Home | History | Annotate | Line # | Download | only in kern
uipc_usrreq.c revision 1.185
      1 /*	$NetBSD: uipc_usrreq.c,v 1.185 2018/05/05 19:58:08 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 2000, 2004, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
     62  */
     63 
     64 /*
     65  * Copyright (c) 1997 Christopher G. Demetriou.  All rights reserved.
     66  *
     67  * Redistribution and use in source and binary forms, with or without
     68  * modification, are permitted provided that the following conditions
     69  * are met:
     70  * 1. Redistributions of source code must retain the above copyright
     71  *    notice, this list of conditions and the following disclaimer.
     72  * 2. Redistributions in binary form must reproduce the above copyright
     73  *    notice, this list of conditions and the following disclaimer in the
     74  *    documentation and/or other materials provided with the distribution.
     75  * 3. All advertising materials mentioning features or use of this software
     76  *    must display the following acknowledgement:
     77  *	This product includes software developed by the University of
     78  *	California, Berkeley and its contributors.
     79  * 4. Neither the name of the University nor the names of its contributors
     80  *    may be used to endorse or promote products derived from this software
     81  *    without specific prior written permission.
     82  *
     83  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     84  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     85  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     86  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     87  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     88  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     89  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     90  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     91  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     92  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     93  * SUCH DAMAGE.
     94  *
     95  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
     96  */
     97 
     98 #include <sys/cdefs.h>
     99 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.185 2018/05/05 19:58:08 christos Exp $");
    100 
    101 #ifdef _KERNEL_OPT
    102 #include "opt_compat_netbsd.h"
    103 #endif
    104 
    105 #include <sys/param.h>
    106 #include <sys/systm.h>
    107 #include <sys/proc.h>
    108 #include <sys/filedesc.h>
    109 #include <sys/domain.h>
    110 #include <sys/protosw.h>
    111 #include <sys/socket.h>
    112 #include <sys/socketvar.h>
    113 #include <sys/unpcb.h>
    114 #include <sys/un.h>
    115 #include <sys/namei.h>
    116 #include <sys/vnode.h>
    117 #include <sys/file.h>
    118 #include <sys/stat.h>
    119 #include <sys/mbuf.h>
    120 #include <sys/kauth.h>
    121 #include <sys/kmem.h>
    122 #include <sys/atomic.h>
    123 #include <sys/uidinfo.h>
    124 #include <sys/kernel.h>
    125 #include <sys/kthread.h>
    126 
    127 #ifdef COMPAT_70
    128 #include <compat/sys/socket.h>
    129 #endif
    130 
    131 /*
    132  * Unix communications domain.
    133  *
    134  * TODO:
    135  *	RDM
    136  *	rethink name space problems
    137  *	need a proper out-of-band
    138  *
    139  * Notes on locking:
    140  *
    141  * The generic rules noted in uipc_socket2.c apply.  In addition:
    142  *
    143  * o We have a global lock, uipc_lock.
    144  *
    145  * o All datagram sockets are locked by uipc_lock.
    146  *
    147  * o For stream socketpairs, the two endpoints are created sharing the same
    148  *   independent lock.  Sockets presented to PRU_CONNECT2 must already have
    149  *   matching locks.
    150  *
    151  * o Stream sockets created via socket() start life with their own
    152  *   independent lock.
    153  *
    154  * o Stream connections to a named endpoint are slightly more complicated.
    155  *   Sockets that have called listen() have their lock pointer mutated to
    156  *   the global uipc_lock.  When establishing a connection, the connecting
    157  *   socket also has its lock mutated to uipc_lock, which matches the head
    158  *   (listening socket).  We create a new socket for accept() to return, and
    159  *   that also shares the head's lock.  Until the connection is completely
    160  *   done on both ends, all three sockets are locked by uipc_lock.  Once the
    161  *   connection is complete, the association with the head's lock is broken.
    162  *   The connecting socket and the socket returned from accept() have their
    163  *   lock pointers mutated away from uipc_lock, and back to the connecting
    164  *   socket's original, independent lock.  The head continues to be locked
    165  *   by uipc_lock.
    166  *
    167  * o If uipc_lock is determined to be a significant source of contention,
    168  *   it could easily be hashed out.  It is difficult to simply make it an
    169  *   independent lock because of visibility / garbage collection issues:
    170  *   if a socket has been associated with a lock at any point, that lock
    171  *   must remain valid until the socket is no longer visible in the system.
    172  *   The lock must not be freed or otherwise destroyed until any sockets
    173  *   that had referenced it have also been destroyed.
    174  */
    175 const struct sockaddr_un sun_noname = {
    176 	.sun_len = offsetof(struct sockaddr_un, sun_path),
    177 	.sun_family = AF_LOCAL,
    178 };
    179 ino_t	unp_ino;			/* prototype for fake inode numbers */
    180 
    181 static struct mbuf * unp_addsockcred(struct lwp *, struct mbuf *);
    182 static void   unp_discard_later(file_t *);
    183 static void   unp_discard_now(file_t *);
    184 static void   unp_disconnect1(struct unpcb *);
    185 static bool   unp_drop(struct unpcb *, int);
    186 static int    unp_internalize(struct mbuf **);
    187 static void   unp_mark(file_t *);
    188 static void   unp_scan(struct mbuf *, void (*)(file_t *), int);
    189 static void   unp_shutdown1(struct unpcb *);
    190 static void   unp_thread(void *);
    191 static void   unp_thread_kick(void);
    192 
    193 static kmutex_t *uipc_lock;
    194 
    195 static kcondvar_t unp_thread_cv;
    196 static lwp_t *unp_thread_lwp;
    197 static SLIST_HEAD(,file) unp_thread_discard;
    198 static int unp_defer;
    199 
    200 /*
    201  * Initialize Unix protocols.
    202  */
    203 void
    204 uipc_init(void)
    205 {
    206 	int error;
    207 
    208 	uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    209 	cv_init(&unp_thread_cv, "unpgc");
    210 
    211 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread,
    212 	    NULL, &unp_thread_lwp, "unpgc");
    213 	if (error != 0)
    214 		panic("uipc_init %d", error);
    215 }
    216 
    217 static void
    218 unp_connid(struct lwp *l, struct unpcb *unp, int flags)
    219 {
    220 	unp->unp_connid.unp_pid = l->l_proc->p_pid;
    221 	unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
    222 	unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
    223 	unp->unp_flags |= flags;
    224 }
    225 
    226 /*
    227  * A connection succeeded: disassociate both endpoints from the head's
    228  * lock, and make them share their own lock.  There is a race here: for
    229  * a very brief time one endpoint will be locked by a different lock
    230  * than the other end.  However, since the current thread holds the old
    231  * lock (the listening socket's lock, the head) access can still only be
    232  * made to one side of the connection.
    233  */
    234 static void
    235 unp_setpeerlocks(struct socket *so, struct socket *so2)
    236 {
    237 	struct unpcb *unp;
    238 	kmutex_t *lock;
    239 
    240 	KASSERT(solocked2(so, so2));
    241 
    242 	/*
    243 	 * Bail out if either end of the socket is not yet fully
    244 	 * connected or accepted.  We only break the lock association
    245 	 * with the head when the pair of sockets stand completely
    246 	 * on their own.
    247 	 */
    248 	KASSERT(so->so_head == NULL);
    249 	if (so2->so_head != NULL)
    250 		return;
    251 
    252 	/*
    253 	 * Drop references to old lock.  A third reference (from the
    254 	 * queue head) must be held as we still hold its lock.  Bonus:
    255 	 * we don't need to worry about garbage collecting the lock.
    256 	 */
    257 	lock = so->so_lock;
    258 	KASSERT(lock == uipc_lock);
    259 	mutex_obj_free(lock);
    260 	mutex_obj_free(lock);
    261 
    262 	/*
    263 	 * Grab stream lock from the initiator and share between the two
    264 	 * endpoints.  Issue memory barrier to ensure all modifications
    265 	 * become globally visible before the lock change.  so2 is
    266 	 * assumed not to have a stream lock, because it was created
    267 	 * purely for the server side to accept this connection and
    268 	 * started out life using the domain-wide lock.
    269 	 */
    270 	unp = sotounpcb(so);
    271 	KASSERT(unp->unp_streamlock != NULL);
    272 	KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
    273 	lock = unp->unp_streamlock;
    274 	unp->unp_streamlock = NULL;
    275 	mutex_obj_hold(lock);
    276 	membar_exit();
    277 	/*
    278 	 * possible race if lock is not held - see comment in
    279 	 * uipc_usrreq(PRU_ACCEPT).
    280 	 */
    281 	KASSERT(mutex_owned(lock));
    282 	solockreset(so, lock);
    283 	solockreset(so2, lock);
    284 }
    285 
    286 /*
    287  * Reset a socket's lock back to the domain-wide lock.
