uipc_usrreq.c revision 1.170 1 /* $NetBSD: uipc_usrreq.c,v 1.170 2014/09/05 05:57:21 matt Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2000, 2004, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
62 */
63
64 /*
65 * Copyright (c) 1997 Christopher G. Demetriou. All rights reserved.
66 *
67 * Redistribution and use in source and binary forms, with or without
68 * modification, are permitted provided that the following conditions
69 * are met:
70 * 1. Redistributions of source code must retain the above copyright
71 * notice, this list of conditions and the following disclaimer.
72 * 2. Redistributions in binary form must reproduce the above copyright
73 * notice, this list of conditions and the following disclaimer in the
74 * documentation and/or other materials provided with the distribution.
75 * 3. All advertising materials mentioning features or use of this software
76 * must display the following acknowledgement:
77 * This product includes software developed by the University of
78 * California, Berkeley and its contributors.
79 * 4. Neither the name of the University nor the names of its contributors
80 * may be used to endorse or promote products derived from this software
81 * without specific prior written permission.
82 *
83 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
84 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
85 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
86 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
87 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
88 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
89 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
90 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
91 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
92 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
93 * SUCH DAMAGE.
94 *
95 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
96 */
97
98 #include <sys/cdefs.h>
99 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.170 2014/09/05 05:57:21 matt Exp $");
100
101 #include <sys/param.h>
102 #include <sys/systm.h>
103 #include <sys/proc.h>
104 #include <sys/filedesc.h>
105 #include <sys/domain.h>
106 #include <sys/protosw.h>
107 #include <sys/socket.h>
108 #include <sys/socketvar.h>
109 #include <sys/unpcb.h>
110 #include <sys/un.h>
111 #include <sys/namei.h>
112 #include <sys/vnode.h>
113 #include <sys/file.h>
114 #include <sys/stat.h>
115 #include <sys/mbuf.h>
116 #include <sys/kauth.h>
117 #include <sys/kmem.h>
118 #include <sys/atomic.h>
119 #include <sys/uidinfo.h>
120 #include <sys/kernel.h>
121 #include <sys/kthread.h>
122
123 /*
124 * Unix communications domain.
125 *
126 * TODO:
127 * RDM
128 * rethink name space problems
129 * need a proper out-of-band
130 *
131 * Notes on locking:
132 *
133 * The generic rules noted in uipc_socket2.c apply. In addition:
134 *
135 * o We have a global lock, uipc_lock.
136 *
137 * o All datagram sockets are locked by uipc_lock.
138 *
139 * o For stream socketpairs, the two endpoints are created sharing the same
140 * independent lock. Sockets presented to PRU_CONNECT2 must already have
141 * matching locks.
142 *
143 * o Stream sockets created via socket() start life with their own
144 * independent lock.
145 *
146 * o Stream connections to a named endpoint are slightly more complicated.
147 * Sockets that have called listen() have their lock pointer mutated to
148 * the global uipc_lock. When establishing a connection, the connecting
149 * socket also has its lock mutated to uipc_lock, which matches the head
150 * (listening socket). We create a new socket for accept() to return, and
151 * that also shares the head's lock. Until the connection is completely
152 * done on both ends, all three sockets are locked by uipc_lock. Once the
153 * connection is complete, the association with the head's lock is broken.
154 * The connecting socket and the socket returned from accept() have their
155 * lock pointers mutated away from uipc_lock, and back to the connecting
156 * socket's original, independent lock. The head continues to be locked
157 * by uipc_lock.
158 *
159 * o If uipc_lock is determined to be a significant source of contention,
160 * it could easily be hashed out. It is difficult to simply make it an
161 * independent lock because of visibility / garbage collection issues:
162 * if a socket has been associated with a lock at any point, that lock
163 * must remain valid until the socket is no longer visible in the system.
164 * The lock must not be freed or otherwise destroyed until any sockets
165 * that had referenced it have also been destroyed.
166 */
167 const struct sockaddr_un sun_noname = {
168 .sun_len = offsetof(struct sockaddr_un, sun_path),
169 .sun_family = AF_LOCAL,
170 };
171 ino_t unp_ino; /* prototype for fake inode numbers */
172
173 static struct mbuf * unp_addsockcred(struct lwp *, struct mbuf *);
174 static void unp_discard_later(file_t *);
175 static void unp_discard_now(file_t *);
176 static void unp_disconnect1(struct unpcb *);
177 static bool unp_drop(struct unpcb *, int);
178 static int unp_internalize(struct mbuf **);
179 static void unp_mark(file_t *);
180 static void unp_scan(struct mbuf *, void (*)(file_t *), int);
181 static void unp_shutdown1(struct unpcb *);
182 static void unp_thread(void *);
183 static void unp_thread_kick(void);
184
185 static kmutex_t *uipc_lock;
186
187 static kcondvar_t unp_thread_cv;
188 static lwp_t *unp_thread_lwp;
189 static SLIST_HEAD(,file) unp_thread_discard;
190 static int unp_defer;
191
192 /*
193 * Initialize Unix protocols.
194 */
195 void
196 uipc_init(void)
197 {
198 int error;
199
200 uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
201 cv_init(&unp_thread_cv, "unpgc");
202
203 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread,
204 NULL, &unp_thread_lwp, "unpgc");
205 if (error != 0)
206 panic("uipc_init %d", error);
207 }
208
209 /*
210 * A connection succeeded: disassociate both endpoints from the head's
211 * lock, and make them share their own lock. There is a race here: for
212 * a very brief time one endpoint will be locked by a different lock
213 * than the other end. However, since the current thread holds the old
214 * lock (the listening socket's lock, the head) access can still only be
215 * made to one side of the connection.
216 */
217 static void
218 unp_setpeerlocks(struct socket *so, struct socket *so2)
219 {
220 struct unpcb *unp;
221 kmutex_t *lock;
222
223 KASSERT(solocked2(so, so2));
224
225 /*
226 * Bail out if either end of the socket is not yet fully
227 * connected or accepted. We only break the lock association
228 * with the head when the pair of sockets stand completely
229 * on their own.
230 */
231 KASSERT(so->so_head == NULL);
232 if (so2->so_head != NULL)
233 return;
234
235 /*
236 * Drop references to old lock. A third reference (from the
237 * queue head) must be held as we still hold its lock. Bonus:
238 * we don't need to worry about garbage collecting the lock.
239 */
240 lock = so->so_lock;
241 KASSERT(lock == uipc_lock);
242 mutex_obj_free(lock);
243 mutex_obj_free(lock);
244
245 /*
246 * Grab stream lock from the initiator and share between the two
247 * endpoints. Issue memory barrier to ensure all modifications
248 * become globally visible before the lock change. so2 is
249 * assumed not to have a stream lock, because it was created
250 * purely for the server side to accept this connection and
251 * started out life using the domain-wide lock.
252 */
253 unp = sotounpcb(so);
254 KASSERT(unp->unp_streamlock != NULL);
255 KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
256 lock = unp->unp_streamlock;
257 unp->unp_streamlock = NULL;
258 mutex_obj_hold(lock);
259 membar_exit();
260 /*
261 * possible race if lock is not held - see comment in
262 * uipc_usrreq(PRU_ACCEPT).
263 */
264 KASSERT(mutex_owned(lock));
265 solockreset(so, lock);
266 solockreset(so2, lock);
267 }
268
269 /*
270 * Reset a socket's lock back to the domain-wide lock.
