Home | History | Annotate | Line # | Download | only in kern
uipc_usrreq.c revision 1.177
      1 /*	$NetBSD: uipc_usrreq.c,v 1.177 2015/04/24 22:32:37 rtr Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 2000, 2004, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
     62  */
     63 
     64 /*
     65  * Copyright (c) 1997 Christopher G. Demetriou.  All rights reserved.
     66  *
     67  * Redistribution and use in source and binary forms, with or without
     68  * modification, are permitted provided that the following conditions
     69  * are met:
     70  * 1. Redistributions of source code must retain the above copyright
     71  *    notice, this list of conditions and the following disclaimer.
     72  * 2. Redistributions in binary form must reproduce the above copyright
     73  *    notice, this list of conditions and the following disclaimer in the
     74  *    documentation and/or other materials provided with the distribution.
     75  * 3. All advertising materials mentioning features or use of this software
     76  *    must display the following acknowledgement:
     77  *	This product includes software developed by the University of
     78  *	California, Berkeley and its contributors.
     79  * 4. Neither the name of the University nor the names of its contributors
     80  *    may be used to endorse or promote products derived from this software
     81  *    without specific prior written permission.
     82  *
     83  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     84  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     85  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     86  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     87  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     88  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     89  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     90  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     91  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     92  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     93  * SUCH DAMAGE.
     94  *
     95  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
     96  */
     97 
     98 #include <sys/cdefs.h>
     99 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.177 2015/04/24 22:32:37 rtr Exp $");
    100 
    101 #include <sys/param.h>
    102 #include <sys/systm.h>
    103 #include <sys/proc.h>
    104 #include <sys/filedesc.h>
    105 #include <sys/domain.h>
    106 #include <sys/protosw.h>
    107 #include <sys/socket.h>
    108 #include <sys/socketvar.h>
    109 #include <sys/unpcb.h>
    110 #include <sys/un.h>
    111 #include <sys/namei.h>
    112 #include <sys/vnode.h>
    113 #include <sys/file.h>
    114 #include <sys/stat.h>
    115 #include <sys/mbuf.h>
    116 #include <sys/kauth.h>
    117 #include <sys/kmem.h>
    118 #include <sys/atomic.h>
    119 #include <sys/uidinfo.h>
    120 #include <sys/kernel.h>
    121 #include <sys/kthread.h>
    122 
    123 /*
    124  * Unix communications domain.
    125  *
    126  * TODO:
    127  *	RDM
    128  *	rethink name space problems
    129  *	need a proper out-of-band
    130  *
    131  * Notes on locking:
    132  *
    133  * The generic rules noted in uipc_socket2.c apply.  In addition:
    134  *
    135  * o We have a global lock, uipc_lock.
    136  *
    137  * o All datagram sockets are locked by uipc_lock.
    138  *
    139  * o For stream socketpairs, the two endpoints are created sharing the same
    140  *   independent lock.  Sockets presented to PRU_CONNECT2 must already have
    141  *   matching locks.
    142  *
    143  * o Stream sockets created via socket() start life with their own
    144  *   independent lock.
    145  *
    146  * o Stream connections to a named endpoint are slightly more complicated.
    147  *   Sockets that have called listen() have their lock pointer mutated to
    148  *   the global uipc_lock.  When establishing a connection, the connecting
    149  *   socket also has its lock mutated to uipc_lock, which matches the head
    150  *   (listening socket).  We create a new socket for accept() to return, and
    151  *   that also shares the head's lock.  Until the connection is completely
    152  *   done on both ends, all three sockets are locked by uipc_lock.  Once the
    153  *   connection is complete, the association with the head's lock is broken.
    154  *   The connecting socket and the socket returned from accept() have their
    155  *   lock pointers mutated away from uipc_lock, and back to the connecting
    156  *   socket's original, independent lock.  The head continues to be locked
    157  *   by uipc_lock.
    158  *
    159  * o If uipc_lock is determined to be a significant source of contention,
    160  *   it could easily be hashed out.  It is difficult to simply make it an
    161  *   independent lock because of visibility / garbage collection issues:
    162  *   if a socket has been associated with a lock at any point, that lock
    163  *   must remain valid until the socket is no longer visible in the system.
    164  *   The lock must not be freed or otherwise destroyed until any sockets
    165  *   that had referenced it have also been destroyed.
    166  */
    167 const struct sockaddr_un sun_noname = {
    168 	.sun_len = offsetof(struct sockaddr_un, sun_path),
    169 	.sun_family = AF_LOCAL,
    170 };
    171 ino_t	unp_ino;			/* prototype for fake inode numbers */
    172 
    173 static struct mbuf * unp_addsockcred(struct lwp *, struct mbuf *);
    174 static void   unp_discard_later(file_t *);
    175 static void   unp_discard_now(file_t *);
    176 static void   unp_disconnect1(struct unpcb *);
    177 static bool   unp_drop(struct unpcb *, int);
    178 static int    unp_internalize(struct mbuf **);
    179 static void   unp_mark(file_t *);
    180 static void   unp_scan(struct mbuf *, void (*)(file_t *), int);
    181 static void   unp_shutdown1(struct unpcb *);
    182 static void   unp_thread(void *);
    183 static void   unp_thread_kick(void);
    184 
    185 static kmutex_t *uipc_lock;
    186 
    187 static kcondvar_t unp_thread_cv;
    188 static lwp_t *unp_thread_lwp;
    189 static SLIST_HEAD(,file) unp_thread_discard;
    190 static int unp_defer;
    191 
    192 /*
    193  * Initialize Unix protocols.
    194  */
    195 void
    196 uipc_init(void)
    197 {
    198 	int error;
    199 
    200 	uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    201 	cv_init(&unp_thread_cv, "unpgc");
    202 
    203 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread,
    204 	    NULL, &unp_thread_lwp, "unpgc");
    205 	if (error != 0)
    206 		panic("uipc_init %d", error);
    207 }
    208 
    209 /*
    210  * A connection succeeded: disassociate both endpoints from the head's
    211  * lock, and make them share their own lock.  There is a race here: for
    212  * a very brief time one endpoint will be locked by a different lock
    213  * than the other end.  However, since the current thread holds the old
    214  * lock (the listening socket's lock, the head) access can still only be
    215  * made to one side of the connection.
    216  */
    217 static void
    218 unp_setpeerlocks(struct socket *so, struct socket *so2)
    219 {
    220 	struct unpcb *unp;
    221 	kmutex_t *lock;
    222 
    223 	KASSERT(solocked2(so, so2));
    224 
    225 	/*
    226 	 * Bail out if either end of the socket is not yet fully
    227 	 * connected or accepted.  We only break the lock association
    228 	 * with the head when the pair of sockets stand completely
    229 	 * on their own.
    230 	 */
    231 	KASSERT(so->so_head == NULL);
    232 	if (so2->so_head != NULL)
    233 		return;
    234 
    235 	/*
    236 	 * Drop references to old lock.  A third reference (from the
    237 	 * queue head) must be held as we still hold its lock.  Bonus:
    238 	 * we don't need to worry about garbage collecting the lock.
    239 	 */
    240 	lock = so->so_lock;
    241 	KASSERT(lock == uipc_lock);
    242 	mutex_obj_free(lock);
    243 	mutex_obj_free(lock);
    244 
    245 	/*
    246 	 * Grab stream lock from the initiator and share between the two
    247 	 * endpoints.  Issue memory barrier to ensure all modifications
    248 	 * become globally visible before the lock change.  so2 is
    249 	 * assumed not to have a stream lock, because it was created
    250 	 * purely for the server side to accept this connection and
    251 	 * started out life using the domain-wide lock.
    252 	 */
    253 	unp = sotounpcb(so);
    254 	KASSERT(unp->unp_streamlock != NULL);
    255 	KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
    256 	lock = unp->unp_streamlock;
    257 	unp->unp_streamlock = NULL;
    258 	mutex_obj_hold(lock);
    259 	membar_exit();
    260 	/*
    261 	 * possible race if lock is not held - see comment in
    262 	 * uipc_usrreq(PRU_ACCEPT).
    263 	 */
    264 	KASSERT(mutex_owned(lock));
    265 	solockreset(so, lock);
    266 	solockreset(so2, lock);
    267 }
    268 
    269 /*
    270  * Reset a socket's lock back to the domain-wide lock.
