uipc_usrreq.c revision 1.179 1 /* $NetBSD: uipc_usrreq.c,v 1.179 2015/05/02 17:18:03 rtr Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2000, 2004, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
62 */
63
64 /*
65 * Copyright (c) 1997 Christopher G. Demetriou. All rights reserved.
66 *
67 * Redistribution and use in source and binary forms, with or without
68 * modification, are permitted provided that the following conditions
69 * are met:
70 * 1. Redistributions of source code must retain the above copyright
71 * notice, this list of conditions and the following disclaimer.
72 * 2. Redistributions in binary form must reproduce the above copyright
73 * notice, this list of conditions and the following disclaimer in the
74 * documentation and/or other materials provided with the distribution.
75 * 3. All advertising materials mentioning features or use of this software
76 * must display the following acknowledgement:
77 * This product includes software developed by the University of
78 * California, Berkeley and its contributors.
79 * 4. Neither the name of the University nor the names of its contributors
80 * may be used to endorse or promote products derived from this software
81 * without specific prior written permission.
82 *
83 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
84 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
85 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
86 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
87 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
88 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
89 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
90 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
91 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
92 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
93 * SUCH DAMAGE.
94 *
95 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
96 */
97
98 #include <sys/cdefs.h>
99 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.179 2015/05/02 17:18:03 rtr Exp $");
100
101 #include <sys/param.h>
102 #include <sys/systm.h>
103 #include <sys/proc.h>
104 #include <sys/filedesc.h>
105 #include <sys/domain.h>
106 #include <sys/protosw.h>
107 #include <sys/socket.h>
108 #include <sys/socketvar.h>
109 #include <sys/unpcb.h>
110 #include <sys/un.h>
111 #include <sys/namei.h>
112 #include <sys/vnode.h>
113 #include <sys/file.h>
114 #include <sys/stat.h>
115 #include <sys/mbuf.h>
116 #include <sys/kauth.h>
117 #include <sys/kmem.h>
118 #include <sys/atomic.h>
119 #include <sys/uidinfo.h>
120 #include <sys/kernel.h>
121 #include <sys/kthread.h>
122
123 /*
124 * Unix communications domain.
125 *
126 * TODO:
127 * RDM
128 * rethink name space problems
129 * need a proper out-of-band
130 *
131 * Notes on locking:
132 *
133 * The generic rules noted in uipc_socket2.c apply. In addition:
134 *
135 * o We have a global lock, uipc_lock.
136 *
137 * o All datagram sockets are locked by uipc_lock.
138 *
139 * o For stream socketpairs, the two endpoints are created sharing the same
140 * independent lock. Sockets presented to PRU_CONNECT2 must already have
141 * matching locks.
142 *
143 * o Stream sockets created via socket() start life with their own
144 * independent lock.
145 *
146 * o Stream connections to a named endpoint are slightly more complicated.
147 * Sockets that have called listen() have their lock pointer mutated to
148 * the global uipc_lock. When establishing a connection, the connecting
149 * socket also has its lock mutated to uipc_lock, which matches the head
150 * (listening socket). We create a new socket for accept() to return, and
151 * that also shares the head's lock. Until the connection is completely
152 * done on both ends, all three sockets are locked by uipc_lock. Once the
153 * connection is complete, the association with the head's lock is broken.
154 * The connecting socket and the socket returned from accept() have their
155 * lock pointers mutated away from uipc_lock, and back to the connecting
156 * socket's original, independent lock. The head continues to be locked
157 * by uipc_lock.
158 *
159 * o If uipc_lock is determined to be a significant source of contention,
160 * it could easily be hashed out. It is difficult to simply make it an
161 * independent lock because of visibility / garbage collection issues:
162 * if a socket has been associated with a lock at any point, that lock
163 * must remain valid until the socket is no longer visible in the system.
164 * The lock must not be freed or otherwise destroyed until any sockets
165 * that had referenced it have also been destroyed.
166 */
167 const struct sockaddr_un sun_noname = {
168 .sun_len = offsetof(struct sockaddr_un, sun_path),
169 .sun_family = AF_LOCAL,
170 };
171 ino_t unp_ino; /* prototype for fake inode numbers */
172
173 static struct mbuf * unp_addsockcred(struct lwp *, struct mbuf *);
174 static void unp_discard_later(file_t *);
175 static void unp_discard_now(file_t *);
176 static void unp_disconnect1(struct unpcb *);
177 static bool unp_drop(struct unpcb *, int);
178 static int unp_internalize(struct mbuf **);
179 static void unp_mark(file_t *);
180 static void unp_scan(struct mbuf *, void (*)(file_t *), int);
181 static void unp_shutdown1(struct unpcb *);
182 static void unp_thread(void *);
183 static void unp_thread_kick(void);
184
185 static kmutex_t *uipc_lock;
186
187 static kcondvar_t unp_thread_cv;
188 static lwp_t *unp_thread_lwp;
189 static SLIST_HEAD(,file) unp_thread_discard;
190 static int unp_defer;
191
192 /*
193 * Initialize Unix protocols.
194 */
195 void
196 uipc_init(void)
197 {
198 int error;
199
200 uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
201 cv_init(&unp_thread_cv, "unpgc");
202
203 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread,
204 NULL, &unp_thread_lwp, "unpgc");
205 if (error != 0)
206 panic("uipc_init %d", error);
207 }
208
209 /*
210 * A connection succeeded: disassociate both endpoints from the head's
211 * lock, and make them share their own lock. There is a race here: for
212 * a very brief time one endpoint will be locked by a different lock
213 * than the other end. However, since the current thread holds the old
214 * lock (the listening socket's lock, the head) access can still only be
215 * made to one side of the connection.
216 */
217 static void
218 unp_setpeerlocks(struct socket *so, struct socket *so2)
219 {
220 struct unpcb *unp;
221 kmutex_t *lock;
222
223 KASSERT(solocked2(so, so2));
224
225 /*
226 * Bail out if either end of the socket is not yet fully
227 * connected or accepted. We only break the lock association
228 * with the head when the pair of sockets stand completely
229 * on their own.
230 */
231 KASSERT(so->so_head == NULL);
232 if (so2->so_head != NULL)
233 return;
234
235 /*
236 * Drop references to old lock. A third reference (from the
237 * queue head) must be held as we still hold its lock. Bonus:
238 * we don't need to worry about garbage collecting the lock.
239 */
240 lock = so->so_lock;
241 KASSERT(lock == uipc_lock);
242 mutex_obj_free(lock);
243 mutex_obj_free(lock);
244
245 /*
246 * Grab stream lock from the initiator and share between the two
247 * endpoints. Issue memory barrier to ensure all modifications
248 * become globally visible before the lock change. so2 is
249 * assumed not to have a stream lock, because it was created
250 * purely for the server side to accept this connection and
251 * started out life using the domain-wide lock.
252 */
253 unp = sotounpcb(so);
254 KASSERT(unp->unp_streamlock != NULL);
255 KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
256 lock = unp->unp_streamlock;
257 unp->unp_streamlock = NULL;
258 mutex_obj_hold(lock);
259 membar_exit();
260 /*
261 * possible race if lock is not held - see comment in
262 * uipc_usrreq(PRU_ACCEPT).
263 */
264 KASSERT(mutex_owned(lock));
265 solockreset(so, lock);
266 solockreset(so2, lock);
267 }
268
269 /*
270 * Reset a socket's lock back to the domain-wide lock.
