uipc_usrreq.c revision 1.183 1 /* $NetBSD: uipc_usrreq.c,v 1.183 2018/02/17 20:19:36 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2000, 2004, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
62 */
63
64 /*
65 * Copyright (c) 1997 Christopher G. Demetriou. All rights reserved.
66 *
67 * Redistribution and use in source and binary forms, with or without
68 * modification, are permitted provided that the following conditions
69 * are met:
70 * 1. Redistributions of source code must retain the above copyright
71 * notice, this list of conditions and the following disclaimer.
72 * 2. Redistributions in binary form must reproduce the above copyright
73 * notice, this list of conditions and the following disclaimer in the
74 * documentation and/or other materials provided with the distribution.
75 * 3. All advertising materials mentioning features or use of this software
76 * must display the following acknowledgement:
77 * This product includes software developed by the University of
78 * California, Berkeley and its contributors.
79 * 4. Neither the name of the University nor the names of its contributors
80 * may be used to endorse or promote products derived from this software
81 * without specific prior written permission.
82 *
83 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
84 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
85 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
86 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
87 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
88 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
89 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
90 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
91 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
92 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
93 * SUCH DAMAGE.
94 *
95 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
96 */
97
98 #include <sys/cdefs.h>
99 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.183 2018/02/17 20:19:36 christos Exp $");
100
101 #ifdef _KERNEL_OPT
102 #include "opt_compat_netbsd.h"
103 #endif
104
105 #include <sys/param.h>
106 #include <sys/systm.h>
107 #include <sys/proc.h>
108 #include <sys/filedesc.h>
109 #include <sys/domain.h>
110 #include <sys/protosw.h>
111 #include <sys/socket.h>
112 #include <sys/socketvar.h>
113 #include <sys/unpcb.h>
114 #include <sys/un.h>
115 #include <sys/namei.h>
116 #include <sys/vnode.h>
117 #include <sys/file.h>
118 #include <sys/stat.h>
119 #include <sys/mbuf.h>
120 #include <sys/kauth.h>
121 #include <sys/kmem.h>
122 #include <sys/atomic.h>
123 #include <sys/uidinfo.h>
124 #include <sys/kernel.h>
125 #include <sys/kthread.h>
126
127 #ifdef COMPAT_70
128 #include <compat/sys/socket.h>
129 #endif
130
131 /*
132 * Unix communications domain.
133 *
134 * TODO:
135 * RDM
136 * rethink name space problems
137 * need a proper out-of-band
138 *
139 * Notes on locking:
140 *
141 * The generic rules noted in uipc_socket2.c apply. In addition:
142 *
143 * o We have a global lock, uipc_lock.
144 *
145 * o All datagram sockets are locked by uipc_lock.
146 *
147 * o For stream socketpairs, the two endpoints are created sharing the same
148 * independent lock. Sockets presented to PRU_CONNECT2 must already have
149 * matching locks.
150 *
151 * o Stream sockets created via socket() start life with their own
152 * independent lock.
153 *
154 * o Stream connections to a named endpoint are slightly more complicated.
155 * Sockets that have called listen() have their lock pointer mutated to
156 * the global uipc_lock. When establishing a connection, the connecting
157 * socket also has its lock mutated to uipc_lock, which matches the head
158 * (listening socket). We create a new socket for accept() to return, and
159 * that also shares the head's lock. Until the connection is completely
160 * done on both ends, all three sockets are locked by uipc_lock. Once the
161 * connection is complete, the association with the head's lock is broken.
162 * The connecting socket and the socket returned from accept() have their
163 * lock pointers mutated away from uipc_lock, and back to the connecting
164 * socket's original, independent lock. The head continues to be locked
165 * by uipc_lock.
166 *
167 * o If uipc_lock is determined to be a significant source of contention,
168 * it could easily be hashed out. It is difficult to simply make it an
169 * independent lock because of visibility / garbage collection issues:
170 * if a socket has been associated with a lock at any point, that lock
171 * must remain valid until the socket is no longer visible in the system.
172 * The lock must not be freed or otherwise destroyed until any sockets
173 * that had referenced it have also been destroyed.
174 */
175 const struct sockaddr_un sun_noname = {
176 .sun_len = offsetof(struct sockaddr_un, sun_path),
177 .sun_family = AF_LOCAL,
178 };
179 ino_t unp_ino; /* prototype for fake inode numbers */
180
181 static struct mbuf * unp_addsockcred(struct lwp *, struct mbuf *);
182 static void unp_discard_later(file_t *);
183 static void unp_discard_now(file_t *);
184 static void unp_disconnect1(struct unpcb *);
185 static bool unp_drop(struct unpcb *, int);
186 static int unp_internalize(struct mbuf **);
187 static void unp_mark(file_t *);
188 static void unp_scan(struct mbuf *, void (*)(file_t *), int);
189 static void unp_shutdown1(struct unpcb *);
190 static void unp_thread(void *);
191 static void unp_thread_kick(void);
192
193 static kmutex_t *uipc_lock;
194
195 static kcondvar_t unp_thread_cv;
196 static lwp_t *unp_thread_lwp;
197 static SLIST_HEAD(,file) unp_thread_discard;
198 static int unp_defer;
199
200 /*
201 * Initialize Unix protocols.
202 */
203 void
204 uipc_init(void)
205 {
206 int error;
207
208 uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
209 cv_init(&unp_thread_cv, "unpgc");
210
211 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread,
212 NULL, &unp_thread_lwp, "unpgc");
213 if (error != 0)
214 panic("uipc_init %d", error);
215 }
216
217 static void
218 unp_connid(struct lwp *l, struct unpcb *unp, int flags)
219 {
220 unp->unp_connid.unp_pid = l->l_proc->p_pid;
221 unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
222 unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
223 unp->unp_flags |= flags;
224 }
225
226 /*
227 * A connection succeeded: disassociate both endpoints from the head's
228 * lock, and make them share their own lock. There is a race here: for
229 * a very brief time one endpoint will be locked by a different lock
230 * than the other end. However, since the current thread holds the old
231 * lock (the listening socket's lock, the head) access can still only be
232 * made to one side of the connection.
233 */
234 static void
235 unp_setpeerlocks(struct socket *so, struct socket *so2)
236 {
237 struct unpcb *unp;
238 kmutex_t *lock;
239
240 KASSERT(solocked2(so, so2));
241
242 /*
243 * Bail out if either end of the socket is not yet fully
244 * connected or accepted. We only break the lock association
245 * with the head when the pair of sockets stand completely
246 * on their own.
247 */
248 KASSERT(so->so_head == NULL);
249 if (so2->so_head != NULL)
250 return;
251
252 /*
253 * Drop references to old lock. A third reference (from the
254 * queue head) must be held as we still hold its lock. Bonus:
255 * we don't need to worry about garbage collecting the lock.
256 */
257 lock = so->so_lock;
258 KASSERT(lock == uipc_lock);
259 mutex_obj_free(lock);
260 mutex_obj_free(lock);
261
262 /*
263 * Grab stream lock from the initiator and share between the two
264 * endpoints. Issue memory barrier to ensure all modifications
265 * become globally visible before the lock change. so2 is
266 * assumed not to have a stream lock, because it was created
267 * purely for the server side to accept this connection and
268 * started out life using the domain-wide lock.
269 */
270 unp = sotounpcb(so);
271 KASSERT(unp->unp_streamlock != NULL);
272 KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
273 lock = unp->unp_streamlock;
274 unp->unp_streamlock = NULL;
275 mutex_obj_hold(lock);
276 membar_exit();
277 /*
278 * possible race if lock is not held - see comment in
279 * uipc_usrreq(PRU_ACCEPT).
280 */
281 KASSERT(mutex_owned(lock));
282 solockreset(so, lock);
283 solockreset(so2, lock);
284 }
285
286 /*
287 * Reset a socket's lock back to the domain-wide lock.