    271  */
    272 static void
    273 unp_resetlock(struct socket *so)
    274 {
    275 	kmutex_t *olock, *nlock;
    276 	struct unpcb *unp;
    277 
    278 	KASSERT(solocked(so));
    279 
    280 	olock = so->so_lock;
    281 	nlock = uipc_lock;
    282 	if (olock == nlock)
    283 		return;
    284 	unp = sotounpcb(so);
    285 	KASSERT(unp->unp_streamlock == NULL);
    286 	unp->unp_streamlock = olock;
    287 	mutex_obj_hold(nlock);
    288 	mutex_enter(nlock);
    289 	solockreset(so, nlock);
    290 	mutex_exit(olock);
    291 }
    292 
    293 static void
    294 unp_free(struct unpcb *unp)
    295 {
    296 	if (unp->unp_addr)
    297 		free(unp->unp_addr, M_SONAME);
    298 	if (unp->unp_streamlock != NULL)
    299 		mutex_obj_free(unp->unp_streamlock);
    300 	kmem_free(unp, sizeof(*unp));
    301 }
    302 
    303 static int
    304 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp)
    305 {
    306 	struct socket *so2;
    307 	const struct sockaddr_un *sun;
    308 
    309 	/* XXX: server side closed the socket */
    310 	if (unp->unp_conn == NULL)
    311 		return ECONNREFUSED;
    312 	so2 = unp->unp_conn->unp_socket;
    313 
    314 	KASSERT(solocked(so2));
    315 
    316 	if (unp->unp_addr)
    317 		sun = unp->unp_addr;
    318 	else
    319 		sun = &sun_noname;
    320 	if (unp->unp_conn->unp_flags & UNP_WANTCRED)
    321 		control = unp_addsockcred(curlwp, control);
    322 	if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
    323 	    control) == 0) {
    324 		so2->so_rcv.sb_overflowed++;
    325 		unp_dispose(control);
    326 		m_freem(control);
    327 		m_freem(m);
    328 		return (ENOBUFS);
    329 	} else {
    330 		sorwakeup(so2);
    331 		return (0);
    332 	}
    333 }
    334 
    335 static void
    336 unp_setaddr(struct socket *so, struct sockaddr *nam, bool peeraddr)
    337 {
    338 	const struct sockaddr_un *sun = NULL;
    339 	struct unpcb *unp;
    340 
    341 	KASSERT(solocked(so));
    342 	unp = sotounpcb(so);
    343 
    344 	if (peeraddr) {
    345 		if (unp->unp_conn && unp->unp_conn->unp_addr)
    346 			sun = unp->unp_conn->unp_addr;
    347 	} else {
    348 		if (unp->unp_addr)
    349 			sun = unp->unp_addr;
    350 	}
    351 	if (sun == NULL)
    352 		sun = &sun_noname;
    353 
    354 	memcpy(nam, sun, sun->sun_len);
    355 }
    356 
    357 static int
    358 unp_rcvd(struct socket *so, int flags, struct lwp *l)
    359 {
    360 	struct unpcb *unp = sotounpcb(so);
    361 	struct socket *so2;
    362 	u_int newhiwat;
    363 
    364 	KASSERT(solocked(so));
    365 	KASSERT(unp != NULL);
    366 
    367 	switch (so->so_type) {
    368 
    369 	case SOCK_DGRAM:
    370 		panic("uipc 1");
    371 		/*NOTREACHED*/
    372 
    373 	case SOCK_SEQPACKET: /* FALLTHROUGH */
    374 	case SOCK_STREAM:
    375 #define	rcv (&so->so_rcv)
    376 #define snd (&so2->so_snd)
    377 		if (unp->unp_conn == 0)
    378 			break;
    379 		so2 = unp->unp_conn->unp_socket;
    380 		KASSERT(solocked2(so, so2));
    381 		/*
    382 		 * Adjust backpressure on sender
    383 		 * and wakeup any waiting to write.
    384 		 */
    385 		snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
    386 		unp->unp_mbcnt = rcv->sb_mbcnt;
    387 		newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
    388 		(void)chgsbsize(so2->so_uidinfo,
    389 		    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
    390 		unp->unp_cc = rcv->sb_cc;
    391 		sowwakeup(so2);
    392 #undef snd
    393 #undef rcv
    394 		break;
    395 
    396 	default:
    397 		panic("uipc 2");
    398 	}
    399 
    400 	return 0;
    401 }
    402 
    403 static int
    404 unp_recvoob(struct socket *so, struct mbuf *m, int flags)
    405 {
    406 	KASSERT(solocked(so));
    407 
    408 	return EOPNOTSUPP;
    409 }
    410 
    411 static int
    412 unp_send(struct socket *so, struct mbuf *m, struct mbuf *nam,
    413     struct mbuf *control, struct lwp *l)
    414 {
    415 	struct unpcb *unp = sotounpcb(so);
    416 	int error = 0;
    417 	u_int newhiwat;
    418 	struct socket *so2;
    419 
    420 	KASSERT(solocked(so));
    421 	KASSERT(unp != NULL);
    422 	KASSERT(m != NULL);
    423 
    424 	/*
    425 	 * Note: unp_internalize() rejects any control message
    426 	 * other than SCM_RIGHTS, and only allows one.  This
    427 	 * has the side-effect of preventing a caller from
    428 	 * forging SCM_CREDS.
    429 	 */
    430 	if (control) {
    431 		sounlock(so);
    432 		error = unp_internalize(&control);
    433 		solock(so);
    434 		if (error != 0) {
    435 			m_freem(control);
    436 			m_freem(m);
    437 			return error;
    438 		}
    439 	}
    440 
    441 	switch (so->so_type) {
    442 
    443 	case SOCK_DGRAM: {
    444 		KASSERT(so->so_lock == uipc_lock);
    445 		if (nam) {
    446 			if ((so->so_state & SS_ISCONNECTED) != 0)
    447 				error = EISCONN;
    448 			else {
    449 				/*
    450 				 * Note: once connected, the
    451 				 * socket's lock must not be
    452 				 * dropped until we have sent
    453 				 * the message and disconnected.
    454 				 * This is necessary to prevent
    455 				 * intervening control ops, like
    456 				 * another connection.
    457 				 */
    458 				error = unp_connect(so, nam, l);
    459 			}
    460 		} else {
    461 			if ((so->so_state & SS_ISCONNECTED) == 0)
    462 				error = ENOTCONN;
    463 		}
    464 		if (error) {
    465 			unp_dispose(control);
    466 			m_freem(control);
    467 			m_freem(m);
    468 			return error;
    469 		}
    470 		error = unp_output(m, control, unp);
    471 		if (nam)
    472 			unp_disconnect1(unp);
    473 		break;
    474 	}
    475 
    476 	case SOCK_SEQPACKET: /* FALLTHROUGH */
    477 	case SOCK_STREAM:
    478 #define	rcv (&so2->so_rcv)
    479 #define	snd (&so->so_snd)
    480 		if (unp->unp_conn == NULL) {
    481 			error = ENOTCONN;
    482 			break;
    483 		}
    484 		so2 = unp->unp_conn->unp_socket;
    485 		KASSERT(solocked2(so, so2));
    486 		if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
    487 			/*
    488 			 * Credentials are passed only once on
    489 			 * SOCK_STREAM and SOCK_SEQPACKET.
    490 			 */
    491 			unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
    492 			control = unp_addsockcred(l, control);
    493 		}
    494 		/*
    495 		 * Send to paired receive port, and then reduce
    496 		 * send buffer hiwater marks to maintain backpressure.
    497 		 * Wake up readers.
    498 		 */
    499 		if (control) {
    500 			if (sbappendcontrol(rcv, m, control) != 0)
    501 				control = NULL;
    502 		} else {
    503 			switch(so->so_type) {
    504 			case SOCK_SEQPACKET:
    505 				sbappendrecord(rcv, m);
    506 				break;
    507 			case SOCK_STREAM:
    508 				sbappend(rcv, m);
    509 				break;
    510 			default:
    511 				panic("uipc_usrreq");
    512 				break;
    513 			}
    514 		}
    515 		snd->sb_mbmax -=
    516 		    rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
    517 		unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
    518 		newhiwat = snd->sb_hiwat -
    519 		    (rcv->sb_cc - unp->unp_conn->unp_cc);
    520 		(void)chgsbsize(so->so_uidinfo,
    521 		    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
    522 		unp->unp_conn->unp_cc = rcv->sb_cc;
    523 		sorwakeup(so2);
    524 #undef snd
    525 #undef rcv
    526 		if (control != NULL) {
    527 			unp_dispose(control);
    528 			m_freem(control);
    529 		}
    530 		break;
    531 
    532 	default:
    533 		panic("uipc 4");
    534 	}
    535 
    536 	return error;
    537 }
    538 
    539 static int
    540 unp_sendoob(struct socket *so, struct mbuf *m, struct mbuf * control)
    541 {
    542 	KASSERT(solocked(so));
    543 
    544 	m_freem(m);
    545 	m_freem(control);
    546 
    547 	return EOPNOTSUPP;
    548 }
    549 
    550 static int
    551 unp_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
    552     struct mbuf *control, struct lwp *l)
    553 {
    554 
    555 	KASSERT(req != PRU_ATTACH);
    556 	KASSERT(req != PRU_DETACH);
    557 	KASSERT(req != PRU_ACCEPT);
    558 	KASSERT(req != PRU_BIND);
    559 	KASSERT(req != PRU_LISTEN);
    560 	KASSERT(req != PRU_CONNECT);
    561 	KASSERT(req != PRU_CONNECT2);
    562 	KASSERT(req != PRU_DISCONNECT);
    563 	KASSERT(req != PRU_SHUTDOWN);
    564 	KASSERT(req != PRU_ABORT);
    565 	KASSERT(req != PRU_CONTROL);
    566 	KASSERT(req != PRU_SENSE);
    567 	KASSERT(req != PRU_PEERADDR);
    568 	KASSERT(req != PRU_SOCKADDR);
    569 	KASSERT(req != PRU_RCVD);
    570 	KASSERT(req != PRU_RCVOOB);
    571 	KASSERT(req != PRU_SEND);
    572 	KASSERT(req != PRU_SENDOOB);
    573 	KASSERT(req != PRU_PURGEIF);
    574 
    575 	KASSERT(solocked(so));
    576 
    577 	if (sotounpcb(so) == NULL)
    578 		return EINVAL;
    579 
    580 	panic("piusrreq");
    581 
    582 	return 0;
    583 }
    584 
    585 /*
    586  * Unix domain socket option processing.