271 */
272 static void
273 unp_resetlock(struct socket *so)
274 {
275 kmutex_t *olock, *nlock;
276 struct unpcb *unp;
277
278 KASSERT(solocked(so));
279
280 olock = so->so_lock;
281 nlock = uipc_lock;
282 if (olock == nlock)
283 return;
284 unp = sotounpcb(so);
285 KASSERT(unp->unp_streamlock == NULL);
286 unp->unp_streamlock = olock;
287 mutex_obj_hold(nlock);
288 mutex_enter(nlock);
289 solockreset(so, nlock);
290 mutex_exit(olock);
291 }
292
293 static void
294 unp_free(struct unpcb *unp)
295 {
296 if (unp->unp_addr)
297 free(unp->unp_addr, M_SONAME);
298 if (unp->unp_streamlock != NULL)
299 mutex_obj_free(unp->unp_streamlock);
300 kmem_free(unp, sizeof(*unp));
301 }
302
303 static int
304 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp)
305 {
306 struct socket *so2;
307 const struct sockaddr_un *sun;
308
309 /* XXX: server side closed the socket */
310 if (unp->unp_conn == NULL)
311 return ECONNREFUSED;
312 so2 = unp->unp_conn->unp_socket;
313
314 KASSERT(solocked(so2));
315
316 if (unp->unp_addr)
317 sun = unp->unp_addr;
318 else
319 sun = &sun_noname;
320 if (unp->unp_conn->unp_flags & UNP_WANTCRED)
321 control = unp_addsockcred(curlwp, control);
322 if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
323 control) == 0) {
324 so2->so_rcv.sb_overflowed++;
325 unp_dispose(control);
326 m_freem(control);
327 m_freem(m);
328 return (ENOBUFS);
329 } else {
330 sorwakeup(so2);
331 return (0);
332 }
333 }
334
335 static void
336 unp_setaddr(struct socket *so, struct mbuf *nam, bool peeraddr)
337 {
338 const struct sockaddr_un *sun;
339 struct unpcb *unp;
340 bool ext;
341
342 KASSERT(solocked(so));
343 unp = sotounpcb(so);
344 ext = false;
345
346 for (;;) {
347 sun = NULL;
348 if (peeraddr) {
349 if (unp->unp_conn && unp->unp_conn->unp_addr)
350 sun = unp->unp_conn->unp_addr;
351 } else {
352 if (unp->unp_addr)
353 sun = unp->unp_addr;
354 }
355 if (sun == NULL)
356 sun = &sun_noname;
357 nam->m_len = sun->sun_len;
358 if (nam->m_len > MLEN && !ext) {
359 sounlock(so);
360 MEXTMALLOC(nam, MAXPATHLEN * 2, M_WAITOK);
361 solock(so);
362 ext = true;
363 } else {
364 KASSERT(nam->m_len <= MAXPATHLEN * 2);
365 memcpy(mtod(nam, void *), sun, (size_t)nam->m_len);
366 break;
367 }
368 }
369 }
370
371 static int
372 unp_rcvd(struct socket *so, int flags, struct lwp *l)
373 {
374 struct unpcb *unp = sotounpcb(so);
375 struct socket *so2;
376 u_int newhiwat;
377
378 KASSERT(solocked(so));
379 KASSERT(unp != NULL);
380
381 switch (so->so_type) {
382
383 case SOCK_DGRAM:
384 panic("uipc 1");
385 /*NOTREACHED*/
386
387 case SOCK_SEQPACKET: /* FALLTHROUGH */
388 case SOCK_STREAM:
389 #define rcv (&so->so_rcv)
390 #define snd (&so2->so_snd)
391 if (unp->unp_conn == 0)
392 break;
393 so2 = unp->unp_conn->unp_socket;
394 KASSERT(solocked2(so, so2));
395 /*
396 * Adjust backpressure on sender
397 * and wakeup any waiting to write.
398 */
399 snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
400 unp->unp_mbcnt = rcv->sb_mbcnt;
401 newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
402 (void)chgsbsize(so2->so_uidinfo,
403 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
404 unp->unp_cc = rcv->sb_cc;
405 sowwakeup(so2);
406 #undef snd
407 #undef rcv
408 break;
409
410 default:
411 panic("uipc 2");
412 }
413
414 return 0;
415 }
416
417 static int
418 unp_recvoob(struct socket *so, struct mbuf *m, int flags)
419 {
420 KASSERT(solocked(so));
421
422 return EOPNOTSUPP;
423 }
424
425 static int
426 unp_send(struct socket *so, struct mbuf *m, struct mbuf *nam,
427 struct mbuf *control, struct lwp *l)
428 {
429 struct unpcb *unp = sotounpcb(so);
430 int error = 0;
431 u_int newhiwat;
432 struct socket *so2;
433
434 KASSERT(solocked(so));
435 KASSERT(unp != NULL);
436 KASSERT(m != NULL);
437
438 /*
439 * Note: unp_internalize() rejects any control message
440 * other than SCM_RIGHTS, and only allows one. This
441 * has the side-effect of preventing a caller from
442 * forging SCM_CREDS.
443 */
444 if (control) {
445 sounlock(so);
446 error = unp_internalize(&control);
447 solock(so);
448 if (error != 0) {
449 m_freem(control);
450 m_freem(m);
451 return error;
452 }
453 }
454
455 switch (so->so_type) {
456
457 case SOCK_DGRAM: {
458 KASSERT(so->so_lock == uipc_lock);
459 if (nam) {
460 if ((so->so_state & SS_ISCONNECTED) != 0)
461 error = EISCONN;
462 else {
463 /*
464 * Note: once connected, the
465 * socket's lock must not be
466 * dropped until we have sent
467 * the message and disconnected.
468 * This is necessary to prevent
469 * intervening control ops, like
470 * another connection.
471 */
472 error = unp_connect(so, nam, l);
473 }
474 } else {
475 if ((so->so_state & SS_ISCONNECTED) == 0)
476 error = ENOTCONN;
477 }
478 if (error) {
479 unp_dispose(control);
480 m_freem(control);
481 m_freem(m);
482 return error;
483 }
484 error = unp_output(m, control, unp);
485 if (nam)
486 unp_disconnect1(unp);
487 break;
488 }
489
490 case SOCK_SEQPACKET: /* FALLTHROUGH */
491 case SOCK_STREAM:
492 #define rcv (&so2->so_rcv)
493 #define snd (&so->so_snd)
494 if (unp->unp_conn == NULL) {
495 error = ENOTCONN;
496 break;
497 }
498 so2 = unp->unp_conn->unp_socket;
499 KASSERT(solocked2(so, so2));
500 if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
501 /*
502 * Credentials are passed only once on
503 * SOCK_STREAM and SOCK_SEQPACKET.
504 */
505 unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
506 control = unp_addsockcred(l, control);
507 }
508 /*
509 * Send to paired receive port, and then reduce
510 * send buffer hiwater marks to maintain backpressure.
511 * Wake up readers.
