Home | History | Annotate | Line # | Download | only in kern
uipc_usrreq.c revision 1.184
      1 /*	$NetBSD: uipc_usrreq.c,v 1.184 2018/03/19 16:26:26 roy Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 2000, 2004, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
     62  */
     63 
     64 /*
     65  * Copyright (c) 1997 Christopher G. Demetriou.  All rights reserved.
     66  *
     67  * Redistribution and use in source and binary forms, with or without
     68  * modification, are permitted provided that the following conditions
     69  * are met:
     70  * 1. Redistributions of source code must retain the above copyright
     71  *    notice, this list of conditions and the following disclaimer.
     72  * 2. Redistributions in binary form must reproduce the above copyright
     73  *    notice, this list of conditions and the following disclaimer in the
     74  *    documentation and/or other materials provided with the distribution.
     75  * 3. All advertising materials mentioning features or use of this software
     76  *    must display the following acknowledgement:
     77  *	This product includes software developed by the University of
     78  *	California, Berkeley and its contributors.
     79  * 4. Neither the name of the University nor the names of its contributors
     80  *    may be used to endorse or promote products derived from this software
     81  *    without specific prior written permission.
     82  *
     83  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     84  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     85  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     86  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     87  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     88  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     89  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     90  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     91  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     92  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     93  * SUCH DAMAGE.
     94  *
     95  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
     96  */
     97 
     98 #include <sys/cdefs.h>
     99 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.184 2018/03/19 16:26:26 roy Exp $");
    100 
    101 #ifdef _KERNEL_OPT
    102 #include "opt_compat_netbsd.h"
    103 #endif
    104 
    105 #include <sys/param.h>
    106 #include <sys/systm.h>
    107 #include <sys/proc.h>
    108 #include <sys/filedesc.h>
    109 #include <sys/domain.h>
    110 #include <sys/protosw.h>
    111 #include <sys/socket.h>
    112 #include <sys/socketvar.h>
    113 #include <sys/unpcb.h>
    114 #include <sys/un.h>
    115 #include <sys/namei.h>
    116 #include <sys/vnode.h>
    117 #include <sys/file.h>
    118 #include <sys/stat.h>
    119 #include <sys/mbuf.h>
    120 #include <sys/kauth.h>
    121 #include <sys/kmem.h>
    122 #include <sys/atomic.h>
    123 #include <sys/uidinfo.h>
    124 #include <sys/kernel.h>
    125 #include <sys/kthread.h>
    126 
    127 #ifdef COMPAT_70
    128 #include <compat/sys/socket.h>
    129 #endif
    130 
    131 /*
    132  * Unix communications domain.
    133  *
    134  * TODO:
    135  *	RDM
    136  *	rethink name space problems
    137  *	need a proper out-of-band
    138  *
    139  * Notes on locking:
    140  *
    141  * The generic rules noted in uipc_socket2.c apply.  In addition:
    142  *
    143  * o We have a global lock, uipc_lock.
    144  *
    145  * o All datagram sockets are locked by uipc_lock.
    146  *
    147  * o For stream socketpairs, the two endpoints are created sharing the same
    148  *   independent lock.  Sockets presented to PRU_CONNECT2 must already have
    149  *   matching locks.
    150  *
    151  * o Stream sockets created via socket() start life with their own
    152  *   independent lock.
    153  *
    154  * o Stream connections to a named endpoint are slightly more complicated.
    155  *   Sockets that have called listen() have their lock pointer mutated to
    156  *   the global uipc_lock.  When establishing a connection, the connecting
    157  *   socket also has its lock mutated to uipc_lock, which matches the head
    158  *   (listening socket).  We create a new socket for accept() to return, and
    159  *   that also shares the head's lock.  Until the connection is completely
    160  *   done on both ends, all three sockets are locked by uipc_lock.  Once the
    161  *   connection is complete, the association with the head's lock is broken.
    162  *   The connecting socket and the socket returned from accept() have their
    163  *   lock pointers mutated away from uipc_lock, and back to the connecting
    164  *   socket's original, independent lock.  The head continues to be locked
    165  *   by uipc_lock.
    166  *
    167  * o If uipc_lock is determined to be a significant source of contention,
    168  *   it could easily be hashed out.  It is difficult to simply make it an
    169  *   independent lock because of visibility / garbage collection issues:
    170  *   if a socket has been associated with a lock at any point, that lock
    171  *   must remain valid until the socket is no longer visible in the system.
    172  *   The lock must not be freed or otherwise destroyed until any sockets
    173  *   that had referenced it have also been destroyed.
    174  */
    175 const struct sockaddr_un sun_noname = {
    176 	.sun_len = offsetof(struct sockaddr_un, sun_path),
    177 	.sun_family = AF_LOCAL,
    178 };
    179 ino_t	unp_ino;			/* prototype for fake inode numbers */
    180 
    181 static struct mbuf * unp_addsockcred(struct lwp *, struct mbuf *);
    182 static void   unp_discard_later(file_t *);
    183 static void   unp_discard_now(file_t *);
    184 static void   unp_disconnect1(struct unpcb *);
    185 static bool   unp_drop(struct unpcb *, int);
    186 static int    unp_internalize(struct mbuf **);
    187 static void   unp_mark(file_t *);
    188 static void   unp_scan(struct mbuf *, void (*)(file_t *), int);
    189 static void   unp_shutdown1(struct unpcb *);
    190 static void   unp_thread(void *);
    191 static void   unp_thread_kick(void);
    192 
    193 static kmutex_t *uipc_lock;
    194 
    195 static kcondvar_t unp_thread_cv;
    196 static lwp_t *unp_thread_lwp;
    197 static SLIST_HEAD(,file) unp_thread_discard;
    198 static int unp_defer;
    199 
    200 /*
    201  * Initialize Unix protocols.
    202  */
    203 void
    204 uipc_init(void)
    205 {
    206 	int error;
    207 
    208 	uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    209 	cv_init(&unp_thread_cv, "unpgc");
    210 
    211 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread,
    212 	    NULL, &unp_thread_lwp, "unpgc");
    213 	if (error != 0)
    214 		panic("uipc_init %d", error);
    215 }
    216 
    217 static void
    218 unp_connid(struct lwp *l, struct unpcb *unp, int flags)
    219 {
    220 	unp->unp_connid.unp_pid = l->l_proc->p_pid;
    221 	unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
    222 	unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
    223 	unp->unp_flags |= flags;
    224 }
    225 
    226 /*
    227  * A connection succeeded: disassociate both endpoints from the head's
    228  * lock, and make them share their own lock.  There is a race here: for
    229  * a very brief time one endpoint will be locked by a different lock
    230  * than the other end.  However, since the current thread holds the old
    231  * lock (the listening socket's lock, the head) access can still only be
    232  * made to one side of the connection.
    233  */
    234 static void
    235 unp_setpeerlocks(struct socket *so, struct socket *so2)
    236 {
    237 	struct unpcb *unp;
    238 	kmutex_t *lock;
    239 
    240 	KASSERT(solocked2(so, so2));
    241 
    242 	/*
    243 	 * Bail out if either end of the socket is not yet fully
    244 	 * connected or accepted.  We only break the lock association
    245 	 * with the head when the pair of sockets stand completely
    246 	 * on their own.
    247 	 */
    248 	KASSERT(so->so_head == NULL);
    249 	if (so2->so_head != NULL)
    250 		return;
    251 
    252 	/*
    253 	 * Drop references to old lock.  A third reference (from the
    254 	 * queue head) must be held as we still hold its lock.  Bonus:
    255 	 * we don't need to worry about garbage collecting the lock.
    256 	 */
    257 	lock = so->so_lock;
    258 	KASSERT(lock == uipc_lock);
    259 	mutex_obj_free(lock);
    260 	mutex_obj_free(lock);
    261 
    262 	/*
    263 	 * Grab stream lock from the initiator and share between the two
    264 	 * endpoints.  Issue memory barrier to ensure all modifications
    265 	 * become globally visible before the lock change.  so2 is
    266 	 * assumed not to have a stream lock, because it was created
    267 	 * purely for the server side to accept this connection and
    268 	 * started out life using the domain-wide lock.
    269 	 */
    270 	unp = sotounpcb(so);
    271 	KASSERT(unp->unp_streamlock != NULL);
    272 	KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
    273 	lock = unp->unp_streamlock;
    274 	unp->unp_streamlock = NULL;
    275 	mutex_obj_hold(lock);
    276 	membar_exit();
    277 	/*
    278 	 * possible race if lock is not held - see comment in
    279 	 * uipc_usrreq(PRU_ACCEPT).
    280 	 */
    281 	KASSERT(mutex_owned(lock));
    282 	solockreset(so, lock);
    283 	solockreset(so2, lock);
    284 }
    285 
    286 /*
    287  * Reset a socket's lock back to the domain-wide lock.