    288  */
    289 static void
    290 unp_resetlock(struct socket *so)
    291 {
    292 	kmutex_t *olock, *nlock;
    293 	struct unpcb *unp;
    294 
    295 	KASSERT(solocked(so));
    296 
    297 	olock = so->so_lock;
    298 	nlock = uipc_lock;
    299 	if (olock == nlock)
    300 		return;
    301 	unp = sotounpcb(so);
    302 	KASSERT(unp->unp_streamlock == NULL);
    303 	unp->unp_streamlock = olock;
    304 	mutex_obj_hold(nlock);
    305 	mutex_enter(nlock);
    306 	solockreset(so, nlock);
    307 	mutex_exit(olock);
    308 }
    309 
    310 static void
    311 unp_free(struct unpcb *unp)
    312 {
    313 	if (unp->unp_addr)
    314 		free(unp->unp_addr, M_SONAME);
    315 	if (unp->unp_streamlock != NULL)
    316 		mutex_obj_free(unp->unp_streamlock);
    317 	kmem_free(unp, sizeof(*unp));
    318 }
    319 
    320 static int
    321 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp)
    322 {
    323 	struct socket *so2;
    324 	const struct sockaddr_un *sun;
    325 
    326 	/* XXX: server side closed the socket */
    327 	if (unp->unp_conn == NULL)
    328 		return ECONNREFUSED;
    329 	so2 = unp->unp_conn->unp_socket;
    330 
    331 	KASSERT(solocked(so2));
    332 
    333 	if (unp->unp_addr)
    334 		sun = unp->unp_addr;
    335 	else
    336 		sun = &sun_noname;
    337 	if (unp->unp_conn->unp_flags & UNP_WANTCRED)
    338 		control = unp_addsockcred(curlwp, control);
    339 #ifdef COMPAT_SOCKCRED70
    340 	if (unp->unp_conn->unp_flags & UNP_OWANTCRED)
    341 		control = compat_70_unp_addsockcred(curlwp, control);
    342 #endif
    343 	if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
    344 	    control) == 0) {
    345 		unp_dispose(control);
    346 		m_freem(control);
    347 		m_freem(m);
    348 		soroverflow(so2);
    349 		return (ENOBUFS);
    350 	} else {
    351 		sorwakeup(so2);
    352 		return (0);
    353 	}
    354 }
    355 
    356 static void
    357 unp_setaddr(struct socket *so, struct sockaddr *nam, bool peeraddr)
    358 {
    359 	const struct sockaddr_un *sun = NULL;
    360 	struct unpcb *unp;
    361 
    362 	KASSERT(solocked(so));
    363 	unp = sotounpcb(so);
    364 
    365 	if (peeraddr) {
    366 		if (unp->unp_conn && unp->unp_conn->unp_addr)
    367 			sun = unp->unp_conn->unp_addr;
    368 	} else {
    369 		if (unp->unp_addr)
    370 			sun = unp->unp_addr;
    371 	}
    372 	if (sun == NULL)
    373 		sun = &sun_noname;
    374 
    375 	memcpy(nam, sun, sun->sun_len);
    376 }
    377 
    378 static int
    379 unp_rcvd(struct socket *so, int flags, struct lwp *l)
    380 {
    381 	struct unpcb *unp = sotounpcb(so);
    382 	struct socket *so2;
    383 	u_int newhiwat;
    384 
    385 	KASSERT(solocked(so));
    386 	KASSERT(unp != NULL);
    387 
    388 	switch (so->so_type) {
    389 
    390 	case SOCK_DGRAM:
    391 		panic("uipc 1");
    392 		/*NOTREACHED*/
    393 
    394 	case SOCK_SEQPACKET: /* FALLTHROUGH */
    395 	case SOCK_STREAM:
    396 #define	rcv (&so->so_rcv)
    397 #define snd (&so2->so_snd)
    398 		if (unp->unp_conn == 0)
    399 			break;
    400 		so2 = unp->unp_conn->unp_socket;
    401 		KASSERT(solocked2(so, so2));
    402 		/*
    403 		 * Adjust backpressure on sender
    404 		 * and wakeup any waiting to write.
    405 		 */
    406 		snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
    407 		unp->unp_mbcnt = rcv->sb_mbcnt;
    408 		newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
    409 		(void)chgsbsize(so2->so_uidinfo,
    410 		    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
    411 		unp->unp_cc = rcv->sb_cc;
    412 		sowwakeup(so2);
    413 #undef snd
    414 #undef rcv
    415 		break;
    416 
    417 	default:
    418 		panic("uipc 2");
    419 	}
    420 
    421 	return 0;
    422 }
    423 
    424 static int
    425 unp_recvoob(struct socket *so, struct mbuf *m, int flags)
    426 {
    427 	KASSERT(solocked(so));
    428 
    429 	return EOPNOTSUPP;
    430 }
    431 
    432 static int
    433 unp_send(struct socket *so, struct mbuf *m, struct sockaddr *nam,
    434     struct mbuf *control, struct lwp *l)
    435 {
    436 	struct unpcb *unp = sotounpcb(so);
    437 	int error = 0;
    438 	u_int newhiwat;
    439 	struct socket *so2;
    440 
    441 	KASSERT(solocked(so));
    442 	KASSERT(unp != NULL);
    443 	KASSERT(m != NULL);
    444 
    445 	/*
    446 	 * Note: unp_internalize() rejects any control message
    447 	 * other than SCM_RIGHTS, and only allows one.  This
    448 	 * has the side-effect of preventing a caller from
    449 	 * forging SCM_CREDS.
    450 	 */
    451 	if (control) {
    452 		sounlock(so);
    453 		error = unp_internalize(&control);
    454 		solock(so);
    455 		if (error != 0) {
    456 			m_freem(control);
    457 			m_freem(m);
    458 			return error;
    459 		}
    460 	}
    461 
    462 	switch (so->so_type) {
    463 
    464 	case SOCK_DGRAM: {
    465 		KASSERT(so->so_lock == uipc_lock);
    466 		if (nam) {
    467 			if ((so->so_state & SS_ISCONNECTED) != 0)
    468 				error = EISCONN;
    469 			else {
    470 				/*
    471 				 * Note: once connected, the
    472 				 * socket's lock must not be
    473 				 * dropped until we have sent
    474 				 * the message and disconnected.
    475 				 * This is necessary to prevent
    476 				 * intervening control ops, like
    477 				 * another connection.
    478 				 */
    479 				error = unp_connect(so, nam, l);
    480 			}
    481 		} else {
    482 			if ((so->so_state & SS_ISCONNECTED) == 0)
    483 				error = ENOTCONN;
    484 		}
    485 		if (error) {
    486 			unp_dispose(control);
    487 			m_freem(control);
    488 			m_freem(m);
    489 			return error;
    490 		}
    491 		error = unp_output(m, control, unp);
    492 		if (nam)
    493 			unp_disconnect1(unp);
    494 		break;
    495 	}
    496 
    497 	case SOCK_SEQPACKET: /* FALLTHROUGH */
    498 	case SOCK_STREAM:
    499 #define	rcv (&so2->so_rcv)
    500 #define	snd (&so->so_snd)
    501 		if (unp->unp_conn == NULL) {
    502 			error = ENOTCONN;
    503 			break;
    504 		}
    505 		so2 = unp->unp_conn->unp_socket;
    506 		KASSERT(solocked2(so, so2));
    507 		if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
    508 			/*
    509 			 * Credentials are passed only once on
    510 			 * SOCK_STREAM and SOCK_SEQPACKET.
    511 			 */
    512 			unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
    513 			control = unp_addsockcred(l, control);
    514 		}
    515 #ifdef COMPAT_SOCKCRED70
    516 		if (unp->unp_conn->unp_flags & UNP_OWANTCRED) {
    517 			/*
    518 			 * Credentials are passed only once on
    519 			 * SOCK_STREAM and SOCK_SEQPACKET.
    520 			 */
    521 			unp->unp_conn->unp_flags &= ~UNP_OWANTCRED;
    522 			control = compat_70_unp_addsockcred(l, control);
    523 		}
    524 #endif
    525 		/*
    526 		 * Send to paired receive port, and then reduce
    527 		 * send buffer hiwater marks to maintain backpressure.
    528 		 * Wake up readers.
    529 		 */
    530 		if (control) {
    531 			if (sbappendcontrol(rcv, m, control) != 0)
    532 				control = NULL;
    533 		} else {
    534 			switch(so->so_type) {
    535 			case SOCK_SEQPACKET:
    536 				sbappendrecord(rcv, m);
    537 				break;
    538 			case SOCK_STREAM:
    539 				sbappend(rcv, m);
    540 				break;
    541 			default:
    542 				panic("uipc_usrreq");
    543 				break;
    544 			}
    545 		}
    546 		snd->sb_mbmax -=
    547 		    rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
    548 		unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
    549 		newhiwat = snd->sb_hiwat -
    550 		    (rcv->sb_cc - unp->unp_conn->unp_cc);
    551 		(void)chgsbsize(so->so_uidinfo,
    552 		    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
    553 		unp->unp_conn->unp_cc = rcv->sb_cc;
    554 		sorwakeup(so2);
    555 #undef snd
    556 #undef rcv
    557 		if (control != NULL) {
    558 			unp_dispose(control);
    559 			m_freem(control);
    560 		}
    561 		break;
    562 
    563 	default:
    564 		panic("uipc 4");
    565 	}
    566 
    567 	return error;
    568 }
    569 
    570 static int
    571 unp_sendoob(struct socket *so, struct mbuf *m, struct mbuf * control)
    572 {
    573 	KASSERT(solocked(so));
    574 
    575 	m_freem(m);
    576 	m_freem(control);
    577 
    578 	return EOPNOTSUPP;
    579 }
    580 
    581 /*
    582  * Unix domain socket option processing.
