ENOTSOCK;
   1130 		goto bad;
   1131 	}
   1132 	pathbuf_destroy(pb);
   1133 	if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
   1134 		goto bad;
   1135 	/* Acquire v_interlock to protect against unp_detach(). */
   1136 	mutex_enter(vp->v_interlock);
   1137 	so2 = vp->v_socket;
   1138 	if (so2 == NULL) {
   1139 		mutex_exit(vp->v_interlock);
   1140 		error = ECONNREFUSED;
   1141 		goto bad;
   1142 	}
   1143 	if (so->so_type != so2->so_type) {
   1144 		mutex_exit(vp->v_interlock);
   1145 		error = EPROTOTYPE;
   1146 		goto bad;
   1147 	}
   1148 	solock(so);
   1149 	unp_resetlock(so);
   1150 	mutex_exit(vp->v_interlock);
   1151 	if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
   1152 		/*
   1153 		 * This may seem somewhat fragile but is OK: if we can
   1154 		 * see SO_ACCEPTCONN set on the endpoint, then it must
   1155 		 * be locked by the domain-wide uipc_lock.
   1156 		 */
   1157 		KASSERT((so2->so_options & SO_ACCEPTCONN) == 0 ||
   1158 		    so2->so_lock == uipc_lock);
   1159 		if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
   1160 		    (so3 = sonewconn(so2, false)) == NULL) {
   1161 			error = ECONNREFUSED;
   1162 			sounlock(so);
   1163 			goto bad;
   1164 		}
   1165 		unp2 = sotounpcb(so2);
   1166 		unp3 = sotounpcb(so3);
   1167 		if (unp2->unp_addr) {
   1168 			unp3->unp_addr = malloc(unp2->unp_addrlen,
   1169 			    M_SONAME, M_WAITOK);
   1170 			memcpy(unp3->unp_addr, unp2->unp_addr,
   1171 			    unp2->unp_addrlen);
   1172 			unp3->unp_addrlen = unp2->unp_addrlen;
   1173 		}
   1174 		unp3->unp_flags = unp2->unp_flags;
   1175 		unp3->unp_connid.unp_pid = l->l_proc->p_pid;
   1176 		unp3->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
   1177 		unp3->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
   1178 		unp3->unp_flags |= UNP_EIDSVALID;
   1179 		if (unp2->unp_flags & UNP_EIDSBIND) {
   1180 			unp->unp_connid = unp2->unp_connid;
   1181 			unp->unp_flags |= UNP_EIDSVALID;
   1182 		}
   1183 		so2 = so3;
   1184 	}
   1185 	error = unp_connect2(so, so2, PRU_CONNECT);
   1186 	sounlock(so);
   1187  bad:
   1188 	vput(vp);
   1189  bad2:
   1190 	free(sun, M_SONAME);
   1191 	solock(so);
   1192 	unp->unp_flags &= ~UNP_BUSY;
   1193 	return (error);
   1194 }
   1195 
   1196 int
   1197 unp_connect2(struct socket *so, struct socket *so2, int req)
   1198 {
   1199 	struct unpcb *unp = sotounpcb(so);
   1200 	struct unpcb *unp2;
   1201 
   1202 	if (so2->so_type != so->so_type)
   1203 		return (EPROTOTYPE);
   1204 
   1205 	/*
   1206 	 * All three sockets involved must be locked by same lock:
   1207 	 *
   1208 	 * local endpoint (so)
   1209 	 * remote endpoint (so2)
   1210 	 * queue head (so2->so_head, only if PR_CONNREQUIRED)
   1211 	 */
   1212 	KASSERT(solocked2(so, so2));
   1213 	KASSERT(so->so_head == NULL);
   1214 	if (so2->so_head != NULL) {
   1215 		KASSERT(so2->so_lock == uipc_lock);
   1216 		KASSERT(solocked2(so2, so2->so_head));
   1217 	}
   1218 
   1219 	unp2 = sotounpcb(so2);
   1220 	unp->unp_conn = unp2;
   1221 	switch (so->so_type) {
   1222 
   1223 	case SOCK_DGRAM:
   1224 		unp->unp_nextref = unp2->unp_refs;
   1225 		unp2->unp_refs = unp;
   1226 		soisconnected(so);
   1227 		break;
   1228 
   1229 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1230 	case SOCK_STREAM:
   1231 		unp2->unp_conn = unp;
   1232 		if (req == PRU_CONNECT &&
   1233 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
   1234 			soisconnecting(so);
   1235 		else
   1236 			soisconnected(so);
   1237 		soisconnected(so2);
   1238 		/*
   1239 		 * If the connection is fully established, break the
   1240 		 * association with uipc_lock and give the connected
   1241 		 * pair a seperate lock to share.  For CONNECT2, we
   1242 		 * require that the locks already match (the sockets
   1243 		 * are created that way).