288 */
289 static void
290 unp_resetlock(struct socket *so)
291 {
292 kmutex_t *olock, *nlock;
293 struct unpcb *unp;
294
295 KASSERT(solocked(so));
296
297 olock = so->so_lock;
298 nlock = uipc_lock;
299 if (olock == nlock)
300 return;
301 unp = sotounpcb(so);
302 KASSERT(unp->unp_streamlock == NULL);
303 unp->unp_streamlock = olock;
304 mutex_obj_hold(nlock);
305 mutex_enter(nlock);
306 solockreset(so, nlock);
307 mutex_exit(olock);
308 }
309
310 static void
311 unp_free(struct unpcb *unp)
312 {
313 if (unp->unp_addr)
314 free(unp->unp_addr, M_SONAME);
315 if (unp->unp_streamlock != NULL)
316 mutex_obj_free(unp->unp_streamlock);
317 kmem_free(unp, sizeof(*unp));
318 }
319
320 static int
321 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp)
322 {
323 struct socket *so2;
324 const struct sockaddr_un *sun;
325
326 /* XXX: server side closed the socket */
327 if (unp->unp_conn == NULL)
328 return ECONNREFUSED;
329 so2 = unp->unp_conn->unp_socket;
330
331 KASSERT(solocked(so2));
332
333 if (unp->unp_addr)
334 sun = unp->unp_addr;
335 else
336 sun = &sun_noname;
337 if (unp->unp_conn->unp_flags & UNP_WANTCRED)
338 control = unp_addsockcred(curlwp, control);
339 #ifdef COMPAT_SOCKCRED70
340 if (unp->unp_conn->unp_flags & UNP_OWANTCRED)
341 control = compat_70_unp_addsockcred(curlwp, control);
342 #endif
343 if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
344 control) == 0) {
345 so2->so_rcv.sb_overflowed++;
346 unp_dispose(control);
347 m_freem(control);
348 m_freem(m);
349 return (ENOBUFS);
350 } else {
351 sorwakeup(so2);
352 return (0);
353 }
354 }
355
356 static void
357 unp_setaddr(struct socket *so, struct sockaddr *nam, bool peeraddr)
358 {
359 const struct sockaddr_un *sun = NULL;
360 struct unpcb *unp;
361
362 KASSERT(solocked(so));
363 unp = sotounpcb(so);
364
365 if (peeraddr) {
366 if (unp->unp_conn && unp->unp_conn->unp_addr)
367 sun = unp->unp_conn->unp_addr;
368 } else {
369 if (unp->unp_addr)
370 sun = unp->unp_addr;
371 }
372 if (sun == NULL)
373 sun = &sun_noname;
374
375 memcpy(nam, sun, sun->sun_len);
376 }
377
378 static int
379 unp_rcvd(struct socket *so, int flags, struct lwp *l)
380 {
381 struct unpcb *unp = sotounpcb(so);
382 struct socket *so2;
383 u_int newhiwat;
384
385 KASSERT(solocked(so));
386 KASSERT(unp != NULL);
387
388 switch (so->so_type) {
389
390 case SOCK_DGRAM:
391 panic("uipc 1");
392 /*NOTREACHED*/
393
394 case SOCK_SEQPACKET: /* FALLTHROUGH */
395 case SOCK_STREAM:
396 #define rcv (&so->so_rcv)
397 #define snd (&so2->so_snd)
398 if (unp->unp_conn == 0)
399 break;
400 so2 = unp->unp_conn->unp_socket;
401 KASSERT(solocked2(so, so2));
402 /*
403 * Adjust backpressure on sender
404 * and wakeup any waiting to write.
405 */
406 snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
407 unp->unp_mbcnt = rcv->sb_mbcnt;
408 newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
409 (void)chgsbsize(so2->so_uidinfo,
410 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
411 unp->unp_cc = rcv->sb_cc;
412 sowwakeup(so2);
413 #undef snd
414 #undef rcv
415 break;
416
417 default:
418 panic("uipc 2");
419 }
420
421 return 0;
422 }
423
424 static int
425 unp_recvoob(struct socket *so, struct mbuf *m, int flags)
426 {
427 KASSERT(solocked(so));
428
429 return EOPNOTSUPP;
430 }
431
432 static int
433 unp_send(struct socket *so, struct mbuf *m, struct sockaddr *nam,
434 struct mbuf *control, struct lwp *l)
435 {
436 struct unpcb *unp = sotounpcb(so);
437 int error = 0;
438 u_int newhiwat;
439 struct socket *so2;
440
441 KASSERT(solocked(so));
442 KASSERT(unp != NULL);
443 KASSERT(m != NULL);
444
445 /*
446 * Note: unp_internalize() rejects any control message
447 * other than SCM_RIGHTS, and only allows one. This
448 * has the side-effect of preventing a caller from
449 * forging SCM_CREDS.
450 */
451 if (control) {
452 sounlock(so);
453 error = unp_internalize(&control);
454 solock(so);
455 if (error != 0) {
456 m_freem(control);
457 m_freem(m);
458 return error;
459 }
460 }
461
462 switch (so->so_type) {
463
464 case SOCK_DGRAM: {
465 KASSERT(so->so_lock == uipc_lock);
466 if (nam) {
467 if ((so->so_state & SS_ISCONNECTED) != 0)
468 error = EISCONN;
469 else {
470 /*
471 * Note: once connected, the
472 * socket's lock must not be
473 * dropped until we have sent
474 * the message and disconnected.
475 * This is necessary to prevent
476 * intervening control ops, like
477 * another connection.
478 */
479 error = unp_connect(so, nam, l);
480 }
481 } else {
482 if ((so->so_state & SS_ISCONNECTED) == 0)
483 error = ENOTCONN;
484 }
485 if (error) {
486 unp_dispose(control);
487 m_freem(control);
488 m_freem(m);
489 return error;
490 }
491 error = unp_output(m, control, unp);
492 if (nam)
493 unp_disconnect1(unp);
494 break;
495 }
496
497 case SOCK_SEQPACKET: /* FALLTHROUGH */
498 case SOCK_STREAM:
499 #define rcv (&so2->so_rcv)
500 #define snd (&so->so_snd)
501 if (unp->unp_conn == NULL) {
502 error = ENOTCONN;
503 break;
504 }
505 so2 = unp->unp_conn->unp_socket;
506 KASSERT(solocked2(so, so2));
507 if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
508 /*
509 * Credentials are passed only once on
510 * SOCK_STREAM and SOCK_SEQPACKET.
511 */
512 unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
513 control = unp_addsockcred(l, control);
514 }
515 #ifdef COMPAT_SOCKCRED70
516 if (unp->unp_conn->unp_flags & UNP_OWANTCRED) {
517 /*
518 * Credentials are passed only once on
519 * SOCK_STREAM and SOCK_SEQPACKET.
520 */
521 unp->unp_conn->unp_flags &= ~UNP_OWANTCRED;
522 control = compat_70_unp_addsockcred(l, control);
523 }
524 #endif
525 /*
526 * Send to paired receive port, and then reduce
527 * send buffer hiwater marks to maintain backpressure.
528 * Wake up readers.