512 */
513 if (control) {
514 if (sbappendcontrol(rcv, m, control) != 0)
515 control = NULL;
516 } else {
517 switch(so->so_type) {
518 case SOCK_SEQPACKET:
519 sbappendrecord(rcv, m);
520 break;
521 case SOCK_STREAM:
522 sbappend(rcv, m);
523 break;
524 default:
525 panic("uipc_usrreq");
526 break;
527 }
528 }
529 snd->sb_mbmax -=
530 rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
531 unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
532 newhiwat = snd->sb_hiwat -
533 (rcv->sb_cc - unp->unp_conn->unp_cc);
534 (void)chgsbsize(so->so_uidinfo,
535 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
536 unp->unp_conn->unp_cc = rcv->sb_cc;
537 sorwakeup(so2);
538 #undef snd
539 #undef rcv
540 if (control != NULL) {
541 unp_dispose(control);
542 m_freem(control);
543 }
544 break;
545
546 default:
547 panic("uipc 4");
548 }
549
550 return error;
551 }
552
553 static int
554 unp_sendoob(struct socket *so, struct mbuf *m, struct mbuf * control)
555 {
556 KASSERT(solocked(so));
557
558 m_freem(m);
559 m_freem(control);
560
561 return EOPNOTSUPP;
562 }
563
564 static int
565 unp_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
566 struct mbuf *control, struct lwp *l)
567 {
568
569 KASSERT(req != PRU_ATTACH);
570 KASSERT(req != PRU_DETACH);
571 KASSERT(req != PRU_ACCEPT);
572 KASSERT(req != PRU_BIND);
573 KASSERT(req != PRU_LISTEN);
574 KASSERT(req != PRU_CONNECT);
575 KASSERT(req != PRU_CONNECT2);
576 KASSERT(req != PRU_DISCONNECT);
577 KASSERT(req != PRU_SHUTDOWN);
578 KASSERT(req != PRU_ABORT);
579 KASSERT(req != PRU_CONTROL);
580 KASSERT(req != PRU_SENSE);
581 KASSERT(req != PRU_PEERADDR);
582 KASSERT(req != PRU_SOCKADDR);
583 KASSERT(req != PRU_RCVD);
584 KASSERT(req != PRU_RCVOOB);
585 KASSERT(req != PRU_SEND);
586 KASSERT(req != PRU_SENDOOB);
587 KASSERT(req != PRU_PURGEIF);
588
589 KASSERT(solocked(so));
590
591 if (sotounpcb(so) == NULL)
592 return EINVAL;
593
594 panic("piusrreq");
595
596 return 0;
597 }
598
599 /*
600 * Unix domain socket option processing.
601 */
602 int
603 uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
604 {
605 struct unpcb *unp = sotounpcb(so);
606 int optval = 0, error = 0;
607
608 KASSERT(solocked(so));
609
610 if (sopt->sopt_level != 0) {
611 error = ENOPROTOOPT;
612 } else switch (op) {
613
614 case PRCO_SETOPT:
615 switch (sopt->sopt_name) {
616 case LOCAL_CREDS:
617 case LOCAL_CONNWAIT:
618 error = sockopt_getint(sopt, &optval);
619 if (error)
620 break;
621 switch (sopt->sopt_name) {
622 #define OPTSET(bit) \
623 if (optval) \
624 unp->unp_flags |= (bit); \
625 else \
626 unp->unp_flags &= ~(bit);
627
628 case LOCAL_CREDS:
629 OPTSET(UNP_WANTCRED);
630 break;
631 case LOCAL_CONNWAIT:
632 OPTSET(UNP_CONNWAIT);
633 break;
634 }
635 break;
636 #undef OPTSET
637
638 default:
639 error = ENOPROTOOPT;
640 break;
641 }
642 break;
643
644 case PRCO_GETOPT:
645 sounlock(so);
646 switch (sopt->sopt_name) {
647 case LOCAL_PEEREID:
648 if (unp->unp_flags & UNP_EIDSVALID) {
649 error = sockopt_set(sopt,
650 &unp->unp_connid, sizeof(unp->unp_connid));
651 } else {
652 error = EINVAL;
653 }
654 break;
655 case LOCAL_CREDS:
656 #define OPTBIT(bit) (unp->unp_flags & (bit) ? 1 : 0)
657
658 optval = OPTBIT(UNP_WANTCRED);
659 error = sockopt_setint(sopt, optval);
660 break;
661 #undef OPTBIT
662
663 default:
664 error = ENOPROTOOPT;
665 break;
666 }
667 solock(so);
668 break;
669 }
670 return (error);
671 }
672
673 /*
674 * Both send and receive buffers are allocated PIPSIZ bytes of buffering
675 * for stream sockets, although the total for sender and receiver is
676 * actually only PIPSIZ.
677 * Datagram sockets really use the sendspace as the maximum datagram size,
678 * and don't really want to reserve the sendspace. Their recvspace should
679 * be large enough for at least one max-size datagram plus address.
680 */
681 #define PIPSIZ 4096
682 u_long unpst_sendspace = PIPSIZ;
683 u_long unpst_recvspace = PIPSIZ;
684 u_long unpdg_sendspace = 2*1024; /* really max datagram size */
685 u_long unpdg_recvspace = 4*1024;
686
687 u_int unp_rights; /* files in flight */
688 u_int unp_rights_ratio = 2; /* limit, fraction of maxfiles */
689
690 static int
691 unp_attach(struct socket *so, int proto)
692 {
693 struct unpcb *unp = sotounpcb(so);
694 u_long sndspc, rcvspc;
695 int error;
696
697 KASSERT(unp == NULL);
698
699 switch (so->so_type) {
700 case SOCK_SEQPACKET:
701 /* FALLTHROUGH */
702 case SOCK_STREAM:
703 if (so->so_lock == NULL) {
704 so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
705 solock(so);
706 }
707 sndspc = unpst_sendspace;
708 rcvspc = unpst_recvspace;
709 break;
710
711 case SOCK_DGRAM:
712 if (so->so_lock == NULL) {
713 mutex_obj_hold(uipc_lock);
714 so->so_lock = uipc_lock;
715 solock(so);
716 }
717 sndspc = unpdg_sendspace;
718 rcvspc = unpdg_recvspace;
719 break;
720
721 default:
722 panic("unp_attach");
723 }
724
725 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
726 error = soreserve(so, sndspc, rcvspc);
727 if (error) {
728 return error;
729 }
730 }
731
732 unp = kmem_zalloc(sizeof(*unp), KM_SLEEP);
733 nanotime(&unp->unp_ctime);
734 unp->unp_socket = so;
735 so->so_pcb = unp;
736
737 KASSERT(solocked(so));
738 return 0;
739 }
740
741 static void
742 unp_detach(struct socket *so)
743 {
744 struct unpcb *unp;
745 vnode_t *vp;
746
747 unp = sotounpcb(so);
748 KASSERT(unp != NULL);
749 KASSERT(solocked(so));
750 retry:
751 if ((vp = unp->unp_vnode) != NULL) {
752 sounlock(so);
753 /* Acquire v_interlock to protect against unp_connect(). */
754 /* XXXAD racy */
755 mutex_enter(vp->v_interlock);
756 vp->v_socket = NULL;
757 mutex_exit(vp->v_interlock);
758 vrele(vp);
759 solock(so);
760 unp->unp_vnode = NULL;
761 }
762 if (unp->unp_conn)
763 unp_disconnect1(unp);
764 while (unp->unp_refs) {
765 KASSERT(solocked2(so, unp->unp_refs->unp_socket));
766 if (unp_drop(unp->unp_refs, ECONNRESET)) {
767 solock(so);
768 goto retry;
769 }
770 }
771 soisdisconnected(so);
772 so->so_pcb = NULL;
773 if (unp_rights) {
774 /*
775 * Normally the receive buffer is flushed later, in sofree,
776 * but if our receive buffer holds references to files that
777 * are now garbage, we will enqueue those file references to
778 * the garbage collector and kick it into action.
779 */
780 sorflush(so);
781 unp_free(unp);
782 unp_thread_kick();
783 } else
784 unp_free(unp);
785 }
786
787 static int
788 unp_accept(struct socket *so, struct mbuf *nam)
789 {
790 struct unpcb *unp = sotounpcb(so);
791 struct socket *so2;
792
793 KASSERT(solocked(so));
794 KASSERT(nam != NULL);
795
796 /* XXX code review required to determine if unp can ever be NULL */
797 if (unp == NULL)
798 return EINVAL;
799
800 KASSERT(so->so_lock == uipc_lock);
801 /*
802 * Mark the initiating STREAM socket as connected *ONLY*
803 * after it's been accepted. This prevents a client from
804 * overrunning a server and receiving ECONNREFUSED.
805 */
806 if (unp->unp_conn == NULL) {
807 /*
808 * This will use the empty socket and will not
809 * allocate.