   1244 		 */
   1245 		if (req == PRU_CONNECT) {
   1246 			KASSERT(so2->so_head != NULL);
   1247 			unp_setpeerlocks(so, so2);
   1248 		}
   1249 		break;
   1250 
   1251 	default:
   1252 		panic("unp_connect2");
   1253 	}
   1254 	return (0);
   1255 }
   1256 
   1257 static void
   1258 unp_disconnect1(struct unpcb *unp)
   1259 {
   1260 	struct unpcb *unp2 = unp->unp_conn;
   1261 	struct socket *so;
   1262 
   1263 	if (unp2 == 0)
   1264 		return;
   1265 	unp->unp_conn = 0;
   1266 	so = unp->unp_socket;
   1267 	switch (so->so_type) {
   1268 	case SOCK_DGRAM:
   1269 		if (unp2->unp_refs == unp)
   1270 			unp2->unp_refs = unp->unp_nextref;
   1271 		else {
   1272 			unp2 = unp2->unp_refs;
   1273 			for (;;) {
   1274 				KASSERT(solocked2(so, unp2->unp_socket));
   1275 				if (unp2 == 0)
   1276 					panic("unp_disconnect1");
   1277 				if (unp2->unp_nextref == unp)
   1278 					break;
   1279 				unp2 = unp2->unp_nextref;
   1280 			}
   1281 			unp2->unp_nextref = unp->unp_nextref;
   1282 		}
   1283 		unp->unp_nextref = 0;
   1284 		so->so_state &= ~SS_ISCONNECTED;
   1285 		break;
   1286 
   1287 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1288 	case SOCK_STREAM:
   1289 		KASSERT(solocked2(so, unp2->unp_socket));
   1290 		soisdisconnected(so);
   1291 		unp2->unp_conn = 0;
   1292 		soisdisconnected(unp2->unp_socket);
   1293 		break;
   1294 	}
   1295 }
   1296 
   1297 static void
   1298 unp_shutdown1(struct unpcb *unp)
   1299 {
   1300 	struct socket *so;
   1301 
   1302 	switch(unp->unp_socket->so_type) {
   1303 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1304 	case SOCK_STREAM:
   1305 		if (unp->unp_conn && (so = unp->unp_conn->unp_socket))
   1306 			socantrcvmore(so);
   1307 		break;
   1308 	default:
   1309 		break;
   1310 	}
   1311 }
   1312 
   1313 static bool
   1314 unp_drop(struct unpcb *unp, int errno)
   1315 {
   1316 	struct socket *so = unp->unp_socket;
   1317 
   1318 	KASSERT(solocked(so));
   1319 
   1320 	so->so_error = errno;
   1321 	unp_disconnect1(unp);
   1322 	if (so->so_head) {
   1323 		so->so_pcb = NULL;
   1324 		/* sofree() drops the socket lock */
   1325 		sofree(so);
   1326 		unp_free(unp);
   1327 		return true;
   1328 	}
   1329 	return false;
   1330 }
   1331 
   1332 #ifdef notdef
   1333 unp_drain(void)
   1334 {
   1335 
   1336 }
   1337 #endif
   1338 
   1339 int
   1340 unp_externalize(struct mbuf *rights, struct lwp *l, int flags)
   1341 {
   1342 	struct cmsghdr * const cm = mtod(rights, struct cmsghdr *);
   1343 	struct proc * const p = l->l_proc;
   1344 	file_t **rp;
   1345 	int error = 0;
   1346 
   1347 	const size_t nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
   1348 	    sizeof(file_t *);
   1349 	if (nfds == 0)
   1350 		goto noop;
   1351 
   1352 	int * const fdp = kmem_alloc(nfds * sizeof(int), KM_SLEEP);
   1353 	rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
   1354 
   1355 	/* Make sure the recipient should be able to see the files.. */
   1356 	rp = (file_t **)CMSG_DATA(cm);
   1357 	for (size_t i = 0; i < nfds; i++) {
   1358 		file_t * const fp = *rp++;
   1359 		if (fp == NULL) {
   1360 			error = EINVAL;
   1361 			goto out;
   1362 		}
   1363 		/*
   1364 		 * If we are in a chroot'ed directory, and
   1365 		 * someone wants to pass us a directory, make
   1366 		 * sure it's inside the subtree we're allowed
   1367 		 * to access.