    587  */
    588 int
    589 uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
    590 {
    591 	struct unpcb *unp = sotounpcb(so);
    592 	int optval = 0, error = 0;
    593 
    594 	KASSERT(solocked(so));
    595 
    596 	if (sopt->sopt_level != 0) {
    597 		error = ENOPROTOOPT;
    598 	} else switch (op) {
    599 
    600 	case PRCO_SETOPT:
    601 		switch (sopt->sopt_name) {
    602 		case LOCAL_CREDS:
    603 		case LOCAL_CONNWAIT:
    604 			error = sockopt_getint(sopt, &optval);
    605 			if (error)
    606 				break;
    607 			switch (sopt->sopt_name) {
    608 #define	OPTSET(bit) \
    609 	if (optval) \
    610 		unp->unp_flags |= (bit); \
    611 	else \
    612 		unp->unp_flags &= ~(bit);
    613 
    614 			case LOCAL_CREDS:
    615 				OPTSET(UNP_WANTCRED);
    616 				break;
    617 			case LOCAL_CONNWAIT:
    618 				OPTSET(UNP_CONNWAIT);
    619 				break;
    620 			}
    621 			break;
    622 #undef OPTSET
    623 
    624 		default:
    625 			error = ENOPROTOOPT;
    626 			break;
    627 		}
    628 		break;
    629 
    630 	case PRCO_GETOPT:
    631 		sounlock(so);
    632 		switch (sopt->sopt_name) {
    633 		case LOCAL_PEEREID:
    634 			if (unp->unp_flags & UNP_EIDSVALID) {
    635 				error = sockopt_set(sopt,
    636 				    &unp->unp_connid, sizeof(unp->unp_connid));
    637 			} else {
    638 				error = EINVAL;
    639 			}
    640 			break;
    641 		case LOCAL_CREDS:
    642 #define	OPTBIT(bit)	(unp->unp_flags & (bit) ? 1 : 0)
    643 
    644 			optval = OPTBIT(UNP_WANTCRED);
    645 			error = sockopt_setint(sopt, optval);
    646 			break;
    647 #undef OPTBIT
    648 
    649 		default:
    650 			error = ENOPROTOOPT;
    651 			break;
    652 		}
    653 		solock(so);
    654 		break;
    655 	}
    656 	return (error);
    657 }
    658 
    659 /*
    660  * Both send and receive buffers are allocated PIPSIZ bytes of buffering
    661  * for stream sockets, although the total for sender and receiver is
    662  * actually only PIPSIZ.
    663  * Datagram sockets really use the sendspace as the maximum datagram size,
    664  * and don't really want to reserve the sendspace.  Their recvspace should
    665  * be large enough for at least one max-size datagram plus address.
    666  */
    667 #define	PIPSIZ	4096
    668 u_long	unpst_sendspace = PIPSIZ;
    669 u_long	unpst_recvspace = PIPSIZ;
    670 u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
    671 u_long	unpdg_recvspace = 4*1024;
    672 
    673 u_int	unp_rights;			/* files in flight */
    674 u_int	unp_rights_ratio = 2;		/* limit, fraction of maxfiles */
    675 
    676 static int
    677 unp_attach(struct socket *so, int proto)
    678 {
    679 	struct unpcb *unp = sotounpcb(so);
    680 	u_long sndspc, rcvspc;
    681 	int error;
    682 
    683 	KASSERT(unp == NULL);
    684 
    685 	switch (so->so_type) {
    686 	case SOCK_SEQPACKET:
    687 		/* FALLTHROUGH */
    688 	case SOCK_STREAM:
    689 		if (so->so_lock == NULL) {
    690 			so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    691 			solock(so);
    692 		}
    693 		sndspc = unpst_sendspace;
    694 		rcvspc = unpst_recvspace;
    695 		break;
    696 
    697 	case SOCK_DGRAM:
    698 		if (so->so_lock == NULL) {
    699 			mutex_obj_hold(uipc_lock);
    700 			so->so_lock = uipc_lock;
    701 			solock(so);
    702 		}
    703 		sndspc = unpdg_sendspace;
    704 		rcvspc = unpdg_recvspace;
    705 		break;
    706 
    707 	default:
    708 		panic("unp_attach");
    709 	}
    710 
    711 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
    712 		error = soreserve(so, sndspc, rcvspc);
    713 		if (error) {
    714 			return error;
    715 		}
    716 	}
    717 
    718 	unp = kmem_zalloc(sizeof(*unp), KM_SLEEP);
    719 	nanotime(&unp->unp_ctime);
    720 	unp->unp_socket = so;
    721 	so->so_pcb = unp;
    722 
    723 	KASSERT(solocked(so));
    724 	return 0;
    725 }
    726 
    727 static void
    728 unp_detach(struct socket *so)
    729 {
    730 	struct unpcb *unp;
    731 	vnode_t *vp;
    732 
    733 	unp = sotounpcb(so);
    734 	KASSERT(unp != NULL);
    735 	KASSERT(solocked(so));
    736  retry:
    737 	if ((vp = unp->unp_vnode) != NULL) {
    738 		sounlock(so);
    739 		/* Acquire v_interlock to protect against unp_connect(). */
    740 		/* XXXAD racy */
    741 		mutex_enter(vp->v_interlock);
    742 		vp->v_socket = NULL;
    743 		mutex_exit(vp->v_interlock);
    744 		vrele(vp);
    745 		solock(so);
    746 		unp->unp_vnode = NULL;
    747 	}
    748 	if (unp->unp_conn)
    749 		unp_disconnect1(unp);
    750 	while (unp->unp_refs) {
    751 		KASSERT(solocked2(so, unp->unp_refs->unp_socket));
    752 		if (unp_drop(unp->unp_refs, ECONNRESET)) {
    753 			solock(so);
    754 			goto retry;
    755 		}
    756 	}
    757 	soisdisconnected(so);
    758 	so->so_pcb = NULL;
    759 	if (unp_rights) {
    760 		/*
    761 		 * Normally the receive buffer is flushed later, in sofree,
    762 		 * but if our receive buffer holds references to files that
    763 		 * are now garbage, we will enqueue those file references to
    764 		 * the garbage collector and kick it into action.
    765 		 */
    766 		sorflush(so);
    767 		unp_free(unp);
    768 		unp_thread_kick();
    769 	} else
    770 		unp_free(unp);
    771 }
    772 
    773 static int
    774 unp_accept(struct socket *so, struct sockaddr *nam)
    775 {
    776 	struct unpcb *unp = sotounpcb(so);
    777 	struct socket *so2;
    778 
    779 	KASSERT(solocked(so));
    780 	KASSERT(nam != NULL);
    781 
    782 	/* XXX code review required to determine if unp can ever be NULL */
    783 	if (unp == NULL)
    784 		return EINVAL;
    785 
    786 	KASSERT(so->so_lock == uipc_lock);
    787 	/*
    788 	 * Mark the initiating STREAM socket as connected *ONLY*
    789 	 * after it's been accepted.  This prevents a client from
    790 	 * overrunning a server and receiving ECONNREFUSED.
    791 	 */
    792 	if (unp->unp_conn == NULL) {
    793 		/*
    794 		 * This will use the empty socket and will not
    795 		 * allocate.
    796 		 */
    797 		unp_setaddr(so, nam, true);
    798 		return 0;
    799 	}
    800 	so2 = unp->unp_conn->unp_socket;
    801 	if (so2->so_state & SS_ISCONNECTING) {
    802 		KASSERT(solocked2(so, so->so_head));
    803 		KASSERT(solocked2(so2, so->so_head));
    804 		soisconnected(so2);
    805 	}
    806 	/*
    807 	 * If the connection is fully established, break the
    808 	 * association with uipc_lock and give the connected
    809 	 * pair a separate lock to share.
    810 	 * There is a race here: sotounpcb(so2)->unp_streamlock
    811 	 * is not locked, so when changing so2->so_lock
    812 	 * another thread can grab it while so->so_lock is still
    813 	 * pointing to the (locked) uipc_lock.