    583  */
    584 int
    585 uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
    586 {
    587 	struct unpcb *unp = sotounpcb(so);
    588 	int optval = 0, error = 0;
    589 
    590 	KASSERT(solocked(so));
    591 
    592 	if (sopt->sopt_level != 0) {
    593 		error = ENOPROTOOPT;
    594 	} else switch (op) {
    595 
    596 	case PRCO_SETOPT:
    597 		switch (sopt->sopt_name) {
    598 		case LOCAL_CREDS:
    599 		case LOCAL_CONNWAIT:
    600 #ifdef COMPAT_SOCKCRED70
    601 		case LOCAL_OCREDS:
    602 #endif
    603 			error = sockopt_getint(sopt, &optval);
    604 			if (error)
    605 				break;
    606 			switch (sopt->sopt_name) {
    607 #define	OPTSET(bit) \
    608 	if (optval) \
    609 		unp->unp_flags |= (bit); \
    610 	else \
    611 		unp->unp_flags &= ~(bit);
    612 
    613 			case LOCAL_CREDS:
    614 				OPTSET(UNP_WANTCRED);
    615 				break;
    616 			case LOCAL_CONNWAIT:
    617 				OPTSET(UNP_CONNWAIT);
    618 				break;
    619 #ifdef COMPAT_SOCKCRED70
    620 			case LOCAL_OCREDS:
    621 				OPTSET(UNP_OWANTCRED);
    622 				break;
    623 #endif
    624 			}
    625 			break;
    626 #undef OPTSET
    627 
    628 		default:
    629 			error = ENOPROTOOPT;
    630 			break;
    631 		}
    632 		break;
    633 
    634 	case PRCO_GETOPT:
    635 		sounlock(so);
    636 		switch (sopt->sopt_name) {
    637 		case LOCAL_PEEREID:
    638 			if (unp->unp_flags & UNP_EIDSVALID) {
    639 				error = sockopt_set(sopt, &unp->unp_connid,
    640 				    sizeof(unp->unp_connid));
    641 			} else {
    642 				error = EINVAL;
    643 			}
    644 			break;
    645 		case LOCAL_CREDS:
    646 #define	OPTBIT(bit)	(unp->unp_flags & (bit) ? 1 : 0)
    647 
    648 			optval = OPTBIT(UNP_WANTCRED);
    649 			error = sockopt_setint(sopt, optval);
    650 			break;
    651 #ifdef COMPAT_SOCKCRED70
    652 		case LOCAL_OCREDS:
    653 			optval = OPTBIT(UNP_OWANTCRED);
    654 			error = sockopt_setint(sopt, optval);
    655 			break;
    656 #endif
    657 #undef OPTBIT
    658 
    659 		default:
    660 			error = ENOPROTOOPT;
    661 			break;
    662 		}
    663 		solock(so);
    664 		break;
    665 	}
    666 	return (error);
    667 }
    668 
    669 /*
    670  * Both send and receive buffers are allocated PIPSIZ bytes of buffering
    671  * for stream sockets, although the total for sender and receiver is
    672  * actually only PIPSIZ.
    673  * Datagram sockets really use the sendspace as the maximum datagram size,
    674  * and don't really want to reserve the sendspace.  Their recvspace should
    675  * be large enough for at least one max-size datagram plus address.
    676  */
    677 #ifndef PIPSIZ
    678 #define	PIPSIZ	8192
    679 #endif
    680 u_long	unpst_sendspace = PIPSIZ;
    681 u_long	unpst_recvspace = PIPSIZ;
    682 u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
    683 u_long	unpdg_recvspace = 4*1024;
    684 
    685 u_int	unp_rights;			/* files in flight */
    686 u_int	unp_rights_ratio = 2;		/* limit, fraction of maxfiles */
    687 
    688 static int
    689 unp_attach(struct socket *so, int proto)
    690 {
    691 	struct unpcb *unp = sotounpcb(so);
    692 	u_long sndspc, rcvspc;
    693 	int error;
    694 
    695 	KASSERT(unp == NULL);
    696 
    697 	switch (so->so_type) {
    698 	case SOCK_SEQPACKET:
    699 		/* FALLTHROUGH */
    700 	case SOCK_STREAM:
    701 		if (so->so_lock == NULL) {
    702 			so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    703 			solock(so);
    704 		}
    705 		sndspc = unpst_sendspace;
    706 		rcvspc = unpst_recvspace;
    707 		break;
    708 
    709 	case SOCK_DGRAM:
    710 		if (so->so_lock == NULL) {
    711 			mutex_obj_hold(uipc_lock);
    712 			so->so_lock = uipc_lock;
    713 			solock(so);
    714 		}
    715 		sndspc = unpdg_sendspace;
    716 		rcvspc = unpdg_recvspace;
    717 		break;
    718 
    719 	default:
    720 		panic("unp_attach");
    721 	}
    722 
    723 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
    724 		error = soreserve(so, sndspc, rcvspc);
    725 		if (error) {
    726 			return error;
    727 		}
    728 	}
    729 
    730 	unp = kmem_zalloc(sizeof(*unp), KM_SLEEP);
    731 	nanotime(&unp->unp_ctime);
    732 	unp->unp_socket = so;
    733 	so->so_pcb = unp;
    734 
    735 	KASSERT(solocked(so));
    736 	return 0;
    737 }
    738 
    739 static void
    740 unp_detach(struct socket *so)
    741 {
    742 	struct unpcb *unp;
    743 	vnode_t *vp;
    744 
    745 	unp = sotounpcb(so);
    746 	KASSERT(unp != NULL);
    747 	KASSERT(solocked(so));
    748  retry:
    749 	if ((vp = unp->unp_vnode) != NULL) {
    750 		sounlock(so);
    751 		/* Acquire v_interlock to protect against unp_connect(). */
    752 		/* XXXAD racy */
    753 		mutex_enter(vp->v_interlock);
    754 		vp->v_socket = NULL;
    755 		mutex_exit(vp->v_interlock);
    756 		vrele(vp);
    757 		solock(so);
    758 		unp->unp_vnode = NULL;
    759 	}
    760 	if (unp->unp_conn)
    761 		unp_disconnect1(unp);
    762 	while (unp->unp_refs) {
    763 		KASSERT(solocked2(so, unp->unp_refs->unp_socket));
    764 		if (unp_drop(unp->unp_refs, ECONNRESET)) {
    765 			solock(so);
    766 			goto retry;
    767 		}
    768 	}
    769 	soisdisconnected(so);
    770 	so->so_pcb = NULL;
    771 	if (unp_rights) {
    772 		/*
    773 		 * Normally the receive buffer is flushed later, in sofree,
    774 		 * but if our receive buffer holds references to files that
    775 		 * are now garbage, we will enqueue those file references to
    776 		 * the garbage collector and kick it into action.
    777 		 */
    778 		sorflush(so);
    779 		unp_free(unp);
    780 		unp_thread_kick();
    781 	} else
    782 		unp_free(unp);
    783 }
    784 
    785 static int
    786 unp_accept(struct socket *so, struct sockaddr *nam)
    787 {
    788 	struct unpcb *unp = sotounpcb(so);
    789 	struct socket *so2;
    790 
    791 	KASSERT(solocked(so));
    792 	KASSERT(nam != NULL);
    793 
    794 	/* XXX code review required to determine if unp can ever be NULL */
    795 	if (unp == NULL)
    796 		return EINVAL;
    797 
    798 	KASSERT(so->so_lock == uipc_lock);
    799 	/*
    800 	 * Mark the initiating STREAM socket as connected *ONLY*
    801 	 * after it's been accepted.  This prevents a client from
    802 	 * overrunning a server and receiving ECONNREFUSED.
    803 	 */
    804 	if (unp->unp_conn == NULL) {
    805 		/*
    806 		 * This will use the empty socket and will not
    807 		 * allocate.
    808 		 */
    809 		unp_setaddr(so, nam, true);
    810 		return 0;
    811 	}
    812 	so2 = unp->unp_conn->unp_socket;
    813 	if (so2->so_state & SS_ISCONNECTING) {
    814 		KASSERT(solocked2(so, so->so_head));
    815 		KASSERT(solocked2(so2, so->so_head));
    816 		soisconnected(so2);
    817 	}
    818 	/*
    819 	 * If the connection is fully established, break the
    820 	 * association with uipc_lock and give the connected
    821 	 * pair a separate lock to share.
    822 	 * There is a race here: sotounpcb(so2)->unp_streamlock
    823 	 * is not locked, so when changing so2->so_lock
    824 	 * another thread can grab it while so->so_lock is still
    825 	 * pointing to the (locked) uipc_lock.
    826 	 * this should be harmless, except that this makes
    827 	 * solocked2() and solocked() unreliable.
    828 	 * Another problem is that unp_setaddr() expects the
    829 	 * the socket locked. Grabing sotounpcb(so2)->unp_streamlock
    830 	 * fixes both issues.