810 */
811 unp_setaddr(so, nam, true);
812 return 0;
813 }
814 so2 = unp->unp_conn->unp_socket;
815 if (so2->so_state & SS_ISCONNECTING) {
816 KASSERT(solocked2(so, so->so_head));
817 KASSERT(solocked2(so2, so->so_head));
818 soisconnected(so2);
819 }
820 /*
821 * If the connection is fully established, break the
822 * association with uipc_lock and give the connected
823 * pair a separate lock to share.
824 * There is a race here: sotounpcb(so2)->unp_streamlock
825 * is not locked, so when changing so2->so_lock
826 * another thread can grab it while so->so_lock is still
827 * pointing to the (locked) uipc_lock.
828 * this should be harmless, except that this makes
829 * solocked2() and solocked() unreliable.
830 * Another problem is that unp_setaddr() expects the
831 * the socket locked. Grabing sotounpcb(so2)->unp_streamlock
832 * fixes both issues.
833 */
834 mutex_enter(sotounpcb(so2)->unp_streamlock);
835 unp_setpeerlocks(so2, so);
836 /*
837 * Only now return peer's address, as we may need to
838 * block in order to allocate memory.
839 *
840 * XXX Minor race: connection can be broken while
841 * lock is dropped in unp_setaddr(). We will return
842 * error == 0 and sun_noname as the peer address.
843 */
844 unp_setaddr(so, nam, true);
845 /* so_lock now points to unp_streamlock */
846 mutex_exit(so2->so_lock);
847 return 0;
848 }
849
850 static int
851 unp_ioctl(struct socket *so, u_long cmd, void *nam, struct ifnet *ifp)
852 {
853 return EOPNOTSUPP;
854 }
855
856 static int
857 unp_stat(struct socket *so, struct stat *ub)
858 {
859 struct unpcb *unp;
860 struct socket *so2;
861
862 KASSERT(solocked(so));
863
864 unp = sotounpcb(so);
865 if (unp == NULL)
866 return EINVAL;
867
868 ub->st_blksize = so->so_snd.sb_hiwat;
869 switch (so->so_type) {
870 case SOCK_SEQPACKET: /* FALLTHROUGH */
871 case SOCK_STREAM:
872 if (unp->unp_conn == 0)
873 break;
874
875 so2 = unp->unp_conn->unp_socket;
876 KASSERT(solocked2(so, so2));
877 ub->st_blksize += so2->so_rcv.sb_cc;
878 break;
879 default:
880 break;
881 }
882 ub->st_dev = NODEV;
883 if (unp->unp_ino == 0)
884 unp->unp_ino = unp_ino++;
885 ub->st_atimespec = ub->st_mtimespec = ub->st_ctimespec = unp->unp_ctime;
886 ub->st_ino = unp->unp_ino;
887 return (0);
888 }
889
890 static int
891 unp_peeraddr(struct socket *so, struct mbuf *nam)
892 {
893 KASSERT(solocked(so));
894 KASSERT(sotounpcb(so) != NULL);
895 KASSERT(nam != NULL);
896
897 unp_setaddr(so, nam, true);
898 return 0;
899 }
900
901 static int
902 unp_sockaddr(struct socket *so, struct mbuf *nam)
903 {
904 KASSERT(solocked(so));
905 KASSERT(sotounpcb(so) != NULL);
906 KASSERT(nam != NULL);
907
908 unp_setaddr(so, nam, false);
909 return 0;
910 }
911
912 /*
913 * Allocate the new sockaddr. We have to allocate one
914 * extra byte so that we can ensure that the pathname
915 * is nul-terminated. Note that unlike linux, we don't
916 * include in the address length the NUL in the path
917 * component, because doing so, would exceed sizeof(sockaddr_un)
918 * for fully occupied pathnames. Linux is also inconsistent,
919 * because it does not include the NUL in the length of
920 * what it calls "abstract" unix sockets.
921 */
922 static struct sockaddr_un *
923 makeun(struct mbuf *nam, size_t *addrlen) {
924 struct sockaddr_un *sun;
925
926 *addrlen = nam->m_len + 1;
927 sun = malloc(*addrlen, M_SONAME, M_WAITOK);
928 m_copydata(nam, 0, nam->m_len, (void *)sun);
929 *(((char *)sun) + nam->m_len) = '\0';
930 sun->sun_len = strlen(sun->sun_path) +
931 offsetof(struct sockaddr_un, sun_path);
932 return sun;
933 }
934
935 static int
936 unp_bind(struct socket *so, struct mbuf *nam, struct lwp *l)
937 {
938 struct sockaddr_un *sun;
939 struct unpcb *unp;
940 vnode_t *vp;
941 struct vattr vattr;
942 size_t addrlen;
943 int error;
944 struct pathbuf *pb;
945 struct nameidata nd;
946 proc_t *p;
947
948 unp = sotounpcb(so);
949
950 KASSERT(solocked(so));
951 KASSERT(unp != NULL);
952 KASSERT(nam != NULL);
953
954 if (unp->unp_vnode != NULL)
955 return (EINVAL);
956 if ((unp->unp_flags & UNP_BUSY) != 0) {
957 /*
958 * EALREADY may not be strictly accurate, but since this
959 * is a major application error it's hardly a big deal.
960 */
961 return (EALREADY);
962 }
963 unp->unp_flags |= UNP_BUSY;
964 sounlock(so);
965
966 p = l->l_proc;
967 sun = makeun(nam, &addrlen);
968
969 pb = pathbuf_create(sun->sun_path);
970 if (pb == NULL) {
971 error = ENOMEM;
972 goto bad;
973 }
974 NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, pb);
975
976 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
977 if ((error = namei(&nd)) != 0) {
978 pathbuf_destroy(pb);
979 goto bad;
980 }
981 vp = nd.ni_vp;
982 if (vp != NULL) {
983 VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
984 if (nd.ni_dvp == vp)
985 vrele(nd.ni_dvp);
986 else
987 vput(nd.ni_dvp);
988 vrele(vp);
989 pathbuf_destroy(pb);
990 error = EADDRINUSE;
991 goto bad;
992 }
993 vattr_null(&vattr);
994 vattr.va_type = VSOCK;
995 vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
996 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
997 if (error) {
998 vput(nd.ni_dvp);
999 pathbuf_destroy(pb);
1000 goto bad;
1001 }
1002 vp = nd.ni_vp;
1003 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1004 solock(so);
1005 vp->v_socket = unp->unp_socket;
1006 unp->unp_vnode = vp;
1007 unp->unp_addrlen = addrlen;
1008 unp->unp_addr = sun;
1009 unp->unp_connid.unp_pid = p->p_pid;
1010 unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
1011 unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
1012 unp->unp_flags |= UNP_EIDSBIND;
1013 VOP_UNLOCK(vp);
1014 vput(nd.ni_dvp);
1015 unp->unp_flags &= ~UNP_BUSY;
1016 pathbuf_destroy(pb);
1017 return (0);
1018
1019 bad:
1020 free(sun, M_SONAME);
1021 solock(so);
1022 unp->unp_flags &= ~UNP_BUSY;
1023 return (error);
1024 }
1025
1026 static int
1027 unp_listen(struct socket *so, struct lwp *l)
1028 {
1029 struct unpcb *unp = sotounpcb(so);
1030
1031 KASSERT(solocked(so));
1032 KASSERT(unp != NULL);
1033
1034 /*
1035 * If the socket can accept a connection, it must be
1036 * locked by uipc_lock.