    814 	 * this should be harmless, except that this makes
    815 	 * solocked2() and solocked() unreliable.
    816 	 * Another problem is that unp_setaddr() expects the
    817 	 * the socket locked. Grabing sotounpcb(so2)->unp_streamlock
    818 	 * fixes both issues.
    819 	 */
    820 	mutex_enter(sotounpcb(so2)->unp_streamlock);
    821 	unp_setpeerlocks(so2, so);
    822 	/*
    823 	 * Only now return peer's address, as we may need to
    824 	 * block in order to allocate memory.
    825 	 *
    826 	 * XXX Minor race: connection can be broken while
    827 	 * lock is dropped in unp_setaddr().  We will return
    828 	 * error == 0 and sun_noname as the peer address.
    829 	 */
    830 	unp_setaddr(so, nam, true);
    831 	/* so_lock now points to unp_streamlock */
    832 	mutex_exit(so2->so_lock);
    833 	return 0;
    834 }
    835 
    836 static int
    837 unp_ioctl(struct socket *so, u_long cmd, void *nam, struct ifnet *ifp)
    838 {
    839 	return EOPNOTSUPP;
    840 }
    841 
    842 static int
    843 unp_stat(struct socket *so, struct stat *ub)
    844 {
    845 	struct unpcb *unp;
    846 	struct socket *so2;
    847 
    848 	KASSERT(solocked(so));
    849 
    850 	unp = sotounpcb(so);
    851 	if (unp == NULL)
    852 		return EINVAL;
    853 
    854 	ub->st_blksize = so->so_snd.sb_hiwat;
    855 	switch (so->so_type) {
    856 	case SOCK_SEQPACKET: /* FALLTHROUGH */
    857 	case SOCK_STREAM:
    858 		if (unp->unp_conn == 0)
    859 			break;
    860 
    861 		so2 = unp->unp_conn->unp_socket;
    862 		KASSERT(solocked2(so, so2));
    863 		ub->st_blksize += so2->so_rcv.sb_cc;
    864 		break;
    865 	default:
    866 		break;
    867 	}
    868 	ub->st_dev = NODEV;
    869 	if (unp->unp_ino == 0)
    870 		unp->unp_ino = unp_ino++;
    871 	ub->st_atimespec = ub->st_mtimespec = ub->st_ctimespec = unp->unp_ctime;
    872 	ub->st_ino = unp->unp_ino;
    873 	return (0);
    874 }
    875 
    876 static int
    877 unp_peeraddr(struct socket *so, struct sockaddr *nam)
    878 {
    879 	KASSERT(solocked(so));
    880 	KASSERT(sotounpcb(so) != NULL);
    881 	KASSERT(nam != NULL);
    882 
    883 	unp_setaddr(so, nam, true);
    884 	return 0;
    885 }
    886 
    887 static int
    888 unp_sockaddr(struct socket *so, struct sockaddr *nam)
    889 {
    890 	KASSERT(solocked(so));
    891 	KASSERT(sotounpcb(so) != NULL);
    892 	KASSERT(nam != NULL);
    893 
    894 	unp_setaddr(so, nam, false);
    895 	return 0;
    896 }
    897 
    898 /*
    899  * Allocate the new sockaddr.  We have to allocate one
    900  * extra byte so that we can ensure that the pathname
    901  * is nul-terminated. Note that unlike linux, we don't
    902  * include in the address length the NUL in the path
    903  * component, because doing so, would exceed sizeof(sockaddr_un)
    904  * for fully occupied pathnames. Linux is also inconsistent,
    905  * because it does not include the NUL in the length of
    906  * what it calls "abstract" unix sockets.
    907  */
    908 static struct sockaddr_un *
    909 makeun(struct mbuf *nam, size_t *addrlen)
    910 {
    911 	struct sockaddr_un *sun;
    912 
    913 	*addrlen = nam->m_len + 1;
    914 	sun = malloc(*addrlen, M_SONAME, M_WAITOK);
    915 	m_copydata(nam, 0, nam->m_len, (void *)sun);
    916 	*(((char *)sun) + nam->m_len) = '\0';
    917 	return sun;
    918 }
    919 
    920 /*
    921  * we only need to perform this allocation until syscalls other than
    922  * bind are adjusted to use sockaddr_big.
    923  */
    924 static struct sockaddr_un *
    925 makeun_sb(struct sockaddr *nam, size_t *addrlen)
    926 {
    927 	struct sockaddr_un *sun;
    928 
    929 	*addrlen = nam->sa_len + 1;
    930 	sun = malloc(*addrlen, M_SONAME, M_WAITOK);
    931 	memcpy(sun, nam, nam->sa_len);
    932 	*(((char *)sun) + nam->sa_len) = '\0';
    933 	return sun;
    934 }
    935 
    936 static int
    937 unp_bind(struct socket *so, struct sockaddr *nam, struct lwp *l)
    938 {
    939 	struct sockaddr_un *sun;
    940 	struct unpcb *unp;
    941 	vnode_t *vp;
    942 	struct vattr vattr;
    943 	size_t addrlen;
    944 	int error;
    945 	struct pathbuf *pb;
    946 	struct nameidata nd;
    947 	proc_t *p;
    948 
    949 	unp = sotounpcb(so);
    950 
    951 	KASSERT(solocked(so));
    952 	KASSERT(unp != NULL);
    953 	KASSERT(nam != NULL);
    954 
    955 	if (unp->unp_vnode != NULL)
    956 		return (EINVAL);
    957 	if ((unp->unp_flags & UNP_BUSY) != 0) {
    958 		/*
    959 		 * EALREADY may not be strictly accurate, but since this
    960 		 * is a major application error it's hardly a big deal.
    961 		 */
    962 		return (EALREADY);
    963 	}
    964 	unp->unp_flags |= UNP_BUSY;
    965 	sounlock(so);
    966 
    967 	p = l->l_proc;
    968 	sun = makeun_sb(nam, &addrlen);
    969 
    970 	pb = pathbuf_create(sun->sun_path);
    971 	if (pb == NULL) {
    972 		error = ENOMEM;
    973 		goto bad;
    974 	}
    975 	NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, pb);
    976 
    977 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
    978 	if ((error = namei(&nd)) != 0) {
    979 		pathbuf_destroy(pb);
    980 		goto bad;
    981 	}
    982 	vp = nd.ni_vp;
    983 	if (vp != NULL) {
    984 		VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
    985 		if (nd.ni_dvp == vp)
    986 			vrele(nd.ni_dvp);
    987 		else
    988 			vput(nd.ni_dvp);
    989 		vrele(vp);
    990 		pathbuf_destroy(pb);
    991 		error = EADDRINUSE;
    992 		goto bad;
    993 	}
    994 	vattr_null(&vattr);
    995 	vattr.va_type = VSOCK;
    996 	vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
    997 	error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
    998 	if (error) {
    999 		vput(nd.ni_dvp);
   1000 		pathbuf_destroy(pb);
   1001 		goto bad;
   1002 	}
   1003 	vp = nd.ni_vp;
   1004 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   1005 	solock(so);
   1006 	vp->v_socket = unp->unp_socket;
   1007 	unp->unp_vnode = vp;
   1008 	unp->unp_addrlen = addrlen;
   1009 	unp->unp_addr = sun;
   1010 	unp->unp_connid.unp_pid = p->p_pid;
   1011 	unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
   1012 	unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
   1013 	unp->unp_flags |= UNP_EIDSBIND;
   1014 	VOP_UNLOCK(vp);
   1015 	vput(nd.ni_dvp);
   1016 	unp->unp_flags &= ~UNP_BUSY;
   1017 	pathbuf_destroy(pb);
   1018 	return (0);
   1019 
   1020  bad:
   1021 	free(sun, M_SONAME);
   1022 	solock(so);
   1023 	unp->unp_flags &= ~UNP_BUSY;
   1024 	return (error);
   1025 }
   1026 
   1027 static int
   1028 unp_listen(struct socket *so, struct lwp *l)
   1029 {
   1030 	struct unpcb *unp = sotounpcb(so);
   1031 
   1032 	KASSERT(solocked(so));
   1033 	KASSERT(unp != NULL);
   1034 
   1035 	/*
   1036 	 * If the socket can accept a connection, it must be
   1037 	 * locked by uipc_lock.