    288  */
    289 static void
    290 unp_resetlock(struct socket *so)
    291 {
    292 	kmutex_t *olock, *nlock;
    293 	struct unpcb *unp;
    294 
    295 	KASSERT(solocked(so));
    296 
    297 	olock = so->so_lock;
    298 	nlock = uipc_lock;
    299 	if (olock == nlock)
    300 		return;
    301 	unp = sotounpcb(so);
    302 	KASSERT(unp->unp_streamlock == NULL);
    303 	unp->unp_streamlock = olock;
    304 	mutex_obj_hold(nlock);
    305 	mutex_enter(nlock);
    306 	solockreset(so, nlock);
    307 	mutex_exit(olock);
    308 }
    309 
    310 static void
    311 unp_free(struct unpcb *unp)
    312 {
    313 	if (unp->unp_addr)
    314 		free(unp->unp_addr, M_SONAME);
    315 	if (unp->unp_streamlock != NULL)
    316 		mutex_obj_free(unp->unp_streamlock);
    317 	kmem_free(unp, sizeof(*unp));
    318 }
    319 
    320 static int
    321 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp)
    322 {
    323 	struct socket *so2;
    324 	const struct sockaddr_un *sun;
    325 
    326 	/* XXX: server side closed the socket */
    327 	if (unp->unp_conn == NULL)
    328 		return ECONNREFUSED;
    329 	so2 = unp->unp_conn->unp_socket;
    330 
    331 	KASSERT(solocked(so2));
    332 
    333 	if (unp->unp_addr)
    334 		sun = unp->unp_addr;
    335 	else
    336 		sun = &sun_noname;
    337 	if (unp->unp_conn->unp_flags & UNP_WANTCRED)
    338 		control = unp_addsockcred(curlwp, control);
    339 #ifdef COMPAT_SOCKCRED70
    340 	if (unp->unp_conn->unp_flags & UNP_OWANTCRED)
    341 		control = compat_70_unp_addsockcred(curlwp, control);
    342 #endif
    343 	if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
    344 	    control) == 0) {
    345 		unp_dispose(control);
    346 		m_freem(control);
    347 		m_freem(m);
    348 		soroverflow(so2);
    349 		return (ENOBUFS);
    350 	} else {
    351 		sorwakeup(so2);
    352 		return (0);
    353 	}
    354 }
    355 
    356 static void
    357 unp_setaddr(struct socket *so, struct sockaddr *nam, bool peeraddr)
    358 {
    359 	const struct sockaddr_un *sun = NULL;
    360 	struct unpcb *unp;
    361 
    362 	KASSERT(solocked(so));
    363 	unp = sotounpcb(so);
    364 
    365 	if (peeraddr) {
    366 		if (unp->unp_conn && unp->unp_conn->unp_addr)
    367 			sun = unp->unp_conn->unp_addr;
    368 	} else {
    369 		if (unp->unp_addr)
    370 			sun = unp->unp_addr;
    371 	}
    372 	if (sun == NULL)
    373 		sun = &sun_noname;
    374 
    375 	memcpy(nam, sun, sun->sun_len);
    376 }
    377 
    378 static int
    379 unp_rcvd(struct socket *so, int flags, struct lwp *l)
    380 {
    381 	struct unpcb *unp = sotounpcb(so);
    382 	struct socket *so2;
    383 	u_int newhiwat;
    384 
    385 	KASSERT(solocked(so));
    386 	KASSERT(unp != NULL);
    387 
    388 	switch (so->so_type) {
    389 
    390 	case SOCK_DGRAM:
    391 		panic("uipc 1");
    392 		/*NOTREACHED*/
    393 
    394 	case SOCK_SEQPACKET: /* FALLTHROUGH */
    395 	case SOCK_STREAM:
    396 #define	rcv (&so->so_rcv)
    397 #define snd (&so2->so_snd)
    398 		if (unp->unp_conn == 0)
    399 			break;
    400 		so2 = unp->unp_conn->unp_socket;
    401 		KASSERT(solocked2(so, so2));
    402 		/*
    403 		 * Adjust backpressure on sender
    404 		 * and wakeup any waiting to write.
    405 		 */
    406 		snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
    407 		unp->unp_mbcnt = rcv->sb_mbcnt;
    408 		newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
    409 		(void)chgsbsize(so2->so_uidinfo,
    410 		    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
    411 		unp->unp_cc = rcv->sb_cc;
    412 		sowwakeup(so2);
    413 #undef snd
    414 #undef rcv
    415 		break;
    416 
    417 	default:
    418 		panic("uipc 2");
    419 	}
    420 
    421 	return 0;
    422 }
    423 
    424 static int
    425 unp_recvoob(struct socket *so, struct mbuf *m, int flags)
    426 {
    427 	KASSERT(solocked(so));
    428 
    429 	return EOPNOTSUPP;
    430 }
    431 
    432 static int
    433 unp_send(struct socket *so, struct mbuf *m, struct sockaddr *nam,
    434     struct mbuf *control, struct lwp *l)
    435 {
    436 	struct unpcb *unp = sotounpcb(so);
    437 	int error = 0;
    438 	u_int newhiwat;
    439 	struct socket *so2;
    440 
    441 	KASSERT(solocked(so));
    442 	KASSERT(unp != NULL);
    443 	KASSERT(m != NULL);
    444 
    445 	/*
    446 	 * Note: unp_internalize() rejects any control message
    447 	 * other than SCM_RIGHTS, and only allows one.  This
    448 	 * has the side-effect of preventing a caller from
    449 	 * forging SCM_CREDS.
    450 	 */
    451 	if (control) {
    452 		sounlock(so);
    453 		error = unp_internalize(&control);
    454 		solock(so);
    455 		if (error != 0) {
    456 			m_freem(control);
    457 			m_freem(m);
    458 			return error;
    459 		}
    460 	}
    461 
    462 	switch (so->so_type) {
    463 
    464 	case SOCK_DGRAM: {
    465 		KASSERT(so->so_lock == uipc_lock);
    466 		if (nam) {
    467 			if ((so->so_state & SS_ISCONNECTED) != 0)
    468 				error = EISCONN;
    469 			else {
    470 				/*
    471 				 * Note: once connected, the
    472 				 * socket's lock must not be
    473 				 * dropped until we have sent
    474 				 * the message and disconnected.
    475 				 * This is necessary to prevent
    476 				 * intervening control ops, like
    477 				 * another connection.
    478 				 */
    479 				error = unp_connect(so, nam, l);
    480 			}
    481 		} else {
    482 			if ((so->so_state & SS_ISCONNECTED) == 0)
    483 				error = ENOTCONN;
    484 		}
    485 		if (error) {
    486 			unp_dispose(control);
    487 			m_freem(control);
    488 			m_freem(m);
    489 			return error;
    490 		}
    491 		error = unp_output(m, control, unp);
    492 		if (nam)
    493 			unp_disconnect1(unp);
    494 		break;
    495 	}
    496 
    497 	case SOCK_SEQPACKET: /* FALLTHROUGH */
    498 	case SOCK_STREAM:
    499 #define	rcv (&so2->so_rcv)
    500 #define	snd (&so->so_snd)
    501 		if (unp->unp_conn == NULL) {
    502 			error = ENOTCONN;
    503 			break;
    504 		}
    505 		so2 = unp->unp_conn->unp_socket;
    506 		KASSERT(solocked2(so, so2));
    507 		if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
    508 			/*
    509 			 * Credentials are passed only once on
    510 			 * SOCK_STREAM and SOCK_SEQPACKET.
    511 			 */
    512 			unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
    513 			control = unp_addsockcred(l, control);
    514 		}
    515 #ifdef COMPAT_SOCKCRED70
    516 		if (unp->unp_conn->unp_flags & UNP_OWANTCRED) {
    517 			/*
    518 			 * Credentials are passed only once on
    519 			 * SOCK_STREAM and SOCK_SEQPACKET.
    520 			 */
    521 			unp->unp_conn->unp_flags &= ~UNP_OWANTCRED;
    522 			control = compat_70_unp_addsockcred(l, control);
    523 		}
    524 #endif
    525 		/*
    526 		 * Send to paired receive port, and then reduce
    527 		 * send buffer hiwater marks to maintain backpressure.
    528 		 * Wake up readers.