1037 */
1038 unp_resetlock(so);
1039 if (unp->unp_vnode == NULL)
1040 return EINVAL;
1041
1042 return 0;
1043 }
1044
1045 static int
1046 unp_disconnect(struct socket *so)
1047 {
1048 KASSERT(solocked(so));
1049 KASSERT(sotounpcb(so) != NULL);
1050
1051 unp_disconnect1(sotounpcb(so));
1052 return 0;
1053 }
1054
1055 static int
1056 unp_shutdown(struct socket *so)
1057 {
1058 KASSERT(solocked(so));
1059 KASSERT(sotounpcb(so) != NULL);
1060
1061 socantsendmore(so);
1062 unp_shutdown1(sotounpcb(so));
1063 return 0;
1064 }
1065
1066 static int
1067 unp_abort(struct socket *so)
1068 {
1069 KASSERT(solocked(so));
1070 KASSERT(sotounpcb(so) != NULL);
1071
1072 (void)unp_drop(sotounpcb(so), ECONNABORTED);
1073 KASSERT(so->so_head == NULL);
1074 KASSERT(so->so_pcb != NULL);
1075 unp_detach(so);
1076 return 0;
1077 }
1078
1079 static int
1080 unp_connect1(struct socket *so, struct socket *so2)
1081 {
1082 struct unpcb *unp = sotounpcb(so);
1083 struct unpcb *unp2;
1084
1085 if (so2->so_type != so->so_type)
1086 return EPROTOTYPE;
1087
1088 /*
1089 * All three sockets involved must be locked by same lock:
1090 *
1091 * local endpoint (so)
1092 * remote endpoint (so2)
1093 * queue head (so2->so_head, only if PR_CONNREQUIRED)
1094 */
1095 KASSERT(solocked2(so, so2));
1096 KASSERT(so->so_head == NULL);
1097 if (so2->so_head != NULL) {
1098 KASSERT(so2->so_lock == uipc_lock);
1099 KASSERT(solocked2(so2, so2->so_head));
1100 }
1101
1102 unp2 = sotounpcb(so2);
1103 unp->unp_conn = unp2;
1104 switch (so->so_type) {
1105
1106 case SOCK_DGRAM:
1107 unp->unp_nextref = unp2->unp_refs;
1108 unp2->unp_refs = unp;
1109 soisconnected(so);
1110 break;
1111
1112 case SOCK_SEQPACKET: /* FALLTHROUGH */
1113 case SOCK_STREAM:
1114
1115 /*
1116 * SOCK_SEQPACKET and SOCK_STREAM cases are handled by callers
1117 * which are unp_connect() or unp_connect2().
1118 */
1119
1120 break;
1121
1122 default:
1123 panic("unp_connect1");
1124 }
1125
1126 return 0;
1127 }
1128
1129 int
1130 unp_connect(struct socket *so, struct mbuf *nam, struct lwp *l)
1131 {
1132 struct sockaddr_un *sun;
1133 vnode_t *vp;
1134 struct socket *so2, *so3;
1135 struct unpcb *unp, *unp2, *unp3;
1136 size_t addrlen;
1137 int error;
1138 struct pathbuf *pb;
1139 struct nameidata nd;
1140
1141 unp = sotounpcb(so);
1142 if ((unp->unp_flags & UNP_BUSY) != 0) {
1143 /*
1144 * EALREADY may not be strictly accurate, but since this
1145 * is a major application error it's hardly a big deal.
1146 */
1147 return (EALREADY);
1148 }
1149 unp->unp_flags |= UNP_BUSY;
1150 sounlock(so);
1151
1152 sun = makeun(nam, &addrlen);
1153 pb = pathbuf_create(sun->sun_path);
1154 if (pb == NULL) {
1155 error = ENOMEM;
1156 goto bad2;
1157 }
1158
1159 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
1160
1161 if ((error = namei(&nd)) != 0) {
1162 pathbuf_destroy(pb);
1163 goto bad2;
1164 }
1165 vp = nd.ni_vp;
1166 if (vp->v_type != VSOCK) {
1167 error = ENOTSOCK;
1168 goto bad;
1169 }
1170 pathbuf_destroy(pb);
1171 if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
1172 goto bad;
1173 /* Acquire v_interlock to protect against unp_detach(). */
1174 mutex_enter(vp->v_interlock);
1175 so2 = vp->v_socket;
1176 if (so2 == NULL) {
1177 mutex_exit(vp->v_interlock);
1178 error = ECONNREFUSED;
1179 goto bad;
1180 }
1181 if (so->so_type != so2->so_type) {
1182 mutex_exit(vp->v_interlock);
1183 error = EPROTOTYPE;
1184 goto bad;
1185 }
1186 solock(so);
1187 unp_resetlock(so);
1188 mutex_exit(vp->v_interlock);
1189 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
1190 /*
1191 * This may seem somewhat fragile but is OK: if we can
1192 * see SO_ACCEPTCONN set on the endpoint, then it must
1193 * be locked by the domain-wide uipc_lock.
1194 */
1195 KASSERT((so2->so_options & SO_ACCEPTCONN) == 0 ||
1196 so2->so_lock == uipc_lock);
1197 if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
1198 (so3 = sonewconn(so2, false)) == NULL) {
1199 error = ECONNREFUSED;
1200 sounlock(so);
1201 goto bad;
1202 }
1203 unp2 = sotounpcb(so2);
1204 unp3 = sotounpcb(so3);
1205 if (unp2->unp_addr) {
1206 unp3->unp_addr = malloc(unp2->unp_addrlen,
1207 M_SONAME, M_WAITOK);
1208 memcpy(unp3->unp_addr, unp2->unp_addr,
1209 unp2->unp_addrlen);
1210 unp3->unp_addrlen = unp2->unp_addrlen;
1211 }
1212 unp3->unp_flags = unp2->unp_flags;
1213 unp3->unp_connid.unp_pid = l->l_proc->p_pid;
1214 unp3->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
1215 unp3->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
1216 unp3->unp_flags |= UNP_EIDSVALID;
1217 if (unp2->unp_flags & UNP_EIDSBIND) {
1218 unp->unp_connid = unp2->unp_connid;
1219 unp->unp_flags |= UNP_EIDSVALID;
1220 }
1221 so2 = so3;
1222 }
1223 error = unp_connect1(so, so2);
1224 if (error) {
1225 sounlock(so);
1226 goto bad;
1227 }
1228 unp2 = sotounpcb(so2);
1229 switch (so->so_type) {
1230
1231 /*
1232 * SOCK_DGRAM and default cases are handled in prior call to
1233 * unp_connect1(), do not add a default case without fixing
1234 * unp_connect1().
1235 */
1236
1237 case SOCK_SEQPACKET: /* FALLTHROUGH */
1238 case SOCK_STREAM:
1239 unp2->unp_conn = unp;
1240 if ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT)
1241 soisconnecting(so);
1242 else
1243 soisconnected(so);
1244 soisconnected(so2);
1245 /*
1246 * If the connection is fully established, break the
1247 * association with uipc_lock and give the connected
1248 * pair a seperate lock to share.
1249 */
1250 KASSERT(so2->so_head != NULL);
1251 unp_setpeerlocks(so, so2);
1252 break;
1253
1254 }
1255 sounlock(so);
1256 bad:
1257 vput(vp);
1258 bad2:
1259 free(sun, M_SONAME);
1260 solock(so);
1261 unp->unp_flags &= ~UNP_BUSY;
1262 return (error);
1263 }
1264
1265 int
1266 unp_connect2(struct socket *so, struct socket *so2)
1267 {
1268 struct unpcb *unp = sotounpcb(so);
1269 struct unpcb *unp2;
1270 int error = 0;
1271
1272 KASSERT(solocked2(so, so2));
1273
1274 error = unp_connect1(so, so2);
1275 if (error)
1276 return error;
1277
1278 unp2 = sotounpcb(so2);
1279 switch (so->so_type) {
1280
1281 /*
1282 * SOCK_DGRAM and default cases are handled in prior call to
1283 * unp_connect1(), do not add a default case without fixing
1284 * unp_connect1().