   1038 	 */
   1039 	unp_resetlock(so);
   1040 	if (unp->unp_vnode == NULL)
   1041 		return EINVAL;
   1042 
   1043 	return 0;
   1044 }
   1045 
   1046 static int
   1047 unp_disconnect(struct socket *so)
   1048 {
   1049 	KASSERT(solocked(so));
   1050 	KASSERT(sotounpcb(so) != NULL);
   1051 
   1052 	unp_disconnect1(sotounpcb(so));
   1053 	return 0;
   1054 }
   1055 
   1056 static int
   1057 unp_shutdown(struct socket *so)
   1058 {
   1059 	KASSERT(solocked(so));
   1060 	KASSERT(sotounpcb(so) != NULL);
   1061 
   1062 	socantsendmore(so);
   1063 	unp_shutdown1(sotounpcb(so));
   1064 	return 0;
   1065 }
   1066 
   1067 static int
   1068 unp_abort(struct socket *so)
   1069 {
   1070 	KASSERT(solocked(so));
   1071 	KASSERT(sotounpcb(so) != NULL);
   1072 
   1073 	(void)unp_drop(sotounpcb(so), ECONNABORTED);
   1074 	KASSERT(so->so_head == NULL);
   1075 	KASSERT(so->so_pcb != NULL);
   1076 	unp_detach(so);
   1077 	return 0;
   1078 }
   1079 
   1080 static int
   1081 unp_connect1(struct socket *so, struct socket *so2, struct lwp *l)
   1082 {
   1083 	struct unpcb *unp = sotounpcb(so);
   1084 	struct unpcb *unp2;
   1085 
   1086 	if (so2->so_type != so->so_type)
   1087 		return EPROTOTYPE;
   1088 
   1089 	/*
   1090 	 * All three sockets involved must be locked by same lock:
   1091 	 *
   1092 	 * local endpoint (so)
   1093 	 * remote endpoint (so2)
   1094 	 * queue head (so2->so_head, only if PR_CONNREQUIRED)
   1095 	 */
   1096 	KASSERT(solocked2(so, so2));
   1097 	KASSERT(so->so_head == NULL);
   1098 	if (so2->so_head != NULL) {
   1099 		KASSERT(so2->so_lock == uipc_lock);
   1100 		KASSERT(solocked2(so2, so2->so_head));
   1101 	}
   1102 
   1103 	unp2 = sotounpcb(so2);
   1104 	unp->unp_conn = unp2;
   1105 
   1106 	if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
   1107 		unp2->unp_connid.unp_pid = l->l_proc->p_pid;
   1108 		unp2->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
   1109 		unp2->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
   1110 		unp2->unp_flags |= UNP_EIDSVALID;
   1111 		if (unp2->unp_flags & UNP_EIDSBIND) {
   1112 			unp->unp_connid = unp2->unp_connid;
   1113 			unp->unp_flags |= UNP_EIDSVALID;
   1114 		}
   1115 	}
   1116 
   1117 	switch (so->so_type) {
   1118 
   1119 	case SOCK_DGRAM:
   1120 		unp->unp_nextref = unp2->unp_refs;
   1121 		unp2->unp_refs = unp;
   1122 		soisconnected(so);
   1123 		break;
   1124 
   1125 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1126 	case SOCK_STREAM:
   1127 
   1128 		/*
   1129 		 * SOCK_SEQPACKET and SOCK_STREAM cases are handled by callers
   1130 		 * which are unp_connect() or unp_connect2().
   1131 		 */
   1132 
   1133 		break;
   1134 
   1135 	default:
   1136 		panic("unp_connect1");
   1137 	}
   1138 
   1139 	return 0;
   1140 }
   1141 
   1142 int
   1143 unp_connect(struct socket *so, struct mbuf *nam, struct lwp *l)
   1144 {
   1145 	struct sockaddr_un *sun;
   1146 	vnode_t *vp;
   1147 	struct socket *so2, *so3;
   1148 	struct unpcb *unp, *unp2, *unp3;
   1149 	size_t addrlen;
   1150 	int error;
   1151 	struct pathbuf *pb;
   1152 	struct nameidata nd;
   1153 
   1154 	unp = sotounpcb(so);
   1155 	if ((unp->unp_flags & UNP_BUSY) != 0) {
   1156 		/*
   1157 		 * EALREADY may not be strictly accurate, but since this
   1158 		 * is a major application error it's hardly a big deal.
   1159 		 */
   1160 		return (EALREADY);
   1161 	}
   1162 	unp->unp_flags |= UNP_BUSY;
   1163 	sounlock(so);
   1164 
   1165 	sun = makeun(nam, &addrlen);
   1166 	pb = pathbuf_create(sun->sun_path);
   1167 	if (pb == NULL) {
   1168 		error = ENOMEM;
   1169 		goto bad2;
   1170 	}
   1171 
   1172 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
   1173 
   1174 	if ((error = namei(&nd)) != 0) {
   1175 		pathbuf_destroy(pb);
   1176 		goto bad2;
   1177 	}
   1178 	vp = nd.ni_vp;
   1179 	if (vp->v_type != VSOCK) {
   1180 		error = ENOTSOCK;
   1181 		goto bad;
   1182 	}
   1183 	pathbuf_destroy(pb);
   1184 	if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
   1185 		goto bad;
   1186 	/* Acquire v_interlock to protect against unp_detach(). */
   1187 	mutex_enter(vp->v_interlock);
   1188 	so2 = vp->v_socket;
   1189 	if (so2 == NULL) {
   1190 		mutex_exit(vp->v_interlock);
   1191 		error = ECONNREFUSED;
   1192 		goto bad;
   1193 	}
   1194 	if (so->so_type != so2->so_type) {
   1195 		mutex_exit(vp->v_interlock);
   1196 		error = EPROTOTYPE;
   1197 		goto bad;
   1198 	}
   1199 	solock(so);
   1200 	unp_resetlock(so);
   1201 	mutex_exit(vp->v_interlock);
   1202 	if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
   1203 		/*
   1204 		 * This may seem somewhat fragile but is OK: if we can
   1205 		 * see SO_ACCEPTCONN set on the endpoint, then it must
   1206 		 * be locked by the domain-wide uipc_lock.
   1207 		 */
   1208 		KASSERT((so2->so_options & SO_ACCEPTCONN) == 0 ||
   1209 		    so2->so_lock == uipc_lock);
   1210 		if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
   1211 		    (so3 = sonewconn(so2, false)) == NULL) {
   1212 			error = ECONNREFUSED;
   1213 			sounlock(so);
   1214 			goto bad;
   1215 		}
   1216 		unp2 = sotounpcb(so2);
   1217 		unp3 = sotounpcb(so3);
   1218 		if (unp2->unp_addr) {
   1219 			unp3->unp_addr = malloc(unp2->unp_addrlen,
   1220 			    M_SONAME, M_WAITOK);
   1221 			memcpy(unp3->unp_addr, unp2->unp_addr,
   1222 			    unp2->unp_addrlen);
   1223 			unp3->unp_addrlen = unp2->unp_addrlen;
   1224 		}
   1225 		unp3->unp_flags = unp2->unp_flags;
   1226 		so2 = so3;
   1227 	}
   1228 	error = unp_connect1(so, so2, l);
   1229 	if (error) {
   1230 		sounlock(so);
   1231 		goto bad;
   1232 	}
   1233 	unp2 = sotounpcb(so2);
   1234 	switch (so->so_type) {
   1235 
   1236 	/*
   1237 	 * SOCK_DGRAM and default cases are handled in prior call to
   1238 	 * unp_connect1(), do not add a default case without fixing
   1239 	 * unp_connect1().
   1240 	 */
   1241 
   1242 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1243 	case SOCK_STREAM:
   1244 		unp2->unp_conn = unp;
   1245 		if ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT)
   1246 			soisconnecting(so);
   1247 		else
   1248 			soisconnected(so);
   1249 		soisconnected(so2);
   1250 		/*
   1251 		 * If the connection is fully established, break the
   1252 		 * association with uipc_lock and give the connected
   1253 		 * pair a seperate lock to share.
   1254 		 */
   1255 		KASSERT(so2->so_head != NULL);
   1256 		unp_setpeerlocks(so, so2);
   1257 		break;
   1258 
   1259 	}
   1260 	sounlock(so);
   1261  bad:
   1262 	vput(vp);
   1263  bad2:
   1264 	free(sun, M_SONAME);
   1265 	solock(so);
   1266 	unp->unp_flags &= ~UNP_BUSY;
   1267 	return (error);
   1268 }
   1269 
   1270 int
   1271 unp_connect2(struct socket *so, struct socket *so2)
   1272 {
   1273 	struct unpcb *unp = sotounpcb(so);
   1274 	struct unpcb *unp2;
   1275 	int error = 0;
   1276 
   1277 	KASSERT(solocked2(so, so2));
   1278 
   1279 	error = unp_connect1(so, so2, curlwp);
   1280 	if (error)
   1281 		return error;
   1282 
   1283 	unp2 = sotounpcb(so2);
   1284 	switch (so->so_type) {
   1285 
   1286 	/*
   1287 	 * SOCK_DGRAM and default cases are handled in prior call to
   1288 	 * unp_connect1(), do not add a default case without fixing
   1289 	 * unp_connect1().