271 */
272 static void
273 unp_resetlock(struct socket *so)
274 {
275 kmutex_t *olock, *nlock;
276 struct unpcb *unp;
277
278 KASSERT(solocked(so));
279
280 olock = so->so_lock;
281 nlock = uipc_lock;
282 if (olock == nlock)
283 return;
284 unp = sotounpcb(so);
285 KASSERT(unp->unp_streamlock == NULL);
286 unp->unp_streamlock = olock;
287 mutex_obj_hold(nlock);
288 mutex_enter(nlock);
289 solockreset(so, nlock);
290 mutex_exit(olock);
291 }
292
293 static void
294 unp_free(struct unpcb *unp)
295 {
296 if (unp->unp_addr)
297 free(unp->unp_addr, M_SONAME);
298 if (unp->unp_streamlock != NULL)
299 mutex_obj_free(unp->unp_streamlock);
300 kmem_free(unp, sizeof(*unp));
301 }
302
303 static int
304 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp)
305 {
306 struct socket *so2;
307 const struct sockaddr_un *sun;
308
309 /* XXX: server side closed the socket */
310 if (unp->unp_conn == NULL)
311 return ECONNREFUSED;
312 so2 = unp->unp_conn->unp_socket;
313
314 KASSERT(solocked(so2));
315
316 if (unp->unp_addr)
317 sun = unp->unp_addr;
318 else
319 sun = &sun_noname;
320 if (unp->unp_conn->unp_flags & UNP_WANTCRED)
321 control = unp_addsockcred(curlwp, control);
322 if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
323 control) == 0) {
324 so2->so_rcv.sb_overflowed++;
325 unp_dispose(control);
326 m_freem(control);
327 m_freem(m);
328 return (ENOBUFS);
329 } else {
330 sorwakeup(so2);
331 return (0);
332 }
333 }
334
335 static void
336 unp_setaddr(struct socket *so, struct sockaddr *nam, bool peeraddr)
337 {
338 const struct sockaddr_un *sun = NULL;
339 struct unpcb *unp;
340
341 KASSERT(solocked(so));
342 unp = sotounpcb(so);
343
344 if (peeraddr) {
345 if (unp->unp_conn && unp->unp_conn->unp_addr)
346 sun = unp->unp_conn->unp_addr;
347 } else {
348 if (unp->unp_addr)
349 sun = unp->unp_addr;
350 }
351 if (sun == NULL)
352 sun = &sun_noname;
353
354 memcpy(nam, sun, sun->sun_len);
355 }
356
357 static int
358 unp_rcvd(struct socket *so, int flags, struct lwp *l)
359 {
360 struct unpcb *unp = sotounpcb(so);
361 struct socket *so2;
362 u_int newhiwat;
363
364 KASSERT(solocked(so));
365 KASSERT(unp != NULL);
366
367 switch (so->so_type) {
368
369 case SOCK_DGRAM:
370 panic("uipc 1");
371 /*NOTREACHED*/
372
373 case SOCK_SEQPACKET: /* FALLTHROUGH */
374 case SOCK_STREAM:
375 #define rcv (&so->so_rcv)
376 #define snd (&so2->so_snd)
377 if (unp->unp_conn == 0)
378 break;
379 so2 = unp->unp_conn->unp_socket;
380 KASSERT(solocked2(so, so2));
381 /*
382 * Adjust backpressure on sender
383 * and wakeup any waiting to write.
384 */
385 snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
386 unp->unp_mbcnt = rcv->sb_mbcnt;
387 newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
388 (void)chgsbsize(so2->so_uidinfo,
389 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
390 unp->unp_cc = rcv->sb_cc;
391 sowwakeup(so2);
392 #undef snd
393 #undef rcv
394 break;
395
396 default:
397 panic("uipc 2");
398 }
399
400 return 0;
401 }
402
403 static int
404 unp_recvoob(struct socket *so, struct mbuf *m, int flags)
405 {
406 KASSERT(solocked(so));
407
408 return EOPNOTSUPP;
409 }
410
411 static int
412 unp_send(struct socket *so, struct mbuf *m, struct sockaddr *nam,
413 struct mbuf *control, struct lwp *l)
414 {
415 struct unpcb *unp = sotounpcb(so);
416 int error = 0;
417 u_int newhiwat;
418 struct socket *so2;
419
420 KASSERT(solocked(so));
421 KASSERT(unp != NULL);
422 KASSERT(m != NULL);
423
424 /*
425 * Note: unp_internalize() rejects any control message
426 * other than SCM_RIGHTS, and only allows one. This
427 * has the side-effect of preventing a caller from
428 * forging SCM_CREDS.
429 */
430 if (control) {
431 sounlock(so);
432 error = unp_internalize(&control);
433 solock(so);
434 if (error != 0) {
435 m_freem(control);
436 m_freem(m);
437 return error;
438 }
439 }
440
441 switch (so->so_type) {
442
443 case SOCK_DGRAM: {
444 KASSERT(so->so_lock == uipc_lock);
445 if (nam) {
446 if ((so->so_state & SS_ISCONNECTED) != 0)
447 error = EISCONN;
448 else {
449 /*
450 * Note: once connected, the
451 * socket's lock must not be
452 * dropped until we have sent
453 * the message and disconnected.
454 * This is necessary to prevent
455 * intervening control ops, like
456 * another connection.
457 */
458 error = unp_connect(so, nam, l);
459 }
460 } else {
461 if ((so->so_state & SS_ISCONNECTED) == 0)
462 error = ENOTCONN;
463 }
464 if (error) {
465 unp_dispose(control);
466 m_freem(control);
467 m_freem(m);
468 return error;
469 }
470 error = unp_output(m, control, unp);
471 if (nam)
472 unp_disconnect1(unp);
473 break;
474 }
475
476 case SOCK_SEQPACKET: /* FALLTHROUGH */
477 case SOCK_STREAM:
478 #define rcv (&so2->so_rcv)
479 #define snd (&so->so_snd)
480 if (unp->unp_conn == NULL) {
481 error = ENOTCONN;
482 break;
483 }
484 so2 = unp->unp_conn->unp_socket;
485 KASSERT(solocked2(so, so2));
486 if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
487 /*
488 * Credentials are passed only once on
489 * SOCK_STREAM and SOCK_SEQPACKET.
490 */
491 unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
492 control = unp_addsockcred(l, control);
493 }
494 /*
495 * Send to paired receive port, and then reduce
496 * send buffer hiwater marks to maintain backpressure.
497 * Wake up readers.
498 */
499 if (control) {
500 if (sbappendcontrol(rcv, m, control) != 0)
501 control = NULL;
502 } else {
503 switch(so->so_type) {
504 case SOCK_SEQPACKET:
505 sbappendrecord(rcv, m);
506 break;
507 case SOCK_STREAM:
508 sbappend(rcv, m);
509 break;
510 default:
511 panic("uipc_usrreq");
512 break;
513 }
514 }
515 snd->sb_mbmax -=
516 rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
517 unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
518 newhiwat = snd->sb_hiwat -
519 (rcv->sb_cc - unp->unp_conn->unp_cc);
520 (void)chgsbsize(so->so_uidinfo,
521 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
522 unp->unp_conn->unp_cc = rcv->sb_cc;
523 sorwakeup(so2);
524 #undef snd
525 #undef rcv
526 if (control != NULL) {
527 unp_dispose(control);
528 m_freem(control);
529 }
530 break;
531
532 default:
533 panic("uipc 4");
534 }
535
536 return error;
537 }
538
539 static int
540 unp_sendoob(struct socket *so, struct mbuf *m, struct mbuf * control)
541 {
542 KASSERT(solocked(so));
543
544 m_freem(m);
545 m_freem(control);
546
547 return EOPNOTSUPP;
548 }
549
550 /*
551 * Unix domain socket option processing.