    529 		 */
    530 		if (control) {
    531 			if (sbappendcontrol(rcv, m, control) != 0)
    532 				control = NULL;
    533 		} else {
    534 			switch(so->so_type) {
    535 			case SOCK_SEQPACKET:
    536 				sbappendrecord(rcv, m);
    537 				break;
    538 			case SOCK_STREAM:
    539 				sbappend(rcv, m);
    540 				break;
    541 			default:
    542 				panic("uipc_usrreq");
    543 				break;
    544 			}
    545 		}
    546 		snd->sb_mbmax -=
    547 		    rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
    548 		unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
    549 		newhiwat = snd->sb_hiwat -
    550 		    (rcv->sb_cc - unp->unp_conn->unp_cc);
    551 		(void)chgsbsize(so->so_uidinfo,
    552 		    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
    553 		unp->unp_conn->unp_cc = rcv->sb_cc;
    554 		sorwakeup(so2);
    555 #undef snd
    556 #undef rcv
    557 		if (control != NULL) {
    558 			unp_dispose(control);
    559 			m_freem(control);
    560 		}
    561 		break;
    562 
    563 	default:
    564 		panic("uipc 4");
    565 	}
    566 
    567 	return error;
    568 }
    569 
    570 static int
    571 unp_sendoob(struct socket *so, struct mbuf *m, struct mbuf * control)
    572 {
    573 	KASSERT(solocked(so));
    574 
    575 	m_freem(m);
    576 	m_freem(control);
    577 
    578 	return EOPNOTSUPP;
    579 }
    580 
    581 /*
    582  * Unix domain socket option processing.
    583  */
    584 int
    585 uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
    586 {
    587 	struct unpcb *unp = sotounpcb(so);
    588 	int optval = 0, error = 0;
    589 
    590 	KASSERT(solocked(so));
    591 
    592 	if (sopt->sopt_level != 0) {
    593 		error = ENOPROTOOPT;
    594 	} else switch (op) {
    595 
    596 	case PRCO_SETOPT:
    597 		switch (sopt->sopt_name) {
    598 		case LOCAL_CREDS:
    599 		case LOCAL_CONNWAIT:
    600 #ifdef COMPAT_SOCKCRED70
    601 		case LOCAL_OCREDS:
    602 #endif
    603 			error = sockopt_getint(sopt, &optval);
    604 			if (error)
    605 				break;
    606 			switch (sopt->sopt_name) {
    607 #define	OPTSET(bit) \
    608 	if (optval) \
    609 		unp->unp_flags |= (bit); \
    610 	else \
    611 		unp->unp_flags &= ~(bit);
    612 
    613 			case LOCAL_CREDS:
    614 				OPTSET(UNP_WANTCRED);
    615 				break;
    616 			case LOCAL_CONNWAIT:
    617 				OPTSET(UNP_CONNWAIT);
    618 				break;
    619 #ifdef COMPAT_SOCKCRED70
    620 			case LOCAL_OCREDS:
    621 				OPTSET(UNP_OWANTCRED);
    622 				break;
    623 #endif
    624 			}
    625 			break;
    626 #undef OPTSET
    627 
    628 		default:
    629 			error = ENOPROTOOPT;
    630 			break;
    631 		}
    632 		break;
    633 
    634 	case PRCO_GETOPT:
    635 		sounlock(so);
    636 		switch (sopt->sopt_name) {
    637 		case LOCAL_PEEREID:
    638 			if (unp->unp_flags & UNP_EIDSVALID) {
    639 				error = sockopt_set(sopt, &unp->unp_connid,
    640 				    sizeof(unp->unp_connid));
    641 			} else {
    642 				error = EINVAL;
    643 			}
    644 			break;
    645 		case LOCAL_CREDS:
    646 #define	OPTBIT(bit)	(unp->unp_flags & (bit) ? 1 : 0)
    647 
    648 			optval = OPTBIT(UNP_WANTCRED);
    649 			error = sockopt_setint(sopt, optval);
    650 			break;
    651 #ifdef COMPAT_SOCKCRED70
    652 		case LOCAL_OCREDS:
    653 			optval = OPTBIT(UNP_OWANTCRED);
    654 			error = sockopt_setint(sopt, optval);
    655 			break;
    656 #endif
    657 #undef OPTBIT
    658 
    659 		default:
    660 			error = ENOPROTOOPT;
    661 			break;
    662 		}
    663 		solock(so);
    664 		break;
    665 	}
    666 	return (error);
    667 }
    668 
    669 /*
    670  * Both send and receive buffers are allocated PIPSIZ bytes of buffering
    671  * for stream sockets, although the total for sender and receiver is
    672  * actually only PIPSIZ.
    673  * Datagram sockets really use the sendspace as the maximum datagram size,
    674  * and don't really want to reserve the sendspace.  Their recvspace should
    675  * be large enough for at least one max-size datagram plus address.
    676  */
    677 #define	PIPSIZ	4096
    678 u_long	unpst_sendspace = PIPSIZ;
    679 u_long	unpst_recvspace = PIPSIZ;
    680 u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
    681 u_long	unpdg_recvspace = 4*1024;
    682 
    683 u_int	unp_rights;			/* files in flight */
    684 u_int	unp_rights_ratio = 2;		/* limit, fraction of maxfiles */
    685 
    686 static int
    687 unp_attach(struct socket *so, int proto)
    688 {
    689 	struct unpcb *unp = sotounpcb(so);
    690 	u_long sndspc, rcvspc;
    691 	int error;
    692 
    693 	KASSERT(unp == NULL);
    694 
    695 	switch (so->so_type) {
    696 	case SOCK_SEQPACKET:
    697 		/* FALLTHROUGH */
    698 	case SOCK_STREAM:
    699 		if (so->so_lock == NULL) {
    700 			so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    701 			solock(so);
    702 		}
    703 		sndspc = unpst_sendspace;
    704 		rcvspc = unpst_recvspace;
    705 		break;
    706 
    707 	case SOCK_DGRAM:
    708 		if (so->so_lock == NULL) {
    709 			mutex_obj_hold(uipc_lock);
    710 			so->so_lock = uipc_lock;
    711 			solock(so);
    712 		}
    713 		sndspc = unpdg_sendspace;
    714 		rcvspc = unpdg_recvspace;
    715 		break;
    716 
    717 	default:
    718 		panic("unp_attach");
    719 	}
    720 
    721 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
    722 		error = soreserve(so, sndspc, rcvspc);
    723 		if (error) {
    724 			return error;
    725 		}
    726 	}
    727 
    728 	unp = kmem_zalloc(sizeof(*unp), KM_SLEEP);
    729 	nanotime(&unp->unp_ctime);
    730 	unp->unp_socket = so;
    731 	so->so_pcb = unp;
    732 
    733 	KASSERT(solocked(so));
    734 	return 0;
    735 }
    736 
    737 static void
    738 unp_detach(struct socket *so)
    739 {
    740 	struct unpcb *unp;
    741 	vnode_t *vp;
    742 
    743 	unp = sotounpcb(so);
    744 	KASSERT(unp != NULL);
    745 	KASSERT(solocked(so));
    746  retry:
    747 	if ((vp = unp->unp_vnode) != NULL) {
    748 		sounlock(so);
    749 		/* Acquire v_interlock to protect against unp_connect(). */
    750 		/* XXXAD racy */
    751 		mutex_enter(vp->v_interlock);
    752 		vp->v_socket = NULL;
    753 		mutex_exit(vp->v_interlock);
    754 		vrele(vp);
    755 		solock(so);
    756 		unp->unp_vnode = NULL;
    757 	}
    758 	if (unp->unp_conn)
    759 		unp_disconnect1(unp);
    760 	while (unp->unp_refs) {
    761 		KASSERT(solocked2(so, unp->unp_refs->unp_socket));
    762 		if (unp_drop(unp->unp_refs, ECONNRESET)) {
    763 			solock(so);
    764 			goto retry;
    765 		}
    766 	}
    767 	soisdisconnected(so);
    768 	so->so_pcb = NULL;
    769 	if (unp_rights) {
    770 		/*
    771 		 * Normally the receive buffer is flushed later, in sofree,
    772 		 * but if our receive buffer holds references to files that
    773 		 * are now garbage, we will enqueue those file references to
    774 		 * the garbage collector and kick it into action.
    775 		 */
    776 		sorflush(so);
    777 		unp_free(unp);
    778 		unp_thread_kick();
    779 	} else
    780 		unp_free(unp);
    781 }
    782 
    783 static int
    784 unp_accept(struct socket *so, struct sockaddr *nam)
    785 {
    786 	struct unpcb *unp = sotounpcb(so);
    787 	struct socket *so2;
    788 
    789 	KASSERT(solocked(so));
    790 	KASSERT(nam != NULL);
    791 
    792 	/* XXX code review required to determine if unp can ever be NULL */
    793 	if (unp == NULL)
    794 		return EINVAL;
    795 
    796 	KASSERT(so->so_lock == uipc_lock);
    797 	/*
    798 	 * Mark the initiating STREAM socket as connected *ONLY*
    799 	 * after it's been accepted.  This prevents a client from
    800 	 * overrunning a server and receiving ECONNREFUSED.
    801 	 */
    802 	if (unp->unp_conn == NULL) {
    803 		/*
    804 		 * This will use the empty socket and will not
    805 		 * allocate.