529 */
530 if (control) {
531 if (sbappendcontrol(rcv, m, control) != 0)
532 control = NULL;
533 } else {
534 switch(so->so_type) {
535 case SOCK_SEQPACKET:
536 sbappendrecord(rcv, m);
537 break;
538 case SOCK_STREAM:
539 sbappend(rcv, m);
540 break;
541 default:
542 panic("uipc_usrreq");
543 break;
544 }
545 }
546 snd->sb_mbmax -=
547 rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
548 unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
549 newhiwat = snd->sb_hiwat -
550 (rcv->sb_cc - unp->unp_conn->unp_cc);
551 (void)chgsbsize(so->so_uidinfo,
552 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
553 unp->unp_conn->unp_cc = rcv->sb_cc;
554 sorwakeup(so2);
555 #undef snd
556 #undef rcv
557 if (control != NULL) {
558 unp_dispose(control);
559 m_freem(control);
560 }
561 break;
562
563 default:
564 panic("uipc 4");
565 }
566
567 return error;
568 }
569
570 static int
571 unp_sendoob(struct socket *so, struct mbuf *m, struct mbuf * control)
572 {
573 KASSERT(solocked(so));
574
575 m_freem(m);
576 m_freem(control);
577
578 return EOPNOTSUPP;
579 }
580
581 /*
582 * Unix domain socket option processing.
583 */
584 int
585 uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
586 {
587 struct unpcb *unp = sotounpcb(so);
588 int optval = 0, error = 0;
589
590 KASSERT(solocked(so));
591
592 if (sopt->sopt_level != 0) {
593 error = ENOPROTOOPT;
594 } else switch (op) {
595
596 case PRCO_SETOPT:
597 switch (sopt->sopt_name) {
598 case LOCAL_CREDS:
599 case LOCAL_CONNWAIT:
600 #ifdef COMPAT_SOCKCRED70
601 case LOCAL_OCREDS:
602 #endif
603 error = sockopt_getint(sopt, &optval);
604 if (error)
605 break;
606 switch (sopt->sopt_name) {
607 #define OPTSET(bit) \
608 if (optval) \
609 unp->unp_flags |= (bit); \
610 else \
611 unp->unp_flags &= ~(bit);
612
613 case LOCAL_CREDS:
614 OPTSET(UNP_WANTCRED);
615 break;
616 case LOCAL_CONNWAIT:
617 OPTSET(UNP_CONNWAIT);
618 break;
619 #ifdef COMPAT_SOCKCRED70
620 case LOCAL_OCREDS:
621 OPTSET(UNP_OWANTCRED);
622 break;
623 #endif
624 }
625 break;
626 #undef OPTSET
627
628 default:
629 error = ENOPROTOOPT;
630 break;
631 }
632 break;
633
634 case PRCO_GETOPT:
635 sounlock(so);
636 switch (sopt->sopt_name) {
637 case LOCAL_PEEREID:
638 if (unp->unp_flags & UNP_EIDSVALID) {
639 error = sockopt_set(sopt, &unp->unp_connid,
640 sizeof(unp->unp_connid));
641 } else {
642 error = EINVAL;
643 }
644 break;
645 case LOCAL_CREDS:
646 #define OPTBIT(bit) (unp->unp_flags & (bit) ? 1 : 0)
647
648 optval = OPTBIT(UNP_WANTCRED);
649 error = sockopt_setint(sopt, optval);
650 break;
651 #ifdef COMPAT_SOCKCRED70
652 case LOCAL_OCREDS:
653 optval = OPTBIT(UNP_OWANTCRED);
654 error = sockopt_setint(sopt, optval);
655 break;
656 #endif
657 #undef OPTBIT
658
659 default:
660 error = ENOPROTOOPT;
661 break;
662 }
663 solock(so);
664 break;
665 }
666 return (error);
667 }
668
669 /*
670 * Both send and receive buffers are allocated PIPSIZ bytes of buffering
671 * for stream sockets, although the total for sender and receiver is
672 * actually only PIPSIZ.
673 * Datagram sockets really use the sendspace as the maximum datagram size,
674 * and don't really want to reserve the sendspace. Their recvspace should
675 * be large enough for at least one max-size datagram plus address.
676 */
677 #define PIPSIZ 4096
678 u_long unpst_sendspace = PIPSIZ;
679 u_long unpst_recvspace = PIPSIZ;
680 u_long unpdg_sendspace = 2*1024; /* really max datagram size */
681 u_long unpdg_recvspace = 4*1024;
682
683 u_int unp_rights; /* files in flight */
684 u_int unp_rights_ratio = 2; /* limit, fraction of maxfiles */
685
686 static int
687 unp_attach(struct socket *so, int proto)
688 {
689 struct unpcb *unp = sotounpcb(so);
690 u_long sndspc, rcvspc;
691 int error;
692
693 KASSERT(unp == NULL);
694
695 switch (so->so_type) {
696 case SOCK_SEQPACKET:
697 /* FALLTHROUGH */
698 case SOCK_STREAM:
699 if (so->so_lock == NULL) {
700 so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
701 solock(so);
702 }
703 sndspc = unpst_sendspace;
704 rcvspc = unpst_recvspace;
705 break;
706
707 case SOCK_DGRAM:
708 if (so->so_lock == NULL) {
709 mutex_obj_hold(uipc_lock);
710 so->so_lock = uipc_lock;
711 solock(so);
712 }
713 sndspc = unpdg_sendspace;
714 rcvspc = unpdg_recvspace;
715 break;
716
717 default:
718 panic("unp_attach");
719 }
720
721 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
722 error = soreserve(so, sndspc, rcvspc);
723 if (error) {
724 return error;
725 }
726 }
727
728 unp = kmem_zalloc(sizeof(*unp), KM_SLEEP);
729 nanotime(&unp->unp_ctime);
730 unp->unp_socket = so;
731 so->so_pcb = unp;
732
733 KASSERT(solocked(so));
734 return 0;
735 }
736
737 static void
738 unp_detach(struct socket *so)
739 {
740 struct unpcb *unp;
741 vnode_t *vp;
742
743 unp = sotounpcb(so);
744 KASSERT(unp != NULL);
745 KASSERT(solocked(so));
746 retry:
747 if ((vp = unp->unp_vnode) != NULL) {
748 sounlock(so);
749 /* Acquire v_interlock to protect against unp_connect(). */
750 /* XXXAD racy */
751 mutex_enter(vp->v_interlock);
752 vp->v_socket = NULL;
753 mutex_exit(vp->v_interlock);
754 vrele(vp);
755 solock(so);
756 unp->unp_vnode = NULL;
757 }
758 if (unp->unp_conn)
759 unp_disconnect1(unp);
760 while (unp->unp_refs) {
761 KASSERT(solocked2(so, unp->unp_refs->unp_socket));
762 if (unp_drop(unp->unp_refs, ECONNRESET)) {
763 solock(so);
764 goto retry;
765 }
766 }
767 soisdisconnected(so);
768 so->so_pcb = NULL;
769 if (unp_rights) {
770 /*
771 * Normally the receive buffer is flushed later, in sofree,
772 * but if our receive buffer holds references to files that
773 * are now garbage, we will enqueue those file references to
774 * the garbage collector and kick it into action.
775 */
776 sorflush(so);
777 unp_free(unp);
778 unp_thread_kick();
779 } else
780 unp_free(unp);
781 }
782
783 static int
784 unp_accept(struct socket *so, struct sockaddr *nam)
785 {
786 struct unpcb *unp = sotounpcb(so);
787 struct socket *so2;
788
789 KASSERT(solocked(so));
790 KASSERT(nam != NULL);
791
792 /* XXX code review required to determine if unp can ever be NULL */
793 if (unp == NULL)
794 return EINVAL;
795
796 KASSERT(so->so_lock == uipc_lock);
797 /*
798 * Mark the initiating STREAM socket as connected *ONLY*
799 * after it's been accepted. This prevents a client from
800 * overrunning a server and receiving ECONNREFUSED.
801 */
802 if (unp->unp_conn == NULL) {
803 /*
804 * This will use the empty socket and will not
805 * allocate.