552 */
553 int
554 uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
555 {
556 struct unpcb *unp = sotounpcb(so);
557 int optval = 0, error = 0;
558
559 KASSERT(solocked(so));
560
561 if (sopt->sopt_level != 0) {
562 error = ENOPROTOOPT;
563 } else switch (op) {
564
565 case PRCO_SETOPT:
566 switch (sopt->sopt_name) {
567 case LOCAL_CREDS:
568 case LOCAL_CONNWAIT:
569 error = sockopt_getint(sopt, &optval);
570 if (error)
571 break;
572 switch (sopt->sopt_name) {
573 #define OPTSET(bit) \
574 if (optval) \
575 unp->unp_flags |= (bit); \
576 else \
577 unp->unp_flags &= ~(bit);
578
579 case LOCAL_CREDS:
580 OPTSET(UNP_WANTCRED);
581 break;
582 case LOCAL_CONNWAIT:
583 OPTSET(UNP_CONNWAIT);
584 break;
585 }
586 break;
587 #undef OPTSET
588
589 default:
590 error = ENOPROTOOPT;
591 break;
592 }
593 break;
594
595 case PRCO_GETOPT:
596 sounlock(so);
597 switch (sopt->sopt_name) {
598 case LOCAL_PEEREID:
599 if (unp->unp_flags & UNP_EIDSVALID) {
600 error = sockopt_set(sopt,
601 &unp->unp_connid, sizeof(unp->unp_connid));
602 } else {
603 error = EINVAL;
604 }
605 break;
606 case LOCAL_CREDS:
607 #define OPTBIT(bit) (unp->unp_flags & (bit) ? 1 : 0)
608
609 optval = OPTBIT(UNP_WANTCRED);
610 error = sockopt_setint(sopt, optval);
611 break;
612 #undef OPTBIT
613
614 default:
615 error = ENOPROTOOPT;
616 break;
617 }
618 solock(so);
619 break;
620 }
621 return (error);
622 }
623
624 /*
625 * Both send and receive buffers are allocated PIPSIZ bytes of buffering
626 * for stream sockets, although the total for sender and receiver is
627 * actually only PIPSIZ.
628 * Datagram sockets really use the sendspace as the maximum datagram size,
629 * and don't really want to reserve the sendspace. Their recvspace should
630 * be large enough for at least one max-size datagram plus address.
631 */
632 #define PIPSIZ 4096
633 u_long unpst_sendspace = PIPSIZ;
634 u_long unpst_recvspace = PIPSIZ;
635 u_long unpdg_sendspace = 2*1024; /* really max datagram size */
636 u_long unpdg_recvspace = 4*1024;
637
638 u_int unp_rights; /* files in flight */
639 u_int unp_rights_ratio = 2; /* limit, fraction of maxfiles */
640
641 static int
642 unp_attach(struct socket *so, int proto)
643 {
644 struct unpcb *unp = sotounpcb(so);
645 u_long sndspc, rcvspc;
646 int error;
647
648 KASSERT(unp == NULL);
649
650 switch (so->so_type) {
651 case SOCK_SEQPACKET:
652 /* FALLTHROUGH */
653 case SOCK_STREAM:
654 if (so->so_lock == NULL) {
655 so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
656 solock(so);
657 }
658 sndspc = unpst_sendspace;
659 rcvspc = unpst_recvspace;
660 break;
661
662 case SOCK_DGRAM:
663 if (so->so_lock == NULL) {
664 mutex_obj_hold(uipc_lock);
665 so->so_lock = uipc_lock;
666 solock(so);
667 }
668 sndspc = unpdg_sendspace;
669 rcvspc = unpdg_recvspace;
670 break;
671
672 default:
673 panic("unp_attach");
674 }
675
676 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
677 error = soreserve(so, sndspc, rcvspc);
678 if (error) {
679 return error;
680 }
681 }
682
683 unp = kmem_zalloc(sizeof(*unp), KM_SLEEP);
684 nanotime(&unp->unp_ctime);
685 unp->unp_socket = so;
686 so->so_pcb = unp;
687
688 KASSERT(solocked(so));
689 return 0;
690 }
691
692 static void
693 unp_detach(struct socket *so)
694 {
695 struct unpcb *unp;
696 vnode_t *vp;
697
698 unp = sotounpcb(so);
699 KASSERT(unp != NULL);
700 KASSERT(solocked(so));
701 retry:
702 if ((vp = unp->unp_vnode) != NULL) {
703 sounlock(so);
704 /* Acquire v_interlock to protect against unp_connect(). */
705 /* XXXAD racy */
706 mutex_enter(vp->v_interlock);
707 vp->v_socket = NULL;
708 mutex_exit(vp->v_interlock);
709 vrele(vp);
710 solock(so);
711 unp->unp_vnode = NULL;
712 }
713 if (unp->unp_conn)
714 unp_disconnect1(unp);
715 while (unp->unp_refs) {
716 KASSERT(solocked2(so, unp->unp_refs->unp_socket));
717 if (unp_drop(unp->unp_refs, ECONNRESET)) {
718 solock(so);
719 goto retry;
720 }
721 }
722 soisdisconnected(so);
723 so->so_pcb = NULL;
724 if (unp_rights) {
725 /*
726 * Normally the receive buffer is flushed later, in sofree,
727 * but if our receive buffer holds references to files that
728 * are now garbage, we will enqueue those file references to
729 * the garbage collector and kick it into action.
730 */
731 sorflush(so);
732 unp_free(unp);
733 unp_thread_kick();
734 } else
735 unp_free(unp);
736 }
737
738 static int
739 unp_accept(struct socket *so, struct sockaddr *nam)
740 {
741 struct unpcb *unp = sotounpcb(so);
742 struct socket *so2;
743
744 KASSERT(solocked(so));
745 KASSERT(nam != NULL);
746
747 /* XXX code review required to determine if unp can ever be NULL */
748 if (unp == NULL)
749 return EINVAL;
750
751 KASSERT(so->so_lock == uipc_lock);
752 /*
753 * Mark the initiating STREAM socket as connected *ONLY*
754 * after it's been accepted. This prevents a client from
755 * overrunning a server and receiving ECONNREFUSED.
756 */
757 if (unp->unp_conn == NULL) {
758 /*
759 * This will use the empty socket and will not
760 * allocate.
761 */
762 unp_setaddr(so, nam, true);
763 return 0;
764 }
765 so2 = unp->unp_conn->unp_socket;
766 if (so2->so_state & SS_ISCONNECTING) {
767 KASSERT(solocked2(so, so->so_head));
768 KASSERT(solocked2(so2, so->so_head));
769 soisconnected(so2);
770 }
771 /*
772 * If the connection is fully established, break the
773 * association with uipc_lock and give the connected
774 * pair a separate lock to share.
775 * There is a race here: sotounpcb(so2)->unp_streamlock
776 * is not locked, so when changing so2->so_lock
777 * another thread can grab it while so->so_lock is still
778 * pointing to the (locked) uipc_lock.
779 * this should be harmless, except that this makes
780 * solocked2() and solocked() unreliable.
781 * Another problem is that unp_setaddr() expects the
782 * the socket locked. Grabing sotounpcb(so2)->unp_streamlock
783 * fixes both issues.
784 */
785 mutex_enter(sotounpcb(so2)->unp_streamlock);
786 unp_setpeerlocks(so2, so);
787 /*
788 * Only now return peer's address, as we may need to
789 * block in order to allocate memory.