   1290 	 */
   1291 
   1292 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1293 	case SOCK_STREAM:
   1294 		unp2->unp_conn = unp;
   1295 		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
   1296 			unp->unp_connid = unp2->unp_connid;
   1297 			unp->unp_flags |= UNP_EIDSVALID;
   1298 		}
   1299 		soisconnected(so);
   1300 		soisconnected(so2);
   1301 		break;
   1302 
   1303 	}
   1304 	return error;
   1305 }
   1306 
   1307 static void
   1308 unp_disconnect1(struct unpcb *unp)
   1309 {
   1310 	struct unpcb *unp2 = unp->unp_conn;
   1311 	struct socket *so;
   1312 
   1313 	if (unp2 == 0)
   1314 		return;
   1315 	unp->unp_conn = 0;
   1316 	so = unp->unp_socket;
   1317 	switch (so->so_type) {
   1318 	case SOCK_DGRAM:
   1319 		if (unp2->unp_refs == unp)
   1320 			unp2->unp_refs = unp->unp_nextref;
   1321 		else {
   1322 			unp2 = unp2->unp_refs;
   1323 			for (;;) {
   1324 				KASSERT(solocked2(so, unp2->unp_socket));
   1325 				if (unp2 == 0)
   1326 					panic("unp_disconnect1");
   1327 				if (unp2->unp_nextref == unp)
   1328 					break;
   1329 				unp2 = unp2->unp_nextref;
   1330 			}
   1331 			unp2->unp_nextref = unp->unp_nextref;
   1332 		}
   1333 		unp->unp_nextref = 0;
   1334 		so->so_state &= ~SS_ISCONNECTED;
   1335 		break;
   1336 
   1337 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1338 	case SOCK_STREAM:
   1339 		KASSERT(solocked2(so, unp2->unp_socket));
   1340 		soisdisconnected(so);
   1341 		unp2->unp_conn = 0;
   1342 		soisdisconnected(unp2->unp_socket);
   1343 		break;
   1344 	}
   1345 }
   1346 
   1347 static void
   1348 unp_shutdown1(struct unpcb *unp)
   1349 {
   1350 	struct socket *so;
   1351 
   1352 	switch(unp->unp_socket->so_type) {
   1353 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1354 	case SOCK_STREAM:
   1355 		if (unp->unp_conn && (so = unp->unp_conn->unp_socket))
   1356 			socantrcvmore(so);
   1357 		break;
   1358 	default:
   1359 		break;
   1360 	}
   1361 }
   1362 
   1363 static bool
   1364 unp_drop(struct unpcb *unp, int errno)
   1365 {
   1366 	struct socket *so = unp->unp_socket;
   1367 
   1368 	KASSERT(solocked(so));
   1369 
   1370 	so->so_error = errno;
   1371 	unp_disconnect1(unp);
   1372 	if (so->so_head) {
   1373 		so->so_pcb = NULL;
   1374 		/* sofree() drops the socket lock */
   1375 		sofree(so);
   1376 		unp_free(unp);
   1377 		return true;
   1378 	}
   1379 	return false;
   1380 }
   1381 
   1382 #ifdef notdef
   1383 unp_drain(void)
   1384 {
   1385 
   1386 }
   1387 #endif
   1388 
   1389 int
   1390 unp_externalize(struct mbuf *rights, struct lwp *l, int flags)
   1391 {
   1392 	struct cmsghdr * const cm = mtod(rights, struct cmsghdr *);
   1393 	struct proc * const p = l->l_proc;
   1394 	file_t **rp;
   1395 	int error = 0;
   1396 
   1397 	const size_t nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
   1398 	    sizeof(file_t *);
   1399 	if (nfds == 0)
   1400 		goto noop;
   1401 
   1402 	int * const fdp = kmem_alloc(nfds * sizeof(int), KM_SLEEP);
   1403 	rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
   1404 
   1405 	/* Make sure the recipient should be able to see the files.. */
   1406 	rp = (file_t **)CMSG_DATA(cm);
   1407 	for (size_t i = 0; i < nfds; i++) {
   1408 		file_t * const fp = *rp++;
   1409 		if (fp == NULL) {
   1410 			error = EINVAL;
   1411 			goto out;
   1412 		}
   1413 		/*
   1414 		 * If we are in a chroot'ed directory, and
   1415 		 * someone wants to pass us a directory, make
   1416 		 * sure it's inside the subtree we're allowed
   1417 		 * to access.
   1418 		 */
   1419 		if (p->p_cwdi->cwdi_rdir != NULL && fp->f_type == DTYPE_VNODE) {
   1420 			vnode_t *vp = fp->f_vnode;
   1421 			if ((vp->v_type == VDIR) &&
   1422 			    !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
   1423 				error = EPERM;
   1424 				goto out;
   1425 			}
   1426 		}
   1427 	}
   1428 
   1429  restart:
   1430 	/*
   1431 	 * First loop -- allocate file descriptor table slots for the
   1432 	 * new files.
   1433 	 */
   1434 	for (size_t i = 0; i < nfds; i++) {
   1435 		if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
   1436 			/*
   1437 			 * Back out what we've done so far.
   1438 			 */
   1439 			while (i-- > 0) {
   1440 				fd_abort(p, NULL, fdp[i]);
   1441 			}
   1442 			if (error == ENOSPC) {
   1443 				fd_tryexpand(p);
   1444 				error = 0;
   1445 				goto restart;
   1446 			}
   1447 			/*
   1448 			 * This is the error that has historically
   1449 			 * been returned, and some callers may
   1450 			 * expect it.
   1451 			 */
   1452 			error = EMSGSIZE;
   1453 			goto out;
   1454 		}
   1455 	}
   1456 
   1457 	/*
   1458 	 * Now that adding them has succeeded, update all of the
   1459 	 * file passing state and affix the descriptors.
   1460 	 */
   1461 	rp = (file_t **)CMSG_DATA(cm);
   1462 	int *ofdp = (int *)CMSG_DATA(cm);
   1463 	for (size_t i = 0; i < nfds; i++) {
   1464 		file_t * const fp = *rp++;
   1465 		const int fd = fdp[i];
   1466 		atomic_dec_uint(&unp_rights);
   1467 		fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
   1468 		fd_affix(p, fp, fd);
   1469 		/*
   1470 		 * Done with this file pointer, replace it with a fd;
   1471 		 */
   1472 		*ofdp++ = fd;
   1473 		mutex_enter(&fp->f_lock);
   1474 		fp->f_msgcount--;
   1475 		mutex_exit(&fp->f_lock);
   1476 		/*
   1477 		 * Note that fd_affix() adds a reference to the file.
   1478 		 * The file may already have been closed by another
   1479 		 * LWP in the process, so we must drop the reference
   1480 		 * added by unp_internalize() with closef().
   1481 		 */
   1482 		closef(fp);
   1483 	}
   1484 
   1485 	/*
   1486 	 * Adjust length, in case of transition from large file_t
   1487 	 * pointers to ints.
   1488 	 */
   1489 	if (sizeof(file_t *) != sizeof(int)) {
   1490 		cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
   1491 		rights->m_len = CMSG_SPACE(nfds * sizeof(int));
   1492 	}
   1493  out:
   1494 	if (__predict_false(error != 0)) {
   1495 		file_t **const fpp = (file_t **)CMSG_DATA(cm);
   1496 		for (size_t i = 0; i < nfds; i++)
   1497 			unp_discard_now(fpp[i]);
   1498 		/*
   1499 		 * Truncate the array so that nobody will try to interpret
   1500 		 * what is now garbage in it.
   1501 		 */
   1502 		cm->cmsg_len = CMSG_LEN(0);
   1503 		rights->m_len = CMSG_SPACE(0);
   1504 	}
   1505 	rw_exit(&p->p_cwdi->cwdi_lock);
   1506 	kmem_free(fdp, nfds * sizeof(int));
   1507 
   1508  noop:
   1509 	/*
   1510 	 * Don't disclose kernel memory in the alignment space.
   1511 	 */
   1512 	KASSERT(cm->cmsg_len <= rights->m_len);
   1513 	memset(&mtod(rights, char *)[cm->cmsg_len], 0, rights->m_len -
   1514 	    cm->cmsg_len);
   1515 	return error;
   1516 }
   1517 
   1518 static int
   1519 unp_internalize(struct mbuf **controlp)
   1520 {
   1521 	filedesc_t *fdescp = curlwp->l_fd;
   1522 	struct mbuf *control = *controlp;
   1523 	struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
   1524 	file_t **rp, **files;
   1525 	file_t *fp;
   1526 	int i, fd, *fdp;
   1527 	int nfds, error;
   1528 	u_int maxmsg;
   1529 
   1530 	error = 0;
   1531 	newcm = NULL;
   1532 
   1533 	/* Sanity check the control message header. */
   1534 	if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
   1535 	    cm->cmsg_len > control->m_len ||
   1536 	    cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
   1537 		return (EINVAL);
   1538 
   1539 	/*
   1540 	 * Verify that the file descriptors are valid, and acquire
   1541 	 * a reference to each.