806 */
807 unp_setaddr(so, nam, true);
808 return 0;
809 }
810 so2 = unp->unp_conn->unp_socket;
811 if (so2->so_state & SS_ISCONNECTING) {
812 KASSERT(solocked2(so, so->so_head));
813 KASSERT(solocked2(so2, so->so_head));
814 soisconnected(so2);
815 }
816 /*
817 * If the connection is fully established, break the
818 * association with uipc_lock and give the connected
819 * pair a separate lock to share.
820 * There is a race here: sotounpcb(so2)->unp_streamlock
821 * is not locked, so when changing so2->so_lock
822 * another thread can grab it while so->so_lock is still
823 * pointing to the (locked) uipc_lock.
824 * this should be harmless, except that this makes
825 * solocked2() and solocked() unreliable.
826 * Another problem is that unp_setaddr() expects the
827 * the socket locked. Grabing sotounpcb(so2)->unp_streamlock
828 * fixes both issues.
829 */
830 mutex_enter(sotounpcb(so2)->unp_streamlock);
831 unp_setpeerlocks(so2, so);
832 /*
833 * Only now return peer's address, as we may need to
834 * block in order to allocate memory.
835 *
836 * XXX Minor race: connection can be broken while
837 * lock is dropped in unp_setaddr(). We will return
838 * error == 0 and sun_noname as the peer address.
839 */
840 unp_setaddr(so, nam, true);
841 /* so_lock now points to unp_streamlock */
842 mutex_exit(so2->so_lock);
843 return 0;
844 }
845
846 static int
847 unp_ioctl(struct socket *so, u_long cmd, void *nam, struct ifnet *ifp)
848 {
849 return EOPNOTSUPP;
850 }
851
852 static int
853 unp_stat(struct socket *so, struct stat *ub)
854 {
855 struct unpcb *unp;
856 struct socket *so2;
857
858 KASSERT(solocked(so));
859
860 unp = sotounpcb(so);
861 if (unp == NULL)
862 return EINVAL;
863
864 ub->st_blksize = so->so_snd.sb_hiwat;
865 switch (so->so_type) {
866 case SOCK_SEQPACKET: /* FALLTHROUGH */
867 case SOCK_STREAM:
868 if (unp->unp_conn == 0)
869 break;
870
871 so2 = unp->unp_conn->unp_socket;
872 KASSERT(solocked2(so, so2));
873 ub->st_blksize += so2->so_rcv.sb_cc;
874 break;
875 default:
876 break;
877 }
878 ub->st_dev = NODEV;
879 if (unp->unp_ino == 0)
880 unp->unp_ino = unp_ino++;
881 ub->st_atimespec = ub->st_mtimespec = ub->st_ctimespec = unp->unp_ctime;
882 ub->st_ino = unp->unp_ino;
883 return (0);
884 }
885
886 static int
887 unp_peeraddr(struct socket *so, struct sockaddr *nam)
888 {
889 KASSERT(solocked(so));
890 KASSERT(sotounpcb(so) != NULL);
891 KASSERT(nam != NULL);
892
893 unp_setaddr(so, nam, true);
894 return 0;
895 }
896
897 static int
898 unp_sockaddr(struct socket *so, struct sockaddr *nam)
899 {
900 KASSERT(solocked(so));
901 KASSERT(sotounpcb(so) != NULL);
902 KASSERT(nam != NULL);
903
904 unp_setaddr(so, nam, false);
905 return 0;
906 }
907
908 /*
909 * we only need to perform this allocation until syscalls other than
910 * bind are adjusted to use sockaddr_big.
911 */
912 static struct sockaddr_un *
913 makeun_sb(struct sockaddr *nam, size_t *addrlen)
914 {
915 struct sockaddr_un *sun;
916
917 *addrlen = nam->sa_len + 1;
918 sun = malloc(*addrlen, M_SONAME, M_WAITOK);
919 memcpy(sun, nam, nam->sa_len);
920 *(((char *)sun) + nam->sa_len) = '\0';
921 return sun;
922 }
923
924 static int
925 unp_bind(struct socket *so, struct sockaddr *nam, struct lwp *l)
926 {
927 struct sockaddr_un *sun;
928 struct unpcb *unp;
929 vnode_t *vp;
930 struct vattr vattr;
931 size_t addrlen;
932 int error;
933 struct pathbuf *pb;
934 struct nameidata nd;
935 proc_t *p;
936
937 unp = sotounpcb(so);
938
939 KASSERT(solocked(so));
940 KASSERT(unp != NULL);
941 KASSERT(nam != NULL);
942
943 if (unp->unp_vnode != NULL)
944 return (EINVAL);
945 if ((unp->unp_flags & UNP_BUSY) != 0) {
946 /*
947 * EALREADY may not be strictly accurate, but since this
948 * is a major application error it's hardly a big deal.
949 */
950 return (EALREADY);
951 }
952 unp->unp_flags |= UNP_BUSY;
953 sounlock(so);
954
955 p = l->l_proc;
956 sun = makeun_sb(nam, &addrlen);
957
958 pb = pathbuf_create(sun->sun_path);
959 if (pb == NULL) {
960 error = ENOMEM;
961 goto bad;
962 }
963 NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, pb);
964
965 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
966 if ((error = namei(&nd)) != 0) {
967 pathbuf_destroy(pb);
968 goto bad;
969 }
970 vp = nd.ni_vp;
971 if (vp != NULL) {
972 VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
973 if (nd.ni_dvp == vp)
974 vrele(nd.ni_dvp);
975 else
976 vput(nd.ni_dvp);
977 vrele(vp);
978 pathbuf_destroy(pb);
979 error = EADDRINUSE;
980 goto bad;
981 }
982 vattr_null(&vattr);
983 vattr.va_type = VSOCK;
984 vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
985 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
986 if (error) {
987 vput(nd.ni_dvp);
988 pathbuf_destroy(pb);
989 goto bad;
990 }
991 vp = nd.ni_vp;
992 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
993 solock(so);
994 vp->v_socket = unp->unp_socket;
995 unp->unp_vnode = vp;
996 unp->unp_addrlen = addrlen;
997 unp->unp_addr = sun;
998 VOP_UNLOCK(vp);
999 vput(nd.ni_dvp);
1000 unp->unp_flags &= ~UNP_BUSY;
1001 pathbuf_destroy(pb);
1002 return (0);
1003
1004 bad:
1005 free(sun, M_SONAME);
1006 solock(so);
1007 unp->unp_flags &= ~UNP_BUSY;
1008 return (error);
1009 }
1010
1011 static int
1012 unp_listen(struct socket *so, struct lwp *l)
1013 {
1014 struct unpcb *unp = sotounpcb(so);
1015
1016 KASSERT(solocked(so));
1017 KASSERT(unp != NULL);
1018
1019 /*
1020 * If the socket can accept a connection, it must be
1021 * locked by uipc_lock.