    806 		 */
    807 		unp_setaddr(so, nam, true);
    808 		return 0;
    809 	}
    810 	so2 = unp->unp_conn->unp_socket;
    811 	if (so2->so_state & SS_ISCONNECTING) {
    812 		KASSERT(solocked2(so, so->so_head));
    813 		KASSERT(solocked2(so2, so->so_head));
    814 		soisconnected(so2);
    815 	}
    816 	/*
    817 	 * If the connection is fully established, break the
    818 	 * association with uipc_lock and give the connected
    819 	 * pair a separate lock to share.
    820 	 * There is a race here: sotounpcb(so2)->unp_streamlock
    821 	 * is not locked, so when changing so2->so_lock
    822 	 * another thread can grab it while so->so_lock is still
    823 	 * pointing to the (locked) uipc_lock.
    824 	 * this should be harmless, except that this makes
    825 	 * solocked2() and solocked() unreliable.
    826 	 * Another problem is that unp_setaddr() expects the
    827 	 * the socket locked. Grabing sotounpcb(so2)->unp_streamlock
    828 	 * fixes both issues.
    829 	 */
    830 	mutex_enter(sotounpcb(so2)->unp_streamlock);
    831 	unp_setpeerlocks(so2, so);
    832 	/*
    833 	 * Only now return peer's address, as we may need to
    834 	 * block in order to allocate memory.
    835 	 *
    836 	 * XXX Minor race: connection can be broken while
    837 	 * lock is dropped in unp_setaddr().  We will return
    838 	 * error == 0 and sun_noname as the peer address.
    839 	 */
    840 	unp_setaddr(so, nam, true);
    841 	/* so_lock now points to unp_streamlock */
    842 	mutex_exit(so2->so_lock);
    843 	return 0;
    844 }
    845 
    846 static int
    847 unp_ioctl(struct socket *so, u_long cmd, void *nam, struct ifnet *ifp)
    848 {
    849 	return EOPNOTSUPP;
    850 }
    851 
    852 static int
    853 unp_stat(struct socket *so, struct stat *ub)
    854 {
    855 	struct unpcb *unp;
    856 	struct socket *so2;
    857 
    858 	KASSERT(solocked(so));
    859 
    860 	unp = sotounpcb(so);
    861 	if (unp == NULL)
    862 		return EINVAL;
    863 
    864 	ub->st_blksize = so->so_snd.sb_hiwat;
    865 	switch (so->so_type) {
    866 	case SOCK_SEQPACKET: /* FALLTHROUGH */
    867 	case SOCK_STREAM:
    868 		if (unp->unp_conn == 0)
    869 			break;
    870 
    871 		so2 = unp->unp_conn->unp_socket;
    872 		KASSERT(solocked2(so, so2));
    873 		ub->st_blksize += so2->so_rcv.sb_cc;
    874 		break;
    875 	default:
    876 		break;
    877 	}
    878 	ub->st_dev = NODEV;
    879 	if (unp->unp_ino == 0)
    880 		unp->unp_ino = unp_ino++;
    881 	ub->st_atimespec = ub->st_mtimespec = ub->st_ctimespec = unp->unp_ctime;
    882 	ub->st_ino = unp->unp_ino;
    883 	return (0);
    884 }
    885 
    886 static int
    887 unp_peeraddr(struct socket *so, struct sockaddr *nam)
    888 {
    889 	KASSERT(solocked(so));
    890 	KASSERT(sotounpcb(so) != NULL);
    891 	KASSERT(nam != NULL);
    892 
    893 	unp_setaddr(so, nam, true);
    894 	return 0;
    895 }
    896 
    897 static int
    898 unp_sockaddr(struct socket *so, struct sockaddr *nam)
    899 {
    900 	KASSERT(solocked(so));
    901 	KASSERT(sotounpcb(so) != NULL);
    902 	KASSERT(nam != NULL);
    903 
    904 	unp_setaddr(so, nam, false);
    905 	return 0;
    906 }
    907 
    908 /*
    909  * we only need to perform this allocation until syscalls other than
    910  * bind are adjusted to use sockaddr_big.
    911  */
    912 static struct sockaddr_un *
    913 makeun_sb(struct sockaddr *nam, size_t *addrlen)
    914 {
    915 	struct sockaddr_un *sun;
    916 
    917 	*addrlen = nam->sa_len + 1;
    918 	sun = malloc(*addrlen, M_SONAME, M_WAITOK);
    919 	memcpy(sun, nam, nam->sa_len);
    920 	*(((char *)sun) + nam->sa_len) = '\0';
    921 	return sun;
    922 }
    923 
    924 static int
    925 unp_bind(struct socket *so, struct sockaddr *nam, struct lwp *l)
    926 {
    927 	struct sockaddr_un *sun;
    928 	struct unpcb *unp;
    929 	vnode_t *vp;
    930 	struct vattr vattr;
    931 	size_t addrlen;
    932 	int error;
    933 	struct pathbuf *pb;
    934 	struct nameidata nd;
    935 	proc_t *p;
    936 
    937 	unp = sotounpcb(so);
    938 
    939 	KASSERT(solocked(so));
    940 	KASSERT(unp != NULL);
    941 	KASSERT(nam != NULL);
    942 
    943 	if (unp->unp_vnode != NULL)
    944 		return (EINVAL);
    945 	if ((unp->unp_flags & UNP_BUSY) != 0) {
    946 		/*
    947 		 * EALREADY may not be strictly accurate, but since this
    948 		 * is a major application error it's hardly a big deal.
    949 		 */
    950 		return (EALREADY);
    951 	}
    952 	unp->unp_flags |= UNP_BUSY;
    953 	sounlock(so);
    954 
    955 	p = l->l_proc;
    956 	sun = makeun_sb(nam, &addrlen);
    957 
    958 	pb = pathbuf_create(sun->sun_path);
    959 	if (pb == NULL) {
    960 		error = ENOMEM;
    961 		goto bad;
    962 	}
    963 	NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, pb);
    964 
    965 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
    966 	if ((error = namei(&nd)) != 0) {
    967 		pathbuf_destroy(pb);
    968 		goto bad;
    969 	}
    970 	vp = nd.ni_vp;
    971 	if (vp != NULL) {
    972 		VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
    973 		if (nd.ni_dvp == vp)
    974 			vrele(nd.ni_dvp);
    975 		else
    976 			vput(nd.ni_dvp);
    977 		vrele(vp);
    978 		pathbuf_destroy(pb);
    979 		error = EADDRINUSE;
    980 		goto bad;
    981 	}
    982 	vattr_null(&vattr);
    983 	vattr.va_type = VSOCK;
    984 	vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
    985 	error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
    986 	if (error) {
    987 		vput(nd.ni_dvp);
    988 		pathbuf_destroy(pb);
    989 		goto bad;
    990 	}
    991 	vp = nd.ni_vp;
    992 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    993 	solock(so);
    994 	vp->v_socket = unp->unp_socket;
    995 	unp->unp_vnode = vp;
    996 	unp->unp_addrlen = addrlen;
    997 	unp->unp_addr = sun;
    998 	VOP_UNLOCK(vp);
    999 	vput(nd.ni_dvp);
   1000 	unp->unp_flags &= ~UNP_BUSY;
   1001 	pathbuf_destroy(pb);
   1002 	return (0);
   1003 
   1004  bad:
   1005 	free(sun, M_SONAME);
   1006 	solock(so);
   1007 	unp->unp_flags &= ~UNP_BUSY;
   1008 	return (error);
   1009 }
   1010 
   1011 static int
   1012 unp_listen(struct socket *so, struct lwp *l)
   1013 {
   1014 	struct unpcb *unp = sotounpcb(so);
   1015 
   1016 	KASSERT(solocked(so));
   1017 	KASSERT(unp != NULL);
   1018 
   1019 	/*
   1020 	 * If the socket can accept a connection, it must be
   1021 	 * locked by uipc_lock.