    831 	 */
    832 	mutex_enter(sotounpcb(so2)->unp_streamlock);
    833 	unp_setpeerlocks(so2, so);
    834 	/*
    835 	 * Only now return peer's address, as we may need to
    836 	 * block in order to allocate memory.
    837 	 *
    838 	 * XXX Minor race: connection can be broken while
    839 	 * lock is dropped in unp_setaddr().  We will return
    840 	 * error == 0 and sun_noname as the peer address.
    841 	 */
    842 	unp_setaddr(so, nam, true);
    843 	/* so_lock now points to unp_streamlock */
    844 	mutex_exit(so2->so_lock);
    845 	return 0;
    846 }
    847 
    848 static int
    849 unp_ioctl(struct socket *so, u_long cmd, void *nam, struct ifnet *ifp)
    850 {
    851 	return EOPNOTSUPP;
    852 }
    853 
    854 static int
    855 unp_stat(struct socket *so, struct stat *ub)
    856 {
    857 	struct unpcb *unp;
    858 	struct socket *so2;
    859 
    860 	KASSERT(solocked(so));
    861 
    862 	unp = sotounpcb(so);
    863 	if (unp == NULL)
    864 		return EINVAL;
    865 
    866 	ub->st_blksize = so->so_snd.sb_hiwat;
    867 	switch (so->so_type) {
    868 	case SOCK_SEQPACKET: /* FALLTHROUGH */
    869 	case SOCK_STREAM:
    870 		if (unp->unp_conn == 0)
    871 			break;
    872 
    873 		so2 = unp->unp_conn->unp_socket;
    874 		KASSERT(solocked2(so, so2));
    875 		ub->st_blksize += so2->so_rcv.sb_cc;
    876 		break;
    877 	default:
    878 		break;
    879 	}
    880 	ub->st_dev = NODEV;
    881 	if (unp->unp_ino == 0)
    882 		unp->unp_ino = unp_ino++;
    883 	ub->st_atimespec = ub->st_mtimespec = ub->st_ctimespec = unp->unp_ctime;
    884 	ub->st_ino = unp->unp_ino;
    885 	return (0);
    886 }
    887 
    888 static int
    889 unp_peeraddr(struct socket *so, struct sockaddr *nam)
    890 {
    891 	KASSERT(solocked(so));
    892 	KASSERT(sotounpcb(so) != NULL);
    893 	KASSERT(nam != NULL);
    894 
    895 	unp_setaddr(so, nam, true);
    896 	return 0;
    897 }
    898 
    899 static int
    900 unp_sockaddr(struct socket *so, struct sockaddr *nam)
    901 {
    902 	KASSERT(solocked(so));
    903 	KASSERT(sotounpcb(so) != NULL);
    904 	KASSERT(nam != NULL);
    905 
    906 	unp_setaddr(so, nam, false);
    907 	return 0;
    908 }
    909 
    910 /*
    911  * we only need to perform this allocation until syscalls other than
    912  * bind are adjusted to use sockaddr_big.
    913  */
    914 static struct sockaddr_un *
    915 makeun_sb(struct sockaddr *nam, size_t *addrlen)
    916 {
    917 	struct sockaddr_un *sun;
    918 
    919 	*addrlen = nam->sa_len + 1;
    920 	sun = malloc(*addrlen, M_SONAME, M_WAITOK);
    921 	memcpy(sun, nam, nam->sa_len);
    922 	*(((char *)sun) + nam->sa_len) = '\0';
    923 	return sun;
    924 }
    925 
    926 static int
    927 unp_bind(struct socket *so, struct sockaddr *nam, struct lwp *l)
    928 {
    929 	struct sockaddr_un *sun;
    930 	struct unpcb *unp;
    931 	vnode_t *vp;
    932 	struct vattr vattr;
    933 	size_t addrlen;
    934 	int error;
    935 	struct pathbuf *pb;
    936 	struct nameidata nd;
    937 	proc_t *p;
    938 
    939 	unp = sotounpcb(so);
    940 
    941 	KASSERT(solocked(so));
    942 	KASSERT(unp != NULL);
    943 	KASSERT(nam != NULL);
    944 
    945 	if (unp->unp_vnode != NULL)
    946 		return (EINVAL);
    947 	if ((unp->unp_flags & UNP_BUSY) != 0) {
    948 		/*
    949 		 * EALREADY may not be strictly accurate, but since this
    950 		 * is a major application error it's hardly a big deal.
    951 		 */
    952 		return (EALREADY);
    953 	}
    954 	unp->unp_flags |= UNP_BUSY;
    955 	sounlock(so);
    956 
    957 	p = l->l_proc;
    958 	sun = makeun_sb(nam, &addrlen);
    959 
    960 	pb = pathbuf_create(sun->sun_path);
    961 	if (pb == NULL) {
    962 		error = ENOMEM;
    963 		goto bad;
    964 	}
    965 	NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, pb);
    966 
    967 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
    968 	if ((error = namei(&nd)) != 0) {
    969 		pathbuf_destroy(pb);
    970 		goto bad;
    971 	}
    972 	vp = nd.ni_vp;
    973 	if (vp != NULL) {
    974 		VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
    975 		if (nd.ni_dvp == vp)
    976 			vrele(nd.ni_dvp);
    977 		else
    978 			vput(nd.ni_dvp);
    979 		vrele(vp);
    980 		pathbuf_destroy(pb);
    981 		error = EADDRINUSE;
    982 		goto bad;
    983 	}
    984 	vattr_null(&vattr);
    985 	vattr.va_type = VSOCK;
    986 	vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
    987 	error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
    988 	if (error) {
    989 		vput(nd.ni_dvp);
    990 		pathbuf_destroy(pb);
    991 		goto bad;
    992 	}
    993 	vp = nd.ni_vp;
    994 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    995 	solock(so);
    996 	vp->v_socket = unp->unp_socket;
    997 	unp->unp_vnode = vp;
    998 	unp->unp_addrlen = addrlen;
    999 	unp->unp_addr = sun;
   1000 	VOP_UNLOCK(vp);
   1001 	vput(nd.ni_dvp);
   1002 	unp->unp_flags &= ~UNP_BUSY;
   1003 	pathbuf_destroy(pb);
   1004 	return (0);
   1005 
   1006  bad:
   1007 	free(sun, M_SONAME);
   1008 	solock(so);
   1009 	unp->unp_flags &= ~UNP_BUSY;
   1010 	return (error);
   1011 }
   1012 
   1013 static int
   1014 unp_listen(struct socket *so, struct lwp *l)
   1015 {
   1016 	struct unpcb *unp = sotounpcb(so);
   1017 
   1018 	KASSERT(solocked(so));
   1019 	KASSERT(unp != NULL);
   1020 
   1021 	/*
   1022 	 * If the socket can accept a connection, it must be
   1023 	 * locked by uipc_lock.
   1024 	 */
   1025 	unp_resetlock(so);
   1026 	if (unp->unp_vnode == NULL)
   1027 		return EINVAL;
   1028 
   1029 	unp_connid(l, unp, UNP_EIDSBIND);
   1030 	return 0;
   1031 }
   1032 
   1033 static int
   1034 unp_disconnect(struct socket *so)
   1035 {
   1036 	KASSERT(solocked(so));
   1037 	KASSERT(sotounpcb(so) != NULL);
   1038 
   1039 	unp_disconnect1(sotounpcb(so));
   1040 	return 0;
   1041 }
   1042 
   1043 static int
   1044 unp_shutdown(struct socket *so)
   1045 {
   1046 	KASSERT(solocked(so));
   1047 	KASSERT(sotounpcb(so) != NULL);
   1048 
   1049 	socantsendmore(so);
   1050 	unp_shutdown1(sotounpcb(so));
   1051 	return 0;
   1052 }
   1053 
   1054 static int
   1055 unp_abort(struct socket *so)
   1056 {
   1057 	KASSERT(solocked(so));
   1058 	KASSERT(sotounpcb(so) != NULL);
   1059 
   1060 	(void)unp_drop(sotounpcb(so), ECONNABORTED);
   1061 	KASSERT(so->so_head == NULL);
   1062 	KASSERT(so->so_pcb != NULL);
   1063 	unp_detach(so);
   1064 	return 0;
   1065 }
   1066 
   1067 static int
   1068 unp_connect1(struct socket *so, struct socket *so2, struct lwp *l)
   1069 {
   1070 	struct unpcb *unp = sotounpcb(so);
   1071 	struct unpcb *unp2;
   1072 
   1073 	if (so2->so_type != so->so_type)
   1074 		return EPROTOTYPE;
   1075 
   1076 	/*
   1077 	 * All three sockets involved must be locked by same lock:
   1078 	 *
   1079 	 * local endpoint (so)
   1080 	 * remote endpoint (so2)
   1081 	 * queue head (so2->so_head, only if PR_CONNREQUIRED)
   1082 	 */
   1083 	KASSERT(solocked2(so, so2));
   1084 	KASSERT(so->so_head == NULL);
   1085 	if (so2->so_head != NULL) {
   1086 		KASSERT(so2->so_lock == uipc_lock);
   1087 		KASSERT(solocked2(so2, so2->so_head));
   1088 	}
   1089 
   1090 	unp2 = sotounpcb(so2);
   1091 	unp->unp_conn = unp2;
   1092 
   1093 	switch (so->so_type) {
   1094 
   1095 	case SOCK_DGRAM:
   1096 		unp->unp_nextref = unp2->unp_refs;
   1097 		unp2->unp_refs = unp;
   1098 		soisconnected(so);
   1099 		break;
   1100 
   1101 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1102 	case SOCK_STREAM:
   1103 
   1104 		/*
   1105 		 * SOCK_SEQPACKET and SOCK_STREAM cases are handled by callers
   1106 		 * which are unp_connect() or unp_connect2().