1022 */
1023 unp_resetlock(so);
1024 if (unp->unp_vnode == NULL)
1025 return EINVAL;
1026
1027 unp_connid(l, unp, UNP_EIDSBIND);
1028 return 0;
1029 }
1030
1031 static int
1032 unp_disconnect(struct socket *so)
1033 {
1034 KASSERT(solocked(so));
1035 KASSERT(sotounpcb(so) != NULL);
1036
1037 unp_disconnect1(sotounpcb(so));
1038 return 0;
1039 }
1040
1041 static int
1042 unp_shutdown(struct socket *so)
1043 {
1044 KASSERT(solocked(so));
1045 KASSERT(sotounpcb(so) != NULL);
1046
1047 socantsendmore(so);
1048 unp_shutdown1(sotounpcb(so));
1049 return 0;
1050 }
1051
1052 static int
1053 unp_abort(struct socket *so)
1054 {
1055 KASSERT(solocked(so));
1056 KASSERT(sotounpcb(so) != NULL);
1057
1058 (void)unp_drop(sotounpcb(so), ECONNABORTED);
1059 KASSERT(so->so_head == NULL);
1060 KASSERT(so->so_pcb != NULL);
1061 unp_detach(so);
1062 return 0;
1063 }
1064
1065 static int
1066 unp_connect1(struct socket *so, struct socket *so2, struct lwp *l)
1067 {
1068 struct unpcb *unp = sotounpcb(so);
1069 struct unpcb *unp2;
1070
1071 if (so2->so_type != so->so_type)
1072 return EPROTOTYPE;
1073
1074 /*
1075 * All three sockets involved must be locked by same lock:
1076 *
1077 * local endpoint (so)
1078 * remote endpoint (so2)
1079 * queue head (so2->so_head, only if PR_CONNREQUIRED)
1080 */
1081 KASSERT(solocked2(so, so2));
1082 KASSERT(so->so_head == NULL);
1083 if (so2->so_head != NULL) {
1084 KASSERT(so2->so_lock == uipc_lock);
1085 KASSERT(solocked2(so2, so2->so_head));
1086 }
1087
1088 unp2 = sotounpcb(so2);
1089 unp->unp_conn = unp2;
1090
1091 switch (so->so_type) {
1092
1093 case SOCK_DGRAM:
1094 unp->unp_nextref = unp2->unp_refs;
1095 unp2->unp_refs = unp;
1096 soisconnected(so);
1097 break;
1098
1099 case SOCK_SEQPACKET: /* FALLTHROUGH */
1100 case SOCK_STREAM:
1101
1102 /*
1103 * SOCK_SEQPACKET and SOCK_STREAM cases are handled by callers
1104 * which are unp_connect() or unp_connect2().
1105 */
1106
1107 break;
1108
1109 default:
1110 panic("unp_connect1");
1111 }
1112
1113 return 0;
1114 }
1115
1116 int
1117 unp_connect(struct socket *so, struct sockaddr *nam, struct lwp *l)
1118 {
1119 struct sockaddr_un *sun;
1120 vnode_t *vp;
1121 struct socket *so2, *so3;
1122 struct unpcb *unp, *unp2, *unp3;
1123 size_t addrlen;
1124 int error;
1125 struct pathbuf *pb;
1126 struct nameidata nd;
1127
1128 unp = sotounpcb(so);
1129 if ((unp->unp_flags & UNP_BUSY) != 0) {
1130 /*
1131 * EALREADY may not be strictly accurate, but since this
1132 * is a major application error it's hardly a big deal.
1133 */
1134 return (EALREADY);
1135 }
1136 unp->unp_flags |= UNP_BUSY;
1137 sounlock(so);
1138
1139 sun = makeun_sb(nam, &addrlen);
1140 pb = pathbuf_create(sun->sun_path);
1141 if (pb == NULL) {
1142 error = ENOMEM;
1143 goto bad2;
1144 }
1145
1146 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
1147
1148 if ((error = namei(&nd)) != 0) {
1149 pathbuf_destroy(pb);
1150 goto bad2;
1151 }
1152 vp = nd.ni_vp;
1153 pathbuf_destroy(pb);
1154 if (vp->v_type != VSOCK) {
1155 error = ENOTSOCK;
1156 goto bad;
1157 }
1158 if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
1159 goto bad;
1160 /* Acquire v_interlock to protect against unp_detach(). */
1161 mutex_enter(vp->v_interlock);
1162 so2 = vp->v_socket;
1163 if (so2 == NULL) {
1164 mutex_exit(vp->v_interlock);
1165 error = ECONNREFUSED;
1166 goto bad;
1167 }
1168 if (so->so_type != so2->so_type) {
1169 mutex_exit(vp->v_interlock);
1170 error = EPROTOTYPE;
1171 goto bad;
1172 }
1173 solock(so);
1174 unp_resetlock(so);
1175 mutex_exit(vp->v_interlock);
1176 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
1177 /*
1178 * This may seem somewhat fragile but is OK: if we can
1179 * see SO_ACCEPTCONN set on the endpoint, then it must
1180 * be locked by the domain-wide uipc_lock.
1181 */
1182 KASSERT((so2->so_options & SO_ACCEPTCONN) == 0 ||
1183 so2->so_lock == uipc_lock);
1184 if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
1185 (so3 = sonewconn(so2, false)) == NULL) {
1186 error = ECONNREFUSED;
1187 sounlock(so);
1188 goto bad;
1189 }
1190 unp2 = sotounpcb(so2);
1191 unp3 = sotounpcb(so3);
1192 if (unp2->unp_addr) {
1193 unp3->unp_addr = malloc(unp2->unp_addrlen,
1194 M_SONAME, M_WAITOK);
1195 memcpy(unp3->unp_addr, unp2->unp_addr,
1196 unp2->unp_addrlen);
1197 unp3->unp_addrlen = unp2->unp_addrlen;
1198 }
1199 unp3->unp_flags = unp2->unp_flags;
1200 so2 = so3;
1201 /*
1202 * The connector's (client's) credentials are copied from its
1203 * process structure at the time of connect() (which is now).
1204 */
1205 unp_connid(l, unp3, UNP_EIDSVALID);
1206 /*
1207 * The receiver's (server's) credentials are copied from the
1208 * unp_peercred member of socket on which the former called
1209 * listen(); unp_listen() cached that process's credentials
1210 * at that time so we can use them now.
1211 */
1212 if (unp2->unp_flags & UNP_EIDSBIND) {
1213 memcpy(&unp->unp_connid, &unp2->unp_connid,
1214 sizeof(unp->unp_connid));
1215 unp->unp_flags |= UNP_EIDSVALID;
1216 }
1217 }
1218 error = unp_connect1(so, so2, l);
1219 if (error) {
1220 sounlock(so);
1221 goto bad;
1222 }
1223 unp2 = sotounpcb(so2);
1224 switch (so->so_type) {
1225
1226 /*
1227 * SOCK_DGRAM and default cases are handled in prior call to
1228 * unp_connect1(), do not add a default case without fixing
1229 * unp_connect1().
1230 */
1231
1232 case SOCK_SEQPACKET: /* FALLTHROUGH */
1233 case SOCK_STREAM:
1234 unp2->unp_conn = unp;
1235 if ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT)
1236 soisconnecting(so);
1237 else
1238 soisconnected(so);
1239 soisconnected(so2);
1240 /*
1241 * If the connection is fully established, break the
1242 * association with uipc_lock and give the connected
1243 * pair a seperate lock to share.
1244 */
1245 KASSERT(so2->so_head != NULL);
1246 unp_setpeerlocks(so, so2);
1247 break;
1248
1249 }
1250 sounlock(so);
1251 bad:
1252 vput(vp);
1253 bad2:
1254 free(sun, M_SONAME);
1255 solock(so);
1256 unp->unp_flags &= ~UNP_BUSY;
1257 return (error);
1258 }
1259
1260 int
1261 unp_connect2(struct socket *so, struct socket *so2)
1262 {
1263 struct unpcb *unp = sotounpcb(so);
1264 struct unpcb *unp2;
1265 int error = 0;
1266
1267 KASSERT(solocked2(so, so2));
1268
1269 error = unp_connect1(so, so2, curlwp);
1270 if (error)
1271 return error;
1272
1273 unp2 = sotounpcb(so2);
1274 switch (so->so_type) {
1275
1276 /*
1277 * SOCK_DGRAM and default cases are handled in prior call to
1278 * unp_connect1(), do not add a default case without fixing
1279 * unp_connect1().