   1022 	 */
   1023 	unp_resetlock(so);
   1024 	if (unp->unp_vnode == NULL)
   1025 		return EINVAL;
   1026 
   1027 	unp_connid(l, unp, UNP_EIDSBIND);
   1028 	return 0;
   1029 }
   1030 
   1031 static int
   1032 unp_disconnect(struct socket *so)
   1033 {
   1034 	KASSERT(solocked(so));
   1035 	KASSERT(sotounpcb(so) != NULL);
   1036 
   1037 	unp_disconnect1(sotounpcb(so));
   1038 	return 0;
   1039 }
   1040 
   1041 static int
   1042 unp_shutdown(struct socket *so)
   1043 {
   1044 	KASSERT(solocked(so));
   1045 	KASSERT(sotounpcb(so) != NULL);
   1046 
   1047 	socantsendmore(so);
   1048 	unp_shutdown1(sotounpcb(so));
   1049 	return 0;
   1050 }
   1051 
   1052 static int
   1053 unp_abort(struct socket *so)
   1054 {
   1055 	KASSERT(solocked(so));
   1056 	KASSERT(sotounpcb(so) != NULL);
   1057 
   1058 	(void)unp_drop(sotounpcb(so), ECONNABORTED);
   1059 	KASSERT(so->so_head == NULL);
   1060 	KASSERT(so->so_pcb != NULL);
   1061 	unp_detach(so);
   1062 	return 0;
   1063 }
   1064 
   1065 static int
   1066 unp_connect1(struct socket *so, struct socket *so2, struct lwp *l)
   1067 {
   1068 	struct unpcb *unp = sotounpcb(so);
   1069 	struct unpcb *unp2;
   1070 
   1071 	if (so2->so_type != so->so_type)
   1072 		return EPROTOTYPE;
   1073 
   1074 	/*
   1075 	 * All three sockets involved must be locked by same lock:
   1076 	 *
   1077 	 * local endpoint (so)
   1078 	 * remote endpoint (so2)
   1079 	 * queue head (so2->so_head, only if PR_CONNREQUIRED)
   1080 	 */
   1081 	KASSERT(solocked2(so, so2));
   1082 	KASSERT(so->so_head == NULL);
   1083 	if (so2->so_head != NULL) {
   1084 		KASSERT(so2->so_lock == uipc_lock);
   1085 		KASSERT(solocked2(so2, so2->so_head));
   1086 	}
   1087 
   1088 	unp2 = sotounpcb(so2);
   1089 	unp->unp_conn = unp2;
   1090 
   1091 	switch (so->so_type) {
   1092 
   1093 	case SOCK_DGRAM:
   1094 		unp->unp_nextref = unp2->unp_refs;
   1095 		unp2->unp_refs = unp;
   1096 		soisconnected(so);
   1097 		break;
   1098 
   1099 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1100 	case SOCK_STREAM:
   1101 
   1102 		/*
   1103 		 * SOCK_SEQPACKET and SOCK_STREAM cases are handled by callers
   1104 		 * which are unp_connect() or unp_connect2().
   1105 		 */
   1106 
   1107 		break;
   1108 
   1109 	default:
   1110 		panic("unp_connect1");
   1111 	}
   1112 
   1113 	return 0;
   1114 }
   1115 
   1116 int
   1117 unp_connect(struct socket *so, struct sockaddr *nam, struct lwp *l)
   1118 {
   1119 	struct sockaddr_un *sun;
   1120 	vnode_t *vp;
   1121 	struct socket *so2, *so3;
   1122 	struct unpcb *unp, *unp2, *unp3;
   1123 	size_t addrlen;
   1124 	int error;
   1125 	struct pathbuf *pb;
   1126 	struct nameidata nd;
   1127 
   1128 	unp = sotounpcb(so);
   1129 	if ((unp->unp_flags & UNP_BUSY) != 0) {
   1130 		/*
   1131 		 * EALREADY may not be strictly accurate, but since this
   1132 		 * is a major application error it's hardly a big deal.
   1133 		 */
   1134 		return (EALREADY);
   1135 	}
   1136 	unp->unp_flags |= UNP_BUSY;
   1137 	sounlock(so);
   1138 
   1139 	sun = makeun_sb(nam, &addrlen);
   1140 	pb = pathbuf_create(sun->sun_path);
   1141 	if (pb == NULL) {
   1142 		error = ENOMEM;
   1143 		goto bad2;
   1144 	}
   1145 
   1146 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
   1147 
   1148 	if ((error = namei(&nd)) != 0) {
   1149 		pathbuf_destroy(pb);
   1150 		goto bad2;
   1151 	}
   1152 	vp = nd.ni_vp;
   1153 	pathbuf_destroy(pb);
   1154 	if (vp->v_type != VSOCK) {
   1155 		error = ENOTSOCK;
   1156 		goto bad;
   1157 	}
   1158 	if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
   1159 		goto bad;
   1160 	/* Acquire v_interlock to protect against unp_detach(). */
   1161 	mutex_enter(vp->v_interlock);
   1162 	so2 = vp->v_socket;
   1163 	if (so2 == NULL) {
   1164 		mutex_exit(vp->v_interlock);
   1165 		error = ECONNREFUSED;
   1166 		goto bad;
   1167 	}
   1168 	if (so->so_type != so2->so_type) {
   1169 		mutex_exit(vp->v_interlock);
   1170 		error = EPROTOTYPE;
   1171 		goto bad;
   1172 	}
   1173 	solock(so);
   1174 	unp_resetlock(so);
   1175 	mutex_exit(vp->v_interlock);
   1176 	if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
   1177 		/*
   1178 		 * This may seem somewhat fragile but is OK: if we can
   1179 		 * see SO_ACCEPTCONN set on the endpoint, then it must
   1180 		 * be locked by the domain-wide uipc_lock.
   1181 		 */
   1182 		KASSERT((so2->so_options & SO_ACCEPTCONN) == 0 ||
   1183 		    so2->so_lock == uipc_lock);
   1184 		if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
   1185 		    (so3 = sonewconn(so2, false)) == NULL) {
   1186 			error = ECONNREFUSED;
   1187 			sounlock(so);
   1188 			goto bad;
   1189 		}
   1190 		unp2 = sotounpcb(so2);
   1191 		unp3 = sotounpcb(so3);
   1192 		if (unp2->unp_addr) {
   1193 			unp3->unp_addr = malloc(unp2->unp_addrlen,
   1194 			    M_SONAME, M_WAITOK);
   1195 			memcpy(unp3->unp_addr, unp2->unp_addr,
   1196 			    unp2->unp_addrlen);
   1197 			unp3->unp_addrlen = unp2->unp_addrlen;
   1198 		}
   1199 		unp3->unp_flags = unp2->unp_flags;
   1200 		so2 = so3;
   1201 		/*
   1202 		 * The connector's (client's) credentials are copied from its
   1203 		 * process structure at the time of connect() (which is now).
   1204 		 */
   1205 		unp_connid(l, unp3, UNP_EIDSVALID);
   1206 		 /*
   1207 		  * The receiver's (server's) credentials are copied from the
   1208 		  * unp_peercred member of socket on which the former called
   1209 		  * listen(); unp_listen() cached that process's credentials
   1210 		  * at that time so we can use them now.
   1211 		  */
   1212 		if (unp2->unp_flags & UNP_EIDSBIND) {
   1213 			memcpy(&unp->unp_connid, &unp2->unp_connid,
   1214 			    sizeof(unp->unp_connid));
   1215 			unp->unp_flags |= UNP_EIDSVALID;
   1216 		}
   1217 	}
   1218 	error = unp_connect1(so, so2, l);
   1219 	if (error) {
   1220 		sounlock(so);
   1221 		goto bad;
   1222 	}
   1223 	unp2 = sotounpcb(so2);
   1224 	switch (so->so_type) {
   1225 
   1226 	/*
   1227 	 * SOCK_DGRAM and default cases are handled in prior call to
   1228 	 * unp_connect1(), do not add a default case without fixing
   1229 	 * unp_connect1().
   1230 	 */
   1231 
   1232 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1233 	case SOCK_STREAM:
   1234 		unp2->unp_conn = unp;
   1235 		if ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT)
   1236 			soisconnecting(so);
   1237 		else
   1238 			soisconnected(so);
   1239 		soisconnected(so2);
   1240 		/*
   1241 		 * If the connection is fully established, break the
   1242 		 * association with uipc_lock and give the connected
   1243 		 * pair a seperate lock to share.
   1244 		 */
   1245 		KASSERT(so2->so_head != NULL);
   1246 		unp_setpeerlocks(so, so2);
   1247 		break;
   1248 
   1249 	}
   1250 	sounlock(so);
   1251  bad:
   1252 	vput(vp);
   1253  bad2:
   1254 	free(sun, M_SONAME);
   1255 	solock(so);
   1256 	unp->unp_flags &= ~UNP_BUSY;
   1257 	return (error);
   1258 }
   1259 
   1260 int
   1261 unp_connect2(struct socket *so, struct socket *so2)
   1262 {
   1263 	struct unpcb *unp = sotounpcb(so);
   1264 	struct unpcb *unp2;
   1265 	int error = 0;
   1266 
   1267 	KASSERT(solocked2(so, so2));
   1268 
   1269 	error = unp_connect1(so, so2, curlwp);
   1270 	if (error)
   1271 		return error;
   1272 
   1273 	unp2 = sotounpcb(so2);
   1274 	switch (so->so_type) {
   1275 
   1276 	/*
   1277 	 * SOCK_DGRAM and default cases are handled in prior call to
   1278 	 * unp_connect1(), do not add a default case without fixing
   1279 	 * unp_connect1().