790 *
791 * XXX Minor race: connection can be broken while
792 * lock is dropped in unp_setaddr(). We will return
793 * error == 0 and sun_noname as the peer address.
794 */
795 unp_setaddr(so, nam, true);
796 /* so_lock now points to unp_streamlock */
797 mutex_exit(so2->so_lock);
798 return 0;
799 }
800
801 static int
802 unp_ioctl(struct socket *so, u_long cmd, void *nam, struct ifnet *ifp)
803 {
804 return EOPNOTSUPP;
805 }
806
807 static int
808 unp_stat(struct socket *so, struct stat *ub)
809 {
810 struct unpcb *unp;
811 struct socket *so2;
812
813 KASSERT(solocked(so));
814
815 unp = sotounpcb(so);
816 if (unp == NULL)
817 return EINVAL;
818
819 ub->st_blksize = so->so_snd.sb_hiwat;
820 switch (so->so_type) {
821 case SOCK_SEQPACKET: /* FALLTHROUGH */
822 case SOCK_STREAM:
823 if (unp->unp_conn == 0)
824 break;
825
826 so2 = unp->unp_conn->unp_socket;
827 KASSERT(solocked2(so, so2));
828 ub->st_blksize += so2->so_rcv.sb_cc;
829 break;
830 default:
831 break;
832 }
833 ub->st_dev = NODEV;
834 if (unp->unp_ino == 0)
835 unp->unp_ino = unp_ino++;
836 ub->st_atimespec = ub->st_mtimespec = ub->st_ctimespec = unp->unp_ctime;
837 ub->st_ino = unp->unp_ino;
838 return (0);
839 }
840
841 static int
842 unp_peeraddr(struct socket *so, struct sockaddr *nam)
843 {
844 KASSERT(solocked(so));
845 KASSERT(sotounpcb(so) != NULL);
846 KASSERT(nam != NULL);
847
848 unp_setaddr(so, nam, true);
849 return 0;
850 }
851
852 static int
853 unp_sockaddr(struct socket *so, struct sockaddr *nam)
854 {
855 KASSERT(solocked(so));
856 KASSERT(sotounpcb(so) != NULL);
857 KASSERT(nam != NULL);
858
859 unp_setaddr(so, nam, false);
860 return 0;
861 }
862
863 /*
864 * we only need to perform this allocation until syscalls other than
865 * bind are adjusted to use sockaddr_big.
866 */
867 static struct sockaddr_un *
868 makeun_sb(struct sockaddr *nam, size_t *addrlen)
869 {
870 struct sockaddr_un *sun;
871
872 *addrlen = nam->sa_len + 1;
873 sun = malloc(*addrlen, M_SONAME, M_WAITOK);
874 memcpy(sun, nam, nam->sa_len);
875 *(((char *)sun) + nam->sa_len) = '\0';
876 return sun;
877 }
878
879 static int
880 unp_bind(struct socket *so, struct sockaddr *nam, struct lwp *l)
881 {
882 struct sockaddr_un *sun;
883 struct unpcb *unp;
884 vnode_t *vp;
885 struct vattr vattr;
886 size_t addrlen;
887 int error;
888 struct pathbuf *pb;
889 struct nameidata nd;
890 proc_t *p;
891
892 unp = sotounpcb(so);
893
894 KASSERT(solocked(so));
895 KASSERT(unp != NULL);
896 KASSERT(nam != NULL);
897
898 if (unp->unp_vnode != NULL)
899 return (EINVAL);
900 if ((unp->unp_flags & UNP_BUSY) != 0) {
901 /*
902 * EALREADY may not be strictly accurate, but since this
903 * is a major application error it's hardly a big deal.
904 */
905 return (EALREADY);
906 }
907 unp->unp_flags |= UNP_BUSY;
908 sounlock(so);
909
910 p = l->l_proc;
911 sun = makeun_sb(nam, &addrlen);
912
913 pb = pathbuf_create(sun->sun_path);
914 if (pb == NULL) {
915 error = ENOMEM;
916 goto bad;
917 }
918 NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, pb);
919
920 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
921 if ((error = namei(&nd)) != 0) {
922 pathbuf_destroy(pb);
923 goto bad;
924 }
925 vp = nd.ni_vp;
926 if (vp != NULL) {
927 VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
928 if (nd.ni_dvp == vp)
929 vrele(nd.ni_dvp);
930 else
931 vput(nd.ni_dvp);
932 vrele(vp);
933 pathbuf_destroy(pb);
934 error = EADDRINUSE;
935 goto bad;
936 }
937 vattr_null(&vattr);
938 vattr.va_type = VSOCK;
939 vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
940 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
941 if (error) {
942 vput(nd.ni_dvp);
943 pathbuf_destroy(pb);
944 goto bad;
945 }
946 vp = nd.ni_vp;
947 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
948 solock(so);
949 vp->v_socket = unp->unp_socket;
950 unp->unp_vnode = vp;
951 unp->unp_addrlen = addrlen;
952 unp->unp_addr = sun;
953 unp->unp_connid.unp_pid = p->p_pid;
954 unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
955 unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
956 unp->unp_flags |= UNP_EIDSBIND;
957 VOP_UNLOCK(vp);
958 vput(nd.ni_dvp);
959 unp->unp_flags &= ~UNP_BUSY;
960 pathbuf_destroy(pb);
961 return (0);
962
963 bad:
964 free(sun, M_SONAME);
965 solock(so);
966 unp->unp_flags &= ~UNP_BUSY;
967 return (error);
968 }
969
970 static int
971 unp_listen(struct socket *so, struct lwp *l)
972 {
973 struct unpcb *unp = sotounpcb(so);
974
975 KASSERT(solocked(so));
976 KASSERT(unp != NULL);
977
978 /*
979 * If the socket can accept a connection, it must be
980 * locked by uipc_lock.
981 */
982 unp_resetlock(so);
983 if (unp->unp_vnode == NULL)
984 return EINVAL;
985
986 return 0;
987 }
988
989 static int
990 unp_disconnect(struct socket *so)
991 {
992 KASSERT(solocked(so));
993 KASSERT(sotounpcb(so) != NULL);
994
995 unp_disconnect1(sotounpcb(so));
996 return 0;
997 }
998
999 static int
1000 unp_shutdown(struct socket *so)
1001 {
1002 KASSERT(solocked(so));
1003 KASSERT(sotounpcb(so) != NULL);
1004
1005 socantsendmore(so);
1006 unp_shutdown1(sotounpcb(so));
1007 return 0;
1008 }
1009
1010 static int
1011 unp_abort(struct socket *so)
1012 {
1013 KASSERT(solocked(so));
1014 KASSERT(sotounpcb(so) != NULL);
1015
1016 (void)unp_drop(sotounpcb(so), ECONNABORTED);
1017 KASSERT(so->so_head == NULL);
1018 KASSERT(so->so_pcb != NULL);
1019 unp_detach(so);
1020 return 0;
1021 }
1022
1023 static int
1024 unp_connect1(struct socket *so, struct socket *so2, struct lwp *l)
1025 {
1026 struct unpcb *unp = sotounpcb(so);
1027 struct unpcb *unp2;
1028
1029 if (so2->so_type != so->so_type)
1030 return EPROTOTYPE;
1031
1032 /*
1033 * All three sockets involved must be locked by same lock:
1034 *
1035 * local endpoint (so)
1036 * remote endpoint (so2)
1037 * queue head (so2->so_head, only if PR_CONNREQUIRED)
1038 */
1039 KASSERT(solocked2(so, so2));
1040 KASSERT(so->so_head == NULL);
1041 if (so2->so_head != NULL) {
1042 KASSERT(so2->so_lock == uipc_lock);
1043 KASSERT(solocked2(so2, so2->so_head));
1044 }
1045
1046 unp2 = sotounpcb(so2);
1047 unp->unp_conn = unp2;
1048
1049 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
1050 unp2->unp_connid.unp_pid = l->l_proc->p_pid;
1051 unp2->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
1052 unp2->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
1053 unp2->unp_flags |= UNP_EIDSVALID;
1054 if (unp2->unp_flags & UNP_EIDSBIND) {
1055 unp->unp_connid = unp2->unp_connid;
1056 unp->unp_flags |= UNP_EIDSVALID;
1057 }
1058 }
1059
1060 switch (so->so_type) {
1061
1062 case SOCK_DGRAM:
1063 unp->unp_nextref = unp2->unp_refs;
1064 unp2->unp_refs = unp;
1065 soisconnected(so);
1066 break;
1067
1068 case SOCK_SEQPACKET: /* FALLTHROUGH */
1069 case SOCK_STREAM:
1070
1071 /*
1072 * SOCK_SEQPACKET and SOCK_STREAM cases are handled by callers
1073 * which are unp_connect() or unp_connect2().