   1107 		 */
   1108 
   1109 		break;
   1110 
   1111 	default:
   1112 		panic("unp_connect1");
   1113 	}
   1114 
   1115 	return 0;
   1116 }
   1117 
   1118 int
   1119 unp_connect(struct socket *so, struct sockaddr *nam, struct lwp *l)
   1120 {
   1121 	struct sockaddr_un *sun;
   1122 	vnode_t *vp;
   1123 	struct socket *so2, *so3;
   1124 	struct unpcb *unp, *unp2, *unp3;
   1125 	size_t addrlen;
   1126 	int error;
   1127 	struct pathbuf *pb;
   1128 	struct nameidata nd;
   1129 
   1130 	unp = sotounpcb(so);
   1131 	if ((unp->unp_flags & UNP_BUSY) != 0) {
   1132 		/*
   1133 		 * EALREADY may not be strictly accurate, but since this
   1134 		 * is a major application error it's hardly a big deal.
   1135 		 */
   1136 		return (EALREADY);
   1137 	}
   1138 	unp->unp_flags |= UNP_BUSY;
   1139 	sounlock(so);
   1140 
   1141 	sun = makeun_sb(nam, &addrlen);
   1142 	pb = pathbuf_create(sun->sun_path);
   1143 	if (pb == NULL) {
   1144 		error = ENOMEM;
   1145 		goto bad2;
   1146 	}
   1147 
   1148 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
   1149 
   1150 	if ((error = namei(&nd)) != 0) {
   1151 		pathbuf_destroy(pb);
   1152 		goto bad2;
   1153 	}
   1154 	vp = nd.ni_vp;
   1155 	pathbuf_destroy(pb);
   1156 	if (vp->v_type != VSOCK) {
   1157 		error = ENOTSOCK;
   1158 		goto bad;
   1159 	}
   1160 	if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
   1161 		goto bad;
   1162 	/* Acquire v_interlock to protect against unp_detach(). */
   1163 	mutex_enter(vp->v_interlock);
   1164 	so2 = vp->v_socket;
   1165 	if (so2 == NULL) {
   1166 		mutex_exit(vp->v_interlock);
   1167 		error = ECONNREFUSED;
   1168 		goto bad;
   1169 	}
   1170 	if (so->so_type != so2->so_type) {
   1171 		mutex_exit(vp->v_interlock);
   1172 		error = EPROTOTYPE;
   1173 		goto bad;
   1174 	}
   1175 	solock(so);
   1176 	unp_resetlock(so);
   1177 	mutex_exit(vp->v_interlock);
   1178 	if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
   1179 		/*
   1180 		 * This may seem somewhat fragile but is OK: if we can
   1181 		 * see SO_ACCEPTCONN set on the endpoint, then it must
   1182 		 * be locked by the domain-wide uipc_lock.
   1183 		 */
   1184 		KASSERT((so2->so_options & SO_ACCEPTCONN) == 0 ||
   1185 		    so2->so_lock == uipc_lock);
   1186 		if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
   1187 		    (so3 = sonewconn(so2, false)) == NULL) {
   1188 			error = ECONNREFUSED;
   1189 			sounlock(so);
   1190 			goto bad;
   1191 		}
   1192 		unp2 = sotounpcb(so2);
   1193 		unp3 = sotounpcb(so3);
   1194 		if (unp2->unp_addr) {
   1195 			unp3->unp_addr = malloc(unp2->unp_addrlen,
   1196 			    M_SONAME, M_WAITOK);
   1197 			memcpy(unp3->unp_addr, unp2->unp_addr,
   1198 			    unp2->unp_addrlen);
   1199 			unp3->unp_addrlen = unp2->unp_addrlen;
   1200 		}
   1201 		unp3->unp_flags = unp2->unp_flags;
   1202 		so2 = so3;
   1203 		/*
   1204 		 * The connector's (client's) credentials are copied from its
   1205 		 * process structure at the time of connect() (which is now).
   1206 		 */
   1207 		unp_connid(l, unp3, UNP_EIDSVALID);
   1208 		 /*
   1209 		  * The receiver's (server's) credentials are copied from the
   1210 		  * unp_peercred member of socket on which the former called
   1211 		  * listen(); unp_listen() cached that process's credentials
   1212 		  * at that time so we can use them now.
   1213 		  */
   1214 		if (unp2->unp_flags & UNP_EIDSBIND) {
   1215 			memcpy(&unp->unp_connid, &unp2->unp_connid,
   1216 			    sizeof(unp->unp_connid));
   1217 			unp->unp_flags |= UNP_EIDSVALID;
   1218 		}
   1219 	}
   1220 	error = unp_connect1(so, so2, l);
   1221 	if (error) {
   1222 		sounlock(so);
   1223 		goto bad;
   1224 	}
   1225 	unp2 = sotounpcb(so2);
   1226 	switch (so->so_type) {
   1227 
   1228 	/*
   1229 	 * SOCK_DGRAM and default cases are handled in prior call to
   1230 	 * unp_connect1(), do not add a default case without fixing
   1231 	 * unp_connect1().
   1232 	 */
   1233 
   1234 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1235 	case SOCK_STREAM:
   1236 		unp2->unp_conn = unp;
   1237 		if ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT)
   1238 			soisconnecting(so);
   1239 		else
   1240 			soisconnected(so);
   1241 		soisconnected(so2);
   1242 		/*
   1243 		 * If the connection is fully established, break the
   1244 		 * association with uipc_lock and give the connected
   1245 		 * pair a seperate lock to share.
   1246 		 */
   1247 		KASSERT(so2->so_head != NULL);
   1248 		unp_setpeerlocks(so, so2);
   1249 		break;
   1250 
   1251 	}
   1252 	sounlock(so);
   1253  bad:
   1254 	vput(vp);
   1255  bad2:
   1256 	free(sun, M_SONAME);
   1257 	solock(so);
   1258 	unp->unp_flags &= ~UNP_BUSY;
   1259 	return (error);
   1260 }
   1261 
   1262 int
   1263 unp_connect2(struct socket *so, struct socket *so2)
   1264 {
   1265 	struct unpcb *unp = sotounpcb(so);
   1266 	struct unpcb *unp2;
   1267 	int error = 0;
   1268 
   1269 	KASSERT(solocked2(so, so2));
   1270 
   1271 	error = unp_connect1(so, so2, curlwp);
   1272 	if (error)
   1273 		return error;
   1274 
   1275 	unp2 = sotounpcb(so2);
   1276 	switch (so->so_type) {
   1277 
   1278 	/*
   1279 	 * SOCK_DGRAM and default cases are handled in prior call to
   1280 	 * unp_connect1(), do not add a default case without fixing
   1281 	 * unp_connect1().