   1368 		 */
   1369 		if (p->p_cwdi->cwdi_rdir != NULL && fp->f_type == DTYPE_VNODE) {
   1370 			vnode_t *vp = (vnode_t *)fp->f_data;
   1371 			if ((vp->v_type == VDIR) &&
   1372 			    !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
   1373 				error = EPERM;
   1374 				goto out;
   1375 			}
   1376 		}
   1377 	}
   1378 
   1379  restart:
   1380 	/*
   1381 	 * First loop -- allocate file descriptor table slots for the
   1382 	 * new files.
   1383 	 */
   1384 	for (size_t i = 0; i < nfds; i++) {
   1385 		if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
   1386 			/*
   1387 			 * Back out what we've done so far.
   1388 			 */
   1389 			while (i-- > 0) {
   1390 				fd_abort(p, NULL, fdp[i]);
   1391 			}
   1392 			if (error == ENOSPC) {
   1393 				fd_tryexpand(p);
   1394 				error = 0;
   1395 				goto restart;
   1396 			}
   1397 			/*
   1398 			 * This is the error that has historically
   1399 			 * been returned, and some callers may
   1400 			 * expect it.
   1401 			 */
   1402 			error = EMSGSIZE;
   1403 			goto out;
   1404 		}
   1405 	}
   1406 
   1407 	/*
   1408 	 * Now that adding them has succeeded, update all of the
   1409 	 * file passing state and affix the descriptors.
   1410 	 */
   1411 	rp = (file_t **)CMSG_DATA(cm);
   1412 	int *ofdp = (int *)CMSG_DATA(cm);
   1413 	for (size_t i = 0; i < nfds; i++) {
   1414 		file_t * const fp = *rp++;
   1415 		const int fd = fdp[i];
   1416 		atomic_dec_uint(&unp_rights);
   1417 		fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
   1418 		fd_affix(p, fp, fd);
   1419 		/*
   1420 		 * Done with this file pointer, replace it with a fd;
   1421 		 */
   1422 		*ofdp++ = fd;
   1423 		mutex_enter(&fp->f_lock);
   1424 		fp->f_msgcount--;
   1425 		mutex_exit(&fp->f_lock);
   1426 		/*
   1427 		 * Note that fd_affix() adds a reference to the file.
   1428 		 * The file may already have been closed by another
   1429 		 * LWP in the process, so we must drop the reference
   1430 		 * added by unp_internalize() with closef().
   1431 		 */
   1432 		closef(fp);
   1433 	}
   1434 
   1435 	/*
   1436 	 * Adjust length, in case of transition from large file_t
   1437 	 * pointers to ints.