1074 */
1075
1076 break;
1077
1078 default:
1079 panic("unp_connect1");
1080 }
1081
1082 return 0;
1083 }
1084
1085 int
1086 unp_connect(struct socket *so, struct sockaddr *nam, struct lwp *l)
1087 {
1088 struct sockaddr_un *sun;
1089 vnode_t *vp;
1090 struct socket *so2, *so3;
1091 struct unpcb *unp, *unp2, *unp3;
1092 size_t addrlen;
1093 int error;
1094 struct pathbuf *pb;
1095 struct nameidata nd;
1096
1097 unp = sotounpcb(so);
1098 if ((unp->unp_flags & UNP_BUSY) != 0) {
1099 /*
1100 * EALREADY may not be strictly accurate, but since this
1101 * is a major application error it's hardly a big deal.
1102 */
1103 return (EALREADY);
1104 }
1105 unp->unp_flags |= UNP_BUSY;
1106 sounlock(so);
1107
1108 sun = makeun_sb(nam, &addrlen);
1109 pb = pathbuf_create(sun->sun_path);
1110 if (pb == NULL) {
1111 error = ENOMEM;
1112 goto bad2;
1113 }
1114
1115 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
1116
1117 if ((error = namei(&nd)) != 0) {
1118 pathbuf_destroy(pb);
1119 goto bad2;
1120 }
1121 vp = nd.ni_vp;
1122 if (vp->v_type != VSOCK) {
1123 error = ENOTSOCK;
1124 goto bad;
1125 }
1126 pathbuf_destroy(pb);
1127 if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
1128 goto bad;
1129 /* Acquire v_interlock to protect against unp_detach(). */
1130 mutex_enter(vp->v_interlock);
1131 so2 = vp->v_socket;
1132 if (so2 == NULL) {
1133 mutex_exit(vp->v_interlock);
1134 error = ECONNREFUSED;
1135 goto bad;
1136 }
1137 if (so->so_type != so2->so_type) {
1138 mutex_exit(vp->v_interlock);
1139 error = EPROTOTYPE;
1140 goto bad;
1141 }
1142 solock(so);
1143 unp_resetlock(so);
1144 mutex_exit(vp->v_interlock);
1145 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
1146 /*
1147 * This may seem somewhat fragile but is OK: if we can
1148 * see SO_ACCEPTCONN set on the endpoint, then it must
1149 * be locked by the domain-wide uipc_lock.
1150 */
1151 KASSERT((so2->so_options & SO_ACCEPTCONN) == 0 ||
1152 so2->so_lock == uipc_lock);
1153 if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
1154 (so3 = sonewconn(so2, false)) == NULL) {
1155 error = ECONNREFUSED;
1156 sounlock(so);
1157 goto bad;
1158 }
1159 unp2 = sotounpcb(so2);
1160 unp3 = sotounpcb(so3);
1161 if (unp2->unp_addr) {
1162 unp3->unp_addr = malloc(unp2->unp_addrlen,
1163 M_SONAME, M_WAITOK);
1164 memcpy(unp3->unp_addr, unp2->unp_addr,
1165 unp2->unp_addrlen);
1166 unp3->unp_addrlen = unp2->unp_addrlen;
1167 }
1168 unp3->unp_flags = unp2->unp_flags;
1169 so2 = so3;
1170 }
1171 error = unp_connect1(so, so2, l);
1172 if (error) {
1173 sounlock(so);
1174 goto bad;
1175 }
1176 unp2 = sotounpcb(so2);
1177 switch (so->so_type) {
1178
1179 /*
1180 * SOCK_DGRAM and default cases are handled in prior call to
1181 * unp_connect1(), do not add a default case without fixing
1182 * unp_connect1().
1183 */
1184
1185 case SOCK_SEQPACKET: /* FALLTHROUGH */
1186 case SOCK_STREAM:
1187 unp2->unp_conn = unp;
1188 if ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT)
1189 soisconnecting(so);
1190 else
1191 soisconnected(so);
1192 soisconnected(so2);
1193 /*
1194 * If the connection is fully established, break the
1195 * association with uipc_lock and give the connected
1196 * pair a seperate lock to share.
1197 */
1198 KASSERT(so2->so_head != NULL);
1199 unp_setpeerlocks(so, so2);
1200 break;
1201
1202 }
1203 sounlock(so);
1204 bad:
1205 vput(vp);
1206 bad2:
1207 free(sun, M_SONAME);
1208 solock(so);
1209 unp->unp_flags &= ~UNP_BUSY;
1210 return (error);
1211 }
1212
1213 int
1214 unp_connect2(struct socket *so, struct socket *so2)
1215 {
1216 struct unpcb *unp = sotounpcb(so);
1217 struct unpcb *unp2;
1218 int error = 0;
1219
1220 KASSERT(solocked2(so, so2));
1221
1222 error = unp_connect1(so, so2, curlwp);
1223 if (error)
1224 return error;
1225
1226 unp2 = sotounpcb(so2);
1227 switch (so->so_type) {
1228
1229 /*
1230 * SOCK_DGRAM and default cases are handled in prior call to
1231 * unp_connect1(), do not add a default case without fixing
1232 * unp_connect1().