   1282 	 */
   1283 
   1284 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1285 	case SOCK_STREAM:
   1286 		unp2->unp_conn = unp;
   1287 		soisconnected(so);
   1288 		soisconnected(so2);
   1289 		break;
   1290 
   1291 	}
   1292 	return error;
   1293 }
   1294 
   1295 static void
   1296 unp_disconnect1(struct unpcb *unp)
   1297 {
   1298 	struct unpcb *unp2 = unp->unp_conn;
   1299 	struct socket *so;
   1300 
   1301 	if (unp2 == 0)
   1302 		return;
   1303 	unp->unp_conn = 0;
   1304 	so = unp->unp_socket;
   1305 	switch (so->so_type) {
   1306 	case SOCK_DGRAM:
   1307 		if (unp2->unp_refs == unp)
   1308 			unp2->unp_refs = unp->unp_nextref;
   1309 		else {
   1310 			unp2 = unp2->unp_refs;
   1311 			for (;;) {
   1312 				KASSERT(solocked2(so, unp2->unp_socket));
   1313 				if (unp2 == 0)
   1314 					panic("unp_disconnect1");
   1315 				if (unp2->unp_nextref == unp)
   1316 					break;
   1317 				unp2 = unp2->unp_nextref;
   1318 			}
   1319 			unp2->unp_nextref = unp->unp_nextref;
   1320 		}
   1321 		unp->unp_nextref = 0;
   1322 		so->so_state &= ~SS_ISCONNECTED;
   1323 		break;
   1324 
   1325 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1326 	case SOCK_STREAM:
   1327 		KASSERT(solocked2(so, unp2->unp_socket));
   1328 		soisdisconnected(so);
   1329 		unp2->unp_conn = 0;
   1330 		soisdisconnected(unp2->unp_socket);
   1331 		break;
   1332 	}
   1333 }
   1334 
   1335 static void
   1336 unp_shutdown1(struct unpcb *unp)
   1337 {
   1338 	struct socket *so;
   1339 
   1340 	switch(unp->unp_socket->so_type) {
   1341 	case SOCK_SEQPACKET: /* FALLTHROUGH */
   1342 	case SOCK_STREAM:
   1343 		if (unp->unp_conn && (so = unp->unp_conn->unp_socket))
   1344 			socantrcvmore(so);
   1345 		break;
   1346 	default:
   1347 		break;
   1348 	}
   1349 }
   1350 
   1351 static bool
   1352 unp_drop(struct unpcb *unp, int errno)
   1353 {
   1354 	struct socket *so = unp->unp_socket;
   1355 
   1356 	KASSERT(solocked(so));
   1357 
   1358 	so->so_error = errno;
   1359 	unp_disconnect1(unp);
   1360 	if (so->so_head) {
   1361 		so->so_pcb = NULL;
   1362 		/* sofree() drops the socket lock */
   1363 		sofree(so);
   1364 		unp_free(unp);
   1365 		return true;
   1366 	}
   1367 	return false;
   1368 }
   1369 
   1370 #ifdef notdef
   1371 unp_drain(void)
   1372 {
   1373 
   1374 }
   1375 #endif
   1376 
   1377 int
   1378 unp_externalize(struct mbuf *rights, struct lwp *l, int flags)
   1379 {
   1380 	struct cmsghdr * const cm = mtod(rights, struct cmsghdr *);
   1381 	struct proc * const p = l->l_proc;
   1382 	file_t **rp;
   1383 	int error = 0;
   1384 
   1385 	const size_t nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
   1386 	    sizeof(file_t *);
   1387 	if (nfds == 0)
   1388 		goto noop;
   1389 
   1390 	int * const fdp = kmem_alloc(nfds * sizeof(int), KM_SLEEP);
   1391 	rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
   1392 
   1393 	/* Make sure the recipient should be able to see the files.. */
   1394 	rp = (file_t **)CMSG_DATA(cm);
   1395 	for (size_t i = 0; i < nfds; i++) {
   1396 		file_t * const fp = *rp++;
   1397 		if (fp == NULL) {
   1398 			error = EINVAL;
   1399 			goto out;
   1400 		}
   1401 		/*
   1402 		 * If we are in a chroot'ed directory, and
   1403 		 * someone wants to pass us a directory, make
   1404 		 * sure it's inside the subtree we're allowed
   1405 		 * to access.
   1406 		 */
   1407 		if (p->p_cwdi->cwdi_rdir != NULL && fp->f_type == DTYPE_VNODE) {
   1408 			vnode_t *vp = fp->f_vnode;
   1409 			if ((vp->v_type == VDIR) &&
   1410 			    !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
   1411 				error = EPERM;
   1412 				goto out;
   1413 			}
   1414 		}
   1415 	}
   1416 
   1417  restart:
   1418 	/*
   1419 	 * First loop -- allocate file descriptor table slots for the
   1420 	 * new files.
   1421 	 */
   1422 	for (size_t i = 0; i < nfds; i++) {
   1423 		if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
   1424 			/*
   1425 			 * Back out what we've done so far.
   1426 			 */
   1427 			while (i-- > 0) {
   1428 				fd_abort(p, NULL, fdp[i]);
   1429 			}
   1430 			if (error == ENOSPC) {
   1431 				fd_tryexpand(p);
   1432 				error = 0;
   1433 				goto restart;
   1434 			}
   1435 			/*
   1436 			 * This is the error that has historically
   1437 			 * been returned, and some callers may
   1438 			 * expect it.
   1439 			 */
   1440 			error = EMSGSIZE;
   1441 			goto out;
   1442 		}
   1443 	}
   1444 
   1445 	/*
   1446 	 * Now that adding them has succeeded, update all of the
   1447 	 * file passing state and affix the descriptors.
   1448 	 */
   1449 	rp = (file_t **)CMSG_DATA(cm);
   1450 	int *ofdp = (int *)CMSG_DATA(cm);
   1451 	for (size_t i = 0; i < nfds; i++) {
   1452 		file_t * const fp = *rp++;
   1453 		const int fd = fdp[i];
   1454 		atomic_dec_uint(&unp_rights);
   1455 		fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
   1456 		fd_affix(p, fp, fd);
   1457 		/*
   1458 		 * Done with this file pointer, replace it with a fd;
   1459 		 */
   1460 		*ofdp++ = fd;
   1461 		mutex_enter(&fp->f_lock);
   1462 		fp->f_msgcount--;
   1463 		mutex_exit(&fp->f_lock);
   1464 		/*
   1465 		 * Note that fd_affix() adds a reference to the file.
   1466 		 * The file may already have been closed by another
   1467 		 * LWP in the process, so we must drop the reference
   1468 		 * added by unp_internalize() with closef().
   1469 		 */
   1470 		closef(fp);
   1471 	}
   1472 
   1473 	/*
   1474 	 * Adjust length, in case of transition from large file_t
   1475 	 * pointers to ints.
   1476 	 */
   1477 	if (sizeof(file_t *) != sizeof(int)) {
   1478 		cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
   1479 		rights->m_len = CMSG_SPACE(nfds * sizeof(int));
   1480 	}
   1481  out:
   1482 	if (__predict_false(error != 0)) {
   1483 		file_t **const fpp = (file_t **)CMSG_DATA(cm);
   1484 		for (size_t i = 0; i < nfds; i++)
   1485 			unp_discard_now(fpp[i]);
   1486 		/*
   1487 		 * Truncate the array so that nobody will try to interpret
   1488 		 * what is now garbage in it.
   1489 		 */
   1490 		cm->cmsg_len = CMSG_LEN(0);
   1491 		rights->m_len = CMSG_SPACE(0);
   1492 	}
   1493 	rw_exit(&p->p_cwdi->cwdi_lock);
   1494 	kmem_free(fdp, nfds * sizeof(int));
   1495 
   1496  noop:
   1497 	/*
   1498 	 * Don't disclose kernel memory in the alignment space.
   1499 	 */
   1500 	KASSERT(cm->cmsg_len <= rights->m_len);
   1501 	memset(&mtod(rights, char *)[cm->cmsg_len], 0, rights->m_len -
   1502 	    cm->cmsg_len);
   1503 	return error;
   1504 }
   1505 
   1506 static int
   1507 unp_internalize(struct mbuf **controlp)
   1508 {
   1509 	filedesc_t *fdescp = curlwp->l_fd;
   1510 	struct mbuf *control = *controlp;
   1511 	struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
   1512 	file_t **rp, **files;
   1513 	file_t *fp;
   1514 	int i, fd, *fdp;
   1515 	int nfds, error;
   1516 	u_int maxmsg;
   1517 
   1518 	error = 0;
   1519 	newcm = NULL;
   1520 
   1521 	/* Sanity check the control message header. */
   1522 	if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
   1523 	    cm->cmsg_len > control->m_len ||
   1524 	    cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
   1525 		return (EINVAL);
   1526 
   1527 	/*
   1528 	 * Verify that the file descriptors are valid, and acquire
   1529 	 * a reference to each.
   1530 	 */
   1531 	nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
   1532 	fdp = (int *)CMSG_DATA(cm);
   1533 	maxmsg = maxfiles / unp_rights_ratio;
   1534 	for (i = 0; i < nfds; i++) {
   1535 		fd = *fdp++;
   1536 		if (atomic_inc_uint_nv(&unp_rights) > maxmsg) {
   1537 			atomic_dec_uint(&unp_rights);
   1538 			nfds = i;
   1539 			error = EAGAIN;
   1540 			goto out;
   1541 		}
   1542 		if ((fp = fd_getfile(fd)) == NULL
   1543 		    || fp->f_type == DTYPE_KQUEUE) {
   1544 		    	if (fp)
   1545 		    		fd_putfile(fd);
   1546 			atomic_dec_uint(&unp_rights);
   1547 			nfds = i;
   1548 			error = EBADF;
   1549 			goto out;
   1550 		}
   1551 	}
   1552 
   1553 	/* Allocate new space and copy header into it. */
   1554 	newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
   1555 	if (newcm == NULL) {
   1556 		error = E2BIG;
   1557 		goto out;
   1558 	}
   1559 	memcpy(newcm, cm, sizeof(struct cmsghdr));
   1560 	files = (file_t **)CMSG_DATA(newcm);
   1561 
   1562 	/*
   1563 	 * Transform the file descriptors into file_t pointers, in
   1564 	 * reverse order so that if pointers are bigger than ints, the
   1565 	 * int won't get until we're done.  No need to lock, as we have
   1566 	 * already validated the descriptors with fd_getfile().
   1567 	 */
   1568 	fdp = (int *)CMSG_DATA(cm) + nfds;
   1569 	rp = files + nfds;
   1570 	for (i = 0; i < nfds; i++) {
   1571 		fp = fdescp->fd_dt->dt_ff[*--fdp]->ff_file;
   1572 		KASSERT(fp != NULL);
   1573 		mutex_enter(&fp->f_lock);
   1574 		*--rp = fp;
   1575 		fp->f_count++;
   1576 		fp->f_msgcount++;
   1577 		mutex_exit(&fp->f_lock);
   1578 	}
   1579 
   1580  out:
   1581  	/* Release descriptor references. */
   1582 	fdp = (int *)CMSG_DATA(cm);
   1583 	for (i = 0; i < nfds; i++) {
   1584 		fd_putfile(*fdp++);
   1585 		if (error != 0) {
   1586 			atomic_dec_uint(&unp_rights);
   1587 		}
   1588 	}
   1589 
   1590 	if (error == 0) {
   1591 		if (control->m_flags & M_EXT) {
   1592 			m_freem(control);
   1593 			*controlp = control = m_get(M_WAIT, MT_CONTROL);
   1594 		}
   1595 		MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
   1596 		    M_MBUF, NULL, NULL);
   1597 		cm = newcm;
   1598 		/*
   1599 		 * Adjust message & mbuf to note amount of space
   1600 		 * actually used.