   1438 	 */
   1439 	if (sizeof(file_t *) != sizeof(int)) {
   1440 		cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
   1441 		rights->m_len = CMSG_SPACE(nfds * sizeof(int));
   1442 	}
   1443  out:
   1444 	if (__predict_false(error != 0)) {
   1445 		file_t **const fpp = (file_t **)CMSG_DATA(cm);
   1446 		for (size_t i = 0; i < nfds; i++)
   1447 			unp_discard_now(fpp[i]);
   1448 		/*
   1449 		 * Truncate the array so that nobody will try to interpret
   1450 		 * what is now garbage in it.
   1451 		 */
   1452 		cm->cmsg_len = CMSG_LEN(0);
   1453 		rights->m_len = CMSG_SPACE(0);
   1454 	}
   1455 	rw_exit(&p->p_cwdi->cwdi_lock);
   1456 	kmem_free(fdp, nfds * sizeof(int));
   1457 
   1458  noop:
   1459 	/*
   1460 	 * Don't disclose kernel memory in the alignment space.
   1461 	 */
   1462 	KASSERT(cm->cmsg_len <= rights->m_len);
   1463 	memset(&mtod(rights, char *)[cm->cmsg_len], 0, rights->m_len -
   1464 	    cm->cmsg_len);
   1465 	return error;
   1466 }
   1467 
   1468 static int
   1469 unp_internalize(struct mbuf **controlp)
   1470 {
   1471 	filedesc_t *fdescp = curlwp->l_fd;
   1472 	struct mbuf *control = *controlp;
   1473 	struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
   1474 	file_t **rp, **files;
   1475 	file_t *fp;
   1476 	int i, fd, *fdp;
   1477 	int nfds, error;
   1478 	u_int maxmsg;
   1479 
   1480 	error = 0;
   1481 	newcm = NULL;
   1482 
   1483 	/* Sanity check the control message header. */
   1484 	if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
   1485 	    cm->cmsg_len > control->m_len ||
   1486 	    cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
   1487 		return (EINVAL);
   1488 
   1489 	/*
   1490 	 * Verify that the file descriptors are valid, and acquire
   1491 	 * a reference to each.
   1492 	 */
   1493 	nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
   1494 	fdp = (int *)CMSG_DATA(cm);
   1495 	maxmsg = maxfiles / unp_rights_ratio;
   1496 	for (i = 0; i < nfds; i++) {
   1497 		fd = *fdp++;
   1498 		if (atomic_inc_uint_nv(&unp_rights) > maxmsg) {
   1499 			atomic_dec_uint(&unp_rights);
   1500 			nfds = i;
   1501 			error = EAGAIN;
   1502 			goto out;
   1503 		}
   1504 		if ((fp = fd_getfile(fd)) == NULL
   1505 		    || fp->f_type == DTYPE_KQUEUE) {
   1506 		    	if (fp)
   1507 		    		fd_putfile(fd);
   1508 			atomic_dec_uint(&unp_rights);
   1509 			nfds = i;
   1510 			error = EBADF;
   1511 			goto out;
   1512 		}
   1513 	}
   1514 
   1515 	/* Allocate new space and copy header into it. */
   1516 	newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
   1517 	if (newcm == NULL) {
   1518 		error = E2BIG;
   1519 		goto out;
   1520 	}
   1521 	memcpy(newcm, cm, sizeof(struct cmsghdr));
   1522 	files = (file_t **)CMSG_DATA(newcm);
   1523 
   1524 	/*
   1525 	 * Transform the file descriptors into file_t pointers, in
   1526 	 * reverse order so that if pointers are bigger than ints, the
   1527 	 * int won't get until we're done.  No need to lock, as we have
   1528 	 * already validated the descriptors with fd_getfile().