1233 */
1234
1235 case SOCK_SEQPACKET: /* FALLTHROUGH */
1236 case SOCK_STREAM:
1237 unp2->unp_conn = unp;
1238 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
1239 unp->unp_connid = unp2->unp_connid;
1240 unp->unp_flags |= UNP_EIDSVALID;
1241 }
1242 soisconnected(so);
1243 soisconnected(so2);
1244 break;
1245
1246 }
1247 return error;
1248 }
1249
1250 static void
1251 unp_disconnect1(struct unpcb *unp)
1252 {
1253 struct unpcb *unp2 = unp->unp_conn;
1254 struct socket *so;
1255
1256 if (unp2 == 0)
1257 return;
1258 unp->unp_conn = 0;
1259 so = unp->unp_socket;
1260 switch (so->so_type) {
1261 case SOCK_DGRAM:
1262 if (unp2->unp_refs == unp)
1263 unp2->unp_refs = unp->unp_nextref;
1264 else {
1265 unp2 = unp2->unp_refs;
1266 for (;;) {
1267 KASSERT(solocked2(so, unp2->unp_socket));
1268 if (unp2 == 0)
1269 panic("unp_disconnect1");
1270 if (unp2->unp_nextref == unp)
1271 break;
1272 unp2 = unp2->unp_nextref;
1273 }
1274 unp2->unp_nextref = unp->unp_nextref;
1275 }
1276 unp->unp_nextref = 0;
1277 so->so_state &= ~SS_ISCONNECTED;
1278 break;
1279
1280 case SOCK_SEQPACKET: /* FALLTHROUGH */
1281 case SOCK_STREAM:
1282 KASSERT(solocked2(so, unp2->unp_socket));
1283 soisdisconnected(so);
1284 unp2->unp_conn = 0;
1285 soisdisconnected(unp2->unp_socket);
1286 break;
1287 }
1288 }
1289
1290 static void
1291 unp_shutdown1(struct unpcb *unp)
1292 {
1293 struct socket *so;
1294
1295 switch(unp->unp_socket->so_type) {
1296 case SOCK_SEQPACKET: /* FALLTHROUGH */
1297 case SOCK_STREAM:
1298 if (unp->unp_conn && (so = unp->unp_conn->unp_socket))
1299 socantrcvmore(so);
1300 break;
1301 default:
1302 break;
1303 }
1304 }
1305
1306 static bool
1307 unp_drop(struct unpcb *unp, int errno)
1308 {
1309 struct socket *so = unp->unp_socket;
1310
1311 KASSERT(solocked(so));
1312
1313 so->so_error = errno;
1314 unp_disconnect1(unp);
1315 if (so->so_head) {
1316 so->so_pcb = NULL;
1317 /* sofree() drops the socket lock */
1318 sofree(so);
1319 unp_free(unp);
1320 return true;
1321 }
1322 return false;
1323 }
1324
1325 #ifdef notdef
1326 unp_drain(void)
1327 {
1328
1329 }
1330 #endif
1331
1332 int
1333 unp_externalize(struct mbuf *rights, struct lwp *l, int flags)
1334 {
1335 struct cmsghdr * const cm = mtod(rights, struct cmsghdr *);
1336 struct proc * const p = l->l_proc;
1337 file_t **rp;
1338 int error = 0;
1339
1340 const size_t nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
1341 sizeof(file_t *);
1342 if (nfds == 0)
1343 goto noop;
1344
1345 int * const fdp = kmem_alloc(nfds * sizeof(int), KM_SLEEP);
1346 rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
1347
1348 /* Make sure the recipient should be able to see the files.. */
1349 rp = (file_t **)CMSG_DATA(cm);
1350 for (size_t i = 0; i < nfds; i++) {
1351 file_t * const fp = *rp++;
1352 if (fp == NULL) {
1353 error = EINVAL;
1354 goto out;
1355 }
1356 /*
1357 * If we are in a chroot'ed directory, and
1358 * someone wants to pass us a directory, make
1359 * sure it's inside the subtree we're allowed
1360 * to access.
1361 */
1362 if (p->p_cwdi->cwdi_rdir != NULL && fp->f_type == DTYPE_VNODE) {
1363 vnode_t *vp = fp->f_vnode;
1364 if ((vp->v_type == VDIR) &&
1365 !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
1366 error = EPERM;
1367 goto out;
1368 }
1369 }
1370 }
1371
1372 restart:
1373 /*
1374 * First loop -- allocate file descriptor table slots for the
1375 * new files.
1376 */
1377 for (size_t i = 0; i < nfds; i++) {
1378 if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
1379 /*
1380 * Back out what we've done so far.
1381 */
1382 while (i-- > 0) {
1383 fd_abort(p, NULL, fdp[i]);
1384 }
1385 if (error == ENOSPC) {
1386 fd_tryexpand(p);
1387 error = 0;
1388 goto restart;
1389 }
1390 /*
1391 * This is the error that has historically
1392 * been returned, and some callers may
1393 * expect it.
1394 */
1395 error = EMSGSIZE;
1396 goto out;
1397 }
1398 }
1399
1400 /*
1401 * Now that adding them has succeeded, update all of the
1402 * file passing state and affix the descriptors.
1403 */
1404 rp = (file_t **)CMSG_DATA(cm);
1405 int *ofdp = (int *)CMSG_DATA(cm);
1406 for (size_t i = 0; i < nfds; i++) {
1407 file_t * const fp = *rp++;
1408 const int fd = fdp[i];
1409 atomic_dec_uint(&unp_rights);
1410 fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
1411 fd_affix(p, fp, fd);
1412 /*
1413 * Done with this file pointer, replace it with a fd;
1414 */
1415 *ofdp++ = fd;
1416 mutex_enter(&fp->f_lock);
1417 fp->f_msgcount--;
1418 mutex_exit(&fp->f_lock);
1419 /*
1420 * Note that fd_affix() adds a reference to the file.
1421 * The file may already have been closed by another
1422 * LWP in the process, so we must drop the reference
1423 * added by unp_internalize() with closef().
1424 */
1425 closef(fp);
1426 }
1427
1428 /*
1429 * Adjust length, in case of transition from large file_t
1430 * pointers to ints.
1431 */
1432 if (sizeof(file_t *) != sizeof(int)) {
1433 cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
1434 rights->m_len = CMSG_SPACE(nfds * sizeof(int));
1435 }
1436 out:
1437 if (__predict_false(error != 0)) {
1438 file_t **const fpp = (file_t **)CMSG_DATA(cm);
1439 for (size_t i = 0; i < nfds; i++)
1440 unp_discard_now(fpp[i]);
1441 /*
1442 * Truncate the array so that nobody will try to interpret
1443 * what is now garbage in it.
1444 */
1445 cm->cmsg_len = CMSG_LEN(0);
1446 rights->m_len = CMSG_SPACE(0);
1447 }
1448 rw_exit(&p->p_cwdi->cwdi_lock);
1449 kmem_free(fdp, nfds * sizeof(int));
1450
1451 noop:
1452 /*
1453 * Don't disclose kernel memory in the alignment space.
1454 */
1455 KASSERT(cm->cmsg_len <= rights->m_len);
1456 memset(&mtod(rights, char *)[cm->cmsg_len], 0, rights->m_len -
1457 cm->cmsg_len);
1458 return error;
1459 }
1460
1461 static int
1462 unp_internalize(struct mbuf **controlp)
1463 {
1464 filedesc_t *fdescp = curlwp->l_fd;
1465 struct mbuf *control = *controlp;
1466 struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
1467 file_t **rp, **files;
1468 file_t *fp;
1469 int i, fd, *fdp;
1470 int nfds, error;
1471 u_int maxmsg;
1472
1473 error = 0;
1474 newcm = NULL;
1475
1476 /* Sanity check the control message header. */
1477 if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
1478 cm->cmsg_len > control->m_len ||
1479 cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
1480 return (EINVAL);
1481
1482 /*
1483 * Verify that the file descriptors are valid, and acquire
1484 * a reference to each.
1485 */
1486 nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
1487 fdp = (int *)CMSG_DATA(cm);
1488 maxmsg = maxfiles / unp_rights_ratio;
1489 for (i = 0; i < nfds; i++) {
1490 fd = *fdp++;
1491 if (atomic_inc_uint_nv(&unp_rights) > maxmsg) {
1492 atomic_dec_uint(&unp_rights);
1493 nfds = i;
1494 error = EAGAIN;
1495 goto out;
1496 }
1497 if ((fp = fd_getfile(fd)) == NULL
1498 || fp->f_type == DTYPE_KQUEUE) {
1499 if (fp)
1500 fd_putfile(fd);
1501 atomic_dec_uint(&unp_rights);
1502 nfds = i;
1503 error = EBADF;
1504 goto out;
1505 }
1506 }
1507
1508 /* Allocate new space and copy header into it. */
1509 newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
1510 if (newcm == NULL) {
1511 error = E2BIG;
1512 goto out;
1513 }
1514 memcpy(newcm, cm, sizeof(struct cmsghdr));
1515 files = (file_t **)CMSG_DATA(newcm);
1516
1517 /*
1518 * Transform the file descriptors into file_t pointers, in
1519 * reverse order so that if pointers are bigger than ints, the
1520 * int won't get until we're done. No need to lock, as we have
1521 * already validated the descriptors with fd_getfile().