   1601 		 */
   1602 		cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
   1603 		control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
   1604 	}
   1605 
   1606 	return error;
   1607 }
   1608 
   1609 struct mbuf *
   1610 unp_addsockcred(struct lwp *l, struct mbuf *control)
   1611 {
   1612 	struct sockcred *sc;
   1613 	struct mbuf *m;
   1614 	void *p;
   1615 
   1616 	m = sbcreatecontrol1(&p, SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)),
   1617 		SCM_CREDS, SOL_SOCKET, M_WAITOK);
   1618 	if (m == NULL)
   1619 		return control;
   1620 
   1621 	sc = p;
   1622 	sc->sc_pid = l->l_proc->p_pid;
   1623 	sc->sc_uid = kauth_cred_getuid(l->l_cred);
   1624 	sc->sc_euid = kauth_cred_geteuid(l->l_cred);
   1625 	sc->sc_gid = kauth_cred_getgid(l->l_cred);
   1626 	sc->sc_egid = kauth_cred_getegid(l->l_cred);
   1627 	sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
   1628 
   1629 	for (int i = 0; i < sc->sc_ngroups; i++)
   1630 		sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
   1631 
   1632 	return m_add(control, m);
   1633 }
   1634 
   1635 /*
   1636  * Do a mark-sweep GC of files in the system, to free up any which are
   1637  * caught in flight to an about-to-be-closed socket.  Additionally,
   1638  * process deferred file closures.
   1639  */
   1640 static void
   1641 unp_gc(file_t *dp)
   1642 {
   1643 	extern	struct domain unixdomain;
   1644 	file_t *fp, *np;
   1645 	struct socket *so, *so1;
   1646 	u_int i, oflags, rflags;
   1647 	bool didwork;
   1648 
   1649 	KASSERT(curlwp == unp_thread_lwp);
   1650 	KASSERT(mutex_owned(&filelist_lock));
   1651 
   1652 	/*
   1653 	 * First, process deferred file closures.
   1654 	 */
   1655 	while (!SLIST_EMPTY(&unp_thread_discard)) {
   1656 		fp = SLIST_FIRST(&unp_thread_discard);
   1657 		KASSERT(fp->f_unpcount > 0);
   1658 		KASSERT(fp->f_count > 0);
   1659 		KASSERT(fp->f_msgcount > 0);
   1660 		KASSERT(fp->f_count >= fp->f_unpcount);
   1661 		KASSERT(fp->f_count >= fp->f_msgcount);
   1662 		KASSERT(fp->f_msgcount >= fp->f_unpcount);
   1663 		SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist);
   1664 		i = fp->f_unpcount;
   1665 		fp->f_unpcount = 0;
   1666 		mutex_exit(&filelist_lock);
   1667 		for (; i != 0; i--) {
   1668 			unp_discard_now(fp);
   1669 		}
   1670 		mutex_enter(&filelist_lock);
   1671 	}
   1672 
   1673 	/*
   1674 	 * Clear mark bits.  Ensure that we don't consider new files
   1675 	 * entering the file table during this loop (they will not have
   1676 	 * FSCAN set).
   1677 	 */
   1678 	unp_defer = 0;
   1679 	LIST_FOREACH(fp, &filehead, f_list) {
   1680 		for (oflags = fp->f_flag;; oflags = rflags) {
   1681 			rflags = atomic_cas_uint(&fp->f_flag, oflags,
   1682 			    (oflags | FSCAN) & ~(FMARK|FDEFER));
   1683 			if (__predict_true(oflags == rflags)) {
   1684 				break;
   1685 			}
   1686 		}
   1687 	}
   1688 
   1689 	/*
   1690 	 * Iterate over the set of sockets, marking ones believed (based on
   1691 	 * refcount) to be referenced from a process, and marking for rescan
   1692 	 * sockets which are queued on a socket.  Recan continues descending
   1693 	 * and searching for sockets referenced by sockets (FDEFER), until
   1694 	 * there are no more socket->socket references to be discovered.
   1695 	 */
   1696 	do {
   1697 		didwork = false;
   1698 		for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
   1699 			KASSERT(mutex_owned(&filelist_lock));
   1700 			np = LIST_NEXT(fp, f_list);
   1701 			mutex_enter(&fp->f_lock);
   1702 			if ((fp->f_flag & FDEFER) != 0) {
   1703 				atomic_and_uint(&fp->f_flag, ~FDEFER);
   1704 				unp_defer--;
   1705 				if (fp->f_count == 0) {
   1706 					/*
   1707 					 * XXX: closef() doesn't pay attention
   1708 					 * to FDEFER
   1709 					 */
   1710 					mutex_exit(&fp->f_lock);
   1711 					continue;
   1712 				}
   1713 			} else {
   1714 				if (fp->f_count == 0 ||
   1715 				    (fp->f_flag & FMARK) != 0 ||
   1716 				    fp->f_count == fp->f_msgcount ||
   1717 				    fp->f_unpcount != 0) {
   1718 					mutex_exit(&fp->f_lock);
   1719 					continue;
   1720 				}
   1721 			}
   1722 			atomic_or_uint(&fp->f_flag, FMARK);
   1723 
   1724 			if (fp->f_type != DTYPE_SOCKET ||
   1725 			    (so = fp->f_socket) == NULL ||
   1726 			    so->so_proto->pr_domain != &unixdomain ||
   1727 			    (so->so_proto->pr_flags & PR_RIGHTS) == 0) {
   1728 				mutex_exit(&fp->f_lock);
   1729 				continue;
   1730 			}
   1731 
   1732 			/* Gain file ref, mark our position, and unlock. */
   1733 			didwork = true;
   1734 			LIST_INSERT_AFTER(fp, dp, f_list);
   1735 			fp->f_count++;
   1736 			mutex_exit(&fp->f_lock);
   1737 			mutex_exit(&filelist_lock);
   1738 
   1739 			/*
   1740 			 * Mark files referenced from sockets queued on the
   1741 			 * accept queue as well.
   1742 			 */
   1743 			solock(so);
   1744 			unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
   1745 			if ((so->so_options & SO_ACCEPTCONN) != 0) {
   1746 				TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
   1747 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
   1748 				}
   1749 				TAILQ_FOREACH(so1, &so->so_q, so_qe) {
   1750 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
   1751 				}
   1752 			}
   1753 			sounlock(so);
   1754 
   1755 			/* Re-lock and restart from where we left off. */
   1756 			closef(fp);
   1757 			mutex_enter(&filelist_lock);
   1758 			np = LIST_NEXT(dp, f_list);
   1759 			LIST_REMOVE(dp, f_list);
   1760 		}
   1761 		/*
   1762 		 * Bail early if we did nothing in the loop above.  Could
   1763 		 * happen because of concurrent activity causing unp_defer
   1764 		 * to get out of sync.
   1765 		 */
   1766 	} while (unp_defer != 0 && didwork);
   1767 
   1768 	/*
   1769 	 * Sweep pass.
   1770 	 *
   1771 	 * We grab an extra reference to each of the files that are
   1772 	 * not otherwise accessible and then free the rights that are
   1773 	 * stored in messages on them.
   1774 	 */
   1775 	for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
   1776 		KASSERT(mutex_owned(&filelist_lock));
   1777 		np = LIST_NEXT(fp, f_list);
   1778 		mutex_enter(&fp->f_lock);
   1779 
   1780 		/*
   1781 		 * Ignore non-sockets.
   1782 		 * Ignore dead sockets, or sockets with pending close.
   1783 		 * Ignore sockets obviously referenced elsewhere.
   1784 		 * Ignore sockets marked as referenced by our scan.
   1785 		 * Ignore new sockets that did not exist during the scan.
   1786 		 */
   1787 		if (fp->f_type != DTYPE_SOCKET ||
   1788 		    fp->f_count == 0 || fp->f_unpcount != 0 ||
   1789 		    fp->f_count != fp->f_msgcount ||
   1790 		    (fp->f_flag & (FMARK | FSCAN)) != FSCAN) {
   1791 			mutex_exit(&fp->f_lock);
   1792 			continue;
   1793 		}
   1794 
   1795 		/* Gain file ref, mark our position, and unlock. */
   1796 		LIST_INSERT_AFTER(fp, dp, f_list);
   1797 		fp->f_count++;
   1798 		mutex_exit(&fp->f_lock);
   1799 		mutex_exit(&filelist_lock);
   1800 
   1801 		/*
   1802 		 * Flush all data from the socket's receive buffer.
   1803 		 * This will cause files referenced only by the
   1804 		 * socket to be queued for close.