   1529 	 */
   1530 	fdp = (int *)CMSG_DATA(cm) + nfds;
   1531 	rp = files + nfds;
   1532 	for (i = 0; i < nfds; i++) {
   1533 		fp = fdescp->fd_dt->dt_ff[*--fdp]->ff_file;
   1534 		KASSERT(fp != NULL);
   1535 		mutex_enter(&fp->f_lock);
   1536 		*--rp = fp;
   1537 		fp->f_count++;
   1538 		fp->f_msgcount++;
   1539 		mutex_exit(&fp->f_lock);
   1540 	}
   1541 
   1542  out:
   1543  	/* Release descriptor references. */
   1544 	fdp = (int *)CMSG_DATA(cm);
   1545 	for (i = 0; i < nfds; i++) {
   1546 		fd_putfile(*fdp++);
   1547 		if (error != 0) {
   1548 			atomic_dec_uint(&unp_rights);
   1549 		}
   1550 	}
   1551 
   1552 	if (error == 0) {
   1553 		if (control->m_flags & M_EXT) {
   1554 			m_freem(control);
   1555 			*controlp = control = m_get(M_WAIT, MT_CONTROL);
   1556 		}
   1557 		MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
   1558 		    M_MBUF, NULL, NULL);
   1559 		cm = newcm;
   1560 		/*
   1561 		 * Adjust message & mbuf to note amount of space
   1562 		 * actually used.
   1563 		 */
   1564 		cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
   1565 		control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
   1566 	}
   1567 
   1568 	return error;
   1569 }
   1570 
   1571 struct mbuf *
   1572 unp_addsockcred(struct lwp *l, struct mbuf *control)
   1573 {
   1574 	struct sockcred *sc;
   1575 	struct mbuf *m;
   1576 	void *p;
   1577 
   1578 	m = sbcreatecontrol1(&p, SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)),
   1579 		SCM_CREDS, SOL_SOCKET, M_WAITOK);
   1580 	if (m == NULL)
   1581 		return control;
   1582 
   1583 	sc = p;
   1584 	sc->sc_uid = kauth_cred_getuid(l->l_cred);
   1585 	sc->sc_euid = kauth_cred_geteuid(l->l_cred);
   1586 	sc->sc_gid = kauth_cred_getgid(l->l_cred);
   1587 	sc->sc_egid = kauth_cred_getegid(l->l_cred);
   1588 	sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
   1589 
   1590 	for (int i = 0; i < sc->sc_ngroups; i++)
   1591 		sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
   1592 
   1593 	return m_add(control, m);
   1594 }
   1595 
   1596 /*
   1597  * Do a mark-sweep GC of files in the system, to free up any which are
   1598  * caught in flight to an about-to-be-closed socket.  Additionally,
   1599  * process deferred file closures.
   1600  */
   1601 static void
   1602 unp_gc(file_t *dp)
   1603 {
   1604 	extern	struct domain unixdomain;
   1605 	file_t *fp, *np;
   1606 	struct socket *so, *so1;
   1607 	u_int i, old, new;
   1608 	bool didwork;
   1609 
   1610 	KASSERT(curlwp == unp_thread_lwp);
   1611 	KASSERT(mutex_owned(&filelist_lock));
   1612 
   1613 	/*
   1614 	 * First, process deferred file closures.
   1615 	 */
   1616 	while (!SLIST_EMPTY(&unp_thread_discard)) {
   1617 		fp = SLIST_FIRST(&unp_thread_discard);
   1618 		KASSERT(fp->f_unpcount > 0);
   1619 		KASSERT(fp->f_count > 0);
   1620 		KASSERT(fp->f_msgcount > 0);
   1621 		KASSERT(fp->f_count >= fp->f_unpcount);
   1622 		KASSERT(fp->f_count >= fp->f_msgcount);
   1623 		KASSERT(fp->f_msgcount >= fp->f_unpcount);
   1624 		SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist);
   1625 		i = fp->f_unpcount;
   1626 		fp->f_unpcount = 0;
   1627 		mutex_exit(&filelist_lock);
   1628 		for (; i != 0; i--) {
   1629 			unp_discard_now(fp);
   1630 		}
   1631 		mutex_enter(&filelist_lock);
   1632 	}
   1633 
   1634 	/*
   1635 	 * Clear mark bits.  Ensure that we don't consider new files
   1636 	 * entering the file table during this loop (they will not have
   1637 	 * FSCAN set).