1280 */
1281
1282 case SOCK_SEQPACKET: /* FALLTHROUGH */
1283 case SOCK_STREAM:
1284 unp2->unp_conn = unp;
1285 soisconnected(so);
1286 soisconnected(so2);
1287 break;
1288
1289 }
1290 return error;
1291 }
1292
1293 static void
1294 unp_disconnect1(struct unpcb *unp)
1295 {
1296 struct unpcb *unp2 = unp->unp_conn;
1297 struct socket *so;
1298
1299 if (unp2 == 0)
1300 return;
1301 unp->unp_conn = 0;
1302 so = unp->unp_socket;
1303 switch (so->so_type) {
1304 case SOCK_DGRAM:
1305 if (unp2->unp_refs == unp)
1306 unp2->unp_refs = unp->unp_nextref;
1307 else {
1308 unp2 = unp2->unp_refs;
1309 for (;;) {
1310 KASSERT(solocked2(so, unp2->unp_socket));
1311 if (unp2 == 0)
1312 panic("unp_disconnect1");
1313 if (unp2->unp_nextref == unp)
1314 break;
1315 unp2 = unp2->unp_nextref;
1316 }
1317 unp2->unp_nextref = unp->unp_nextref;
1318 }
1319 unp->unp_nextref = 0;
1320 so->so_state &= ~SS_ISCONNECTED;
1321 break;
1322
1323 case SOCK_SEQPACKET: /* FALLTHROUGH */
1324 case SOCK_STREAM:
1325 KASSERT(solocked2(so, unp2->unp_socket));
1326 soisdisconnected(so);
1327 unp2->unp_conn = 0;
1328 soisdisconnected(unp2->unp_socket);
1329 break;
1330 }
1331 }
1332
1333 static void
1334 unp_shutdown1(struct unpcb *unp)
1335 {
1336 struct socket *so;
1337
1338 switch(unp->unp_socket->so_type) {
1339 case SOCK_SEQPACKET: /* FALLTHROUGH */
1340 case SOCK_STREAM:
1341 if (unp->unp_conn && (so = unp->unp_conn->unp_socket))
1342 socantrcvmore(so);
1343 break;
1344 default:
1345 break;
1346 }
1347 }
1348
1349 static bool
1350 unp_drop(struct unpcb *unp, int errno)
1351 {
1352 struct socket *so = unp->unp_socket;
1353
1354 KASSERT(solocked(so));
1355
1356 so->so_error = errno;
1357 unp_disconnect1(unp);
1358 if (so->so_head) {
1359 so->so_pcb = NULL;
1360 /* sofree() drops the socket lock */
1361 sofree(so);
1362 unp_free(unp);
1363 return true;
1364 }
1365 return false;
1366 }
1367
1368 #ifdef notdef
1369 unp_drain(void)
1370 {
1371
1372 }
1373 #endif
1374
1375 int
1376 unp_externalize(struct mbuf *rights, struct lwp *l, int flags)
1377 {
1378 struct cmsghdr * const cm = mtod(rights, struct cmsghdr *);
1379 struct proc * const p = l->l_proc;
1380 file_t **rp;
1381 int error = 0;
1382
1383 const size_t nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
1384 sizeof(file_t *);
1385 if (nfds == 0)
1386 goto noop;
1387
1388 int * const fdp = kmem_alloc(nfds * sizeof(int), KM_SLEEP);
1389 rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
1390
1391 /* Make sure the recipient should be able to see the files.. */
1392 rp = (file_t **)CMSG_DATA(cm);
1393 for (size_t i = 0; i < nfds; i++) {
1394 file_t * const fp = *rp++;
1395 if (fp == NULL) {
1396 error = EINVAL;
1397 goto out;
1398 }
1399 /*
1400 * If we are in a chroot'ed directory, and
1401 * someone wants to pass us a directory, make
1402 * sure it's inside the subtree we're allowed
1403 * to access.
1404 */
1405 if (p->p_cwdi->cwdi_rdir != NULL && fp->f_type == DTYPE_VNODE) {
1406 vnode_t *vp = fp->f_vnode;
1407 if ((vp->v_type == VDIR) &&
1408 !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
1409 error = EPERM;
1410 goto out;
1411 }
1412 }
1413 }
1414
1415 restart:
1416 /*
1417 * First loop -- allocate file descriptor table slots for the
1418 * new files.
1419 */
1420 for (size_t i = 0; i < nfds; i++) {
1421 if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
1422 /*
1423 * Back out what we've done so far.
1424 */
1425 while (i-- > 0) {
1426 fd_abort(p, NULL, fdp[i]);
1427 }
1428 if (error == ENOSPC) {
1429 fd_tryexpand(p);
1430 error = 0;
1431 goto restart;
1432 }
1433 /*
1434 * This is the error that has historically
1435 * been returned, and some callers may
1436 * expect it.
1437 */
1438 error = EMSGSIZE;
1439 goto out;
1440 }
1441 }
1442
1443 /*
1444 * Now that adding them has succeeded, update all of the
1445 * file passing state and affix the descriptors.
1446 */
1447 rp = (file_t **)CMSG_DATA(cm);
1448 int *ofdp = (int *)CMSG_DATA(cm);
1449 for (size_t i = 0; i < nfds; i++) {
1450 file_t * const fp = *rp++;
1451 const int fd = fdp[i];
1452 atomic_dec_uint(&unp_rights);
1453 fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
1454 fd_affix(p, fp, fd);
1455 /*
1456 * Done with this file pointer, replace it with a fd;
1457 */
1458 *ofdp++ = fd;
1459 mutex_enter(&fp->f_lock);
1460 fp->f_msgcount--;
1461 mutex_exit(&fp->f_lock);
1462 /*
1463 * Note that fd_affix() adds a reference to the file.
1464 * The file may already have been closed by another
1465 * LWP in the process, so we must drop the reference
1466 * added by unp_internalize() with closef().
1467 */
1468 closef(fp);
1469 }
1470
1471 /*
1472 * Adjust length, in case of transition from large file_t
1473 * pointers to ints.
1474 */
1475 if (sizeof(file_t *) != sizeof(int)) {
1476 cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
1477 rights->m_len = CMSG_SPACE(nfds * sizeof(int));
1478 }
1479 out:
1480 if (__predict_false(error != 0)) {
1481 file_t **const fpp = (file_t **)CMSG_DATA(cm);
1482 for (size_t i = 0; i < nfds; i++)
1483 unp_discard_now(fpp[i]);
1484 /*
1485 * Truncate the array so that nobody will try to interpret
1486 * what is now garbage in it.
1487 */
1488 cm->cmsg_len = CMSG_LEN(0);
1489 rights->m_len = CMSG_SPACE(0);
1490 }
1491 rw_exit(&p->p_cwdi->cwdi_lock);
1492 kmem_free(fdp, nfds * sizeof(int));
1493
1494 noop:
1495 /*
1496 * Don't disclose kernel memory in the alignment space.
1497 */
1498 KASSERT(cm->cmsg_len <= rights->m_len);
1499 memset(&mtod(rights, char *)[cm->cmsg_len], 0, rights->m_len -
1500 cm->cmsg_len);
1501 return error;
1502 }
1503
1504 static int
1505 unp_internalize(struct mbuf **controlp)
1506 {
1507 filedesc_t *fdescp = curlwp->l_fd;
1508 struct mbuf *control = *controlp;
1509 struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
1510 file_t **rp, **files;
1511 file_t *fp;
1512 int i, fd, *fdp;
1513 int nfds, error;
1514 u_int maxmsg;
1515
1516 error = 0;
1517 newcm = NULL;
1518
1519 /* Sanity check the control message header. */
1520 if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
1521 cm->cmsg_len > control->m_len ||
1522 cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
1523 return (EINVAL);
1524
1525 /*
1526 * Verify that the file descriptors are valid, and acquire
1527 * a reference to each.