1285 */
1286
1287 case SOCK_SEQPACKET: /* FALLTHROUGH */
1288 case SOCK_STREAM:
1289 unp2->unp_conn = unp;
1290 soisconnected(so);
1291 soisconnected(so2);
1292 break;
1293
1294 }
1295 return error;
1296 }
1297
1298 static void
1299 unp_disconnect1(struct unpcb *unp)
1300 {
1301 struct unpcb *unp2 = unp->unp_conn;
1302 struct socket *so;
1303
1304 if (unp2 == 0)
1305 return;
1306 unp->unp_conn = 0;
1307 so = unp->unp_socket;
1308 switch (so->so_type) {
1309 case SOCK_DGRAM:
1310 if (unp2->unp_refs == unp)
1311 unp2->unp_refs = unp->unp_nextref;
1312 else {
1313 unp2 = unp2->unp_refs;
1314 for (;;) {
1315 KASSERT(solocked2(so, unp2->unp_socket));
1316 if (unp2 == 0)
1317 panic("unp_disconnect1");
1318 if (unp2->unp_nextref == unp)
1319 break;
1320 unp2 = unp2->unp_nextref;
1321 }
1322 unp2->unp_nextref = unp->unp_nextref;
1323 }
1324 unp->unp_nextref = 0;
1325 so->so_state &= ~SS_ISCONNECTED;
1326 break;
1327
1328 case SOCK_SEQPACKET: /* FALLTHROUGH */
1329 case SOCK_STREAM:
1330 KASSERT(solocked2(so, unp2->unp_socket));
1331 soisdisconnected(so);
1332 unp2->unp_conn = 0;
1333 soisdisconnected(unp2->unp_socket);
1334 break;
1335 }
1336 }
1337
1338 static void
1339 unp_shutdown1(struct unpcb *unp)
1340 {
1341 struct socket *so;
1342
1343 switch(unp->unp_socket->so_type) {
1344 case SOCK_SEQPACKET: /* FALLTHROUGH */
1345 case SOCK_STREAM:
1346 if (unp->unp_conn && (so = unp->unp_conn->unp_socket))
1347 socantrcvmore(so);
1348 break;
1349 default:
1350 break;
1351 }
1352 }
1353
1354 static bool
1355 unp_drop(struct unpcb *unp, int errno)
1356 {
1357 struct socket *so = unp->unp_socket;
1358
1359 KASSERT(solocked(so));
1360
1361 so->so_error = errno;
1362 unp_disconnect1(unp);
1363 if (so->so_head) {
1364 so->so_pcb = NULL;
1365 /* sofree() drops the socket lock */
1366 sofree(so);
1367 unp_free(unp);
1368 return true;
1369 }
1370 return false;
1371 }
1372
1373 #ifdef notdef
1374 unp_drain(void)
1375 {
1376
1377 }
1378 #endif
1379
1380 int
1381 unp_externalize(struct mbuf *rights, struct lwp *l, int flags)
1382 {
1383 struct cmsghdr * const cm = mtod(rights, struct cmsghdr *);
1384 struct proc * const p = l->l_proc;
1385 file_t **rp;
1386 int error = 0;
1387
1388 const size_t nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
1389 sizeof(file_t *);
1390 if (nfds == 0)
1391 goto noop;
1392
1393 int * const fdp = kmem_alloc(nfds * sizeof(int), KM_SLEEP);
1394 rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
1395
1396 /* Make sure the recipient should be able to see the files.. */
1397 rp = (file_t **)CMSG_DATA(cm);
1398 for (size_t i = 0; i < nfds; i++) {
1399 file_t * const fp = *rp++;
1400 if (fp == NULL) {
1401 error = EINVAL;
1402 goto out;
1403 }
1404 /*
1405 * If we are in a chroot'ed directory, and
1406 * someone wants to pass us a directory, make
1407 * sure it's inside the subtree we're allowed
1408 * to access.
1409 */
1410 if (p->p_cwdi->cwdi_rdir != NULL && fp->f_type == DTYPE_VNODE) {
1411 vnode_t *vp = (vnode_t *)fp->f_data;
1412 if ((vp->v_type == VDIR) &&
1413 !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
1414 error = EPERM;
1415 goto out;
1416 }
1417 }
1418 }
1419
1420 restart:
1421 /*
1422 * First loop -- allocate file descriptor table slots for the
1423 * new files.
1424 */
1425 for (size_t i = 0; i < nfds; i++) {
1426 if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
1427 /*
1428 * Back out what we've done so far.
1429 */
1430 while (i-- > 0) {
1431 fd_abort(p, NULL, fdp[i]);
1432 }
1433 if (error == ENOSPC) {
1434 fd_tryexpand(p);
1435 error = 0;
1436 goto restart;
1437 }
1438 /*
1439 * This is the error that has historically
1440 * been returned, and some callers may
1441 * expect it.
1442 */
1443 error = EMSGSIZE;
1444 goto out;
1445 }
1446 }
1447
1448 /*
1449 * Now that adding them has succeeded, update all of the
1450 * file passing state and affix the descriptors.
1451 */
1452 rp = (file_t **)CMSG_DATA(cm);
1453 int *ofdp = (int *)CMSG_DATA(cm);
1454 for (size_t i = 0; i < nfds; i++) {
1455 file_t * const fp = *rp++;
1456 const int fd = fdp[i];
1457 atomic_dec_uint(&unp_rights);
1458 fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
1459 fd_affix(p, fp, fd);
1460 /*
1461 * Done with this file pointer, replace it with a fd;
1462 */
1463 *ofdp++ = fd;
1464 mutex_enter(&fp->f_lock);
1465 fp->f_msgcount--;
1466 mutex_exit(&fp->f_lock);
1467 /*
1468 * Note that fd_affix() adds a reference to the file.
1469 * The file may already have been closed by another
1470 * LWP in the process, so we must drop the reference
1471 * added by unp_internalize() with closef().
1472 */
1473 closef(fp);
1474 }
1475
1476 /*
1477 * Adjust length, in case of transition from large file_t
1478 * pointers to ints.
1479 */
1480 if (sizeof(file_t *) != sizeof(int)) {
1481 cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
1482 rights->m_len = CMSG_SPACE(nfds * sizeof(int));
1483 }
1484 out:
1485 if (__predict_false(error != 0)) {
1486 file_t **const fpp = (file_t **)CMSG_DATA(cm);
1487 for (size_t i = 0; i < nfds; i++)
1488 unp_discard_now(fpp[i]);
1489 /*
1490 * Truncate the array so that nobody will try to interpret
1491 * what is now garbage in it.
1492 */
1493 cm->cmsg_len = CMSG_LEN(0);
1494 rights->m_len = CMSG_SPACE(0);
1495 }
1496 rw_exit(&p->p_cwdi->cwdi_lock);
1497 kmem_free(fdp, nfds * sizeof(int));
1498
1499 noop:
1500 /*
1501 * Don't disclose kernel memory in the alignment space.
1502 */
1503 KASSERT(cm->cmsg_len <= rights->m_len);
1504 memset(&mtod(rights, char *)[cm->cmsg_len], 0, rights->m_len -
1505 cm->cmsg_len);
1506 return error;
1507 }
1508
1509 static int
1510 unp_internalize(struct mbuf **controlp)
1511 {
1512 filedesc_t *fdescp = curlwp->l_fd;
1513 struct mbuf *control = *controlp;
1514 struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
1515 file_t **rp, **files;
1516 file_t *fp;
1517 int i, fd, *fdp;
1518 int nfds, error;
1519 u_int maxmsg;
1520
1521 error = 0;
1522 newcm = NULL;
1523
1524 /* Sanity check the control message header. */
1525 if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
1526 cm->cmsg_len > control->m_len ||
1527 cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
1528 return (EINVAL);
1529
1530 /*
1531 * Verify that the file descriptors are valid, and acquire
1532 * a reference to each.