   1542 	 */
   1543 	nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
   1544 	fdp = (int *)CMSG_DATA(cm);
   1545 	maxmsg = maxfiles / unp_rights_ratio;
   1546 	for (i = 0; i < nfds; i++) {
   1547 		fd = *fdp++;
   1548 		if (atomic_inc_uint_nv(&unp_rights) > maxmsg) {
   1549 			atomic_dec_uint(&unp_rights);
   1550 			nfds = i;
   1551 			error = EAGAIN;
   1552 			goto out;
   1553 		}
   1554 		if ((fp = fd_getfile(fd)) == NULL
   1555 		    || fp->f_type == DTYPE_KQUEUE) {
   1556 		    	if (fp)
   1557 		    		fd_putfile(fd);
   1558 			atomic_dec_uint(&unp_rights);
   1559 			nfds = i;
   1560 			error = EBADF;
   1561 			goto out;
   1562 		}
   1563 	}
   1564 
   1565 	/* Allocate new space and copy header into it. */
   1566 	newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
   1567 	if (newcm == NULL) {
   1568 		error = E2BIG;
   1569 		goto out;
   1570 	}
   1571 	memcpy(newcm, cm, sizeof(struct cmsghdr));
   1572 	files = (file_t **)CMSG_DATA(newcm);
   1573 
   1574 	/*
   1575 	 * Transform the file descriptors into file_t pointers, in
   1576 	 * reverse order so that if pointers are bigger than ints, the
   1577 	 * int won't get until we're done.  No need to lock, as we have
   1578 	 * already validated the descriptors with fd_getfile().
   1579 	 */
   1580 	fdp = (int *)CMSG_DATA(cm) + nfds;
   1581 	rp = files + nfds;
   1582 	for (i = 0; i < nfds; i++) {
   1583 		fp = fdescp->fd_dt->dt_ff[*--fdp]->ff_file;
   1584 		KASSERT(fp != NULL);
   1585 		mutex_enter(&fp->f_lock);
   1586 		*--rp = fp;
   1587 		fp->f_count++;
   1588 		fp->f_msgcount++;
   1589 		mutex_exit(&fp->f_lock);
   1590 	}
   1591 
   1592  out:
   1593  	/* Release descriptor references. */
   1594 	fdp = (int *)CMSG_DATA(cm);
   1595 	for (i = 0; i < nfds; i++) {
   1596 		fd_putfile(*fdp++);
   1597 		if (error != 0) {
   1598 			atomic_dec_uint(&unp_rights);
   1599 		}
   1600 	}
   1601 
   1602 	if (error == 0) {
   1603 		if (control->m_flags & M_EXT) {
   1604 			m_freem(control);
   1605 			*controlp = control = m_get(M_WAIT, MT_CONTROL);
   1606 		}
   1607 		MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
   1608 		    M_MBUF, NULL, NULL);
   1609 		cm = newcm;
   1610 		/*
   1611 		 * Adjust message & mbuf to note amount of space
   1612 		 * actually used.
   1613 		 */
   1614 		cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
   1615 		control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
   1616 	}
   1617 
   1618 	return error;
   1619 }
   1620 
   1621 struct mbuf *
   1622 unp_addsockcred(struct lwp *l, struct mbuf *control)
   1623 {
   1624 	struct sockcred *sc;
   1625 	struct mbuf *m;
   1626 	void *p;
   1627 
   1628 	m = sbcreatecontrol1(&p, SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)),
   1629 		SCM_CREDS, SOL_SOCKET, M_WAITOK);
   1630 	if (m == NULL)
   1631 		return control;
   1632 
   1633 	sc = p;
   1634 	sc->sc_uid = kauth_cred_getuid(l->l_cred);
   1635 	sc->sc_euid = kauth_cred_geteuid(l->l_cred);
   1636 	sc->sc_gid = kauth_cred_getgid(l->l_cred);
   1637 	sc->sc_egid = kauth_cred_getegid(l->l_cred);
   1638 	sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
   1639 
   1640 	for (int i = 0; i < sc->sc_ngroups; i++)
   1641 		sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
   1642 
   1643 	return m_add(control, m);
   1644 }
   1645 
   1646 /*
   1647  * Do a mark-sweep GC of files in the system, to free up any which are
   1648  * caught in flight to an about-to-be-closed socket.  Additionally,
   1649  * process deferred file closures.
   1650  */
   1651 static void
   1652 unp_gc(file_t *dp)
   1653 {
   1654 	extern	struct domain unixdomain;
   1655 	file_t *fp, *np;
   1656 	struct socket *so, *so1;
   1657 	u_int i, oflags, rflags;
   1658 	bool didwork;
   1659 
   1660 	KASSERT(curlwp == unp_thread_lwp);
   1661 	KASSERT(mutex_owned(&filelist_lock));
   1662 
   1663 	/*
   1664 	 * First, process deferred file closures.
   1665 	 */
   1666 	while (!SLIST_EMPTY(&unp_thread_discard)) {
   1667 		fp = SLIST_FIRST(&unp_thread_discard);
   1668 		KASSERT(fp->f_unpcount > 0);
   1669 		KASSERT(fp->f_count > 0);
   1670 		KASSERT(fp->f_msgcount > 0);
   1671 		KASSERT(fp->f_count >= fp->f_unpcount);
   1672 		KASSERT(fp->f_count >= fp->f_msgcount);
   1673 		KASSERT(fp->f_msgcount >= fp->f_unpcount);
   1674 		SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist);
   1675 		i = fp->f_unpcount;
   1676 		fp->f_unpcount = 0;
   1677 		mutex_exit(&filelist_lock);
   1678 		for (; i != 0; i--) {
   1679 			unp_discard_now(fp);
   1680 		}
   1681 		mutex_enter(&filelist_lock);
   1682 	}
   1683 
   1684 	/*
   1685 	 * Clear mark bits.  Ensure that we don't consider new files
   1686 	 * entering the file table during this loop (they will not have
   1687 	 * FSCAN set).
   1688 	 */
   1689 	unp_defer = 0;
   1690 	LIST_FOREACH(fp, &filehead, f_list) {
   1691 		for (oflags = fp->f_flag;; oflags = rflags) {
   1692 			rflags = atomic_cas_uint(&fp->f_flag, oflags,
   1693 			    (oflags | FSCAN) & ~(FMARK|FDEFER));
   1694 			if (__predict_true(oflags == rflags)) {
   1695 				break;
   1696 			}
   1697 		}
   1698 	}
   1699 
   1700 	/*
   1701 	 * Iterate over the set of sockets, marking ones believed (based on
   1702 	 * refcount) to be referenced from a process, and marking for rescan
   1703 	 * sockets which are queued on a socket.  Recan continues descending
   1704 	 * and searching for sockets referenced by sockets (FDEFER), until
   1705 	 * there are no more socket->socket references to be discovered.
   1706 	 */
   1707 	do {
   1708 		didwork = false;
   1709 		for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
   1710 			KASSERT(mutex_owned(&filelist_lock));
   1711 			np = LIST_NEXT(fp, f_list);
   1712 			mutex_enter(&fp->f_lock);
   1713 			if ((fp->f_flag & FDEFER) != 0) {
   1714 				atomic_and_uint(&fp->f_flag, ~FDEFER);
   1715 				unp_defer--;
   1716 				if (fp->f_count == 0) {
   1717 					/*
   1718 					 * XXX: closef() doesn't pay attention
   1719 					 * to FDEFER
   1720 					 */
   1721 					mutex_exit(&fp->f_lock);
   1722 					continue;
   1723 				}
   1724 			} else {
   1725 				if (fp->f_count == 0 ||
   1726 				    (fp->f_flag & FMARK) != 0 ||
   1727 				    fp->f_count == fp->f_msgcount ||
   1728 				    fp->f_unpcount != 0) {
   1729 					mutex_exit(&fp->f_lock);
   1730 					continue;
   1731 				}
   1732 			}
   1733 			atomic_or_uint(&fp->f_flag, FMARK);
   1734 
   1735 			if (fp->f_type != DTYPE_SOCKET ||
   1736 			    (so = fp->f_socket) == NULL ||
   1737 			    so->so_proto->pr_domain != &unixdomain ||
   1738 			    (so->so_proto->pr_flags & PR_RIGHTS) == 0) {
   1739 				mutex_exit(&fp->f_lock);
   1740 				continue;
   1741 			}
   1742 
   1743 			/* Gain file ref, mark our position, and unlock. */
   1744 			didwork = true;
   1745 			LIST_INSERT_AFTER(fp, dp, f_list);
   1746 			fp->f_count++;
   1747 			mutex_exit(&fp->f_lock);
   1748 			mutex_exit(&filelist_lock);
   1749 
   1750 			/*
   1751 			 * Mark files referenced from sockets queued on the
   1752 			 * accept queue as well.