1522 */
1523 fdp = (int *)CMSG_DATA(cm) + nfds;
1524 rp = files + nfds;
1525 for (i = 0; i < nfds; i++) {
1526 fp = fdescp->fd_dt->dt_ff[*--fdp]->ff_file;
1527 KASSERT(fp != NULL);
1528 mutex_enter(&fp->f_lock);
1529 *--rp = fp;
1530 fp->f_count++;
1531 fp->f_msgcount++;
1532 mutex_exit(&fp->f_lock);
1533 }
1534
1535 out:
1536 /* Release descriptor references. */
1537 fdp = (int *)CMSG_DATA(cm);
1538 for (i = 0; i < nfds; i++) {
1539 fd_putfile(*fdp++);
1540 if (error != 0) {
1541 atomic_dec_uint(&unp_rights);
1542 }
1543 }
1544
1545 if (error == 0) {
1546 if (control->m_flags & M_EXT) {
1547 m_freem(control);
1548 *controlp = control = m_get(M_WAIT, MT_CONTROL);
1549 }
1550 MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
1551 M_MBUF, NULL, NULL);
1552 cm = newcm;
1553 /*
1554 * Adjust message & mbuf to note amount of space
1555 * actually used.
1556 */
1557 cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
1558 control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
1559 }
1560
1561 return error;
1562 }
1563
1564 struct mbuf *
1565 unp_addsockcred(struct lwp *l, struct mbuf *control)
1566 {
1567 struct sockcred *sc;
1568 struct mbuf *m;
1569 void *p;
1570
1571 m = sbcreatecontrol1(&p, SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)),
1572 SCM_CREDS, SOL_SOCKET, M_WAITOK);
1573 if (m == NULL)
1574 return control;
1575
1576 sc = p;
1577 sc->sc_uid = kauth_cred_getuid(l->l_cred);
1578 sc->sc_euid = kauth_cred_geteuid(l->l_cred);
1579 sc->sc_gid = kauth_cred_getgid(l->l_cred);
1580 sc->sc_egid = kauth_cred_getegid(l->l_cred);
1581 sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
1582
1583 for (int i = 0; i < sc->sc_ngroups; i++)
1584 sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
1585
1586 return m_add(control, m);
1587 }
1588
1589 /*
1590 * Do a mark-sweep GC of files in the system, to free up any which are
1591 * caught in flight to an about-to-be-closed socket. Additionally,
1592 * process deferred file closures.
1593 */
1594 static void
1595 unp_gc(file_t *dp)
1596 {
1597 extern struct domain unixdomain;
1598 file_t *fp, *np;
1599 struct socket *so, *so1;
1600 u_int i, oflags, rflags;
1601 bool didwork;
1602
1603 KASSERT(curlwp == unp_thread_lwp);
1604 KASSERT(mutex_owned(&filelist_lock));
1605
1606 /*
1607 * First, process deferred file closures.
1608 */
1609 while (!SLIST_EMPTY(&unp_thread_discard)) {
1610 fp = SLIST_FIRST(&unp_thread_discard);
1611 KASSERT(fp->f_unpcount > 0);
1612 KASSERT(fp->f_count > 0);
1613 KASSERT(fp->f_msgcount > 0);
1614 KASSERT(fp->f_count >= fp->f_unpcount);
1615 KASSERT(fp->f_count >= fp->f_msgcount);
1616 KASSERT(fp->f_msgcount >= fp->f_unpcount);
1617 SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist);
1618 i = fp->f_unpcount;
1619 fp->f_unpcount = 0;
1620 mutex_exit(&filelist_lock);
1621 for (; i != 0; i--) {
1622 unp_discard_now(fp);
1623 }
1624 mutex_enter(&filelist_lock);
1625 }
1626
1627 /*
1628 * Clear mark bits. Ensure that we don't consider new files
1629 * entering the file table during this loop (they will not have
1630 * FSCAN set).
1631 */
1632 unp_defer = 0;
1633 LIST_FOREACH(fp, &filehead, f_list) {
1634 for (oflags = fp->f_flag;; oflags = rflags) {
1635 rflags = atomic_cas_uint(&fp->f_flag, oflags,
1636 (oflags | FSCAN) & ~(FMARK|FDEFER));
1637 if (__predict_true(oflags == rflags)) {
1638 break;
1639 }
1640 }
1641 }
1642
1643 /*
1644 * Iterate over the set of sockets, marking ones believed (based on
1645 * refcount) to be referenced from a process, and marking for rescan
1646 * sockets which are queued on a socket. Recan continues descending
1647 * and searching for sockets referenced by sockets (FDEFER), until
1648 * there are no more socket->socket references to be discovered.
1649 */
1650 do {
1651 didwork = false;
1652 for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1653 KASSERT(mutex_owned(&filelist_lock));
1654 np = LIST_NEXT(fp, f_list);
1655 mutex_enter(&fp->f_lock);
1656 if ((fp->f_flag & FDEFER) != 0) {
1657 atomic_and_uint(&fp->f_flag, ~FDEFER);
1658 unp_defer--;
1659 if (fp->f_count == 0) {
1660 /*
1661 * XXX: closef() doesn't pay attention
1662 * to FDEFER
1663 */
1664 mutex_exit(&fp->f_lock);
1665 continue;
1666 }
1667 } else {
1668 if (fp->f_count == 0 ||
1669 (fp->f_flag & FMARK) != 0 ||
1670 fp->f_count == fp->f_msgcount ||
1671 fp->f_unpcount != 0) {
1672 mutex_exit(&fp->f_lock);
1673 continue;
1674 }
1675 }
1676 atomic_or_uint(&fp->f_flag, FMARK);
1677
1678 if (fp->f_type != DTYPE_SOCKET ||
1679 (so = fp->f_socket) == NULL ||
1680 so->so_proto->pr_domain != &unixdomain ||
1681 (so->so_proto->pr_flags & PR_RIGHTS) == 0) {
1682 mutex_exit(&fp->f_lock);
1683 continue;
1684 }
1685
1686 /* Gain file ref, mark our position, and unlock. */
1687 didwork = true;
1688 LIST_INSERT_AFTER(fp, dp, f_list);
1689 fp->f_count++;
1690 mutex_exit(&fp->f_lock);
1691 mutex_exit(&filelist_lock);
1692
1693 /*
1694 * Mark files referenced from sockets queued on the
1695 * accept queue as well.
1696 */
1697 solock(so);
1698 unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
1699 if ((so->so_options & SO_ACCEPTCONN) != 0) {
1700 TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
1701 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1702 }
1703 TAILQ_FOREACH(so1, &so->so_q, so_qe) {
1704 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1705 }
1706 }
1707 sounlock(so);
1708
1709 /* Re-lock and restart from where we left off. */
1710 closef(fp);
1711 mutex_enter(&filelist_lock);
1712 np = LIST_NEXT(dp, f_list);
1713 LIST_REMOVE(dp, f_list);
1714 }
1715 /*
1716 * Bail early if we did nothing in the loop above. Could
1717 * happen because of concurrent activity causing unp_defer
1718 * to get out of sync.