   1638 	 */
   1639 	unp_defer = 0;
   1640 	LIST_FOREACH(fp, &filehead, f_list) {
   1641 		for (old = fp->f_flag;; old = new) {
   1642 			new = atomic_cas_uint(&fp->f_flag, old,
   1643 			    (old | FSCAN) & ~(FMARK|FDEFER));
   1644 			if (__predict_true(old == new)) {
   1645 				break;
   1646 			}
   1647 		}
   1648 	}
   1649 
   1650 	/*
   1651 	 * Iterate over the set of sockets, marking ones believed (based on
   1652 	 * refcount) to be referenced from a process, and marking for rescan
   1653 	 * sockets which are queued on a socket.  Recan continues descending
   1654 	 * and searching for sockets referenced by sockets (FDEFER), until
   1655 	 * there are no more socket->socket references to be discovered.
   1656 	 */
   1657 	do {
   1658 		didwork = false;
   1659 		for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
   1660 			KASSERT(mutex_owned(&filelist_lock));
   1661 			np = LIST_NEXT(fp, f_list);
   1662 			mutex_enter(&fp->f_lock);
   1663 			if ((fp->f_flag & FDEFER) != 0) {
   1664 				atomic_and_uint(&fp->f_flag, ~FDEFER);
   1665 				unp_defer--;
   1666 				KASSERT(fp->f_count != 0);
   1667 			} else {
   1668 				if (fp->f_count == 0 ||
   1669 				    (fp->f_flag & FMARK) != 0 ||
   1670 				    fp->f_count == fp->f_msgcount ||
   1671 				    fp->f_unpcount != 0) {
   1672 					mutex_exit(&fp->f_lock);
   1673 					continue;
   1674 				}
   1675 			}
   1676 			atomic_or_uint(&fp->f_flag, FMARK);
   1677 
   1678 			if (fp->f_type != DTYPE_SOCKET ||
   1679 			    (so = fp->f_data) == NULL ||
   1680 			    so->so_proto->pr_domain != &unixdomain ||
   1681 			    (so->so_proto->pr_flags & PR_RIGHTS) == 0) {
   1682 				mutex_exit(&fp->f_lock);
   1683 				continue;
   1684 			}
   1685 
   1686 			/* Gain file ref, mark our position, and unlock. */
   1687 			didwork = true;
   1688 			LIST_INSERT_AFTER(fp, dp, f_list);
   1689 			fp->f_count++;
   1690 			mutex_exit(&fp->f_lock);
   1691 			mutex_exit(&filelist_lock);
   1692 
   1693 			/*
   1694 			 * Mark files referenced from sockets queued on the
   1695 			 * accept queue as well.
   1696 			 */
   1697 			solock(so);
   1698 			unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
   1699 			if ((so->so_options & SO_ACCEPTCONN) != 0) {
   1700 				TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
   1701 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
   1702 				}
   1703 				TAILQ_FOREACH(so1, &so->so_q, so_qe) {
   1704 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
   1705 				}
   1706 			}
   1707 			sounlock(so);
   1708 
   1709 			/* Re-lock and restart from where we left off. */
   1710 			closef(fp);
   1711 			mutex_enter(&filelist_lock);
   1712 			np = LIST_NEXT(dp, f_list);
   1713 			LIST_REMOVE(dp, f_list);
   1714 		}
   1715 		/*
   1716 		 * Bail early if we did nothing in the loop above.  Could
   1717 		 * happen because of concurrent activity causing unp_defer
   1718 		 * to get out of sync.
   1719 		 */
   1720 	} while (unp_defer != 0 && didwork);
   1721 
   1722 	/*
   1723 	 * Sweep pass.
   1724 	 *
   1725 	 * We grab an extra reference to each of the files that are
   1726 	 * not otherwise accessible and then free the rights that are
   1727 	 * stored in messages on them.
   1728 	 */
   1729 	for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
   1730 		KASSERT(mutex_owned(&filelist_lock));
   1731 		np = LIST_NEXT(fp, f_list);
   1732 		mutex_enter(&fp->f_lock);
   1733 
   1734 		/*
   1735 		 * Ignore non-sockets.