   1280 	 */
   1281 
   1282 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1283 	case SOCK_STREAM:
   1284 		unp2->unp_conn = unp;
   1285 		soisconnected(so);
   1286 		soisconnected(so2);
   1287 		break;
   1288 
   1289 	}
   1290 	return error;
   1291 }
   1292 
   1293 static void
   1294 unp_disconnect1(struct unpcb *unp)
   1295 {
   1296 	struct unpcb *unp2 = unp->unp_conn;
   1297 	struct socket *so;
   1298 
   1299 	if (unp2 == 0)
   1300 		return;
   1301 	unp->unp_conn = 0;
   1302 	so = unp->unp_socket;
   1303 	switch (so->so_type) {
   1304 	case SOCK_DGRAM:
   1305 		if (unp2->unp_refs == unp)
   1306 			unp2->unp_refs = unp->unp_nextref;
   1307 		else {
   1308 			unp2 = unp2->unp_refs;
   1309 			for (;;) {
   1310 				KASSERT(solocked2(so, unp2->unp_socket));
   1311 				if (unp2 == 0)
   1312 					panic("unp_disconnect1");
   1313 				if (unp2->unp_nextref == unp)
   1314 					break;
   1315 				unp2 = unp2->unp_nextref;
   1316 			}
   1317 			unp2->unp_nextref = unp->unp_nextref;
   1318 		}
   1319 		unp->unp_nextref = 0;
   1320 		so->so_state &= ~SS_ISCONNECTED;
   1321 		break;
   1322 
   1323 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1324 	case SOCK_STREAM:
   1325 		KASSERT(solocked2(so, unp2->unp_socket));
   1326 		soisdisconnected(so);
   1327 		unp2->unp_conn = 0;
   1328 		soisdisconnected(unp2->unp_socket);
   1329 		break;
   1330 	}
   1331 }
   1332 
   1333 static void
   1334 unp_shutdown1(struct unpcb *unp)
   1335 {
   1336 	struct socket *so;
   1337 
   1338 	switch(unp->unp_socket->so_type) {
   1339 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1340 	case SOCK_STREAM:
   1341 		if (unp->unp_conn && (so = unp->unp_conn->unp_socket))
   1342 			socantrcvmore(so);
   1343 		break;
   1344 	default:
   1345 		break;
   1346 	}
   1347 }
   1348 
   1349 static bool
   1350 unp_drop(struct unpcb *unp, int errno)
   1351 {
   1352 	struct socket *so = unp->unp_socket;
   1353 
   1354 	KASSERT(solocked(so));
   1355 
   1356 	so->so_error = errno;
   1357 	unp_disconnect1(unp);
   1358 	if (so->so_head) {
   1359 		so->so_pcb = NULL;
   1360 		/* sofree() drops the socket lock */
   1361 		sofree(so);
   1362 		unp_free(unp);
   1363 		return true;
   1364 	}
   1365 	return false;
   1366 }
   1367 
   1368 #ifdef notdef
   1369 unp_drain(void)
   1370 {
   1371 
   1372 }
   1373 #endif
   1374 
   1375 int
   1376 unp_externalize(struct mbuf *rights, struct lwp *l, int flags)
   1377 {
   1378 	struct cmsghdr * const cm = mtod(rights, struct cmsghdr *);
   1379 	struct proc * const p = l->l_proc;
   1380 	file_t **rp;
   1381 	int error = 0;
   1382 
   1383 	const size_t nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
   1384 	    sizeof(file_t *);
   1385 	if (nfds == 0)
   1386 		goto noop;
   1387 
   1388 	int * const fdp = kmem_alloc(nfds * sizeof(int), KM_SLEEP);
   1389 	rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
   1390 
   1391 	/* Make sure the recipient should be able to see the files.. */
   1392 	rp = (file_t **)CMSG_DATA(cm);
   1393 	for (size_t i = 0; i < nfds; i++) {
   1394 		file_t * const fp = *rp++;
   1395 		if (fp == NULL) {
   1396 			error = EINVAL;
   1397 			goto out;
   1398 		}
   1399 		/*
   1400 		 * If we are in a chroot'ed directory, and
   1401 		 * someone wants to pass us a directory, make
   1402 		 * sure it's inside the subtree we're allowed
   1403 		 * to access.
   1404 		 */
   1405 		if (p->p_cwdi->cwdi_rdir != NULL && fp->f_type == DTYPE_VNODE) {
   1406 			vnode_t *vp = fp->f_vnode;
   1407 			if ((vp->v_type == VDIR) &&
   1408 			    !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
   1409 				error = EPERM;
   1410 				goto out;
   1411 			}
   1412 		}
   1413 	}
   1414 
   1415  restart:
   1416 	/*
   1417 	 * First loop -- allocate file descriptor table slots for the
   1418 	 * new files.
   1419 	 */
   1420 	for (size_t i = 0; i < nfds; i++) {
   1421 		if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
   1422 			/*
   1423 			 * Back out what we've done so far.
   1424 			 */
   1425 			while (i-- > 0) {
   1426 				fd_abort(p, NULL, fdp[i]);
   1427 			}
   1428 			if (error == ENOSPC) {
   1429 				fd_tryexpand(p);
   1430 				error = 0;
   1431 				goto restart;
   1432 			}
   1433 			/*
   1434 			 * This is the error that has historically
   1435 			 * been returned, and some callers may
   1436 			 * expect it.
   1437 			 */
   1438 			error = EMSGSIZE;
   1439 			goto out;
   1440 		}
   1441 	}
   1442 
   1443 	/*
   1444 	 * Now that adding them has succeeded, update all of the
   1445 	 * file passing state and affix the descriptors.
   1446 	 */
   1447 	rp = (file_t **)CMSG_DATA(cm);
   1448 	int *ofdp = (int *)CMSG_DATA(cm);
   1449 	for (size_t i = 0; i < nfds; i++) {
   1450 		file_t * const fp = *rp++;
   1451 		const int fd = fdp[i];
   1452 		atomic_dec_uint(&unp_rights);
   1453 		fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
   1454 		fd_affix(p, fp, fd);
   1455 		/*
   1456 		 * Done with this file pointer, replace it with a fd;
   1457 		 */
   1458 		*ofdp++ = fd;
   1459 		mutex_enter(&fp->f_lock);
   1460 		fp->f_msgcount--;
   1461 		mutex_exit(&fp->f_lock);
   1462 		/*
   1463 		 * Note that fd_affix() adds a reference to the file.
   1464 		 * The file may already have been closed by another
   1465 		 * LWP in the process, so we must drop the reference
   1466 		 * added by unp_internalize() with closef().
   1467 		 */
   1468 		closef(fp);
   1469 	}
   1470 
   1471 	/*
   1472 	 * Adjust length, in case of transition from large file_t
   1473 	 * pointers to ints.
   1474 	 */
   1475 	if (sizeof(file_t *) != sizeof(int)) {
   1476 		cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
   1477 		rights->m_len = CMSG_SPACE(nfds * sizeof(int));
   1478 	}
   1479  out:
   1480 	if (__predict_false(error != 0)) {
   1481 		file_t **const fpp = (file_t **)CMSG_DATA(cm);
   1482 		for (size_t i = 0; i < nfds; i++)
   1483 			unp_discard_now(fpp[i]);
   1484 		/*
   1485 		 * Truncate the array so that nobody will try to interpret
   1486 		 * what is now garbage in it.
   1487 		 */
   1488 		cm->cmsg_len = CMSG_LEN(0);
   1489 		rights->m_len = CMSG_SPACE(0);
   1490 	}
   1491 	rw_exit(&p->p_cwdi->cwdi_lock);
   1492 	kmem_free(fdp, nfds * sizeof(int));
   1493 
   1494  noop:
   1495 	/*
   1496 	 * Don't disclose kernel memory in the alignment space.
   1497 	 */
   1498 	KASSERT(cm->cmsg_len <= rights->m_len);
   1499 	memset(&mtod(rights, char *)[cm->cmsg_len], 0, rights->m_len -
   1500 	    cm->cmsg_len);
   1501 	return error;
   1502 }
   1503 
   1504 static int
   1505 unp_internalize(struct mbuf **controlp)
   1506 {
   1507 	filedesc_t *fdescp = curlwp->l_fd;
   1508 	struct mbuf *control = *controlp;
   1509 	struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
   1510 	file_t **rp, **files;
   1511 	file_t *fp;
   1512 	int i, fd, *fdp;
   1513 	int nfds, error;
   1514 	u_int maxmsg;
   1515 
   1516 	error = 0;
   1517 	newcm = NULL;
   1518 
   1519 	/* Sanity check the control message header. */
   1520 	if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
   1521 	    cm->cmsg_len > control->m_len ||
   1522 	    cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
   1523 		return (EINVAL);
   1524 
   1525 	/*
   1526 	 * Verify that the file descriptors are valid, and acquire
   1527 	 * a reference to each.