1528 */
1529 nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
1530 fdp = (int *)CMSG_DATA(cm);
1531 maxmsg = maxfiles / unp_rights_ratio;
1532 for (i = 0; i < nfds; i++) {
1533 fd = *fdp++;
1534 if (atomic_inc_uint_nv(&unp_rights) > maxmsg) {
1535 atomic_dec_uint(&unp_rights);
1536 nfds = i;
1537 error = EAGAIN;
1538 goto out;
1539 }
1540 if ((fp = fd_getfile(fd)) == NULL
1541 || fp->f_type == DTYPE_KQUEUE) {
1542 if (fp)
1543 fd_putfile(fd);
1544 atomic_dec_uint(&unp_rights);
1545 nfds = i;
1546 error = EBADF;
1547 goto out;
1548 }
1549 }
1550
1551 /* Allocate new space and copy header into it. */
1552 newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
1553 if (newcm == NULL) {
1554 error = E2BIG;
1555 goto out;
1556 }
1557 memcpy(newcm, cm, sizeof(struct cmsghdr));
1558 files = (file_t **)CMSG_DATA(newcm);
1559
1560 /*
1561 * Transform the file descriptors into file_t pointers, in
1562 * reverse order so that if pointers are bigger than ints, the
1563 * int won't get until we're done. No need to lock, as we have
1564 * already validated the descriptors with fd_getfile().
1565 */
1566 fdp = (int *)CMSG_DATA(cm) + nfds;
1567 rp = files + nfds;
1568 for (i = 0; i < nfds; i++) {
1569 fp = fdescp->fd_dt->dt_ff[*--fdp]->ff_file;
1570 KASSERT(fp != NULL);
1571 mutex_enter(&fp->f_lock);
1572 *--rp = fp;
1573 fp->f_count++;
1574 fp->f_msgcount++;
1575 mutex_exit(&fp->f_lock);
1576 }
1577
1578 out:
1579 /* Release descriptor references. */
1580 fdp = (int *)CMSG_DATA(cm);
1581 for (i = 0; i < nfds; i++) {
1582 fd_putfile(*fdp++);
1583 if (error != 0) {
1584 atomic_dec_uint(&unp_rights);
1585 }
1586 }
1587
1588 if (error == 0) {
1589 if (control->m_flags & M_EXT) {
1590 m_freem(control);
1591 *controlp = control = m_get(M_WAIT, MT_CONTROL);
1592 }
1593 MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
1594 M_MBUF, NULL, NULL);
1595 cm = newcm;
1596 /*
1597 * Adjust message & mbuf to note amount of space
1598 * actually used.
1599 */
1600 cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
1601 control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
1602 }
1603
1604 return error;
1605 }
1606
1607 struct mbuf *
1608 unp_addsockcred(struct lwp *l, struct mbuf *control)
1609 {
1610 struct sockcred *sc;
1611 struct mbuf *m;
1612 void *p;
1613
1614 m = sbcreatecontrol1(&p, SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)),
1615 SCM_CREDS, SOL_SOCKET, M_WAITOK);
1616 if (m == NULL)
1617 return control;
1618
1619 sc = p;
1620 sc->sc_pid = l->l_proc->p_pid;
1621 sc->sc_uid = kauth_cred_getuid(l->l_cred);
1622 sc->sc_euid = kauth_cred_geteuid(l->l_cred);
1623 sc->sc_gid = kauth_cred_getgid(l->l_cred);
1624 sc->sc_egid = kauth_cred_getegid(l->l_cred);
1625 sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
1626
1627 for (int i = 0; i < sc->sc_ngroups; i++)
1628 sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
1629
1630 return m_add(control, m);
1631 }
1632
1633 /*
1634 * Do a mark-sweep GC of files in the system, to free up any which are
1635 * caught in flight to an about-to-be-closed socket. Additionally,
1636 * process deferred file closures.
1637 */
1638 static void
1639 unp_gc(file_t *dp)
1640 {
1641 extern struct domain unixdomain;
1642 file_t *fp, *np;
1643 struct socket *so, *so1;
1644 u_int i, oflags, rflags;
1645 bool didwork;
1646
1647 KASSERT(curlwp == unp_thread_lwp);
1648 KASSERT(mutex_owned(&filelist_lock));
1649
1650 /*
1651 * First, process deferred file closures.
1652 */
1653 while (!SLIST_EMPTY(&unp_thread_discard)) {
1654 fp = SLIST_FIRST(&unp_thread_discard);
1655 KASSERT(fp->f_unpcount > 0);
1656 KASSERT(fp->f_count > 0);
1657 KASSERT(fp->f_msgcount > 0);
1658 KASSERT(fp->f_count >= fp->f_unpcount);
1659 KASSERT(fp->f_count >= fp->f_msgcount);
1660 KASSERT(fp->f_msgcount >= fp->f_unpcount);
1661 SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist);
1662 i = fp->f_unpcount;
1663 fp->f_unpcount = 0;
1664 mutex_exit(&filelist_lock);
1665 for (; i != 0; i--) {
1666 unp_discard_now(fp);
1667 }
1668 mutex_enter(&filelist_lock);
1669 }
1670
1671 /*
1672 * Clear mark bits. Ensure that we don't consider new files
1673 * entering the file table during this loop (they will not have
1674 * FSCAN set).
1675 */
1676 unp_defer = 0;
1677 LIST_FOREACH(fp, &filehead, f_list) {
1678 for (oflags = fp->f_flag;; oflags = rflags) {
1679 rflags = atomic_cas_uint(&fp->f_flag, oflags,
1680 (oflags | FSCAN) & ~(FMARK|FDEFER));
1681 if (__predict_true(oflags == rflags)) {
1682 break;
1683 }
1684 }
1685 }
1686
1687 /*
1688 * Iterate over the set of sockets, marking ones believed (based on
1689 * refcount) to be referenced from a process, and marking for rescan
1690 * sockets which are queued on a socket. Recan continues descending
1691 * and searching for sockets referenced by sockets (FDEFER), until
1692 * there are no more socket->socket references to be discovered.
1693 */
1694 do {
1695 didwork = false;
1696 for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1697 KASSERT(mutex_owned(&filelist_lock));
1698 np = LIST_NEXT(fp, f_list);
1699 mutex_enter(&fp->f_lock);
1700 if ((fp->f_flag & FDEFER) != 0) {
1701 atomic_and_uint(&fp->f_flag, ~FDEFER);
1702 unp_defer--;
1703 if (fp->f_count == 0) {
1704 /*
1705 * XXX: closef() doesn't pay attention
1706 * to FDEFER
1707 */
1708 mutex_exit(&fp->f_lock);
1709 continue;
1710 }
1711 } else {
1712 if (fp->f_count == 0 ||
1713 (fp->f_flag & FMARK) != 0 ||
1714 fp->f_count == fp->f_msgcount ||
1715 fp->f_unpcount != 0) {
1716 mutex_exit(&fp->f_lock);
1717 continue;
1718 }
1719 }
1720 atomic_or_uint(&fp->f_flag, FMARK);
1721
1722 if (fp->f_type != DTYPE_SOCKET ||
1723 (so = fp->f_socket) == NULL ||
1724 so->so_proto->pr_domain != &unixdomain ||
1725 (so->so_proto->pr_flags & PR_RIGHTS) == 0) {
1726 mutex_exit(&fp->f_lock);
1727 continue;
1728 }
1729
1730 /* Gain file ref, mark our position, and unlock. */
1731 didwork = true;
1732 LIST_INSERT_AFTER(fp, dp, f_list);
1733 fp->f_count++;
1734 mutex_exit(&fp->f_lock);
1735 mutex_exit(&filelist_lock);
1736
1737 /*
1738 * Mark files referenced from sockets queued on the
1739 * accept queue as well.