   1736 		 * Ignore dead sockets, or sockets with pending close.
   1737 		 * Ignore sockets obviously referenced elsewhere.
   1738 		 * Ignore sockets marked as referenced by our scan.
   1739 		 * Ignore new sockets that did not exist during the scan.
   1740 		 */
   1741 		if (fp->f_type != DTYPE_SOCKET ||
   1742 		    fp->f_count == 0 || fp->f_unpcount != 0 ||
   1743 		    fp->f_count != fp->f_msgcount ||
   1744 		    (fp->f_flag & (FMARK | FSCAN)) != FSCAN) {
   1745 			mutex_exit(&fp->f_lock);
   1746 			continue;
   1747 		}
   1748 
   1749 		/* Gain file ref, mark our position, and unlock. */
   1750 		LIST_INSERT_AFTER(fp, dp, f_list);
   1751 		fp->f_count++;
   1752 		mutex_exit(&fp->f_lock);
   1753 		mutex_exit(&filelist_lock);
   1754 
   1755 		/*
   1756 		 * Flush all data from the socket's receive buffer.
   1757 		 * This will cause files referenced only by the
   1758 		 * socket to be queued for close.
   1759 		 */
   1760 		so = fp->f_data;
   1761 		solock(so);
   1762 		sorflush(so);
   1763 		sounlock(so);
   1764 
   1765 		/* Re-lock and restart from where we left off. */
   1766 		closef(fp);
   1767 		mutex_enter(&filelist_lock);
   1768 		np = LIST_NEXT(dp, f_list);
   1769 		LIST_REMOVE(dp, f_list);
   1770 	}
   1771 }
   1772 
   1773 /*
   1774  * Garbage collector thread.  While SCM_RIGHTS messages are in transit,
   1775  * wake once per second to garbage collect.  Run continually while we
   1776  * have deferred closes to process.
   1777  */
   1778 static void
   1779 unp_thread(void *cookie)
   1780 {
   1781 	file_t *dp;
   1782 
   1783 	/* Allocate a dummy file for our scans. */
   1784 	if ((dp = fgetdummy()) == NULL) {
   1785 		panic("unp_thread");
   1786 	}
   1787 
   1788 	mutex_enter(&filelist_lock);
   1789 	for (;;) {
   1790 		KASSERT(mutex_owned(&filelist_lock));
   1791 		if (SLIST_EMPTY(&unp_thread_discard)) {
   1792 			if (unp_rights != 0) {
   1793 				(void)cv_timedwait(&unp_thread_cv,
   1794 				    &filelist_lock, hz);
   1795 			} else {
   1796 				cv_wait(&unp_thread_cv, &filelist_lock);
   1797 			}
   1798 		}
   1799 		unp_gc(dp);
   1800 	}
   1801 	/* NOTREACHED */
   1802 }
   1803 
   1804 /*
   1805  * Kick the garbage collector into action if there is something for
   1806  * it to process.