   1753 			 */
   1754 			solock(so);
   1755 			unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
   1756 			if ((so->so_options & SO_ACCEPTCONN) != 0) {
   1757 				TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
   1758 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
   1759 				}
   1760 				TAILQ_FOREACH(so1, &so->so_q, so_qe) {
   1761 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
   1762 				}
   1763 			}
   1764 			sounlock(so);
   1765 
   1766 			/* Re-lock and restart from where we left off. */
   1767 			closef(fp);
   1768 			mutex_enter(&filelist_lock);
   1769 			np = LIST_NEXT(dp, f_list);
   1770 			LIST_REMOVE(dp, f_list);
   1771 		}
   1772 		/*
   1773 		 * Bail early if we did nothing in the loop above.  Could
   1774 		 * happen because of concurrent activity causing unp_defer
   1775 		 * to get out of sync.
   1776 		 */
   1777 	} while (unp_defer != 0 && didwork);
   1778 
   1779 	/*
   1780 	 * Sweep pass.
   1781 	 *
   1782 	 * We grab an extra reference to each of the files that are
   1783 	 * not otherwise accessible and then free the rights that are
   1784 	 * stored in messages on them.
   1785 	 */
   1786 	for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
   1787 		KASSERT(mutex_owned(&filelist_lock));
   1788 		np = LIST_NEXT(fp, f_list);
   1789 		mutex_enter(&fp->f_lock);
   1790 
   1791 		/*
   1792 		 * Ignore non-sockets.
   1793 		 * Ignore dead sockets, or sockets with pending close.
   1794 		 * Ignore sockets obviously referenced elsewhere.
   1795 		 * Ignore sockets marked as referenced by our scan.
   1796 		 * Ignore new sockets that did not exist during the scan.
   1797 		 */
   1798 		if (fp->f_type != DTYPE_SOCKET ||
   1799 		    fp->f_count == 0 || fp->f_unpcount != 0 ||
   1800 		    fp->f_count != fp->f_msgcount ||
   1801 		    (fp->f_flag & (FMARK | FSCAN)) != FSCAN) {
   1802 			mutex_exit(&fp->f_lock);
   1803 			continue;
   1804 		}
   1805 
   1806 		/* Gain file ref, mark our position, and unlock. */
   1807 		LIST_INSERT_AFTER(fp, dp, f_list);
   1808 		fp->f_count++;
   1809 		mutex_exit(&fp->f_lock);
   1810 		mutex_exit(&filelist_lock);
   1811 
   1812 		/*
   1813 		 * Flush all data from the socket's receive buffer.
   1814 		 * This will cause files referenced only by the
   1815 		 * socket to be queued for close.
   1816 		 */
   1817 		so = fp->f_socket;
   1818 		solock(so);
   1819 		sorflush(so);
   1820 		sounlock(so);
   1821 
   1822 		/* Re-lock and restart from where we left off. */
   1823 		closef(fp);
   1824 		mutex_enter(&filelist_lock);
   1825 		np = LIST_NEXT(dp, f_list);
   1826 		LIST_REMOVE(dp, f_list);
   1827 	}
   1828 }
   1829 
   1830 /*
   1831  * Garbage collector thread.  While SCM_RIGHTS messages are in transit,
   1832  * wake once per second to garbage collect.  Run continually while we
   1833  * have deferred closes to process.
   1834  */
   1835 static void
   1836 unp_thread(void *cookie)
   1837 {
   1838 	file_t *dp;
   1839 
   1840 	/* Allocate a dummy file for our scans. */
   1841 	if ((dp = fgetdummy()) == NULL) {
   1842 		panic("unp_thread");
   1843 	}
   1844 
   1845 	mutex_enter(&filelist_lock);
   1846 	for (;;) {
   1847 		KASSERT(mutex_owned(&filelist_lock));
   1848 		if (SLIST_EMPTY(&unp_thread_discard)) {
   1849 			if (unp_rights != 0) {
   1850 				(void)cv_timedwait(&unp_thread_cv,
   1851 				    &filelist_lock, hz);
   1852 			} else {
   1853 				cv_wait(&unp_thread_cv, &filelist_lock);
   1854 			}
   1855 		}
   1856 		unp_gc(dp);
   1857 	}
   1858 	/* NOTREACHED */
   1859 }
   1860 
   1861 /*
   1862  * Kick the garbage collector into action if there is something for
   1863  * it to process.
   1864  */
   1865 static void
   1866 unp_thread_kick(void)
   1867 {
   1868 
   1869 	if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) {
   1870 		mutex_enter(&filelist_lock);
   1871 		cv_signal(&unp_thread_cv);
   1872 		mutex_exit(&filelist_lock);
   1873 	}
   1874 }
   1875 
   1876 void
   1877 unp_dispose(struct mbuf *m)
   1878 {
   1879 
   1880 	if (m)
   1881 		unp_scan(m, unp_discard_later, 1);
   1882 }
   1883 
   1884 void
   1885 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
   1886 {
   1887 	struct mbuf *m;
   1888 	file_t **rp, *fp;
   1889 	struct cmsghdr *cm;
   1890 	int i, qfds;
   1891 
   1892 	while (m0) {
   1893 		for (m = m0; m; m = m->m_next) {
   1894 			if (m->m_type != MT_CONTROL ||
   1895 			    m->m_len < sizeof(*cm)) {
   1896 			    	continue;
   1897 			}
   1898 			cm = mtod(m, struct cmsghdr *);
   1899 			if (cm->cmsg_level != SOL_SOCKET ||
   1900 			    cm->cmsg_type != SCM_RIGHTS)
   1901 				continue;
   1902 			qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
   1903 			    / sizeof(file_t *);
   1904 			rp = (file_t **)CMSG_DATA(cm);
   1905 			for (i = 0; i < qfds; i++) {
   1906 				fp = *rp;
   1907 				if (discard) {
   1908 					*rp = 0;
   1909 				}
   1910 				(*op)(fp);
   1911 				rp++;
   1912 			}
   1913 		}
   1914 		m0 = m0->m_nextpkt;
   1915 	}
   1916 }
   1917 
   1918 void
   1919 unp_mark(file_t *fp)
   1920 {
   1921 
   1922 	if (fp == NULL)
   1923 		return;
   1924 
   1925 	/* If we're already deferred, don't screw up the defer count */
   1926 	mutex_enter(&fp->f_lock);
   1927 	if (fp->f_flag & (FMARK | FDEFER)) {
   1928 		mutex_exit(&fp->f_lock);
   1929 		return;
   1930 	}
   1931 
   1932 	/*
   1933 	 * Minimize the number of deferrals...  Sockets are the only type of
   1934 	 * file which can hold references to another file, so just mark
   1935 	 * other files, and defer unmarked sockets for the next pass.
   1936 	 */
   1937 	if (fp->f_type == DTYPE_SOCKET) {
   1938 		unp_defer++;
   1939 		KASSERT(fp->f_count != 0);
   1940 		atomic_or_uint(&fp->f_flag, FDEFER);
   1941 	} else {
   1942 		atomic_or_uint(&fp->f_flag, FMARK);
   1943 	}
   1944 	mutex_exit(&fp->f_lock);
   1945 }
   1946 
   1947 static void
   1948 unp_discard_now(file_t *fp)
   1949 {
   1950 
   1951 	if (fp == NULL)
   1952 		return;
   1953 
   1954 	KASSERT(fp->f_count > 0);
   1955 	KASSERT(fp->f_msgcount > 0);
   1956 
   1957 	mutex_enter(&fp->f_lock);
   1958 	fp->f_msgcount--;
   1959 	mutex_exit(&fp->f_lock);
   1960 	atomic_dec_uint(&unp_rights);
   1961 	(void)closef(fp);
   1962 }
   1963 
   1964 static void
   1965 unp_discard_later(file_t *fp)
   1966 {
   1967 
   1968 	if (fp == NULL)
   1969 		return;
   1970 
   1971 	KASSERT(fp->f_count > 0);
   1972 	KASSERT(fp->f_msgcount > 0);
   1973 
   1974 	mutex_enter(&filelist_lock);
   1975 	if (fp->f_unpcount++ == 0) {
   1976 		SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist);
   1977 	}
   1978 	mutex_exit(&filelist_lock);
   1979 }
   1980 
   1981 const struct pr_usrreqs unp_usrreqs = {
   1982 	.pr_attach	= unp_attach,
   1983 	.pr_detach	= unp_detach,
   1984 	.pr_accept	= unp_accept,
   1985 	.pr_bind	= unp_bind,
   1986 	.pr_listen	= unp_listen,
   1987 	.pr_connect	= unp_connect,
   1988 	.pr_connect2	= unp_connect2,
   1989 	.pr_disconnect	= unp_disconnect,
   1990 	.pr_shutdown	= unp_shutdown,
   1991 	.pr_abort	= unp_abort,
   1992 	.pr_ioctl	= unp_ioctl,
   1993 	.pr_stat	= unp_stat,
   1994 	.pr_peeraddr	= unp_peeraddr,
   1995 	.pr_sockaddr	= unp_sockaddr,
   1996 	.pr_rcvd	= unp_rcvd,
   1997 	.pr_recvoob	= unp_recvoob,
   1998 	.pr_send	= unp_send,
   1999 	.pr_sendoob	= unp_sendoob,
   2000 	.pr_generic	= unp_usrreq,
   2001 };
   2002