1740 */
1741 solock(so);
1742 unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
1743 if ((so->so_options & SO_ACCEPTCONN) != 0) {
1744 TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
1745 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1746 }
1747 TAILQ_FOREACH(so1, &so->so_q, so_qe) {
1748 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1749 }
1750 }
1751 sounlock(so);
1752
1753 /* Re-lock and restart from where we left off. */
1754 closef(fp);
1755 mutex_enter(&filelist_lock);
1756 np = LIST_NEXT(dp, f_list);
1757 LIST_REMOVE(dp, f_list);
1758 }
1759 /*
1760 * Bail early if we did nothing in the loop above. Could
1761 * happen because of concurrent activity causing unp_defer
1762 * to get out of sync.
1763 */
1764 } while (unp_defer != 0 && didwork);
1765
1766 /*
1767 * Sweep pass.
1768 *
1769 * We grab an extra reference to each of the files that are
1770 * not otherwise accessible and then free the rights that are
1771 * stored in messages on them.
1772 */
1773 for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1774 KASSERT(mutex_owned(&filelist_lock));
1775 np = LIST_NEXT(fp, f_list);
1776 mutex_enter(&fp->f_lock);
1777
1778 /*
1779 * Ignore non-sockets.
1780 * Ignore dead sockets, or sockets with pending close.
1781 * Ignore sockets obviously referenced elsewhere.
1782 * Ignore sockets marked as referenced by our scan.
1783 * Ignore new sockets that did not exist during the scan.
1784 */
1785 if (fp->f_type != DTYPE_SOCKET ||
1786 fp->f_count == 0 || fp->f_unpcount != 0 ||
1787 fp->f_count != fp->f_msgcount ||
1788 (fp->f_flag & (FMARK | FSCAN)) != FSCAN) {
1789 mutex_exit(&fp->f_lock);
1790 continue;
1791 }
1792
1793 /* Gain file ref, mark our position, and unlock. */
1794 LIST_INSERT_AFTER(fp, dp, f_list);
1795 fp->f_count++;
1796 mutex_exit(&fp->f_lock);
1797 mutex_exit(&filelist_lock);
1798
1799 /*
1800 * Flush all data from the socket's receive buffer.
1801 * This will cause files referenced only by the
1802 * socket to be queued for close.
1803 */
1804 so = fp->f_socket;
1805 solock(so);
1806 sorflush(so);
1807 sounlock(so);
1808
1809 /* Re-lock and restart from where we left off. */
1810 closef(fp);
1811 mutex_enter(&filelist_lock);
1812 np = LIST_NEXT(dp, f_list);
1813 LIST_REMOVE(dp, f_list);
1814 }
1815 }
1816
1817 /*
1818 * Garbage collector thread. While SCM_RIGHTS messages are in transit,
1819 * wake once per second to garbage collect. Run continually while we
1820 * have deferred closes to process.
1821 */
1822 static void
1823 unp_thread(void *cookie)
1824 {
1825 file_t *dp;
1826
1827 /* Allocate a dummy file for our scans. */
1828 if ((dp = fgetdummy()) == NULL) {
1829 panic("unp_thread");
1830 }
1831
1832 mutex_enter(&filelist_lock);
1833 for (;;) {
1834 KASSERT(mutex_owned(&filelist_lock));
1835 if (SLIST_EMPTY(&unp_thread_discard)) {
1836 if (unp_rights != 0) {
1837 (void)cv_timedwait(&unp_thread_cv,
1838 &filelist_lock, hz);
1839 } else {
1840 cv_wait(&unp_thread_cv, &filelist_lock);
1841 }
1842 }
1843 unp_gc(dp);
1844 }
1845 /* NOTREACHED */
1846 }
1847
1848 /*
1849 * Kick the garbage collector into action if there is something for
1850 * it to process.
1851 */
1852 static void
1853 unp_thread_kick(void)
1854 {
1855
1856 if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) {
1857 mutex_enter(&filelist_lock);
1858 cv_signal(&unp_thread_cv);
1859 mutex_exit(&filelist_lock);
1860 }
1861 }
1862
1863 void
1864 unp_dispose(struct mbuf *m)
1865 {
1866
1867 if (m)
1868 unp_scan(m, unp_discard_later, 1);
1869 }
1870
1871 void
1872 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
1873 {
1874 struct mbuf *m;
1875 file_t **rp, *fp;
1876 struct cmsghdr *cm;
1877 int i, qfds;
1878
1879 while (m0) {
1880 for (m = m0; m; m = m->m_next) {
1881 if (m->m_type != MT_CONTROL ||
1882 m->m_len < sizeof(*cm)) {
1883 continue;
1884 }
1885 cm = mtod(m, struct cmsghdr *);
1886 if (cm->cmsg_level != SOL_SOCKET ||
1887 cm->cmsg_type != SCM_RIGHTS)
1888 continue;
1889 qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
1890 / sizeof(file_t *);
1891 rp = (file_t **)CMSG_DATA(cm);
1892 for (i = 0; i < qfds; i++) {
1893 fp = *rp;
1894 if (discard) {
1895 *rp = 0;
1896 }
1897 (*op)(fp);
1898 rp++;
1899 }
1900 }
1901 m0 = m0->m_nextpkt;
1902 }
1903 }
1904
1905 void
1906 unp_mark(file_t *fp)
1907 {
1908
1909 if (fp == NULL)
1910 return;
1911
1912 /* If we're already deferred, don't screw up the defer count */
1913 mutex_enter(&fp->f_lock);
1914 if (fp->f_flag & (FMARK | FDEFER)) {
1915 mutex_exit(&fp->f_lock);
1916 return;
1917 }
1918
1919 /*
1920 * Minimize the number of deferrals... Sockets are the only type of
1921 * file which can hold references to another file, so just mark
1922 * other files, and defer unmarked sockets for the next pass.
1923 */
1924 if (fp->f_type == DTYPE_SOCKET) {
1925 unp_defer++;
1926 KASSERT(fp->f_count != 0);
1927 atomic_or_uint(&fp->f_flag, FDEFER);
1928 } else {
1929 atomic_or_uint(&fp->f_flag, FMARK);
1930 }
1931 mutex_exit(&fp->f_lock);
1932 }
1933
1934 static void
1935 unp_discard_now(file_t *fp)
1936 {
1937
1938 if (fp == NULL)
1939 return;
1940
1941 KASSERT(fp->f_count > 0);
1942 KASSERT(fp->f_msgcount > 0);
1943
1944 mutex_enter(&fp->f_lock);
1945 fp->f_msgcount--;
1946 mutex_exit(&fp->f_lock);
1947 atomic_dec_uint(&unp_rights);
1948 (void)closef(fp);
1949 }
1950
1951 static void
1952 unp_discard_later(file_t *fp)
1953 {
1954
1955 if (fp == NULL)
1956 return;
1957
1958 KASSERT(fp->f_count > 0);
1959 KASSERT(fp->f_msgcount > 0);
1960
1961 mutex_enter(&filelist_lock);
1962 if (fp->f_unpcount++ == 0) {
1963 SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist);
1964 }
1965 mutex_exit(&filelist_lock);
1966 }
1967
1968 const struct pr_usrreqs unp_usrreqs = {
1969 .pr_attach = unp_attach,
1970 .pr_detach = unp_detach,
1971 .pr_accept = unp_accept,
1972 .pr_bind = unp_bind,
1973 .pr_listen = unp_listen,
1974 .pr_connect = unp_connect,
1975 .pr_connect2 = unp_connect2,
1976 .pr_disconnect = unp_disconnect,
1977 .pr_shutdown = unp_shutdown,
1978 .pr_abort = unp_abort,
1979 .pr_ioctl = unp_ioctl,
1980 .pr_stat = unp_stat,
1981 .pr_peeraddr = unp_peeraddr,
1982 .pr_sockaddr = unp_sockaddr,
1983 .pr_rcvd = unp_rcvd,
1984 .pr_recvoob = unp_recvoob,
1985 .pr_send = unp_send,
1986 .pr_sendoob = unp_sendoob,
1987 };
1988