   1807  */
   1808 static void
   1809 unp_thread_kick(void)
   1810 {
   1811 
   1812 	if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) {
   1813 		mutex_enter(&filelist_lock);
   1814 		cv_signal(&unp_thread_cv);
   1815 		mutex_exit(&filelist_lock);
   1816 	}
   1817 }
   1818 
   1819 void
   1820 unp_dispose(struct mbuf *m)
   1821 {
   1822 
   1823 	if (m)
   1824 		unp_scan(m, unp_discard_later, 1);
   1825 }
   1826 
   1827 void
   1828 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
   1829 {
   1830 	struct mbuf *m;
   1831 	file_t **rp, *fp;
   1832 	struct cmsghdr *cm;
   1833 	int i, qfds;
   1834 
   1835 	while (m0) {
   1836 		for (m = m0; m; m = m->m_next) {
   1837 			if (m->m_type != MT_CONTROL ||
   1838 			    m->m_len < sizeof(*cm)) {
   1839 			    	continue;
   1840 			}
   1841 			cm = mtod(m, struct cmsghdr *);
   1842 			if (cm->cmsg_level != SOL_SOCKET ||
   1843 			    cm->cmsg_type != SCM_RIGHTS)
   1844 				continue;
   1845 			qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
   1846 			    / sizeof(file_t *);
   1847 			rp = (file_t **)CMSG_DATA(cm);
   1848 			for (i = 0; i < qfds; i++) {
   1849 				fp = *rp;
   1850 				if (discard) {
   1851 					*rp = 0;
   1852 				}
   1853 				(*op)(fp);
   1854 				rp++;
   1855 			}
   1856 		}
   1857 		m0 = m0->m_nextpkt;
   1858 	}
   1859 }
   1860 
   1861 void
   1862 unp_mark(file_t *fp)
   1863 {
   1864 
   1865 	if (fp == NULL)
   1866 		return;
   1867 
   1868 	/* If we're already deferred, don't screw up the defer count */
   1869 	mutex_enter(&fp->f_lock);
   1870 	if (fp->f_flag & (FMARK | FDEFER)) {
   1871 		mutex_exit(&fp->f_lock);
   1872 		return;
   1873 	}
   1874 
   1875 	/*
   1876 	 * Minimize the number of deferrals...  Sockets are the only type of
   1877 	 * file which can hold references to another file, so just mark
   1878 	 * other files, and defer unmarked sockets for the next pass.
   1879 	 */
   1880 	if (fp->f_type == DTYPE_SOCKET) {
   1881 		unp_defer++;
   1882 		KASSERT(fp->f_count != 0);
   1883 		atomic_or_uint(&fp->f_flag, FDEFER);
   1884 	} else {
   1885 		atomic_or_uint(&fp->f_flag, FMARK);
   1886 	}
   1887 	mutex_exit(&fp->f_lock);
   1888 }
   1889 
   1890 static void
   1891 unp_discard_now(file_t *fp)
   1892 {
   1893 
   1894 	if (fp == NULL)
   1895 		return;
   1896 
   1897 	KASSERT(fp->f_count > 0);
   1898 	KASSERT(fp->f_msgcount > 0);
   1899 
   1900 	mutex_enter(&fp->f_lock);
   1901 	fp->f_msgcount--;
   1902 	mutex_exit(&fp->f_lock);
   1903 	atomic_dec_uint(&unp_rights);
   1904 	(void)closef(fp);
   1905 }
   1906 
   1907 static void
   1908 unp_discard_later(file_t *fp)
   1909 {
   1910 
   1911 	if (fp == NULL)
   1912 		return;
   1913 
   1914 	KASSERT(fp->f_count > 0);
   1915 	KASSERT(fp->f_msgcount > 0);
   1916 
   1917 	mutex_enter(&filelist_lock);
   1918 	if (fp->f_unpcount++ == 0) {
   1919 		SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist);
   1920 	}
   1921 	mutex_exit(&filelist_lock);
   1922 }
   1923 
   1924 const struct pr_usrreqs unp_usrreqs = {
   1925 	.pr_attach	= unp_attach,
   1926 	.pr_detach	= unp_detach,
   1927 	.pr_accept	= unp_accept,
   1928 	.pr_bind	= unp_bind,
   1929 	.pr_listen	= unp_listen,
   1930 	.pr_connect	= unp_connect,
   1931 	.pr_disconnect	= unp_disconnect,
   1932 	.pr_shutdown	= unp_shutdown,
   1933 	.pr_abort	= unp_abort,
   1934 	.pr_ioctl	= unp_ioctl,
   1935 	.pr_stat	= unp_stat,
   1936 	.pr_peeraddr	= unp_peeraddr,
   1937 	.pr_sockaddr	= unp_sockaddr,
   1938 	.pr_rcvd	= unp_rcvd,
   1939 	.pr_recvoob	= unp_recvoob,
   1940 	.pr_send	= unp_send,
   1941 	.pr_sendoob	= unp_sendoob,
   1942 	.pr_generic	= unp_usrreq,
   1943 };
   1944