   1528 	 */
   1529 	nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
   1530 	fdp = (int *)CMSG_DATA(cm);
   1531 	maxmsg = maxfiles / unp_rights_ratio;
   1532 	for (i = 0; i < nfds; i++) {
   1533 		fd = *fdp++;
   1534 		if (atomic_inc_uint_nv(&unp_rights) > maxmsg) {
   1535 			atomic_dec_uint(&unp_rights);
   1536 			nfds = i;
   1537 			error = EAGAIN;
   1538 			goto out;
   1539 		}
   1540 		if ((fp = fd_getfile(fd)) == NULL
   1541 		    || fp->f_type == DTYPE_KQUEUE) {
   1542 		    	if (fp)
   1543 		    		fd_putfile(fd);
   1544 			atomic_dec_uint(&unp_rights);
   1545 			nfds = i;
   1546 			error = EBADF;
   1547 			goto out;
   1548 		}
   1549 	}
   1550 
   1551 	/* Allocate new space and copy header into it. */
   1552 	newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
   1553 	if (newcm == NULL) {
   1554 		error = E2BIG;
   1555 		goto out;
   1556 	}
   1557 	memcpy(newcm, cm, sizeof(struct cmsghdr));
   1558 	files = (file_t **)CMSG_DATA(newcm);
   1559 
   1560 	/*
   1561 	 * Transform the file descriptors into file_t pointers, in
   1562 	 * reverse order so that if pointers are bigger than ints, the
   1563 	 * int won't get until we're done.  No need to lock, as we have
   1564 	 * already validated the descriptors with fd_getfile().
   1565 	 */
   1566 	fdp = (int *)CMSG_DATA(cm) + nfds;
   1567 	rp = files + nfds;
   1568 	for (i = 0; i < nfds; i++) {
   1569 		fp = fdescp->fd_dt->dt_ff[*--fdp]->ff_file;
   1570 		KASSERT(fp != NULL);
   1571 		mutex_enter(&fp->f_lock);
   1572 		*--rp = fp;
   1573 		fp->f_count++;
   1574 		fp->f_msgcount++;
   1575 		mutex_exit(&fp->f_lock);
   1576 	}
   1577 
   1578  out:
   1579  	/* Release descriptor references. */
   1580 	fdp = (int *)CMSG_DATA(cm);
   1581 	for (i = 0; i < nfds; i++) {
   1582 		fd_putfile(*fdp++);
   1583 		if (error != 0) {
   1584 			atomic_dec_uint(&unp_rights);
   1585 		}
   1586 	}
   1587 
   1588 	if (error == 0) {
   1589 		if (control->m_flags & M_EXT) {
   1590 			m_freem(control);
   1591 			*controlp = control = m_get(M_WAIT, MT_CONTROL);
   1592 		}
   1593 		MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
   1594 		    M_MBUF, NULL, NULL);
   1595 		cm = newcm;
   1596 		/*
   1597 		 * Adjust message & mbuf to note amount of space
   1598 		 * actually used.
   1599 		 */
   1600 		cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
   1601 		control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
   1602 	}
   1603 
   1604 	return error;
   1605 }
   1606 
   1607 struct mbuf *
   1608 unp_addsockcred(struct lwp *l, struct mbuf *control)
   1609 {
   1610 	struct sockcred *sc;
   1611 	struct mbuf *m;
   1612 	void *p;
   1613 
   1614 	m = sbcreatecontrol1(&p, SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)),
   1615 		SCM_CREDS, SOL_SOCKET, M_WAITOK);
   1616 	if (m == NULL)
   1617 		return control;
   1618 
   1619 	sc = p;
   1620 	sc->sc_pid = l->l_proc->p_pid;
   1621 	sc->sc_uid = kauth_cred_getuid(l->l_cred);
   1622 	sc->sc_euid = kauth_cred_geteuid(l->l_cred);
   1623 	sc->sc_gid = kauth_cred_getgid(l->l_cred);
   1624 	sc->sc_egid = kauth_cred_getegid(l->l_cred);
   1625 	sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
   1626 
   1627 	for (int i = 0; i < sc->sc_ngroups; i++)
   1628 		sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
   1629 
   1630 	return m_add(control, m);
   1631 }
   1632 
   1633 /*
   1634  * Do a mark-sweep GC of files in the system, to free up any which are
   1635  * caught in flight to an about-to-be-closed socket.  Additionally,
   1636  * process deferred file closures.
   1637  */
   1638 static void
   1639 unp_gc(file_t *dp)
   1640 {
   1641 	extern	struct domain unixdomain;
   1642 	file_t *fp, *np;
   1643 	struct socket *so, *so1;
   1644 	u_int i, oflags, rflags;
   1645 	bool didwork;
   1646 
   1647 	KASSERT(curlwp == unp_thread_lwp);
   1648 	KASSERT(mutex_owned(&filelist_lock));
   1649 
   1650 	/*
   1651 	 * First, process deferred file closures.
   1652 	 */
   1653 	while (!SLIST_EMPTY(&unp_thread_discard)) {
   1654 		fp = SLIST_FIRST(&unp_thread_discard);
   1655 		KASSERT(fp->f_unpcount > 0);
   1656 		KASSERT(fp->f_count > 0);
   1657 		KASSERT(fp->f_msgcount > 0);
   1658 		KASSERT(fp->f_count >= fp->f_unpcount);
   1659 		KASSERT(fp->f_count >= fp->f_msgcount);
   1660 		KASSERT(fp->f_msgcount >= fp->f_unpcount);
   1661 		SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist);
   1662 		i = fp->f_unpcount;
   1663 		fp->f_unpcount = 0;
   1664 		mutex_exit(&filelist_lock);
   1665 		for (; i != 0; i--) {
   1666 			unp_discard_now(fp);
   1667 		}
   1668 		mutex_enter(&filelist_lock);
   1669 	}
   1670 
   1671 	/*
   1672 	 * Clear mark bits.  Ensure that we don't consider new files
   1673 	 * entering the file table during this loop (they will not have
   1674 	 * FSCAN set).
   1675 	 */
   1676 	unp_defer = 0;
   1677 	LIST_FOREACH(fp, &filehead, f_list) {
   1678 		for (oflags = fp->f_flag;; oflags = rflags) {
   1679 			rflags = atomic_cas_uint(&fp->f_flag, oflags,
   1680 			    (oflags | FSCAN) & ~(FMARK|FDEFER));
   1681 			if (__predict_true(oflags == rflags)) {
   1682 				break;
   1683 			}
   1684 		}
   1685 	}
   1686 
   1687 	/*
   1688 	 * Iterate over the set of sockets, marking ones believed (based on
   1689 	 * refcount) to be referenced from a process, and marking for rescan
   1690 	 * sockets which are queued on a socket.  Recan continues descending
   1691 	 * and searching for sockets referenced by sockets (FDEFER), until
   1692 	 * there are no more socket->socket references to be discovered.
   1693 	 */
   1694 	do {
   1695 		didwork = false;
   1696 		for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
   1697 			KASSERT(mutex_owned(&filelist_lock));
   1698 			np = LIST_NEXT(fp, f_list);
   1699 			mutex_enter(&fp->f_lock);
   1700 			if ((fp->f_flag & FDEFER) != 0) {
   1701 				atomic_and_uint(&fp->f_flag, ~FDEFER);
   1702 				unp_defer--;
   1703 				if (fp->f_count == 0) {
   1704 					/*
   1705 					 * XXX: closef() doesn't pay attention
   1706 					 * to FDEFER
   1707 					 */
   1708 					mutex_exit(&fp->f_lock);
   1709 					continue;
   1710 				}
   1711 			} else {
   1712 				if (fp->f_count == 0 ||
   1713 				    (fp->f_flag & FMARK) != 0 ||
   1714 				    fp->f_count == fp->f_msgcount ||
   1715 				    fp->f_unpcount != 0) {
   1716 					mutex_exit(&fp->f_lock);
   1717 					continue;
   1718 				}
   1719 			}
   1720 			atomic_or_uint(&fp->f_flag, FMARK);
   1721 
   1722 			if (fp->f_type != DTYPE_SOCKET ||
   1723 			    (so = fp->f_socket) == NULL ||
   1724 			    so->so_proto->pr_domain != &unixdomain ||
   1725 			    (so->so_proto->pr_flags & PR_RIGHTS) == 0) {
   1726 				mutex_exit(&fp->f_lock);
   1727 				continue;
   1728 			}
   1729 
   1730 			/* Gain file ref, mark our position, and unlock. */
   1731 			didwork = true;
   1732 			LIST_INSERT_AFTER(fp, dp, f_list);
   1733 			fp->f_count++;
   1734 			mutex_exit(&fp->f_lock);
   1735 			mutex_exit(&filelist_lock);
   1736 
   1737 			/*
   1738 			 * Mark files referenced from sockets queued on the
   1739 			 * accept queue as well.
   1740 			 */
   1741 			solock(so);
   1742 			unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
   1743 			if ((so->so_options & SO_ACCEPTCONN) != 0) {
   1744 				TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
   1745 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
   1746 				}
   1747 				TAILQ_FOREACH(so1, &so->so_q, so_qe) {
   1748 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
   1749 				}
   1750 			}
   1751 			sounlock(so);
   1752 
   1753 			/* Re-lock and restart from where we left off. */
   1754 			closef(fp);
   1755 			mutex_enter(&filelist_lock);
   1756 			np = LIST_NEXT(dp, f_list);
   1757 			LIST_REMOVE(dp, f_list);
   1758 		}
   1759 		/*
   1760 		 * Bail early if we did nothing in the loop above.  Could
   1761 		 * happen because of concurrent activity causing unp_defer
   1762 		 * to get out of sync.