1533 */
1534 nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
1535 fdp = (int *)CMSG_DATA(cm);
1536 maxmsg = maxfiles / unp_rights_ratio;
1537 for (i = 0; i < nfds; i++) {
1538 fd = *fdp++;
1539 if (atomic_inc_uint_nv(&unp_rights) > maxmsg) {
1540 atomic_dec_uint(&unp_rights);
1541 nfds = i;
1542 error = EAGAIN;
1543 goto out;
1544 }
1545 if ((fp = fd_getfile(fd)) == NULL
1546 || fp->f_type == DTYPE_KQUEUE) {
1547 if (fp)
1548 fd_putfile(fd);
1549 atomic_dec_uint(&unp_rights);
1550 nfds = i;
1551 error = EBADF;
1552 goto out;
1553 }
1554 }
1555
1556 /* Allocate new space and copy header into it. */
1557 newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
1558 if (newcm == NULL) {
1559 error = E2BIG;
1560 goto out;
1561 }
1562 memcpy(newcm, cm, sizeof(struct cmsghdr));
1563 files = (file_t **)CMSG_DATA(newcm);
1564
1565 /*
1566 * Transform the file descriptors into file_t pointers, in
1567 * reverse order so that if pointers are bigger than ints, the
1568 * int won't get until we're done. No need to lock, as we have
1569 * already validated the descriptors with fd_getfile().
1570 */
1571 fdp = (int *)CMSG_DATA(cm) + nfds;
1572 rp = files + nfds;
1573 for (i = 0; i < nfds; i++) {
1574 fp = fdescp->fd_dt->dt_ff[*--fdp]->ff_file;
1575 KASSERT(fp != NULL);
1576 mutex_enter(&fp->f_lock);
1577 *--rp = fp;
1578 fp->f_count++;
1579 fp->f_msgcount++;
1580 mutex_exit(&fp->f_lock);
1581 }
1582
1583 out:
1584 /* Release descriptor references. */
1585 fdp = (int *)CMSG_DATA(cm);
1586 for (i = 0; i < nfds; i++) {
1587 fd_putfile(*fdp++);
1588 if (error != 0) {
1589 atomic_dec_uint(&unp_rights);
1590 }
1591 }
1592
1593 if (error == 0) {
1594 if (control->m_flags & M_EXT) {
1595 m_freem(control);
1596 *controlp = control = m_get(M_WAIT, MT_CONTROL);
1597 }
1598 MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
1599 M_MBUF, NULL, NULL);
1600 cm = newcm;
1601 /*
1602 * Adjust message & mbuf to note amount of space
1603 * actually used.
1604 */
1605 cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
1606 control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
1607 }
1608
1609 return error;
1610 }
1611
1612 struct mbuf *
1613 unp_addsockcred(struct lwp *l, struct mbuf *control)
1614 {
1615 struct sockcred *sc;
1616 struct mbuf *m;
1617 void *p;
1618
1619 m = sbcreatecontrol1(&p, SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)),
1620 SCM_CREDS, SOL_SOCKET, M_WAITOK);
1621 if (m == NULL)
1622 return control;
1623
1624 sc = p;
1625 sc->sc_uid = kauth_cred_getuid(l->l_cred);
1626 sc->sc_euid = kauth_cred_geteuid(l->l_cred);
1627 sc->sc_gid = kauth_cred_getgid(l->l_cred);
1628 sc->sc_egid = kauth_cred_getegid(l->l_cred);
1629 sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
1630
1631 for (int i = 0; i < sc->sc_ngroups; i++)
1632 sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
1633
1634 return m_add(control, m);
1635 }
1636
1637 /*
1638 * Do a mark-sweep GC of files in the system, to free up any which are
1639 * caught in flight to an about-to-be-closed socket. Additionally,
1640 * process deferred file closures.
1641 */
1642 static void
1643 unp_gc(file_t *dp)
1644 {
1645 extern struct domain unixdomain;
1646 file_t *fp, *np;
1647 struct socket *so, *so1;
1648 u_int i, oflags, rflags;
1649 bool didwork;
1650
1651 KASSERT(curlwp == unp_thread_lwp);
1652 KASSERT(mutex_owned(&filelist_lock));
1653
1654 /*
1655 * First, process deferred file closures.
1656 */
1657 while (!SLIST_EMPTY(&unp_thread_discard)) {
1658 fp = SLIST_FIRST(&unp_thread_discard);
1659 KASSERT(fp->f_unpcount > 0);
1660 KASSERT(fp->f_count > 0);
1661 KASSERT(fp->f_msgcount > 0);
1662 KASSERT(fp->f_count >= fp->f_unpcount);
1663 KASSERT(fp->f_count >= fp->f_msgcount);
1664 KASSERT(fp->f_msgcount >= fp->f_unpcount);
1665 SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist);
1666 i = fp->f_unpcount;
1667 fp->f_unpcount = 0;
1668 mutex_exit(&filelist_lock);
1669 for (; i != 0; i--) {
1670 unp_discard_now(fp);
1671 }
1672 mutex_enter(&filelist_lock);
1673 }
1674
1675 /*
1676 * Clear mark bits. Ensure that we don't consider new files
1677 * entering the file table during this loop (they will not have
1678 * FSCAN set).
1679 */
1680 unp_defer = 0;
1681 LIST_FOREACH(fp, &filehead, f_list) {
1682 for (oflags = fp->f_flag;; oflags = rflags) {
1683 rflags = atomic_cas_uint(&fp->f_flag, oflags,
1684 (oflags | FSCAN) & ~(FMARK|FDEFER));
1685 if (__predict_true(oflags == rflags)) {
1686 break;
1687 }
1688 }
1689 }
1690
1691 /*
1692 * Iterate over the set of sockets, marking ones believed (based on
1693 * refcount) to be referenced from a process, and marking for rescan
1694 * sockets which are queued on a socket. Recan continues descending
1695 * and searching for sockets referenced by sockets (FDEFER), until
1696 * there are no more socket->socket references to be discovered.
1697 */
1698 do {
1699 didwork = false;
1700 for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1701 KASSERT(mutex_owned(&filelist_lock));
1702 np = LIST_NEXT(fp, f_list);
1703 mutex_enter(&fp->f_lock);
1704 if ((fp->f_flag & FDEFER) != 0) {
1705 atomic_and_uint(&fp->f_flag, ~FDEFER);
1706 unp_defer--;
1707 KASSERT(fp->f_count != 0);
1708 } else {
1709 if (fp->f_count == 0 ||
1710 (fp->f_flag & FMARK) != 0 ||
1711 fp->f_count == fp->f_msgcount ||
1712 fp->f_unpcount != 0) {
1713 mutex_exit(&fp->f_lock);
1714 continue;
1715 }
1716 }
1717 atomic_or_uint(&fp->f_flag, FMARK);
1718
1719 if (fp->f_type != DTYPE_SOCKET ||
1720 (so = fp->f_data) == NULL ||
1721 so->so_proto->pr_domain != &unixdomain ||
1722 (so->so_proto->pr_flags & PR_RIGHTS) == 0) {
1723 mutex_exit(&fp->f_lock);
1724 continue;
1725 }
1726
1727 /* Gain file ref, mark our position, and unlock. */
1728 didwork = true;
1729 LIST_INSERT_AFTER(fp, dp, f_list);
1730 fp->f_count++;
1731 mutex_exit(&fp->f_lock);
1732 mutex_exit(&filelist_lock);
1733
1734 /*
1735 * Mark files referenced from sockets queued on the
1736 * accept queue as well.