   1805 		 */
   1806 		so = fp->f_socket;
   1807 		solock(so);
   1808 		sorflush(so);
   1809 		sounlock(so);
   1810 
   1811 		/* Re-lock and restart from where we left off. */
   1812 		closef(fp);
   1813 		mutex_enter(&filelist_lock);
   1814 		np = LIST_NEXT(dp, f_list);
   1815 		LIST_REMOVE(dp, f_list);
   1816 	}
   1817 }
   1818 
   1819 /*
   1820  * Garbage collector thread.  While SCM_RIGHTS messages are in transit,
   1821  * wake once per second to garbage collect.  Run continually while we
   1822  * have deferred closes to process.
   1823  */
   1824 static void
   1825 unp_thread(void *cookie)
   1826 {
   1827 	file_t *dp;
   1828 
   1829 	/* Allocate a dummy file for our scans. */
   1830 	if ((dp = fgetdummy()) == NULL) {
   1831 		panic("unp_thread");
   1832 	}
   1833 
   1834 	mutex_enter(&filelist_lock);
   1835 	for (;;) {
   1836 		KASSERT(mutex_owned(&filelist_lock));
   1837 		if (SLIST_EMPTY(&unp_thread_discard)) {
   1838 			if (unp_rights != 0) {
   1839 				(void)cv_timedwait(&unp_thread_cv,
   1840 				    &filelist_lock, hz);
   1841 			} else {
   1842 				cv_wait(&unp_thread_cv, &filelist_lock);
   1843 			}
   1844 		}
   1845 		unp_gc(dp);
   1846 	}
   1847 	/* NOTREACHED */
   1848 }
   1849 
   1850 /*
   1851  * Kick the garbage collector into action if there is something for
   1852  * it to process.
   1853  */
   1854 static void
   1855 unp_thread_kick(void)
   1856 {
   1857 
   1858 	if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) {
   1859 		mutex_enter(&filelist_lock);
   1860 		cv_signal(&unp_thread_cv);
   1861 		mutex_exit(&filelist_lock);
   1862 	}
   1863 }
   1864 
   1865 void
   1866 unp_dispose(struct mbuf *m)
   1867 {
   1868 
   1869 	if (m)
   1870 		unp_scan(m, unp_discard_later, 1);
   1871 }
   1872 
   1873 void
   1874 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
   1875 {
   1876 	struct mbuf *m;
   1877 	file_t **rp, *fp;
   1878 	struct cmsghdr *cm;
   1879 	int i, qfds;
   1880 
   1881 	while (m0) {
   1882 		for (m = m0; m; m = m->m_next) {
   1883 			if (m->m_type != MT_CONTROL ||
   1884 			    m->m_len < sizeof(*cm)) {
   1885 			    	continue;
   1886 			}
   1887 			cm = mtod(m, struct cmsghdr *);
   1888 			if (cm->cmsg_level != SOL_SOCKET ||
   1889 			    cm->cmsg_type != SCM_RIGHTS)
   1890 				continue;
   1891 			qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
   1892 			    / sizeof(file_t *);
   1893 			rp = (file_t **)CMSG_DATA(cm);
   1894 			for (i = 0; i < qfds; i++) {
   1895 				fp = *rp;
   1896 				if (discard) {
   1897 					*rp = 0;
   1898 				}
   1899 				(*op)(fp);
   1900 				rp++;
   1901 			}
   1902 		}
   1903 		m0 = m0->m_nextpkt;
   1904 	}
   1905 }
   1906 
   1907 void
   1908 unp_mark(file_t *fp)
   1909 {
   1910 
   1911 	if (fp == NULL)
   1912 		return;
   1913 
   1914 	/* If we're already deferred, don't screw up the defer count */
   1915 	mutex_enter(&fp->f_lock);
   1916 	if (fp->f_flag & (FMARK | FDEFER)) {
   1917 		mutex_exit(&fp->f_lock);
   1918 		return;
   1919 	}
   1920 
   1921 	/*
   1922 	 * Minimize the number of deferrals...  Sockets are the only type of
   1923 	 * file which can hold references to another file, so just mark
   1924 	 * other files, and defer unmarked sockets for the next pass.
   1925 	 */
   1926 	if (fp->f_type == DTYPE_SOCKET) {
   1927 		unp_defer++;
   1928 		KASSERT(fp->f_count != 0);
   1929 		atomic_or_uint(&fp->f_flag, FDEFER);
   1930 	} else {
   1931 		atomic_or_uint(&fp->f_flag, FMARK);
   1932 	}
   1933 	mutex_exit(&fp->f_lock);
   1934 }
   1935 
   1936 static void
   1937 unp_discard_now(file_t *fp)
   1938 {
   1939 
   1940 	if (fp == NULL)
   1941 		return;
   1942 
   1943 	KASSERT(fp->f_count > 0);
   1944 	KASSERT(fp->f_msgcount > 0);
   1945 
   1946 	mutex_enter(&fp->f_lock);
   1947 	fp->f_msgcount--;
   1948 	mutex_exit(&fp->f_lock);
   1949 	atomic_dec_uint(&unp_rights);
   1950 	(void)closef(fp);
   1951 }
   1952 
   1953 static void
   1954 unp_discard_later(file_t *fp)
   1955 {
   1956 
   1957 	if (fp == NULL)
   1958 		return;
   1959 
   1960 	KASSERT(fp->f_count > 0);
   1961 	KASSERT(fp->f_msgcount > 0);
   1962 
   1963 	mutex_enter(&filelist_lock);
   1964 	if (fp->f_unpcount++ == 0) {
   1965 		SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist);
   1966 	}
   1967 	mutex_exit(&filelist_lock);
   1968 }
   1969 
   1970 void
   1971 unp_sysctl_create(struct sysctllog **clog)
   1972 {
   1973 	sysctl_createv(clog, 0, NULL, NULL,
   1974 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1975 		       CTLTYPE_LONG, "sendspace",
   1976 		       SYSCTL_DESCR("Default stream send space"),
   1977 		       NULL, 0, &unpst_sendspace, 0,
   1978 		       CTL_NET, PF_LOCAL, SOCK_STREAM, CTL_CREATE, CTL_EOL);
   1979 	sysctl_createv(clog, 0, NULL, NULL,
   1980 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1981 		       CTLTYPE_LONG, "recvspace",
   1982 		       SYSCTL_DESCR("Default stream recv space"),
   1983 		       NULL, 0, &unpst_recvspace, 0,
   1984 		       CTL_NET, PF_LOCAL, SOCK_STREAM, CTL_CREATE, CTL_EOL);
   1985 	sysctl_createv(clog, 0, NULL, NULL,
   1986 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1987 		       CTLTYPE_LONG, "sendspace",
   1988 		       SYSCTL_DESCR("Default datagram send space"),
   1989 		       NULL, 0, &unpdg_sendspace, 0,
   1990 		       CTL_NET, PF_LOCAL, SOCK_DGRAM, CTL_CREATE, CTL_EOL);
   1991 	sysctl_createv(clog, 0, NULL, NULL,
   1992 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1993 		       CTLTYPE_LONG, "recvspace",
   1994 		       SYSCTL_DESCR("Default datagram recv space"),
   1995 		       NULL, 0, &unpdg_recvspace, 0,
   1996 		       CTL_NET, PF_LOCAL, SOCK_DGRAM, CTL_CREATE, CTL_EOL);
   1997 	sysctl_createv(clog, 0, NULL, NULL,
   1998 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
   1999 		       CTLTYPE_INT, "inflight",
   2000 		       SYSCTL_DESCR("File descriptors in flight"),
   2001 		       NULL, 0, &unp_rights, 0,
   2002 		       CTL_NET, PF_LOCAL, CTL_CREATE, CTL_EOL);
   2003 	sysctl_createv(clog, 0, NULL, NULL,
   2004 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
   2005 		       CTLTYPE_INT, "deferred",
   2006 		       SYSCTL_DESCR("File descriptors deferred for close"),
   2007 		       NULL, 0, &unp_defer, 0,
   2008 		       CTL_NET, PF_LOCAL, CTL_CREATE, CTL_EOL);
   2009 }
   2010 
   2011 const struct pr_usrreqs unp_usrreqs = {
   2012 	.pr_attach	= unp_attach,
   2013 	.pr_detach	= unp_detach,
   2014 	.pr_accept	= unp_accept,
   2015 	.pr_bind	= unp_bind,
   2016 	.pr_listen	= unp_listen,
   2017 	.pr_connect	= unp_connect,
   2018 	.pr_connect2	= unp_connect2,
   2019 	.pr_disconnect	= unp_disconnect,
   2020 	.pr_shutdown	= unp_shutdown,
   2021 	.pr_abort	= unp_abort,
   2022 	.pr_ioctl	= unp_ioctl,
   2023 	.pr_stat	= unp_stat,
   2024 	.pr_peeraddr	= unp_peeraddr,
   2025 	.pr_sockaddr	= unp_sockaddr,
   2026 	.pr_rcvd	= unp_rcvd,
   2027 	.pr_recvoob	= unp_recvoob,
   2028 	.pr_send	= unp_send,
   2029 	.pr_sendoob	= unp_sendoob,
   2030 };
   2031