   1763 		 */
   1764 	} while (unp_defer != 0 && didwork);
   1765 
   1766 	/*
   1767 	 * Sweep pass.
   1768 	 *
   1769 	 * We grab an extra reference to each of the files that are
   1770 	 * not otherwise accessible and then free the rights that are
   1771 	 * stored in messages on them.
   1772 	 */
   1773 	for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
   1774 		KASSERT(mutex_owned(&filelist_lock));
   1775 		np = LIST_NEXT(fp, f_list);
   1776 		mutex_enter(&fp->f_lock);
   1777 
   1778 		/*
   1779 		 * Ignore non-sockets.
   1780 		 * Ignore dead sockets, or sockets with pending close.
   1781 		 * Ignore sockets obviously referenced elsewhere.
   1782 		 * Ignore sockets marked as referenced by our scan.
   1783 		 * Ignore new sockets that did not exist during the scan.
   1784 		 */
   1785 		if (fp->f_type != DTYPE_SOCKET ||
   1786 		    fp->f_count == 0 || fp->f_unpcount != 0 ||
   1787 		    fp->f_count != fp->f_msgcount ||
   1788 		    (fp->f_flag & (FMARK | FSCAN)) != FSCAN) {
   1789 			mutex_exit(&fp->f_lock);
   1790 			continue;
   1791 		}
   1792 
   1793 		/* Gain file ref, mark our position, and unlock. */
   1794 		LIST_INSERT_AFTER(fp, dp, f_list);
   1795 		fp->f_count++;
   1796 		mutex_exit(&fp->f_lock);
   1797 		mutex_exit(&filelist_lock);
   1798 
   1799 		/*
   1800 		 * Flush all data from the socket's receive buffer.
   1801 		 * This will cause files referenced only by the
   1802 		 * socket to be queued for close.
   1803 		 */
   1804 		so = fp->f_socket;
   1805 		solock(so);
   1806 		sorflush(so);
   1807 		sounlock(so);
   1808 
   1809 		/* Re-lock and restart from where we left off. */
   1810 		closef(fp);
   1811 		mutex_enter(&filelist_lock);
   1812 		np = LIST_NEXT(dp, f_list);
   1813 		LIST_REMOVE(dp, f_list);
   1814 	}
   1815 }
   1816 
   1817 /*
   1818  * Garbage collector thread.  While SCM_RIGHTS messages are in transit,
   1819  * wake once per second to garbage collect.  Run continually while we
   1820  * have deferred closes to process.
   1821  */
   1822 static void
   1823 unp_thread(void *cookie)
   1824 {
   1825 	file_t *dp;
   1826 
   1827 	/* Allocate a dummy file for our scans. */
   1828 	if ((dp = fgetdummy()) == NULL) {
   1829 		panic("unp_thread");
   1830 	}
   1831 
   1832 	mutex_enter(&filelist_lock);
   1833 	for (;;) {
   1834 		KASSERT(mutex_owned(&filelist_lock));
   1835 		if (SLIST_EMPTY(&unp_thread_discard)) {
   1836 			if (unp_rights != 0) {
   1837 				(void)cv_timedwait(&unp_thread_cv,
   1838 				    &filelist_lock, hz);
   1839 			} else {
   1840 				cv_wait(&unp_thread_cv, &filelist_lock);
   1841 			}
   1842 		}
   1843 		unp_gc(dp);
   1844 	}
   1845 	/* NOTREACHED */
   1846 }
   1847 
   1848 /*
   1849  * Kick the garbage collector into action if there is something for
   1850  * it to process.
   1851  */
   1852 static void
   1853 unp_thread_kick(void)
   1854 {
   1855 
   1856 	if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) {
   1857 		mutex_enter(&filelist_lock);
   1858 		cv_signal(&unp_thread_cv);
   1859 		mutex_exit(&filelist_lock);
   1860 	}
   1861 }
   1862 
   1863 void
   1864 unp_dispose(struct mbuf *m)
   1865 {
   1866 
   1867 	if (m)
   1868 		unp_scan(m, unp_discard_later, 1);
   1869 }
   1870 
   1871 void
   1872 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
   1873 {
   1874 	struct mbuf *m;
   1875 	file_t **rp, *fp;
   1876 	struct cmsghdr *cm;
   1877 	int i, qfds;
   1878 
   1879 	while (m0) {
   1880 		for (m = m0; m; m = m->m_next) {
   1881 			if (m->m_type != MT_CONTROL ||
   1882 			    m->m_len < sizeof(*cm)) {
   1883 			    	continue;
   1884 			}
   1885 			cm = mtod(m, struct cmsghdr *);
   1886 			if (cm->cmsg_level != SOL_SOCKET ||
   1887 			    cm->cmsg_type != SCM_RIGHTS)
   1888 				continue;
   1889 			qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
   1890 			    / sizeof(file_t *);
   1891 			rp = (file_t **)CMSG_DATA(cm);
   1892 			for (i = 0; i < qfds; i++) {
   1893 				fp = *rp;
   1894 				if (discard) {
   1895 					*rp = 0;
   1896 				}
   1897 				(*op)(fp);
   1898 				rp++;
   1899 			}
   1900 		}
   1901 		m0 = m0->m_nextpkt;
   1902 	}
   1903 }
   1904 
   1905 void
   1906 unp_mark(file_t *fp)
   1907 {
   1908 
   1909 	if (fp == NULL)
   1910 		return;
   1911 
   1912 	/* If we're already deferred, don't screw up the defer count */
   1913 	mutex_enter(&fp->f_lock);
   1914 	if (fp->f_flag & (FMARK | FDEFER)) {
   1915 		mutex_exit(&fp->f_lock);
   1916 		return;
   1917 	}
   1918 
   1919 	/*
   1920 	 * Minimize the number of deferrals...  Sockets are the only type of
   1921 	 * file which can hold references to another file, so just mark
   1922 	 * other files, and defer unmarked sockets for the next pass.
   1923 	 */
   1924 	if (fp->f_type == DTYPE_SOCKET) {
   1925 		unp_defer++;
   1926 		KASSERT(fp->f_count != 0);
   1927 		atomic_or_uint(&fp->f_flag, FDEFER);
   1928 	} else {
   1929 		atomic_or_uint(&fp->f_flag, FMARK);
   1930 	}
   1931 	mutex_exit(&fp->f_lock);
   1932 }
   1933 
   1934 static void
   1935 unp_discard_now(file_t *fp)
   1936 {
   1937 
   1938 	if (fp == NULL)
   1939 		return;
   1940 
   1941 	KASSERT(fp->f_count > 0);
   1942 	KASSERT(fp->f_msgcount > 0);
   1943 
   1944 	mutex_enter(&fp->f_lock);
   1945 	fp->f_msgcount--;
   1946 	mutex_exit(&fp->f_lock);
   1947 	atomic_dec_uint(&unp_rights);
   1948 	(void)closef(fp);
   1949 }
   1950 
   1951 static void
   1952 unp_discard_later(file_t *fp)
   1953 {
   1954 
   1955 	if (fp == NULL)
   1956 		return;
   1957 
   1958 	KASSERT(fp->f_count > 0);
   1959 	KASSERT(fp->f_msgcount > 0);
   1960 
   1961 	mutex_enter(&filelist_lock);
   1962 	if (fp->f_unpcount++ == 0) {
   1963 		SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist);
   1964 	}
   1965 	mutex_exit(&filelist_lock);
   1966 }
   1967 
   1968 const struct pr_usrreqs unp_usrreqs = {
   1969 	.pr_attach	= unp_attach,
   1970 	.pr_detach	= unp_detach,
   1971 	.pr_accept	= unp_accept,
   1972 	.pr_bind	= unp_bind,
   1973 	.pr_listen	= unp_listen,
   1974 	.pr_connect	= unp_connect,
   1975 	.pr_connect2	= unp_connect2,
   1976 	.pr_disconnect	= unp_disconnect,
   1977 	.pr_shutdown	= unp_shutdown,
   1978 	.pr_abort	= unp_abort,
   1979 	.pr_ioctl	= unp_ioctl,
   1980 	.pr_stat	= unp_stat,
   1981 	.pr_peeraddr	= unp_peeraddr,
   1982 	.pr_sockaddr	= unp_sockaddr,
   1983 	.pr_rcvd	= unp_rcvd,
   1984 	.pr_recvoob	= unp_recvoob,
   1985 	.pr_send	= unp_send,
   1986 	.pr_sendoob	= unp_sendoob,
   1987 };
   1988