1737 */
1738 solock(so);
1739 unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
1740 if ((so->so_options & SO_ACCEPTCONN) != 0) {
1741 TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
1742 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1743 }
1744 TAILQ_FOREACH(so1, &so->so_q, so_qe) {
1745 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1746 }
1747 }
1748 sounlock(so);
1749
1750 /* Re-lock and restart from where we left off. */
1751 closef(fp);
1752 mutex_enter(&filelist_lock);
1753 np = LIST_NEXT(dp, f_list);
1754 LIST_REMOVE(dp, f_list);
1755 }
1756 /*
1757 * Bail early if we did nothing in the loop above. Could
1758 * happen because of concurrent activity causing unp_defer
1759 * to get out of sync.
1760 */
1761 } while (unp_defer != 0 && didwork);
1762
1763 /*
1764 * Sweep pass.
1765 *
1766 * We grab an extra reference to each of the files that are
1767 * not otherwise accessible and then free the rights that are
1768 * stored in messages on them.
1769 */
1770 for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1771 KASSERT(mutex_owned(&filelist_lock));
1772 np = LIST_NEXT(fp, f_list);
1773 mutex_enter(&fp->f_lock);
1774
1775 /*
1776 * Ignore non-sockets.
1777 * Ignore dead sockets, or sockets with pending close.
1778 * Ignore sockets obviously referenced elsewhere.
1779 * Ignore sockets marked as referenced by our scan.
1780 * Ignore new sockets that did not exist during the scan.
1781 */
1782 if (fp->f_type != DTYPE_SOCKET ||
1783 fp->f_count == 0 || fp->f_unpcount != 0 ||
1784 fp->f_count != fp->f_msgcount ||
1785 (fp->f_flag & (FMARK | FSCAN)) != FSCAN) {
1786 mutex_exit(&fp->f_lock);
1787 continue;
1788 }
1789
1790 /* Gain file ref, mark our position, and unlock. */
1791 LIST_INSERT_AFTER(fp, dp, f_list);
1792 fp->f_count++;
1793 mutex_exit(&fp->f_lock);
1794 mutex_exit(&filelist_lock);
1795
1796 /*
1797 * Flush all data from the socket's receive buffer.
1798 * This will cause files referenced only by the
1799 * socket to be queued for close.
1800 */
1801 so = fp->f_data;
1802 solock(so);
1803 sorflush(so);
1804 sounlock(so);
1805
1806 /* Re-lock and restart from where we left off. */
1807 closef(fp);
1808 mutex_enter(&filelist_lock);
1809 np = LIST_NEXT(dp, f_list);
1810 LIST_REMOVE(dp, f_list);
1811 }
1812 }
1813
1814 /*
1815 * Garbage collector thread. While SCM_RIGHTS messages are in transit,
1816 * wake once per second to garbage collect. Run continually while we
1817 * have deferred closes to process.
1818 */
1819 static void
1820 unp_thread(void *cookie)
1821 {
1822 file_t *dp;
1823
1824 /* Allocate a dummy file for our scans. */
1825 if ((dp = fgetdummy()) == NULL) {
1826 panic("unp_thread");
1827 }
1828
1829 mutex_enter(&filelist_lock);
1830 for (;;) {
1831 KASSERT(mutex_owned(&filelist_lock));
1832 if (SLIST_EMPTY(&unp_thread_discard)) {
1833 if (unp_rights != 0) {
1834 (void)cv_timedwait(&unp_thread_cv,
1835 &filelist_lock, hz);
1836 } else {
1837 cv_wait(&unp_thread_cv, &filelist_lock);
1838 }
1839 }
1840 unp_gc(dp);
1841 }
1842 /* NOTREACHED */
1843 }
1844
1845 /*
1846 * Kick the garbage collector into action if there is something for
1847 * it to process.
1848 */
1849 static void
1850 unp_thread_kick(void)
1851 {
1852
1853 if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) {
1854 mutex_enter(&filelist_lock);
1855 cv_signal(&unp_thread_cv);
1856 mutex_exit(&filelist_lock);
1857 }
1858 }
1859
1860 void
1861 unp_dispose(struct mbuf *m)
1862 {
1863
1864 if (m)
1865 unp_scan(m, unp_discard_later, 1);
1866 }
1867
1868 void
1869 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
1870 {
1871 struct mbuf *m;
1872 file_t **rp, *fp;
1873 struct cmsghdr *cm;
1874 int i, qfds;
1875
1876 while (m0) {
1877 for (m = m0; m; m = m->m_next) {
1878 if (m->m_type != MT_CONTROL ||
1879 m->m_len < sizeof(*cm)) {
1880 continue;
1881 }
1882 cm = mtod(m, struct cmsghdr *);
1883 if (cm->cmsg_level != SOL_SOCKET ||
1884 cm->cmsg_type != SCM_RIGHTS)
1885 continue;
1886 qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
1887 / sizeof(file_t *);
1888 rp = (file_t **)CMSG_DATA(cm);
1889 for (i = 0; i < qfds; i++) {
1890 fp = *rp;
1891 if (discard) {
1892 *rp = 0;
1893 }
1894 (*op)(fp);
1895 rp++;
1896 }
1897 }
1898 m0 = m0->m_nextpkt;
1899 }
1900 }
1901
1902 void
1903 unp_mark(file_t *fp)
1904 {
1905
1906 if (fp == NULL)
1907 return;
1908
1909 /* If we're already deferred, don't screw up the defer count */
1910 mutex_enter(&fp->f_lock);
1911 if (fp->f_flag & (FMARK | FDEFER)) {
1912 mutex_exit(&fp->f_lock);
1913 return;
1914 }
1915
1916 /*
1917 * Minimize the number of deferrals... Sockets are the only type of
1918 * file which can hold references to another file, so just mark
1919 * other files, and defer unmarked sockets for the next pass.
1920 */
1921 if (fp->f_type == DTYPE_SOCKET) {
1922 unp_defer++;
1923 KASSERT(fp->f_count != 0);
1924 atomic_or_uint(&fp->f_flag, FDEFER);
1925 } else {
1926 atomic_or_uint(&fp->f_flag, FMARK);
1927 }
1928 mutex_exit(&fp->f_lock);
1929 }
1930
1931 static void
1932 unp_discard_now(file_t *fp)
1933 {
1934
1935 if (fp == NULL)
1936 return;
1937
1938 KASSERT(fp->f_count > 0);
1939 KASSERT(fp->f_msgcount > 0);
1940
1941 mutex_enter(&fp->f_lock);
1942 fp->f_msgcount--;
1943 mutex_exit(&fp->f_lock);
1944 atomic_dec_uint(&unp_rights);
1945 (void)closef(fp);
1946 }
1947
1948 static void
1949 unp_discard_later(file_t *fp)
1950 {
1951
1952 if (fp == NULL)
1953 return;
1954
1955 KASSERT(fp->f_count > 0);
1956 KASSERT(fp->f_msgcount > 0);
1957
1958 mutex_enter(&filelist_lock);
1959 if (fp->f_unpcount++ == 0) {
1960 SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist);
1961 }
1962 mutex_exit(&filelist_lock);
1963 }
1964
1965 const struct pr_usrreqs unp_usrreqs = {
1966 .pr_attach = unp_attach,
1967 .pr_detach = unp_detach,
1968 .pr_accept = unp_accept,
1969 .pr_bind = unp_bind,
1970 .pr_listen = unp_listen,
1971 .pr_connect = unp_connect,
1972 .pr_connect2 = unp_connect2,
1973 .pr_disconnect = unp_disconnect,
1974 .pr_shutdown = unp_shutdown,
1975 .pr_abort = unp_abort,
1976 .pr_ioctl = unp_ioctl,
1977 .pr_stat = unp_stat,
1978 .pr_peeraddr = unp_peeraddr,
1979 .pr_sockaddr = unp_sockaddr,
1980 .pr_rcvd = unp_rcvd,
1981 .pr_recvoob = unp_recvoob,
1982 .pr_send = unp_send,
1983 .pr_sendoob = unp_sendoob,
1984 .pr_generic = unp_usrreq,
1985 };
1986