1719 */
1720 } while (unp_defer != 0 && didwork);
1721
1722 /*
1723 * Sweep pass.
1724 *
1725 * We grab an extra reference to each of the files that are
1726 * not otherwise accessible and then free the rights that are
1727 * stored in messages on them.
1728 */
1729 for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1730 KASSERT(mutex_owned(&filelist_lock));
1731 np = LIST_NEXT(fp, f_list);
1732 mutex_enter(&fp->f_lock);
1733
1734 /*
1735 * Ignore non-sockets.
1736 * Ignore dead sockets, or sockets with pending close.
1737 * Ignore sockets obviously referenced elsewhere.
1738 * Ignore sockets marked as referenced by our scan.
1739 * Ignore new sockets that did not exist during the scan.
1740 */
1741 if (fp->f_type != DTYPE_SOCKET ||
1742 fp->f_count == 0 || fp->f_unpcount != 0 ||
1743 fp->f_count != fp->f_msgcount ||
1744 (fp->f_flag & (FMARK | FSCAN)) != FSCAN) {
1745 mutex_exit(&fp->f_lock);
1746 continue;
1747 }
1748
1749 /* Gain file ref, mark our position, and unlock. */
1750 LIST_INSERT_AFTER(fp, dp, f_list);
1751 fp->f_count++;
1752 mutex_exit(&fp->f_lock);
1753 mutex_exit(&filelist_lock);
1754
1755 /*
1756 * Flush all data from the socket's receive buffer.
1757 * This will cause files referenced only by the
1758 * socket to be queued for close.
1759 */
1760 so = fp->f_socket;
1761 solock(so);
1762 sorflush(so);
1763 sounlock(so);
1764
1765 /* Re-lock and restart from where we left off. */
1766 closef(fp);
1767 mutex_enter(&filelist_lock);
1768 np = LIST_NEXT(dp, f_list);
1769 LIST_REMOVE(dp, f_list);
1770 }
1771 }
1772
1773 /*
1774 * Garbage collector thread. While SCM_RIGHTS messages are in transit,
1775 * wake once per second to garbage collect. Run continually while we
1776 * have deferred closes to process.
1777 */
1778 static void
1779 unp_thread(void *cookie)
1780 {
1781 file_t *dp;
1782
1783 /* Allocate a dummy file for our scans. */
1784 if ((dp = fgetdummy()) == NULL) {
1785 panic("unp_thread");
1786 }
1787
1788 mutex_enter(&filelist_lock);
1789 for (;;) {
1790 KASSERT(mutex_owned(&filelist_lock));
1791 if (SLIST_EMPTY(&unp_thread_discard)) {
1792 if (unp_rights != 0) {
1793 (void)cv_timedwait(&unp_thread_cv,
1794 &filelist_lock, hz);
1795 } else {
1796 cv_wait(&unp_thread_cv, &filelist_lock);
1797 }
1798 }
1799 unp_gc(dp);
1800 }
1801 /* NOTREACHED */
1802 }
1803
1804 /*
1805 * Kick the garbage collector into action if there is something for
1806 * it to process.
1807 */
1808 static void
1809 unp_thread_kick(void)
1810 {
1811
1812 if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) {
1813 mutex_enter(&filelist_lock);
1814 cv_signal(&unp_thread_cv);
1815 mutex_exit(&filelist_lock);
1816 }
1817 }
1818
1819 void
1820 unp_dispose(struct mbuf *m)
1821 {
1822
1823 if (m)
1824 unp_scan(m, unp_discard_later, 1);
1825 }
1826
1827 void
1828 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
1829 {
1830 struct mbuf *m;
1831 file_t **rp, *fp;
1832 struct cmsghdr *cm;
1833 int i, qfds;
1834
1835 while (m0) {
1836 for (m = m0; m; m = m->m_next) {
1837 if (m->m_type != MT_CONTROL ||
1838 m->m_len < sizeof(*cm)) {
1839 continue;
1840 }
1841 cm = mtod(m, struct cmsghdr *);
1842 if (cm->cmsg_level != SOL_SOCKET ||
1843 cm->cmsg_type != SCM_RIGHTS)
1844 continue;
1845 qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
1846 / sizeof(file_t *);
1847 rp = (file_t **)CMSG_DATA(cm);
1848 for (i = 0; i < qfds; i++) {
1849 fp = *rp;
1850 if (discard) {
1851 *rp = 0;
1852 }
1853 (*op)(fp);
1854 rp++;
1855 }
1856 }
1857 m0 = m0->m_nextpkt;
1858 }
1859 }
1860
1861 void
1862 unp_mark(file_t *fp)
1863 {
1864
1865 if (fp == NULL)
1866 return;
1867
1868 /* If we're already deferred, don't screw up the defer count */
1869 mutex_enter(&fp->f_lock);
1870 if (fp->f_flag & (FMARK | FDEFER)) {
1871 mutex_exit(&fp->f_lock);
1872 return;
1873 }
1874
1875 /*
1876 * Minimize the number of deferrals... Sockets are the only type of
1877 * file which can hold references to another file, so just mark
1878 * other files, and defer unmarked sockets for the next pass.
1879 */
1880 if (fp->f_type == DTYPE_SOCKET) {
1881 unp_defer++;
1882 KASSERT(fp->f_count != 0);
1883 atomic_or_uint(&fp->f_flag, FDEFER);
1884 } else {
1885 atomic_or_uint(&fp->f_flag, FMARK);
1886 }
1887 mutex_exit(&fp->f_lock);
1888 }
1889
1890 static void
1891 unp_discard_now(file_t *fp)
1892 {
1893
1894 if (fp == NULL)
1895 return;
1896
1897 KASSERT(fp->f_count > 0);
1898 KASSERT(fp->f_msgcount > 0);
1899
1900 mutex_enter(&fp->f_lock);
1901 fp->f_msgcount--;
1902 mutex_exit(&fp->f_lock);
1903 atomic_dec_uint(&unp_rights);
1904 (void)closef(fp);
1905 }
1906
1907 static void
1908 unp_discard_later(file_t *fp)
1909 {
1910
1911 if (fp == NULL)
1912 return;
1913
1914 KASSERT(fp->f_count > 0);
1915 KASSERT(fp->f_msgcount > 0);
1916
1917 mutex_enter(&filelist_lock);
1918 if (fp->f_unpcount++ == 0) {
1919 SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist);
1920 }
1921 mutex_exit(&filelist_lock);
1922 }
1923
1924 const struct pr_usrreqs unp_usrreqs = {
1925 .pr_attach = unp_attach,
1926 .pr_detach = unp_detach,
1927 .pr_accept = unp_accept,
1928 .pr_bind = unp_bind,
1929 .pr_listen = unp_listen,
1930 .pr_connect = unp_connect,
1931 .pr_connect2 = unp_connect2,
1932 .pr_disconnect = unp_disconnect,
1933 .pr_shutdown = unp_shutdown,
1934 .pr_abort = unp_abort,
1935 .pr_ioctl = unp_ioctl,
1936 .pr_stat = unp_stat,
1937 .pr_peeraddr = unp_peeraddr,
1938 .pr_sockaddr = unp_sockaddr,
1939 .pr_rcvd = unp_rcvd,
1940 .pr_recvoob = unp_recvoob,
1941 .pr_send = unp_send,
1942 .pr_sendoob = unp_sendoob,
1943 };
1944